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1 Introduction

Now that the Higgs field has been discovered the standard model (SM) with its minimal

scalar sector of electroweak (EW) symmetry breaking is complete. Though at first glance

it appears as a rather baroque theory it actually possesses a rather unique structure. If

one considers only marginal operators the SM admits a set of accidental (exact and ap-

proximate) symmetries leading to: baryon-lepton conservation, suppression of processes

involving flavor changing neutral currents (FCNC) and CP violation, and special relations

among its EW parameters. Several decades of experimental effort failed to find any flaw

in this picture. Furthermore, viewing the SM as an effective description of nature, one

finds that the leading deformation of its structure is expected to induce (Majorana) neu-

trino masses and mixing. The common explanation for the neutrino oscillation is that

at least two of them are massive, without a clear flavor structure. Alas, the well-know

See-Saw mechanism points to an extremely high scale. A scale way beyond the reach of

future experiments and also too high to lead to visible effects in flavor or EW precision

measurements.

The above tremendous success of the SM might suggest that our microscopic world

is of a form of a “desert”, namely it does not contain any kind of new dynamics for
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very many decades of energy scales. However, there is one basic question that is left

unanswered within the SM, that can be associated with a nearby energy scale: how come

the SM spectrum contains a light fundamental scalar? As is well known the masses of

scalar fields are radiatively unstable, this implies that Nature is finely tuned, unless a new

form of physics that is coupled to the SM Higgs and EW sector exists at the TeV scale.

An effective minimal approach to naturalness could be realized by extending different SM

sectors according to their “naturalness” pressure. From low energy perspective one can

order the SM different fields according to the size of their individual radiative contributions

to the Higgs mass square. The largest contribution are the ones that are associated with

the Higgs large coupling to the top quark. In such a way the sector with the lowest

new physics (NP) scale, possibly beside that of the Higgs itself, would be the top sector.

In the effective theory the NP contributions to various SM rare processes are inversely

proportional to the NP size. Thus, if the above “inverted” hierarchical NP scales can

be indeed realized in a microscopic theory then the resulting theory would approximately

posses the same set of accidental symmetries as the SM. Such a framework could lead to

a viable phenomenological description at least at zeroth order.

The above pattern is by definition non-universal in flavor space, as the sector that

contains the light generation quarks would correspond to a much higher NP scale than

the one related to the top sector. When the NP dynamics involves non-universal flavor

couplings it would generically lead to flavor violation. The size of the NP contributions to

FCNCs would be proportional to the level of misalignment between the NP coupling and

the corresponding SM Yukawa couplings. One can adopt the approach in which the NP

couplings follow exactly the same pattern as the SM ones, that is dictated by the Yukawa

interactions. This possibility is denoted as minimal flavor violation (MFV) (see [1] and

also [2] for symmetry based descriptions). However, such an approach suffers from two

conceptual drawbacks. The first is that MFV is just an ansatz. It does not shed light on

the flavor puzzle, namely why the quark flavor parameters are small and hierarchical. The

second, which is probably more relevant for TeV physics is that accommodating the MFV

ansatz makes the NP structure highly non-generic and imposes a serious burden in terms of

model building. Possibly a more generic approach would be one in which there is some semi-

universal parametric power counting that controls the strength of the interaction between

the different SM matter fields and the Higgs and their coupling to the new physics sector.

Within such a framework one can obtain a unified explanation for the SM flavor puzzle

and a protection against overly large contributions to various FCNC processes. However,

as the suppression of the various coupling in the theory is only parametric and not exact

we do expect contributions to flavor changing processes to arise at some level.

Focusing below on the quark sector we can identify two sources of parametric suppres-

sion: one is related to ratio of masses and the other is related to ratio of mixing angles

and associated with the structure of the left handed (LH) charged currents. Following

the above rationale we thus expect the ratio between the coupling of the NP degrees of

freedom to the SM LH (weak doublets) field to be of the order of the CKM elements and

for the right handed (RH) ones we expect the ratio of couplings to be of the order of the

masses divided by the corresponding mixing angles. Denoting the strength of the relevant
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interaction between the SM fields and the NP as being proportional to a parameter λiL,R
(i = 1 . . . 3 is a generation index and L,R is related to doublet and singlet respectively)

one finds (see e.g [3]),

λ3L : λ2L : λ1L ∼ 1 : Vcb : Vub ∼ 1 : 4× 10−2 : 4× 10−3 ,

λ3R,u : λ2R,u : λ1R,u ∼ 1 :
mc

mtVcb
:
mu

mtVub
∼ 1 : 9× 10−2 : 2× 10−3 ,

λ3R,d : λ2R,d : λ1R,d ∼ 1 :
ms

mbVcb
:

md

mbVub
∼ 1 : 0.4 : 0.2 , (1.1)

where the quark masses are taken from [4] at 1 TeV and the CKM elements from [5].

The relations above provide us with patterns of flavor violation that can be confronted

with data. However, these are generic and they give no information regarding the overall

scale of NP and also what the nature of the NP dynamics is. Nevertheless, assuming a

universal scale one can already identify what the most constraining set of observables in

such a framework would be [6–10]. It is quite obvious that the constraints coming from

the down sector are stronger than the ones coming from the up one [3]. Furthermore,

as in this paper we are interested to study Z-mediated FCNC one should also bear in

mind that EW precision measurements severely constrain non-SM shifts in the Z to bb̄

coupling. This motives us to look for effects in the up sector where the constraints are

weaker [11–13]. Moreover, examining the above relations it seems obvious that the first

place to be looking for flavor violation is in the top sector, namely in top-charm transitions.

Examining eq. (1.1) at any rate reveals that the largest source of flavor violation would be

within the RH sector in transitions related to RH top decaying to RH charm, with the LH

transitions being suppressed only by a factor of few. All this seems to give a pretty strong

motivation to study the t→ cZ process.

Within the SM the branching ratio of t→ cZ is highly suppressed and expected to be

at the order of 10−13 [14]. Thus, any signal well above it is a clear signal of NP. Currently,

the searches of t→ cZ give null result and set an upper bound of BR(t→ cZ) < 5×10−4 at

95% CL [15]. At the LHC this constraint can be improved by an order of magnitude. Notice

that, when considering rates below BR(t → cZ) < 5 × 10−5 or so, one needs to carefully

take into account SM backgrounds coming from production of top Z and a jet [16]. It

seems thus that a branching ratio of roughly 10−5 is particularly timely and relevant when

discussing t → cZ. However, given the large enhancement compared to the small SM

rate it would be fair to ask whether such a rate can be expected from any well motivated

(reasonable) extension of the SM. To get some perspective on the size of the required effect

let us use simple effective field theory (EFT) to see how large is the expected rate.

