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1 Introduction

The ground states of many condensed matter systems feature spontaneously broken spatial

symmetries. Modulated states, such as charge and spin density waves, break translation

symmetry and some or all of the symmetries of the underlying lattice. Systems that exhibit

these phases, such as doped Mott insulators, are typically characterized by competing types

of order and often have complicated phase diagrams. The pseudogap regime of cuprate

superconductors, for example, features a variety of symmetry-breaking phases.

Gauge/gravity duality has proven to be a powerful tool for investigating strongly-

coupled systems, such as those arising in many interesting condensed matter systems. Al-

though most of the focus has been on computationally simpler homogeneous and isotropic

systems, in recent years symmetry-breaking instabilities and states with broken symme-

try have received increasing attention. One motivation to consider spatially inhomoge-

neous systems is that breaking spatial symmetries can affect interesting physical quantities.

For example, translational symmetry implies momentum conservation which automatically

leads to a divergent DC conductivity. To obtain physically sensible results, translational

symmetry must be broken.

One common approach is to explicitly break the symmetries with a spatially-dependent

source, such as a periodic chemical potential, as in [1–12]. Alternatively, homogeneity can

be preserved and instead Lorentz invariance can be explicitly broken, as in [13–19]. This
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is useful for studying the properties of spatially ordered systems but does not say much

about how the symmetry became broken in the first place.

In many cases, one is driven to investigate inhomogeneous states because the naive

homogeneous state turns out not to be the ground state. Investigations have found a

range of examples in which homogeneous states suffer from instabilities due to large charge

densities or magnetic fields [20–25]. Similar instabilities have been found in models of

holographic QCD, such as the Sakai-Sugimoto model, [26–30], as well as in certain (2+1)-

dimensional brane models [31–33]. These examples all share a common core mechanism,

the instability of Maxwell-Chern-Simons theory with a constant electric field, as explained

in [20]. However, [34] presented a model with translational symmetry breaking but which

preserved both parity and time reversal invariance. A lot of work has gone into the difficult

problem of finding the inhomogeneous end states of such instabilities [21, 24, 25, 27, 29,

30, 35–42]. Other interesting examples where the inhomogeneous solution is topologically

nontrivial appeared in [43–46].

In this paper, we will find the ground state of the D3-D7’ probe-brane model. The

homogeneous phase of this system has been analyzed in great detail, both in the metallic,

black hole-embedding phase [31, 32, 47] and in the quantum Hall, Minkowski-embedding

phase [48–50].1 A fluctuation analysis [31] showed that, above a critical charge density,

the homogeneous black hole phase is unstable. The tachyonic modes responsible for this

instability have nonzero momentum, suggesting the system decays to an inhomogeneous

ground state. This instability, however, is mitigated by a nonzero mass for the fermions

or an external magnetic field. This perturbative result motivated us to search for spa-

tially dependent solutions and to investigate whether the expectations from the fluctuation

analysis hold at the full nonlinear level.

We find explicit numerical solutions for configurations which exhibit spontaneous mod-

ulation in one spatial dimension. The bulk fields are entirely coupled; as a result, the

corresponding inhomogeneous state is both a spin and charge density wave.2 The spatial

frequency of this striped phase is closely related to the momenta of the tachyons of the

homogeneous phase. Comparing with the homogeneous phase, this striped phase is ther-

modynamically preferred at sufficiently large charge density and small magnetic field. In

general, the phase transition is first order, although there is a second-order critical point

at zero magnetic field.

In the next section, we will review the construction of the D3-D7’ model. Section 3

will describe the pseudospectral method we employ to find our modulated solution. In

section 4, we will describe the solutions, the transition from the homogeneous phase, and

the phase diagram. We finish in section 5 with a discussion of open questions and directions

for future research.

1See also analogous results [33, 51] in the cousin D2-D8’ model [52], which in many respects is similar to

the present case, but also has some interesting differences. The analysis carried out in the present article

should find its way to the D2-D8’ case, too.
2For reviews of charge and spin density waves, see [53] and [54].
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2 Review of the D3-D7’ model

We begin by setting up the notation and recalling the model under study. We are in-

terested in a holographic quantum liquid modeled by a probe D7-brane embedded in a

black D3-brane background. The intersection of the D3-D7’ system is (2+1)-dimensional,

supersymmetry is completely broken, and the low-energy excitations of the field theory

dual are purely fermionic. The model thus makes a compelling case for condensed matter

applications.

The ten-dimensional background metric reads:

ds2
10 =

r2

L2
AdS

(
−h(r)dt2 + dx2 + dy2 + dz2

)
+
L2

AdS

r2

(
dr2

h(r)
+ r2dΩ2

5

)
, (2.1)

where the thermal factor is h = 1−
(
rT
r

)4
. The metric on the internal sphere we write as

an S2 × S2 fibered over an interval:

dΩ2
5 = dψ2 + cos2 ψ

(
dθ2 + sin2 θ dφ2

)
+ sin2 ψ

(
dα2 + sin2 α dβ2

)
, (2.2)

with the ranges for angles ψ ∈ [0, π/2], θ, α ∈ [0, π], and φ, β ∈ [0, 2π]. Recall also that the

Ramond-Ramond four-form is C
(4)
txyz = −r4/L4

AdS, and the curvature radius is related to

the ’t Hooft coupling as L2
AdS =

√
4πgsNα

′ =
√
λα′. In the following we will work in units

where LAdS = 1.