The structure of the EFT mediating (t → cZ) is in fact pretty simple. Only three

dimension-six operators are relevant for our discussion [17–21]:

t̄Rγ
µcR

(
H†
↔
DµH

)
, t̄Lγ

µcL

(
H†
↔
DµH

)
and t̄Lγ

µσ3cL

(
H†σ3

↔
DµH

)
. (1.2)

In order to fix our notation we write the generic flavor violating terms in the Lagrangian

involving the top and charm quarks and the Z boson as

Ltcint = (gtc,Lt̄Lγ
µcL + gtc,Rt̄Rγ

µcR)Zµ + h.c. . (1.3)
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The branching fraction for the decay of the top into the charm quark and the Z can be

expressed in terms of the gtc,L and gtc,R couplings and is approximately equal to

BR(t→ cZ) ' 3.5×
(
g2tc,R , g

2
tc,L

)
≈ 3.5

(
g

2cW

)2
((

mc

mtVcb

)2

, V 2
cb

)
v4

4M4
∗

∼ (1.5 , 0.3)× 10−5
(

700 GeV

M∗

)4

. (1.4)

where v = 246 GeV and cW is the cosine of the Weinberg angle. We have written eq. (1.4)

in a way that reflects the various parametric suppression that control the flavor violation

of our theory as explained above. We have also use M∗ to describe the scale that controls

the “microscopic” scale of our effective theory. We can learn several interesting things by

examining eq. (1.4) as follows.

• We find that a rather low effective scale is required to have BR(t→ cZ) of the order

of 10−5. However, such a scale is in fact motivated by naturalness. Indeed, it is

roughly the scale where we expect new degrees of freedom related to the extended

top sector to be present.

• The small scale required further implies that theories in which top FCNC arises at

the one-loop level, or that are controlled by weak couplings are probably out of the

reach of the current and next run of the LHC. Furthermore, in this case the expected

low rates implies that the search would not be background free anymore.

• We find that we expect that the contributions to RH flavor violating currents would

dominate over the LH ones. In case of an observed signal it would be actually

straightforward to test this prediction. As the searches target tt̄ events that are

produced via QCD hence both tops are expected to be of the same chirality and one

can use the standard top polarization tests to study the polarization of the flavor

violating top as well as the top on the “other side” of the event.

The above serves as a motivation to study top FCNC in models of strong dynamics

where the relevant couplings are expected to be sizeable and flavor violation arises at

tree level. In [22] such a scenario was analyzed in the context of anarchic RS models, or

their dual composite Higgs models with partial compositeness, in which the parametric

suppression of eq. (1.1) holds. The above qualitative results described in the bullets where

indeed confirmed and BR(t→ cZ) ∼ 10−5 was generically expected for Kaluza-Klein scale

of roughly 3 TeV and a RH coupling of roughly 5 times that of the Z, consistent with the

scales given in eq. (1.4). The LH coupling was assumed to be suppressed even beyond

the general suppression found in (1.4) as follows. The theory that has been considered

in [22] was not phenomenologically viable as it predicted a too large shift in the coupling

of Z to bb̄. The large top mass is forcing the LH top doublet to be of a minimal level of

compositeness that leads to this overly large non-oblique shift in the ZbLb̄L couplings (and

at the same time further reduce the LH contributions to BR(t → cZ)). Furthermore, the

– 4 –



J
H
E
P
1
2
(
2
0
1
4
)
0
8
2

model discussed in [22] suffered from a severe little hierarchy problem as the Higgs boson

was not realized as a pseudo Nambu-Goldstone boson (pNGB).

A custodial symmetry to protect the ZbLb̄L coupling against the above overly large

contributions was introduced in [23] and a theory with composite LH tops and bottom was

becoming phenomenologically viable. However, at the same time, in custodially protected

models it is rather generic to obtain protection of the Z coupling to RH tops and the generic

prediction of eq. (1.4) for the RH currents is lost. As the custodial symmetry can only

protect one component of a custodial multiplet the Zt̄LtL coupling might be significantly

shifted from its SM value. This naively lead to rates dominated by the LH current that

are however further suppressed according to (1.4).

In this work we consider the t → cZ process in composite models where the Higgs is

pNGB and as a result the little hierarchy problem is ameliorated. As we discuss below,

it leads to several quite generic consequences that basically resurrect this process as an

important probe of this framework:

(i) In pNGB composite Higgs models, the physical elementary-composite mixing param-

eter is effectively an angle and thus constraint to be of order unity at most. It implies

that to accommodate the large top Yukawa both the LH and RH top component need

to be sizable.

(ii) As already mentioned, sizable LH compositeness implies LH top FCNC though the

rate is somewhat suppressed as it is proportional to Vcb .

(iii) Minimizing the tuning of the class of pNGB models studied by us typically implies

the need to maximise the level of top LH compositeness. This, in fact implies that

through left-right mixing the presence of LH custodial violation leads to a larger

BR(t→ cZ) through the RH large size of composite flavor violation.

(iv) Finally, we point that, in anarchic pNGB models the source of flavor violation is

obtained through the misalignment between the partial composite mixing matrices

and the mass matrix of the vector-like composite fermonic partners. It implies that

the would be top partner is not a pure mass eigenstate which generically leads to

worsening of the level of fine tuning of this framework. It is a manifestation of a

rather rare semi-direct linkage between the physics of naturalness of that of flavor

violation. (For a related discussion see [24, 25])

In the following section we introduce the set-up and discuss its flavor structure and the

tuning in it. Section 3 contains the details of top flavor violation. In section 4, we discuss

Higgs flavor violation, while in section 5 relevant effects in D physics are discussed. We

conclude in section 6. Appendix A contains relevant details for the diagonalization of the

up type quarks mass matrix.

2 The set-up

In this work we will consider the simplest realization of the composite Higgs scenario in

which the Higgs boson arises as a Nambu-Goldstone boson of the spontaneously broken
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global symmetry SO(5)/SO(4). For definiteness we will assume that the elementary SM

fermions are linearly mixed with composite operators in the fundamental representation

(the 5) of the global SO(5) group. This framework realizes the partial compositeness

mechanism [26] for the generation of the SM fermion masses and is usually known in the

literature as the MCHM5 set-up [27]. Notice that this is the minimal composite Higgs

implementation that includes a custodial PLR protection for the bottom coupling to the Z

boson [23].