We will embed the D7-brane such that it spans t, x, y Minkowski directions, is extended

in the holographic radial direction r, and wraps both of the two-spheres. We are interested

in solutions which depend on x and r, such that the embedding functions are z = z(x, r)

and ψ = ψ(x, r). Moreover, to creep towards more realistic physical models, we wish to

turn on all the external components of the gauge potential along the brane worldvolume:

at,x,y,r(x, r) 6= 0. Since the D7-brane would otherwise be unstable towards slipping off the

internal space, we also turn on internal components of the gauge field, such that their field

strengths are:

2πα′Fθφ =
f1

2
sin θ (2.3)

2πα′Fαβ =
f2

2
sinα . (2.4)

The quantized constants f1 and f2 are proportional to the number of D5-brane fluxes

diluted on the internal two-spheres. The dynamical fields we have are ψ, z, a0, ax, ay, ar.

Since we are only interested in time-independent solutions, we can work in the gauge ar = 0.

The action, which consists of a Dirac-Born-Infeld term and a Chern-Simons term,

reads:

S = −T7

∫
d8x e−Φ

√
−det(gµν + 2πα′Fµν)− (2πα′)2T7

2

∫
P [C4] ∧ F ∧ F

= −N
∫
dxdr

[√
G
√
r4A+Ax +Axr + r4f1f2z

′ − 2c(ψ)(a′0∂xay − ∂xa0a
′
y)
]
, (2.5)
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where the prime denotes differentiation with respect to r,

G =
(
f2

1 + 4 cos4 ψ
) (
f2

2 + 4 sin4 ψ
)

(2.6)

A = 1 + hr4z′2 + hr2ψ′2 − a′20 + ha′2x + ha′2y (2.7)

Ax = −1

h
∂xa

2
0 + ∂xa

2
y + r4∂xz

2 + r2∂xψ
2 (2.8)

Axr = −∂xa2
0a
′2
y − r4z′2∂xa

2
0 − r2ψ′2∂xa

2
0 − a′20

(
r4∂xz

2 + r2∂xψ
2 + ∂xa

2
y

)
+hr2

[
r2z′2∂xa

2
y + ψ′2∂xa

2
y + r4ψ′2∂xz

2 + r2a′2y ∂xz
2 + r4z′2∂xψ

2 +

a′2y ∂xψ
2 − 2r4z′ψ′∂xz∂xψ − 2a′y∂xay(r

2z′∂xz + ψ′∂xψ)

]
+2a′0∂xa0

(
a′y∂xay + r4z′∂xz + r2ψ′∂xψ

)
, (2.9)

and

c(ψ) = ψ − 1

4
sin(4ψ)− ψ∞ +

1

4
sin(4ψ∞) . (2.10)

The overall constant factor of the action is N = 4π2T8V1,1, where V1,1 is the spacetime

volume in the homogeneous t and y directions. Notice that ax only appears once, as a single

term ha′2x in A, which means that there is a trivial constant (both in x and r) solution for

it and it decouples from the rest of the dynamics; we can thus drop ax in what follows.

Before proceeding to solve the equations of motion that follow from the above action, let

us make a coordinate transformation and in particular absorb one scale.

The model has several parameters. These correspond to some boundary values (r →
∞) of the bulk fields ψ, z, a0, ay, as well as the fluxes f1 and f2, together with the parameter

rT of the background which is proportional to the temperature. Not all the parameters

are independent, however. It was shown in [47] that f1 and f2 fix ψ(r →∞) ≡ ψ∞ via the

relation

f2
1 sin2 ψ∞ − f2

2 cos2 ψ∞ + 4 sin2 ψ∞ cos2 ψ∞
(
cos2 ψ∞ − sin2 ψ∞

)
= 0 . (2.11)

The fluxes also determine the subleading exponent of the field ψ ∼ ψ∞ +Ar∆± :

∆± = −3

2
± 1

2

√
9 + 16

f2
1 + 16 cos6 ψ∞ − 12 cos4 ψ∞

f2
1 + 4 cos6 ψ∞

, (2.12)

where we have used (2.11) to eliminate f2. We note that, in order for the model to be

perturbatively stable, one needs large enough flux to have real exponents ∆±. In this paper

we will only consider the case f1 = f2 = 1/
√

2 which implies that ψ∞ = π/4 and also that

the anomalous mass dimension of the fermions is vanishing:

ψ ∼ π

4
+
mψ

r
−
cψ
r2
, (2.13)

where mψ is proportional to the quark mass and cψ is proportional to the condensate.

The field ψ plays the role of an axion in this model and couples linearly to the magnetic
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field, as will become explicit in the Chern-Simons term of the action (2.17) below. As was

shown in [32], the magnetization is directly related to the radial profile of ψ. One of the

main results of this paper is that the fermion bi-linear cψ will be modulated, resulting in

a modulated magnetization, which we identify as a spin density wave.3 For simplicity, we

will consider massless fermions in this paper, mψ = 0.

We can freely set the boundary values of z and ay to zero since neither z nor ay enter

in the equations of motion without derivatives and they do not also have IR constraints.

This is unlike for the case of a0, whose IR value has to vanish at the horizon, leaving the

UV boundary value a0(r →∞) ≡ µ as a physical parameter of the theory. We will specify

the UV boundary conditions explicitly for the different fields in appendix A.1.

We have a freedom to scale out one parameter of the model and for this we choose to

pick the temperature. We will introduce a new compact radial variable

u =
rT
r
. (2.14)

To get rid off explicit dependence of rT factors everywhere, we introduce notation with

hats as follows:

x̂µ =
xµ

rT
, ẑ =

z

rT
, âµ =

aµ
rT

. (2.15)

Essentially, all the parameters are read in the units of the horizon radius.

The action in the new radial coordinate reads

S = −NT
∫
dx̂du u−2

[
√
G

√
u−4Â+ Âx + Âxu − u−2f1f2ẑ

′ (2.16)

+2c(ψ)u2(â′0∂x̂ây − ∂x̂â0â
′
y)

]
, (2.17)

where4

G =
(
f2

1 + 4 cos4 ψ
) (
f2

2 + 4 sin4 ψ
)

(2.18)

Â = 1 + hu2ψ′2 + hẑ′2 − u4â′20 + hu4â′2y (2.19)

Âx = −1

h
∂x̂â

2
0 + ∂x̂â

2
y + u−4∂x̂ẑ

2 + u−2∂x̂ψ
2 (2.20)

Âxu = −u4∂x̂â
2
0â
′2
y − ẑ′2∂x̂â2

0 − u2ψ′2∂x̂â
2
0 − u4â′20

(
u−4∂x̂ẑ

2 + u−2∂x̂ψ
2 + ∂x̂â

2
y

)
+hẑ′2∂x̂â

2
y + hu2ψ′2∂x̂â

2
y + hu−2ψ′2∂x̂ẑ

2 + hâ′2y ∂x̂z
2 + hu−2ẑ′2∂x̂ψ

2 +

hu2â′2y ∂x̂ψ
2 − 2hu−2ẑ′ψ′∂x̂ẑ∂x̂ψ − 2hâ′y∂x̂ây(ẑ

′∂x̂ẑ + u2ψ′∂x̂ψ)

+2u2â′0∂x̂â0

(
u2â′y∂x̂ây + u−2ẑ′∂x̂ẑ + ψ′∂x̂ψ

)
, (2.21)

and

c(ψ) = ψ − 1

4
sin(4ψ)− ψ∞ +

1

4
sin(4ψ∞) (2.22)

h = 1− u4 . (2.23)

3In this probe brane system, there is no explicit holographic representation of the fermion spins. However,

we can use the magnetization density as a proxy for the spin density.
4Note that we have dropped the decoupled field âx.
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The new overall factor is NT = r2
TN . The prime now denotes differentiation with respect

to u.

The equations of motion that we will study in this article are the Euler-Lagrange

equations for the fields ψ = ψ(x̂, u), ẑ = ẑ(x̂, u), â0 = â0(x̂, u), and ây = ây(x̂, u), which

follow from (2.17). To streamline the discussion and because they are quite lengthy, we

will not write the equations of motion down explicitly.

3 Solution by pseudospectral method

We will now briefly sketch the techniques we used to solve the equations of motion, which

are a coupled, nonlinear, second-order PDE system. A more detailed description can be

found in appendix A.

We employed a pseudospectral method (see, e.g., [55]), in which the difficult partial

differential equations are rendered into a more tractable system of algebraic equations.

Most of the runs could be performed on a personal computer, but we ended up using a

supercomputing cluster for longer runs in order to achieve sufficient accuracy to analyze

the phase structure.

The first step is to determine the correct set of boundary conditions. The bound-

ary conditions imposed must be consistent with the equations of motion and must fix all

constants of integration. We are interested in the spontaneous breaking of translation in-

variance rather than breaking it explicitly. Therefore, the nonnormalizable terms in the

UV remain as unmodulated free parameters. The normalizable terms will be, in general,

modulated, and their values are fixed by requiring regularity in the IR.

In the UV, at u = 0, we fix the unmodulated sources as follows (see appendix A.1 for

more detail):

∂uψ(x̂, 0) = m̂ψ (3.1)

â0(x̂, 0) = µ̂ (3.2)

ây(x̂, 0) = b̂x̂ . (3.3)

where µ̂ is the (reduced) chemical potential for the fermions of mass m̂ψ, and b̂ is the

(reduced) external magnetic field:5

m̂ψ =
mψ

rT
(3.4)

µ̂ =
µ

rT
(3.5)

b̂ =
b

r2
T

. (3.6)

At the horizon u → 1, we demand that the solutions are regular and finite. One

particular requirement for the regularity is that â0 is constant in the IR but in fact we

5Note that, although ây has a linear dependence on x̂, the resulting magnetic field f̂xy = b̂ is homogeneous

and isotropic.
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need to require this constant to vanish:

â0(x̂, 1) = 0 , (3.7)

which ensures that â is also a well-defined one-form as the thermal circle pinches off.

Finally, we need to specify the boundary conditions in the x-direction. We are looking

for spatially modulated solutions, so it is natural to impose periodic boundary conditions;

that is, ψ(x̂) = ψ(x̂ + L̂), etc, where L = rT L̂ is the spatial period. However, it is not

obvious a priori what is the correct period L̂ (or equivalently frequency k̂ = 2π
L̂

) to choose.

Our approach is to find solutions for a range of spatial periods, and by comparing their

free energies, determine which wavelength is preferred by the system.