In our analysis we will use an effective field theory approach and we will describe the

low-energy dynamics of the theory by the use of the Callan-Coleman-Wess-Zumino for-

malism (CCWZ) [28, 29], which allows to write the most general Lagrangian compatible

with the Goldstone nature of the Higgs. In addition to the Higgs boson and the elemen-

tary components of the SM fields, our effective description also contains a set of composite

resonances coming from the strong-sector dynamics. For simplicity, we parametrize the

composite resonances (in particular the fermionc ones that are relevant for our analysis)

by the so called “two site” construction [30–34], which corresponds to parametrizing the

composite sector by just one level of composite fields. Notice that this simplification does

not spoil the main features of the composite Higgs scenarios, namely the Goldstone nature

of the Higgs and the calculability of the model (in particular of the Higgs potential). More-

over it retains the lightest composite resonances that generate the leading contributions to

the flavor effects we are investigating.

The goal of this study is to analyze the flavor violating interactions of the Z boson

with the top and charm quarks as well as the flavor structure of the theory. This allows us

to simplify the discussion by ignoring completely the first generation of the SM fermions

and their composite partners. The inclusion of these effects, in fact, would not generate

any qualitative change in our results. However, these effects will be considered in section 5,

where we discuss D physics.

Let us now describe the effective model that is considered below. As we said before,

the elementary states corresponding to the second (qcL and cR) and third (qtL and tR) SM

quark generations are mixed with composite operators transforming in the fundamental

representation of SO(5). Although the elementary fermions do not fill complete SO(5)

representations it is useful to formally restore the global invariance by incorporating them

as incomplete multiplets:

qtL =
1√
2


bL
−ibL
tL
itL
0

 , utR =


0

0

0

0

tR

 . (2.1)

Analogous embeddings are used for the second generation quarks (qcL and ucR). For conve-

nience, we also represent the composite states as fields filling multiplets in the fundamental

representation, 5. Notice, however, that in the CCWZ formalism the composite states

transform only under SO(4) transformations, thus, in the most general Lagrangian each

SO(4) multiplet can be thought as an independent component. The explicit form of the
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SO(5) composite multiplets is

ψi =
1√
2


Bi
−1/3 +Xi

5/3

−i(Bi
−1/3 −X

i
5/3)

T i2/3 +Xi
2/3

i(T i2/3 −X
i
2/3)√

2 T̃ i2/3

 , (2.2)

where the subscript indicates the electric charge and here and below the superscript

i, j = 2, 3 stand for flavor indices. In the above formula we classified the composite states

according to their quantum numbers under SO(4) ' SU(2)L × SU(2)R. In particular the

T2/3 and B−1/3 fields form an SU(2)L doublet with T 3
R charge −1/2, while X5/3 and X2/3

belong to a second doublet with T 3
R charge +1/2. The T̃2/3 field is instead a singlet. Notice

that, as customary in this class of models, the fermion fields are also charged under an

additional unbroken U(1)X group. The presence of this extra symmetry is necessary to

obtain the correct hypercharges for the fermions. In particular the hypercharge generator

is defined as the combination Y = T 3
R + X. This choice fixes the U(1)X charge of the

fermion fields introduced above to be X = 2/3.

In our analysis we will concentrate on the flavor anarchic case. In this scenario, the

mixing among the fermion generations arises from the misalignment between the mass

matrix of the composite resonances and that describing the mixing of the elementary

fermions with the composite states. The Lagrangian describing the masses and mixings

among the composite states reads

Lcomposite = M ij
4

(
ψ̄iLP4ψ

j
R

)
+M ij

1

(
ψ̄iLP1ψ

j
R

)
+ h.c. . (2.3)

In this formula we used the decomposition of the SO(5) representation 5 in SO(4) multi-

plets,

5 = 4 + 1 = (2,2) + (1,1) (2.4)

and we denoted by P4,1 the projectors on the bidoublet and the singlet components re-

spectively. It is important to stress that the Lagrangian in eq. (2.3) is invariant under the

full SO(5) global symmetry, as ensured by the CCWZ construction. Of course, the fact

that each SO(4) multiplet has a different mass is only a manifestation of the spontaneous

symmetry breaking of SO(5) and must not be interpreted as an explicit breaking.

In addition to the mass terms in eq. (2.3), the effective Lagrangian includes terms that

mix the elementary fermions and the composite states. To write these we introduce the

Goldstone matrix parametrizing the Higgs field:

U(H) = exp
(
i
√

2hâT â/f
)
, (2.5)

where T â (â = 1, . . . , 4) denote the genetators of the coset SO(5)/SO(4) and hâ are the

Higgs components. Notice that the Goldstone matrix U(H) has special transformation

properties under SO(5). On the left it transforms linearly, while on the right it transforms

only with SO(4) elements which correspond to a non-linear realization of SO(5). In the
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CCWZ formulation the elementary fields transform linearly under SO(5), while the com-

posite fields transform only under the SO(4) unbroken subgroup. Therefore, to write a

mass (mixing) term that respects the symmetry structure of the theory, we need to multi-

ply the elementary fields by the Goldstone matrix and then couple them to the composite

resonances.

In the “two site” model the mixing between the composite and the elementary states

is realized as follows

Lmixing =
(
λ†R

)ij
ūiR U(H)ψj + λijL q̄

i
L U(H)ψj + h.c. . (2.6)

Note that the Lagrangian in eq. (2.6) formally preserves a bigger symmetry than just SO(5).

In fact it is formally invariant under two independent SO(5) symmetries: one acting only

on the elementary fields and one only on the composite fields (under this symmetry the

Goldstone matrix should transform as a bi-fundamental, see [31] for more details). In the

most general case in which one only imposes the usual SO(5) symmetry, one could also add

independent mixing terms for each elementary field to the bidoublet and singlet components

of ψ. For instance for the qL doublet we could write λ4q̄LU(H)P4ψ+λ1q̄LU(H)P1ψ, while

in eq. (2.6) they are set to be equal

(λ4)L,R = (λ1)L,R = λL,R . (2.7)

We adopted the choice in eq. (2.7) because it ensures that the Higgs mass is calculable in

our model [31, 33]. The most general Lagrangian, instead, leads to a divergent Higgs mass.

The interactions of the fermions with the Z boson arise from the following terms in

the effective Lagrangian [35]

LZ, int =
g

cW

∑
q=qt,cL ,t(c)R

q̄
(
T 3
L −Qqs2W

)
/Zq +

∑
i

ψ̄i/̂eψi +
∑
i,j

ζijψ̄
i/̂dψj , (2.8)

where Qq is the electric charge while cW and sW denote the cosine and sine of the weak

mixing angle. Notice that the elementary fields interact with the Z in the same way as

in the SM, while the interaction of the composite fields arises from the CCWZ covariant

derivatives ê and d̂. The ê and d̂ symbols are defined as [36]

êµ = −i
∑
a

T a Tr
[
U(H)†DµU(H)T a

]
,

d̂µ = −i
∑
â

T â Tr
[
U(H)†DµU(H)T â

]
, (2.9)

where Dµ is the SM covariant derivative, while T a (a = 1, . . . , 6) and T â (a = 1, . . . , 4)

are the unbroken and broken SO(5) generators respectively. For simplicity, we work in the

limit of ζ → 0. The case of non-vanishing ζ leads to additive flavor violation effects and is

worth a further investigation. For ζ ∼ O(1) these effects are expected to be at the same

order as the discussed effects.

It is interesting to notice that the leading effects of the composite vector fields ρ are

already included in the Lagrangian in eq. (2.8). The CCWZ formalism, indeed, ensures that
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the one in eq. (2.8) is the most general Lagrangian consistent with nonlinear linearization

of SO(5)/SO(4) breaking. We can easily check this result explicitly by considering the

most general Lagrangian describing a vector resonance ρaµ in the adjoint representation of

SO(4). The only terms invariant under the global symmetry are

Lρ = −1

4
ρaµνρ

aµν + κf2
(
êaµ − gρρaµ

)2
+ κψψ̄

(
/̂e
a
− gρ/ρa

)
T aψ . (2.10)

One can see that the non-kinetic terms depend on the same combination of êµ and ρµ, so

that integrating out the ρ resonance at zero momentum does not lead to any additional

contribution to the /̂e term of the eq. (2.8). Analogously one can show that the leading

effects due to an axial vector resonance in the coset SO(5)/SO(4) can be encoded in the d̂

symbol terms in eq. (2.8).

2.1 The anarchic flavor structure

In this subsection we will briefly review the structure of “flavor anarchic” composite Higgs

models, which is the basis of our analysis of the Ztc coupling. The starting point to

understand this setup is the partial compositeness assumption, which links the generation

of the SM fermion masses to the mixing of the elementary states with the composite

resonances. To leading order in the elementary-composite mixing terms, the masses of the

SM quarks gives

mi
SM ∼

v

f

λiLλ
i
R

M∗
, (2.11)

where M∗ is the mass scale of the fermionic composite states and λiX stands for the ith

eigenvalue of the matrix λijX .

The partial compositeness scenario provides an interesting framework to generate the

hierarchical structure of the SM fermion masses and of the CKM matrix elements. The

construction work as follows. First of all we assume that the strongly interacting sector has

an anarchic flavor structure, that is the mass matrix of the composite states is generic and

all its elements are of the same order, including the off-diagonal ones. This assumption

implies that no flavor symmetry is present in the composite sector, so that the fermion

mass eigenstates are an admixture of the partners of the different generations. As a second

ingredient we require that all the flavor hierarchies of the SM quark masses and of the CKM

elements are generated by the eigenvalues of the elementary composite mixing matrices.

The requirement of reproducing the correct quark masses and the CKM matrix leads

to the approximate relations between the elementary-composite mixing parameters λiL,R
presented in the introduction, see eq. (1.1). This type of ansatz for the elementary com-

posite mixing is usually referred to as “flavor anarchy”. As can be seen from eq. (1.1), in

this scenario, the mixing of the light generation quarks to the composite states is small,

or, in other words, the first and second generation quarks are almost elementary.

One of the nice features of the flavor anarchic scenario is the fact that it automatically

provides a partial suppression of the flavor violating NP effects [22]. The reason for this is

simply the fact that flavor changing currents can only be generated through the mixing of

the SM states with the composite sector. Therefore, any effect involving the light quarks

is necessarily suppressed by their small amount of compositeness.
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2.2 The flavor structure of minimal pNGB models

The flavor structure of composite pNGB models is somewhat different than that of con-

ventional composite models [37] and thus we are going to consider it in some detail in this

part. On the elementary side the flavor group is obviously identical to that of the SM,

SU(3)Q × SU(3)U × SU(3)D for the quark doublets and up and down singlets respectively.

Here, we shall focus on the minimal composite model. In this case we can define in principle

the same group structure for the composite sector, assuming that the quarks form fourplets

and up and down singlets of SO(4), SU(3)Q4×SU(3)U1×SU(3)D1 (the superscripts stands

for the SO(4) representation).

We can now collect the various flavor violating terms from eqs. (2.3), (2.6) and (2.8)

(where as already mentioned we focus for simplicity on a finite pNGB model [31, 33]).

The vector like composite masses (2.3), M ij
4,1, transforms as adjoints of the corresponding

composite flavor group (here for simplicity we only consider the terms relevant for up flavor

violation). The ζ term (2.8) transforms as a bi-fundamental of the composite flavor group

SU(3)Q4 × SU(3)U1 , however, for simplicity we set it to zero in what follows. Recall that

in our construction, the mixing terms (2.6), λL,R are non-generic. The choice made in

eq. (2.7) to use a mixing with an additional SO(5) symmetry implies that λL,R transform

simultaneously as vector like masses (hence as bi-fundamental of SU(3)Q,U × SU(3)Q4,U1),

and as Yukawa terms (hence as bi-fundamental of SU(3)Q,U × SU(3)U1,Q4) . This implies

that they break the SU(3)U1×SU(3)Q4 down to a diagonal vector symmetry SU(3)ψ, under

which we identify the following spurions, transforming under SU(3)Q × SU(3)U × SU(3)ψ:

M ij
4,1 ∈ (1,1,8 + 1) , λL ∈ (3,1, 3̄) , λR ∈ (1, 3̄,3) . (2.12)

In order to get a first non-trivial usage of the above spurion flavor description let us

have a look at the flavor structure of the SM masses within minimal models. For simplicity,

we shall stick to the limit of small mixing, adding higher power in the mixing matrices λL,R
is not expected to change the qualitative features of the result. Written in matrix form the

mass matrices for the fermions can be written as (see e.g. [25]):

M ij
u =


0 λL cos2 ε

2 λL sin2 ε
2 −

λL√
2

sin ε
λR√
2

sin ε M4 0 0

−λR√
2

sin ε 0 M4 0

λR cos ε 0 0 M1


ij

, ε ≡ v

f
, (2.13)

with Mu being mass matrix of the charge 2/3 states, given in the following basis

Lmass = −
(
ū T̄ X̄2/3

¯̃T
)i
L
M ij
u


u

T

X2/3

T̃


j

R

+ h.c. , (2.14)

The resulting leading order spurion expression for the SM masses is then(
mSM
u

)ij ' ε√
2
λikL

[(
M−14

)kl − (M−11

)kl]
λljR . (2.15)
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One can easily check that, for small mixing and anarchic M4,1 the above expression recovers

the single generation expression given in eqs. (2.11) and (2.26). Furthermore, in the global

SO(5) limit, M4 = M1, the SM masses vanish as expected as in that case one can use the

approximate global SO(5) symmetry to rotate ψ in such away that no dependence on H is

present either in the mixing terms in eq. (2.6) or in M4,1. From eq. (2.15) we learn that,

similarly to the non-pNGB Higgs case, the hierarchies in masses are controlled by the hier-

archies in the eigenvalues of λL,R [38–40]. However, the source of flavor violation (beyond

the SM) in this theory is due to the misalignment, in flavor space, between λ†LλL, λRλ
†
R

and M4,1 (to be compared with the non-pNGB case [37]).