Having fixed the boundary conditions, we proceed to turn the system of differen-

tial equations of motion into a system of algebraic equations. To do this, we implement

the standard pseudospectral method based on a Fourier series having Nx terms in the

x̂-direction and an expansion in the Chebyshev polynomials having Nu terms in the u-

direction. The values of ψ, ẑ, â0, and ây at the O(NxNu) collocation points are chosen

as the variables, and the derivatives are computed in the pseudospectral approximation,

i.e., from the Fourier and Chebyshev series with O(NxNu) terms which exactly match with

the variables at the collocation points. We then insert these numbers into the equations

of motion. By demanding that the equations are satisfied at the collocation points, we

obtain O(NxNu) algebraic equations for the values of the functions which we then solve

numerically. See appendix A for more details. The accuracy converges exponentially with

increasing Nx and Nu. We tested the code up to Nx = 38 and Nu = 40, which yielded an

accuracy of at least 10−9 for all functions.

4 Results

4.1 Striped solutions without a magnetic field

Having set up the numerical method for solving a system of coupled PDEs, we can vary

the parameters µ̂, L̂, and b̂ and look for striped solutions. We consider massless fermions,

so m̂ψ = 0. For simplicity, we begin with the restricted case of zero magnetic field and

generalize to b̂ 6= 0 in section 4.2.

A representative striped solution is shown in figure 1. All the fields are modulated: ψ

and ây have periodicity equal to the periodicity imposed on the space L̂soln = L̂ but are

π/2 out of phase with each other; â0 and ẑ are modulated with frequency 2k̂. Because

of the charge density and wrapped internal flux, the bulk fields â0 and ẑ have nontrivial

homogeneous profiles; in figure 2, we have subtracted out this homogeneous background to

highlight the modulation. By construction, the modulation goes to zero near the boundary

u→ 0, indicating that the translation symmetry is being spontaneously broken.

The action (2.17) is covariant under the parity transformation x̂ → −x̂, and this

symmetry is preserved in all the solutions we have found. When the magnetic field is zero

there is also another reflection symmetry. Similarly the solutions with b̂ = 0 retain this

second symmetry under reflections x̂→ L̂
2 − x̂. (See appendix A.1 for more details.)
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Figure 1. A representative modulated solution: ψ (top left), â0 (top right), ẑ (bottom left), and

ây (bottom right) at L̂ = 1.646, and µ̂ = 4. This is the minimum energy solution, as shown in

figure 3, with k̂ = k̂0 = 3.815.

0.0
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u
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Figure 2. The modulations (left) ∆â0(x̂, u) = â0(x̂, u)− â0(0, u) and (right) ∆ẑ(x̂, u) = ẑ(x̂, u)−
ẑ(0, u) at L̂ = 1.646 and µ̂ = 4.

To determine the preferred modulation frequency, we compare the free energies of

solutions of varying L̂, with µ̂ held fixed. As we are working at fixed µ̂, that is, in the

grand canonical ensemble, the relevant free energy is the grand canonical potential, which

is defined by the Euclidean action (2.17) evaluated on a solution to the equations of motion:

Ω(µ̂, b̂) =
1

NT
SE [ψ(u), âµ(u), ẑ(u)]

∣∣
on−shell

. (4.1)

This divergent expression (4.1) is regulated using the standard holographic renormalization;
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Figure 3. Ω/L̂ for the various solutions at µ̂ = 4. The different dashed curves correspond to

branches of solutions with different numbers of oscillations n within the given spatial range L̂.

The red branch is n = 1, the magenta branch is n = 2, and green branch is n = 3. The short

dotted red curve is a family of solutions which interpolates between the n = 1 and n = 3 branches.

The horizontal blue line shows Ω/L̂ for the homogeneous solution. The frequency at which Ω/L̂ is

minimized is k̂0 = 3.815. The dashed red n = 1 branch merges with the homogeneous solution at

k̂max = 8.05 and with the red interpolating branch at k̂min = 2.124. The metastable solution on

the dotted red branch has k̂ = 2.172.

the required counterterms are explicitly written in [47]. Note that the range of the x̂ integral

in the action is L̂. In order to compare solutions with different periodicities L̂, the quantities

we need to compare are the average grand potential densities Ω/L̂. Bear in mind that,

while we are artificially fixing the spatial periodicity L̂ by hand here, in the actual system

the periodicity is determined dynamically as the system minimizes its energy.

In figure 3, we plot Ω/L̂ as a function of k̂ = 2π
L̂

for a fixed µ̂. The various curves on

the plot correspond to different ratios between the periodicity of x̂, which is L̂, and the

periodicity of the solution, denoted by L̂sol. For the solution shown in figure 1, the two

periods are equal, but in general there may be any integer number of modulations of the

solution within the spatial period, i.e., L̂ = nL̂sol for any positive integer n. In particular,

if a field configuration with modulation period L̂sol is a solution when L̂ = L̂sol, it will

necessarily also be a solution for L̂ = nL̂sol.

As can be seen from figure 3, there is a minimum energy solution at nonzero k̂ = k̂0;

this is the frequency preferred by the system for a given µ̂ and is the frequency the system

will take when L̂ is not fixed by hand. Forcing the system to have a higher frequency k̂ > k̂0

costs energy, and the amplitude of the modulation decreases, as shown in figure 4. For

sufficiently large k̂ = k̂max, the modulation vanishes, and the n = 1 branch of modulated

solutions merges smoothly with the homogeneous solution. When k̂ > k̂max, there are no

striped solutions.