Let us count the number of physical mixing angles in the two generation case. This will

become handy when we discuss t→ c transition and when we examine the potential linkage

between flavor violation and anarchic naturalness. To further simplifies the discussion, and

as we are not interested in CP violation let us switch off all the complex parameters. In

addition, we shall only focus on the up-type flavor sector that is relevant to top flavor

violation. When switching off the masses and the linear mixing terms, the Lagrangian

admits the following large SO(2)6 symmetry group SO(2)Q,U × SO(2)L,R
Q4,U1 .

Generically, the Lagrangian consist of six independent 2 × 2 real matrices M4,1 and

(λ4,1)L,R . As explained to ensure the finiteness of the potential we shall assume that the λ’s

respect the SO(5) symmetry and respect the “pseudo-covariant” relation (in flavor space)

given in eq. (2.7) (λ4)L,R = (λ1)L,R.1 We call this pseudo-covariant as it holds in any basis

when considering the elementary flavor space but not on the composite side that does not

respect the SO(5) symmetry, namely the M4 and M1 are independent matrices. This is

an interesting manifestation of the fact that the flavor group does not commute with the

SO(5) symmetry.

The above covariant relation implies that there is a single elementary (unphysical)

mixing angle for λL and λR (that can be removed via the SO(2)Q,U transformation) and

that the two eigenvalues of (λ4)L,R and (λ1)L,R (that are basis independent) are the same.

This results in 18 physical parameters (24 minus 6). The SO(2)6 symmetry transformation

allows to remove 6 unphysical flavor parameters leaving total of 12 independent flavor

parameters. Out of which we can identify the 8 eigenvalues of λL,R and M1,4 and two pair

of composite physical mixing angles, θ1,4L,R. These correspond to the misalignment between

λL,R and M1,4 respectively (omitting transpose signs for simplicity).

Given the above description, in the basis where λL,R are diagonal we use the following

parametrerization

M1,4 = O1,4
L M̂1,4

(
O1,4
R

)†
, λL,R = λ̂L,R , (2.16)

where X̂ are the diagonal matrices

M̂X = diag [MXc , MXt ] = M∗X × diag [1 + ∆X , 1] , λ̂Y = diag
[
λcY , λ

t
Y

]
, (2.17)

1We note that the general condition for finite potential is Tr[(λ1)L,R(λ1)†L,R] = Tr[(λ4)L,R(λ4)†L,R].
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and OXY are the relative rotations

OXY =

(
cos
(
θXY
)

sin
(
θXY
)

− sin
(
θXY
)

cos
(
θXY
)) , (2.18)

with X = 1, 4 and Y = L,R.

2.3 The Higgs potential and top compositeness

2.3.1 Single generation case

Before proceeding further we will review the properties of the Higgs potential in the

MCHM5 framework. For this short discussion we will follow the lines of [33, 41] that

is analysing the potential focusing on the contribution from the top sector. We shall in-

clude the contributions from the second generation in the following subsection. As we will

see the analysis of the Higgs potential is essential to determine the most natural part of

the parameter space of the model and leads to important consequences on the flavor phe-

nomenology. The main contributions to the composite Higgs potential are generated at the

radiative level through loops of the composite top partners. The mixing of the elementary

top components, indeed, induces the largest breaking of the SO(5) global symmetry which

protects the Higgs dynamics.

Due to the Goldstone nature of the Higgs, the effective potential can be always ex-

pressed in terms of trigonometric functions of the ratio h/f . In the following we will be

interested in the configurations with (h/f)2 � 1, which are preferred by EW precision

data [35, 42] and by the current bounds on the Higgs couplings [43, 44]. In this case it is

convenient to use an expansion of the potential in powers of sin(h/f). The Higgs potential

can therefore be rewritten in the form

V (h) = α sin2

(
h

f

)
+ β sin4

(
h

f

)
. (2.19)

The position of the minimum of the potential is determined by the ratio of the α and β

coefficients:

ξ ≡ sin2

(
〈h〉
f

)
= − α

2β
. (2.20)

We can now use the above results to get an estimate of the fine tuning of the model.

The main source of tuning is related to the requirement ξ � 1. For generic values of

α and β, indeed, the minimum of the potential in eq. (2.19) is naturally found at ξ ∼ 1.

Some amount of cancellation in the α coefficient is thus needed to get a phenomenologically

viable configuration.

To get a more quantitative estimate of the tuning, first of all we need to get an estimate

of the size of the α and β coefficients. The fine-tuning can then be estimated as the ratio

between the actual value of the α needed to obtain the correct ξ, given in eq. (2.20), and

the typical size of each of the term contributing to α. The α and β coefficients are induced

by the breaking in the top sector. The α coefficient is of the order of

αtL,R ∼
Nc

16π2
(
λtL,R

)2
M2
∗ , (2.21)
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whereas β is typically of the order of

β ∼ Nc

16π2
(
λtLλ

t
R

)2
, (2.22)

where Nc = 3 is the number of QCD colors. With these definitions we get

FT−1 ∼ −2β ξ

αtL,R
∼

min
[(
λtR
)2
,
(
λtL
)2]

v2

M2
∗ f

2
. (2.23)

As we discussed before, see eq. (2.11), to leading order in the mixings the top mass is

mt ∼ λtLλtRv/M∗f . By combining the above relations we find our estimate for the amount

of fine tuning:

FT−1 ∼ m2
t

max
[
λtL,R

]2 . (2.24)

To minimize the amount of tuning one typically requires λtR ∼ λtL [31]. Thus, the relation

for the fine tuning can be rewritten as

FT−1 ∼ yt
v2

M∗f
∼ yt
g∗

v2

f2
, (2.25)

where yt ∼ 1 is the top Yukawa and we use M∗ ∼ g∗f .

From eq. (2.25) we can see that a small value of g∗, or in other words a small mass scale

for the fermionic resonances M∗ ≡ g∗f , implies a smaller amount of tuning and improves

the naturalness of the model. An interesting consequence of the presence of light fermionic

partners is the fact that both tL and tR necessarily have a large amount of compositeness

as follows. In models with a pNGB Higgs, with linear mixing, we expect that the SM-chiral

fermion masses are given by trigonometric function of the Higgs and thus bounded from

above. For example in minimal models the top mass is given by (see e.g. [25])

mt ≈ g∗ v stLstR , (2.26)

with stL,R = λtL,R/

√
M2

4,1 +
(
λtL,R

)2
, where to leading order in the mixings and assuming

no hierarchies in the spectrum, this expression coincide with the one given in eqs. (2.11)

and (2.15). From eq. (2.26) we first learn that even for large values of g∗ both top chiralities

are required to be fairly composite. Furthermore, as already discussed to minimize the

tuning g∗ is required to be small and stL ∼ stR. Therefore both the LH and RH components

of the tops are required to have large, order one, mixing with the composite sector. This,

rather generic conclusion, leads to interesting and important consequences for top flavor

violation as we discuss in the following section.