In the opposite limit, if we make the spatial periodicity large L̂� 2π
k̂0

, the system will

try to have as many oscillations as necessary so k̂ is as close to k̂0 as possible. As k̂ is
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Figure 4. The amplitude of modulation, illustrated by the maximum (over x̂) of ĉψ. For the

homogeneous solutions ĉψ = 0. The curves correspond to the branches of solutions in figure 3.

decreased below k̂0, the energy similarly grows and the amplitude decreases, eventually

reaching a minimum k̂ = k̂min.

Rather than merging with the homogeneous solution, the n = 1 branch of solutions

merges at k̂min with a branch of solutions which interpolates between the n = 1 and n = 3

solutions (shown in red dots in figure 3). Interestingly, along this interpolating branch of

solutions is a local minimum of Ω/L̂, indicating the presence of a metastable solution.

We now allow µ̂ to vary, and compute Ω/L̂ as a function of both µ̂ and k̂. In figure 5,

we plot the difference between the modulated and homogeneous free energies ∆Ω/L̂ =

(Ωmod − Ωhom)/L̂. For µ̂ above the critical chemical potential µ̂c, there is a range of k̂

where ∆Ω/L̂ < 0, indicating that the modulated solution is preferred. The preferred

frequency k̂0(µ̂) is given by the k̂ that minimizes ∆Ω(µ̂)/L̂ and sets the frequency of the

striped phase. As shown in figure 5, the striped phase appears at µ̂c with a nonzero critical

frequency k̂c = k̂0(µ̂c), and k̂0(µ̂) increases with µ̂.

The transition between the homogeneous and the striped phases occurs at µ̂c. As µ̂

decreases to µ̂c, ∆Ω(k̂0, µ̂)/L̂ → 0 smoothly, as illustrated in figure 6(left). At µ̂c, the

charge density d̂ = −∂Ω
∂µ̂ of the two phases are equal, as shown in figure 6(right), indicating

that the phase transition is continuous. We can fit to very good accuracy the difference

in densities of the two phases ∆d̂ = d̂mod − d̂hom near µ̂c to a linear function of µ̂. We

conclude from this that the phase transition is second-order.

We can further investigate the nature of the phase transition by analyzing how the

modulation disappears as the critical point is approached. Figure 7 shows the amplitude

of modulation, which is well fit near the critical point by
√
µ̂− µ̂c for the amplitude of the

spin density wave (or rather its proxy ĉψ) and by a linear function for the amplitude of the

charge density wave (d̂− 〈d̂〉).
This phase transition exactly matches the expectations obtained from the fluctuation

analysis of the homogeneous phase. As shown in [31], at a particular chemical potential

– 10 –
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each µ̂. The critical chemical potential is µ̂c = 2.66, and the critical frequency is k̂c = 2.82.
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Figure 6. The phase transition between the homogeneous and striped phases illustrated by the

difference in free energy ∆Ω(k̂0)/L̂ (left) and charge densities d̂ of the two phases (right) as functions

of µ̂. Left: the blue points are the numerically computed values of ∆Ω(k̂0)/L̂, and the red curve is

the quadratic fit ∆Ω = −4.96(µ̂− µ̂c)2. Right: the difference in density ∆d̂ between the two phases

as a function of µ̂ just above the µ̂c. The numerical values are the blue points, and the red line is

a linear fit ∆d̂ = 0.217(µ̂− µ̂c).

µ̂inst, one quasinormal mode develops a positive imaginary dispersion at nonzero momen-

tum k̂inst; see section 4.4 of [31],6 particularly figure 4. The chemical potential and mo-

mentum at which the instability occurs match the critical chemical potential and spatial

frequency computed here from the explicit modulated solutions: µ̂inst = µ̂c and k̂inst = k̂c.

There is another lesson to be drawn. Comparing the magnitudes of the modulations

of different fields, for example as depicted in figure 7, we see that the amplitude of the

6The hatted variables in [31] are defined as they are here. However, in [31], the spectrum is computed

as a function of charge density d̂, making it necessary to translate from d̂ to µ̂ in order to make a direct

comparison.
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Figure 7. The maximum over x̂ of ĉψ (left) and the maximal deviation from the mean value of d̂

(right), illustrating the amplitude of modulation as a function of chemical potential µ̂. Note that

the homogeneous solution has ĉψ = 0. The blue dots are numerically computed, and the red is the

fit to max ĉψ = 0.922
√
µ̂− µ̂c in the left hand plot and max (d̂ − 〈d̂〉) = 0.00859(µ̂ − µ̂c) in the

right hand plot.

spin wave dominates over that of the charge density wave. This conforms nicely with the

fluctuation analysis [31]. When the fermion mass is set to zero m̂ψ = 0 at zero magnetic

field strength b̂ = 0, the fluctuation equations decouple. The tachyonic mode responsible

for the modulated instability resides entirely in the sector which only mixes the embedding

scalar δψ fluctuation and the transverse gauge field fluctuation δây, thus suggesting only

a spin density wave. Comparison of the plots in figure 7 shows, however, that coupling to

the charge density wave is present at second order in the fluctuation analysis. It is also

interesting to note that the nonlinearities do not essentially ramp up the charge density

wave, even further away from the critical point.