2.3.2 Higgs potential, the anarchic case

In the above, we discussed the properties of the Higgs potential and the amount of fine

tuning present in the MCHM5 set-up. In our analysis, however, we completely ignored the
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effects of the charm partners. We want now to understand if these fermionic states play a

role in the fine tuning determination.

In the anarchic model all the partners of the light quarks mix strongly with the top

quark and thus their contribution to the Higgs potential is expected to be comparable. To

understand the impact of the charm partners it is useful to analyze their contribution to the

α coefficient in the expansion of the potential in eq. (2.19). In fact, this coefficient can be

used to derive an estimate of the amount of tuning. In the two-site model the α coefficient

is generically logarithmically divergent. This divergence is regulated by the higher level

of resonances that are not included in the two-site description.2 In a first approximation,

however, the logarithmically divergent piece can be used as an estimate of the overall size

of the α coefficient. An explicit computation gives

α ≈ Nc

16π2
Tr
[
λ†L

(
M1M

†
1 −M4M

†
4

)
λL − 2λR

(
M †1M1 −M †4M4

)
λ†R

]
log Λ2/M2

∗ , (2.27)

where Λ is the cut off scale. For the case of only second and third generations and in the

limit λtL,R � λcL,R, α is estimated to be

α ≈ Nc

16π2
(αt + αmixing) log Λ2/M2

∗ , (2.28)

with

αt =
[(
λtL
)2 − 2

(
λtR
)2] (

M2
1t −M

2
4t

)
,

αmixing =
(
λtL
)2 [(

M2
1c −M

2
1t

)
sin2

(
θ1L
)
−
(
M2

4c −M
2
4t

)
sin2

(
θ4L
)]

− 2
(
λtR
)2 [(

M2
1c −M

2
1t

)
sin2

(
θ1R
)
−
(
M2

4c −M
2
4t

)
sin2

(
θ4R
)]
,

where the fine-tuning due to the top partner is proportional to FTt ∝ αt and FTmixing ∝
αmixing is due to top-charm mixing with

FT ≈ FTt + FTmixing . (2.29)

Notice that the leading contributions to β, the quadratic piece of the potential given in

eq. (2.22), are proportional to the forth power of the mixing, with no dependence on the

resonance mass parameters. As β has to be flavor single the only dependence of β in terms

of the mixing parameters has to be proportional to Tr
[
λL,R λ

†
L,R

]
. Therefore, to leading

order it is independent of the additional top-charm mixing parameters.

From eqs. (2.27)–(2.28) it is clear that, when the second level of resonances is much

heavier than the first one, M2
Xc
� M2

Xt
, the size of the α coefficient becomes larger,

especially if the mixing between the second and third generations is sizable as expected in

anarchic models, sin(θ1,4L,R) ∼ 1. As mentioned above, a larger natural value for α translates

in an increase in the fine tuning. As we further discuss below, this forms an interesting

2A fully calculable Higgs potental can be obtained in a three-site set-up in which one additional layer

of composite states is included [31] (a similar set-up is interpreted as a “two-site” in [32]), although there

are some special points in the parameter space of the two-site model with finite potential as well [34].
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conceptual (though admittedly weak in general) linkage between the physics of flavor and

the physics of naturalness.

This result can also be understood in an equivalent way as follows. Let us consider a

minimal effective description in which all the composite resonances have been integrated

out and only the elementary states and the σ-model describing the Higgs are retained.

In this case the α coefficient in the Higgs potential is quadratically divergent. In a more

complete description including the composite dynamics, this divergence is regulated by

the composite resonances thorugh a collective breaking mechanism and only a logarithmic

divergence is left as we saw in the two-site model [31]. It is thus clear that the natural size

of the α coefficient is set by the mass of the resonances that cut-off the quadratic divergence

coming from the top loop (see eq. (2.22)).3 Of course in a two-site model with only top

partners the first level of resonances is quadratic enough to regulate the divergence. On the

other hand, if we add the charm partners and we assume that they have a sizable mixing

with the top, part of the quadratic divergence will not be regulated any more by the top

partners but instead by the new states. If a mass gap exists between the two sets of states,

then part of the quadratic divergence will be regulated at a higher cut-off and the value of α

will necessarily increase. This mechanism is clearly recognizable in the explicit expression

in eq. (2.28). The terms proportional to M2
Xc
−M2

Xt
correspond to the contribution of the

additional partners as can be deduced by the fact that they are weighted by the top-charm

mixing angles sin(θ1,4L,R).

We finally mention that due to the smallness of the linear-mixing terms into the first

and second generations we expect that all the three resonances after produced will decay to

third generation SM field. It implies that not only that the fine tuning of anarchic models

get worsen once all the three generations of partners are included but also the bounds on

the top partners are effectively stronger than those that are commonly extracted within

the single generation case (due to the large production cross section).

3 Top flavor violation

3.1 t→ cZ transition

Now we proceed to the calculation of the Ztc interactions in the MCHM5. We need to

match this model’s specific parameters to the generic ones that we have already discussed

in eqs. (1.2)–(1.4). We can easily estimate the importance of the three relevant operators

of eq. (1.2) by means of spurion analysis. This can be done by promoting the elementary-

composite mixing parameters defined in eq. (2.6) to spurions formally transforming in the

fundamental representation of SO(5) (see e.g. [31] for more datails). The physical values

of the spurions can be rotated in SO(5) space to take the following background value

λijL →
λijL√

2
(0, 0, 1, i, 0)T , λijR → λijR (0, 0, 0, 0, 1)T , (3.1)

3Instead of introducing the new resonances one can use the holographic approach and parametrize all

the effects of the composite fields by modified correlators of the two point functions [27]. In this case the

quadratic divergences are cut at the scale when momentum dependent corrections to the two point function

correlators become important, which happens at the top partner mass scale.
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λt
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L

cLtL

Z

λt
R

tR

λc
R

cR

Z

λt
L λt

L

Figure 1. Schematic structure of the diagrams contributing to the flavor violating Z couplings

with the top and the charm quarks. The single lines denote the elementary fields while the double

lines correspond to the composite states. Each dashed line denotes one insertion of the Higgs VEV.

where we took into account only the charge 2/3 components of the elementary doublets qiL
that are the only ones needed for our analysis.