4.2 Stripes in a magnetic field

We now turn the magnetic field back on and again solve the PDEs. As in the b̂ = 0 case,

we find solutions with all the fields modulated. The main qualitative difference is that the

x̂→ L̂
2 − x̂ parity symmetry is now broken. For each b̂ and with µ̂ fixed, we again minimize

the free energy Ω/L̂ to find the spatial frequency k̂0 of the striped phase. We find that

decreasing b̂ causes k̂0 to increase. The energy difference ∆Ω/L̂ with the homogeneous

phase at fixed µ̂ is plotted as a function of b̂ and k̂ in figure 8.

We find that the magnetic field suppresses modulation. For a given µ̂, modulation

is thermodynamically preferred below a critical magnetic field b̂c, appearing at a critical

frequency k̂c > 0. Figure 9 shows how the free energy of the striped phase compares with

that of the homogeneous phase. Near b̂c, the energy difference is a linear function of b̂. The

magnetization M̂ = −∂Ω
∂b̂

therefore jumps at b̂c, indicating that the the phase transition is

first order, in contrast to the b̂ = 0 case; compare figure 9 with figure 6(left).

By varying both µ̂ and b̂, we can map out a two-dimensional phase diagram, which

is shown in figure 10. For each µ̂, we compute the critical chemical potential b̂c, which at

nonzero b̂c is the location of a first-order phase transition. This line of first-order transitions

ends at b̂c = 0 at a critical point, where the transition becomes continuous.
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is a linear fit ∆Ω/L̂ = 16.2(b̂− b̂c).
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Figure 10. The µ̂− b̂ phase diagram. The blue curve b̂c(µ̂) is a curve of first-order phase transitions

between the homogeneous phase (above the curve) and the striped phase (below the curve). This

curve ends in a second-order critical point at b̂c = 0 and µ̂ = 2.66, indicated in green. The

homogeneous phase is perturbatively unstable below the red curve; between the two curves, it is

metastable.

We can compare this phase diagram figure 10 with the results of the fluctuation analysis

of the homogeneous phase at nonzero b̂, performed in [32]. Because the phase transition is

in general first order, we would expect the homogeneous phase to change only from stable

to metastable at the transition point µ̂c; the instability should appear at µ̂inst > µ̂c. In

fact, this is what is found by comparing our results to those of in section 4.2 and figure 5

of [32].7

5 Discussion and outlook

In this paper, we presented the striped phase of the D3-D7’ system indicated by the pertur-

bative instability of the homogeneous state in [31, 32] and found by numerically solving the

coupled equations of motion. This modulated phase was found to be both a charge density

and spin density wave, while the latter component was vastly more dominant. The phase

structure presented in figure 10 is in excellent agreement with the previous perturbative

analysis.

There have been several recent examples of spontaneously modulated ground states

of a similar type as those studied here; in particular, [25, 36, 38–40] analyzed bottom-up

holographic models whose homogeneous states suffer from similar types of instability as

the D3-D7’ system. They find striped, cohomogeneity-one solutions, dual to charge and/or

current density waves. Though these solutions seem to resemble those that we found in

this work, our key player was the spin density wave and not so much the charge density

7The variables in [32] are defined as we do here, but the phase diagram is given in terms of charge density

d̂ rather than chemical potential µ̂.
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wave component of the modulation. Also, the phase transition from the homogeneous to

striped phases in those works were typically found to be of second order, though those

systems were not studied in the presence of a magnetic field.

There are a number of interesting avenues left to explore in the future. The D3-D7’

system features a number of parameters which have been fixed so far, such as the mass

mψ and the internal fluxes f1 and f2, and which could be varied to potentially interesting

effect. In particular, the alternative quantization of the bulk gauge field, studied in [49,

50], corresponds to an SL(2,Z) mapping of the boundary CFT. An upcoming stability

analysis [56] indicates that the choice of quantization strongly affects the phase structure,

but a construction of modulated solutions will be needed for a complete understanding.

In the quantum Hall phase, corresponding to a Minkowski embedding of the D7-brane,

the lowest neutral excitation, for a range of parameters, is a magneto-roton, that is, a

collective mode whose minimum energy is at nonzero momentum [48]. One could look for

modulated Minkowski solutions, corresponding to a roton condensate. However, since the

homogeneous solution was found to be perturbatively stable, such a modulated state would

not likely be preferred energetically.

A compelling but technically difficult open question is whether the striped phase is

in fact the ground state. Or, does continuous translation symmetry break completely,

resulting in a two-dimensional lattice? In principle, one could solve the system of PDEs,

allowing the fields to depend on both x and y. This presents a challenging numerical

problem.8 Another, possibly more tractable approach, might be to perform a fluctuation

analysis of the striped phase to detect perturbative instabilities. Just as a tachyon with

nonzero momentum signaled an instability of the homogeneous mode to forming stripes,

a tachyonic mode with nonzero momentum along the stripes would imply an instability

toward forming a lattice. Such a calculation would involve solving the linearized fluctuation

equations on top of the numerical striped background.

Another computation remaining is the calculation of the conductivity of the striped

phase. Translationally invariant phases typically feature infinite DC conductivity, though

probe-brane models have finite DC conductivity because momentum can be dissipated into

the large N number of bulk degrees of freedom. Still, the conductivity in the modulated

direction is expected to have interesting properties.

There are two standard methods for computing conductivities in holographic probe-

brane models. One can compute the retarded current-current correlator which relates to

the conductivity via a Kubo formula.9 In this case, such a calculation would be similar

in difficulty to the linear stability analysis discussed above. Alternatively, the Karch-

O’Bannon method [58, 59] can be used to compute the DC conductivity. However, because

the embedding is inhomogeneous and only known numerically, employing this technique

will not be straightforward.

Finally, there are many basic open questions to be addressed. Of particular importance

is to what degree symmetry-breaking is generic. Symmetry-breaking instabilities appear to

8Recently, in a bottom-up Einstein-Maxwell-scalar model, a solution with two modulated dimensions

was found numerically [42].
9For example, see [57] where the conductivity is computed in the alternatively quantized D3-D5 model.
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be a common feature of holographic systems. To what degree can the result of this model

be generalized? Given the current nature of holographic modeling, the detailed features of

any one construction is less relevant than generic features shared by a wide class of systems.

For example, the magnetic field tends to inhibit the symmetry-breaking instability in

the D3-D7’ system. A similar effect was also seen in the linear stability analysis of the

closely related D2-D8’ model [33], as well as in the Sakai-Sugimoto model [30]. We might

be tempted to conjecture that magnetic fields tend to stabilize modulated instabilities

more generally. This type of statement is about as much as we can currently aim for

in holographic condensed matter physics. The instabilities in these models are all of the

type identified in [20], so this may fail generalize to instabilities generated by different

mechanisms. So, it would be interesting to investigate the stabilizing effects of a magnetic

field in other holographic models, to test this conjecture.
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A Finding inhomogeneous solutions numerically

In this appendix, we describe in more detail the pseudospectral method for numerically

solving the equations of motion.

A.1 Boundary conditions

Let us start from the boundary conditions in the UV, where u→ 0. After using the radial

gauge condition and rotation symmetry in the x-y-plane, the dynamical fields are ψ, ẑ,

â0, and ây. One can solve the equations of motion as a series around u = 0, assuming
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unmodulated sources:

ψ(x̂, u) = ψ∞ + m̂ψu− ĉψ(x̂)u2 +
55

6
m̂3
ψu

3 +

+
1

48

(
−480m̂2

ψ ĉψ(x̂)− 16b̂d̂(x) + 9ĉ′′ψ(x̂)
)
u4 + · · · (A.1)

ẑ(x̂, u) = z̄ +
1

2
√

2
u+

m̂2
ψ

4
√

2
u3 −

m̂ψ

2
√

2
ĉψ(x̂)u4 +

+ĉz(x̂)u5 −
320m̂3

ψ ĉψ(x̂)− 3m̂ψ ĉ
′′
ψ(x̂)

32
√

2
u6 + · · · (A.2)

â0(x̂, u) = µ̂− d̂(x̂)√
2
u+
√

2b̂m̂ψu
2 −

−
64b̂ĉψ(x̂) + 24m̂2

ψd̂(x̂)− m̂ψ ĵ
′
y(x̂)− 9d̂′′(x̂)

48
√

2
u3 + · · · (A.3)

ây(x̂, u) = āy + b̂x̂+ ĵy(x̂)u+
1

48

(
24m̂2

ψ ĵy(x̂)− 16m̂ψd̂
′(x̂)− 9ĵ′′y (x̂)

)
u3 + · · · (A.4)

The constants m̂ψ, µ̂, and b̂ are parameters we are free to choose. The translation

symmetry of the background transverse to the D7-brane means that the constants z̄ and

āy can be set to any value without affecting observables, so we can set them to zero without

loss of generality. Therefore, we impose the following UV boundary conditions:

ψ(x̂, 0) = ψ∞ (A.5)

∂uψ(x̂, 0) = m̂ψ (A.6)

â0(x̂, 0) = µ̂ (A.7)

ẑ(x̂, 0) = 0 (A.8)

ây(x̂, 0) = b̂x̂ . (A.9)

These free parameters have clear physical interpretations. The µ̂ is the (reduced) chemical

potential for the fermions of mass m̂ψ, and b̂ is the (reduced) external magnetic field:

m̂ψ =
mψ

rT
(A.10)

µ̂ =
µ

rT
(A.11)

b̂ =
b

r2
T

. (A.12)

In the IR, at the horizon where u → 1, we require that the solutions are regular and

finite. In particular, we notice that the action (2.17) contains, in Âx of (2.20), a term
1
h∂x̂â

2
0. Since h → 0 at the horizon, we need to require that ∂x̂â0 → 0 in order for the

action to remain real. Therefore, â0 takes a constant value on the horizon, which must be

set to zero in order for â to be a well-defined one-form at the horizon. This choice also

implies that the boundary value of â0 is precisely the (reduced) chemical potential. The

value of â0 is the only integration constant we need to fix in the IR, as the behavior of
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the various fields is otherwise determined by requiring regularity. It turns out, however,

that imposing explicitly the leading-order constraint, which follow from expanding the

equations of motion as series at u = 1, improves the stability of the code. We therefore

require explicitly that our solution satisfies both

â0(x̂, 1) = 0 (A.13)

as well as the three leading-order conditions from the equations of motion for the fields ψ,

ẑ, and ây, which are lengthy expressions and not reproduced here.