We can now construct the structures that contribute to the Ztc interactions and gener-

ate the operators in eq. (1.2). First of all we consider the coupling involving the left-handed

fermions. To leading order in the spurions λL,R the Z coupling matrix to the left-handed

matrix can be written as

(
gSMZ,L

)ij
= − g

2cW

[
4s2W − 3

3
δij +

ε2

2
λikL

((
M †1M1

)−1
+
(
M †4M4

)−1)kl (
λ†L

)lj]
. (3.2)

In order to estimate the resulting flavor violation we need to move to the mass basis for

the LH SM fields. The mass basis is defined via the basis in which the spurion ALL ≡
mSM
u m†SMu , defined in eq. (2.15), is diagonal. Within the anarchy paradigm both ALL and

gSMZ,L are hierarchical and approximately aligned as dictated by “RS-GIM” [37]. They are,

however, slightly misaligned in flavor space, with the mixing angles that control the flavor

violation of order of the ration of the eigenvalues of the λL as in eq. (1.1). The flavor

triviality limit, where no flavor violation occurs, is achieved by the alignment of both M1,4

with λL,R in the flavor space, i.e. the limit θ1,4L,R → 0.

Following the above discussion we can estimate the contribution to the gtc,L couplings,

see also appendix A:

gtc,L ∼
g

2cW

v2

2f2
λtL
M∗

λcL
M∗
∼ g

2
√

2cW

v

f

mt

M∗
Vcb ∼ 8.1× 10−4

(
700 GeV

f

)(
700 GeV

M∗

)
, (3.3)

where in the last step we used the “minimal tuning” assumptions from the eqs. (2.24)

and (2.25) and the flavor anarchy relations in eq. (1.1). The schematic structure of the

Feynman diagram that gives rise to the above coupling is shown on the left of figure 1. We

see that the expression in eq. (3.3) nicely fit with the generic expressions given in eqs. (1.3)

and (1.4).

Let us now analyze the flavor changing coupling involving the right-handed quarks.

If we naively substitute the λL spurions with the λR ones and derive the analogous of

eq. (3.2), we find out that the non-universal piece vanishes. The reason for the cancellation

is the fact that the custodial PLR symmetry, that protects the Z coupling to the bL quark,

also affects the tR and the cR fields [23]. The tR and cR components, indeed, belong to

the singlet representation of SO(4), thus they are trivially invariant under the exchange
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of the SU(2)L and SU(2)R subgroups of SO(4) (this invariance is dubbed PC parity [23]).

As a consequence of the PC symmetry the corrections to the tR and cR couplings to the Z

boson can only be generated through the insertion of the PC breaking couplings, namely

λtL (or λcL, which is however much smaller and leads to a sub-leading correction). Thus,

the leading order contribution (in term of the suporion) to the Z couplings matrix to the

right-handed fermion is

(
gSMZ,R

)ij
= − g

2cW

[
4s2W

3
δij +

ε√
2

(
mSM†
u λL

(
M4M

†
4M4

)−1
λR + h.c.

)ij]
, (3.4)

where mSM
u should be taken as the spurion that appears on the right hand side of eq. (2.15).

The corresponding estimate of the gtc,R coupling is

gtc,R ∼
g

2cW

v2

f2
λtR
M∗

λcR
M∗

(
λtL
M∗

)2

∼ g

2cW

1

M2
∗

(
mcmt

Vcb

)
∼ 1.5× 10−3

(
700 GeV

M∗

)2

, (3.5)

see also appendix A, as for the left-handed coupling an additional contribution comes from

operators containing the bidoublet mass matrix. Note that the additional suppression given

by the (λtL/M∗)
2 factor is generic for all models that use the custodial symmetry to protect

Zb̄LbL (and Zs̄LsL) coupling. In all these models, indeed, the tR and cR fields must be in

custodially protected representations [23].

Before concluding this section it is useful to comment on the phenomenological impli-

cations of the custodial protection for the right-handed coupling. With respect to a model

without custodial protection, the gtc,R coupling is suppressed by two powers of the left-

handed top compositeness angle stL ∼ λtL/M∗. As discussed at the end of subsection 2.3, the

tL compositeness is tightly related to the mass scale of the composite resonances mψ = g∗f

and must satisfy the lower bound stL & yt/g∗. This means that in natural scanerios, that

require light resonances (g∗ . 2), the additional factor in gtc,R does not lead to any sig-

niuficant suppression. The reduction of the right-handed flavor-changing effects is only

effective when the composite resonances are heavy. An explicit confirmation of this can be

found in the context of the extra-dimensional composite Higgs realizations. In that case

the mass scale of the fermionic resonances is connected to the one of the gauge resonances,

which are constrained to be rather heavy from the EW data. This of course implies that

a significant suppression of the gtc,R coupling is expected in custodially-protected models.

From the above results we can derive the following estimate for the branching fraction

BR(t→ cZ)

BR(t→ cZ) ≈ 3.5

(
g

2cW

)2 (mtv)2

M4
∗

((
mc

vVcb

)2

,
V 2
cb

2

)

∼ (0.8 , 0.2)× 10−5
(

700 GeV

M∗

)4

. (3.6)

The estimate in eq. (3.6) shows that the natural size of the branching fraction for the t→ cZ

decay in the presence of light composite resonances is not far from the current experimental

bounds. The present searches indeed set an upper bound BR(t → cZ) < 5 × 10−4 at

– 17 –



J
H
E
P
1
2
(
2
0
1
4
)
0
8
2

95% CL [15]. Although currently not probed, branching ratios of order 10−5 will be tested

at the LHC in the 14 TeV run.

3.2 Flavor violation vs. fine tuning

Next, we are aiming at understanding the correlation between amount of fine-tuning and

flavor violation. The main insights can be obtained by considering small perturbations of

the theory near its flavor-trivial limit, namely when the mixing angles are small and the

mass splittings are small. Consequently, we can expand the relevant observables in term

of small mixing angles, θ1,4L,R � 1, and mass differences over the universal part, ∆1,4 � 1.

From eq. (2.28) we see that additional contribution to the fine-tuning, besides the one

from the top-partners, αt, requires both non-degeneracy and non vanishing mixing angles,

∆1,4 6= 0 and θ1,4L,R 6= 0 respectively. However, below we show that flavor violation requires

only non-vanishing mixing angles. Therefore, we conclude that t→ cZ may exist without

paying the price of additional tuning. Nevertheless we will also identify a well defined

limit, when the misalignment in flavor space is vectorial, i.e. θ1,4L = θ1,4R , in which the flavor

violation is correlated with the fine-tuning. For convenience, let us define the vectorial and

axial misalignment directions

θXV = θXR + θXL , θXA = θXR − θXL . (3.7)

More insight can be obtained by looking at the flavor symmetry breaking pattern of

the model. Switching on the universal part of M1,4, M
∗
1,4 in eq. (2.17), breaks SU(3)U1,4 ×

SU(3)Q1,4 to the vector group. Thus, the orthogonal rotation, namely the axial one, leads to

flavor violating interaction. The second stage of the flavor symmetry breaking is achieved

by ∆1,4 6= 0. This breaking will leave us with only U(1)’s symmetries and allows for

additional contributions to flavor violation. Since only the second breaking involves an

additional scale, ∆1,4, it is correlated with the fine-tuning.