Note that the action (2.17) is covariant under the reflection x̂→ −x̂ if ây is odd and the

other fields even in x̂.10 This property is reflected in the UV expansions (A.1), (A.2), (A.3),

and (A.4) (if we set to zero the “trivial” constant āy). When b̂ = 0, there is also another

symmetry: the action is covariant under the reflection if ψ − π/4 is odd and the other

fields are even in x̂. There does not appear to be a specific reason solutions must obey this

parity behavior. But, any inhomogeneous solutions we found respected the first symmetry

and the solutions with b̂ = 0 respected both symmetries when reflected with respect to

some value of x̂. By translation invariance we required that the first symmetry appears in

reflections with respect to x̂ = 0. Then the solutions with b̂ = 0 have the second symmetry

in reflections with respect to x̂ = L̂/4.

A.2 Implementation of the pseudospectral method

Having fixed the boundary conditions, we implement the pseudospectral method based on

a Fourier series in the x-direction and an expansion in the Chebyshev polynomials in the

u-direction. We assume that the desired inhomogeneous solution respects the first parity

symmetry with respect to x̂ = 0.11 Therefore, we choose the collocation points from a grid

of Nx + 1 evenly spaced points ranging from x̂ = 0 to x̂ = L̂/2 in the x-direction and from

the Gauss-Lobatto grid with Nu points ranging from u = 0 to u = 1 in the u-direction.

The problem is then reduced to finding the values of all the functions ψ, ẑ, â0, and ây at

the collocation points.

The solution is found by requiring that the boundary conditions and equations of mo-

tion are satisfied at the collocation points. Notice that the UV boundary conditions (A.5)–

(A.9), except for the second one fixing the quark mass, and the IR boundary condi-

tion (A.13) directly fix the values of the functions at the boundary points, thus reducing

the number of variables. For the other conditions, we need the values of the derivatives at

collocation points. These are computed from the values of the functions in the pseudospec-

tral approximation. In more detail, we require that the values of the functions match with

10The discrete symmetry properties of the D3-D7’ model were studied in detail in [60].
11We tried relaxing this assumption but did not find additional solutions.
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the expansions

ψ(x̂, u) =

Nu−1∑
j=0

Nx−1∑
k=0

ψ̂j,kTj(2u− 1) cos
2πkx̂

L̂
(A.14)

â0(x̂, u) =

Nu−1∑
j=0

Nx−1∑
k=0

â0,j,kTj(2u− 1) cos
2πkx̂

L̂
(A.15)

ẑ(x̂, u) =

Nu−1∑
j=0

Nx−1∑
k=0

ẑj,kTj(2u− 1) cos
2πkx̂

L̂
(A.16)

ây(x̂, u) =

Nu−1∑
j=0

Nx−1∑
k=1

ây,j,kTj(2u− 1) sin
2πkx̂

L̂
(A.17)

at the collocation points. Here Tj are Chebyshev polynomials, defined in the range [−1, 1].

This fixes the coefficients ψj,k, ẑj,k, â0,j,k, and ây,j,k in terms of the values of the functions.

The derivatives are then computed from these expansions.

Using the expressions for the derivatives, the remaining boundary conditions and equa-

tions of motions can be turned into algebraic conditions for the values of the functions. The

UV and IR boundary conditions are evaluated at the collocation points at u = 0 and at

u = 1, respectively, and the four equations of motion are evaluated at the other collocation

points with 0 < u < 1, so that the total number of conditions matches with the number

of remaining variables. The resulting algebraic equations are then solved numerically by

using the Newton method.

A.3 Initial configurations for the Newton method

The last step in the numerical method, i.e., solving the algebraic conditions discussed

above, is a rather nontrivial task for our system. The difficulties arise because unlike in

most AdS/CMT models where inhomogeneities have been studied in the literature, the

square roots in our brane action give rise to nonanalytic behavior. As it turns out, the

inhomogeneous solutions typically lie close to the branch points of the square roots and

tiny deformations of these solutions can make the action complex. Consequently, the initial

guess for the Newton method must be chosen very carefully, as otherwise the square root

factors become complex at some intermediate step, which causes the method to diverge.

Naturally, the main idea for constructing initial conditions is to start at low Nx and

Nu, and iteratively increase the number of grid points using the previous solution as initial

guess for the next step. In our case, however, the inhomogeneous solution may be absent

at very low number of grid points (or more precisely, the solution has turned complex),

which limits the range of Nx and Nu where the iterative procedure can be applied.

In order to overcome these difficulties, we used a separate code for generating the

initial data, which also relied on a spectral method. We started with a very small grid (3-4

points in each direction) where the system could be solved by an initial Ansatz motivated

by the fluctuation analysis [31, 32]. The existence of the solution was guaranteed by adding

a small random noise in the locations of the collocation points and by running the code
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in loop until it found a valid real root. The size of the grid was then gradually increased,

keeping the random noise, until the grid was about ten points in each direction. After this,

the obtained solution could be used as an initial configuration for the actual code, and grid

size could be iteratively increased further without issues.

A.4 Convergence and accuracy

We tested the convergence of the code at a single set of parameter values (µ̂ = 4, L̂ = π/2,

m̂ = 0, and b̂ = 0) up to Nx = 38 and Nu = 40. The expected roughly exponential

convergence was found. At the largest grid size, the relative accuracy of ây was about

10−9, that of ψ and â0 was about 10−10, and that of ẑ was about 10−11. Most of the data

in this article was computed using Nx = 24 and Nu = 26. At this grid size, the accuracy

of ây was smaller than 10−6, that of ψ and â0 was smaller than 10−7, and that of ẑ was

smaller than 10−8. This accuracy is more than enough for all analysis presented here.
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