The limit of degenerate M1,4, ∆1,4 → 0, can be understood as follows. The rotation

angles between the basis where λL,R are diagonal to the mass basis of the SM up-type

quarks can be deduced from eq. (2.15). These are proportional to θ1,4A ×λcL,R/λtL,R.4 Thus,

the leading contribution to the tL → cLZ transition is given by (gSMZ,L)2,2 (of eq. (3.2)) times

the left rotation angle. The resulting off diagonal Z coupling is

gtc,L ≈ −
gε2

4cW

(M∗4 )2 + (M∗1 )2

M∗1 −M∗4
λtLλ

c
L

M∗1M
∗
4

(
θ1A
M∗1
−

θ4A
M∗4

)
. (3.8)

The tR → cRZ transition is a bit more complicated, as the fermions mass matrix is also

involved, see eq. (3.4). Since mSM
u is very hierarchical effectively, the leading contribution

to gtc,R is proportional to
[
OLλLO4

L(O4
L)†λRO†R

]
2,1
×mt, where OL,R are the rotations to

the mass basis. Therefore, the resulting RH transition is

gtc,R ≈ −
gε2

4cW

(
λtL
)2
λcRλ

t
R

(M∗4 )3M∗1

(
θ4A − θ1A

)
. (3.9)

4Notice that in the limit ∆1,4 → 0 the θ1,4V angles are non-physical and drop off in the frmion mass

matrices in eq. (2.16).
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From eqs. (3.8)–(3.9) we conclude that t → cZ is proportional to the axial mis-alignment

angles, θ1,4A , and can occur without additional contributions to the fine-tuning.

The flavor violating contributions which are proportional to ∆1,4 are

δgtc,L ≈−
gε2

4cW

(M∗4 )2 + (M∗1 )2

M∗1 −M∗4
λtLλ

c
L

M∗1M
∗
4

[(
M∗1 −M∗4

(M∗4 )2 + (M∗1 )2
M∗4

(
θ1V + θ1A

)
+

1

2

(
θ1V − θ1A

))∆1

M∗1

+

(
M∗1 −M∗4

(M∗4 )2 + (M∗1 )2
M∗1

(
θ4V + θ4A

)
− 1

2

(
θ4V − θ4A

)) ∆4

M∗4

]
, (3.10)

δgtc,R ≈−
gε2

4cW

(
λtL
)2
λcRλ

t
R

2(M∗4 )3M∗1

[(
2
M∗1
M∗4
− 3

)(
θ4V + θ4A

)
∆4 +

(
θ1V + θ1A

)
∆1

]
, (3.11)

these are additional contributions to eqs. (3.8)–(3.9). We see that at the vectorial limit,

θXA → 0, these are the only contributions to t → cZ. These are correlated with the fine-

tuning estimation of the model. At the small angles and mass differences limit eq. (2.28)

can be written as

αmixing ≈
1

2

[(
λtL
)2 − 2

(
λtR
)2] [

(M∗1 )2∆1

(
θ1V
)2 − (M∗4 )2∆4

(
θ4V
)2]

, (3.12)

where we set θXA = 0.

To get a bit more insights on the correlation between t → cZ and tuning price, let

us analyze the following simplified case. We consider that case where M∗1 = 2M∗4 = 2M∗,

∆4 = ∆1 = ∆ and switching on only a finite vector like mixing angle with θ4V = θ1V = θV .

The additional contrition to the fine-tuning (not from the top-partner) can be estimated as

αmixing ≈ 6
[(
λtL
)2 − 2

(
λtR
)2]

M2
∗∆ sin2(θV /2) = 2αt∆ sin2(θV /2) . (3.13)

and the tcZ couplings are

gtc,L = − 5gε2

32cW

λcLλ
t
L

M2
∗

∆ sin(θV ) , gtc,R = − gε2

8cW

(
λtL
)2
λcRλ

t
R

M4
∗

∆ sin(θV ) . (3.14)

From the above equations we can construct the following relation

BR(t→ cZ) = 3.5
g2

c2W

[(
5εmtVcb

8
√

2M∗

)2

+

(
mtmc

Vcb (M∗)
2

)2
]
× FTmixing

FTt

(
2∆− FTmixing

FTt

)
,

(3.15)

where we have used the relevant leading order relation relevant to this case, mt,c =

ελt,cL λ
t,c
R /2
√

2M∗4 , and λtL ∼ λtR . This correlation is demonstrated in figure 2 for M∗ =

700 GeV, ε = 0.3 and for 0 < θV < π/4.

4 Higgs flavor violation

In this section we will investigate flavor violation in the Higgs sector and focus on t→ ch.

The associated effective Lagrangian can be written as

Ltchint = (ytc,Rt̄RcL + ytc,Lt̄LcR)h+ h.c. . (4.1)
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Figure 2. The correlation between BR(t → cZ) and the additional fine-tuning of the model

FTmixing/FTt.

This interaction leads to the following branching ratio

BR(t→ ch) ' 0.25
(
|yR,tc|2 + |yL,tc|2

)
. (4.2)

The leading order of the Higgs interaction with fermions in MCHM5 is at

O
(
λLλR/M

2
∗
)

[45]. As already discussed above, after intreating out the composite states

the effective Lagrangian becomes

LhSM =
1

2
√

2
sin

(
2h

f

)
ūiLλ

ik
L

[(
M−14

)kl − (M−11

)kl]
(λR)ljuiR . (4.3)

However, at this this order the resulting Yukawa interaction is aligned with the mass matrix,

as the spurion structure coincide with that of the mass, see eq.(2.15), and as a result no

flavor violation is generated [45]. Thus, Higgs flavor violating couplings appear only at the

next order, O
(
λ2Lλ

2
R/M

4
∗
)
.

We are thus lead to consider higher order terms in the mixings in order to compute

the dominant contributions to t→ hc . In the holographic Lagrangian the only other terms

which are generated by integrating out the composite fermions are the corrections to the

kinetic terms of the elementary fermions

KL ' ūLλLU(H)
(
i/∂
) [(

M †4M4

)−1
−
(
M †1M1

)−1]
U(H)†λ†LuL , (4.4)

where the expression for uR is achieved by L→ R . Eqs. (4.3)–(4.4) are the first two terms

in the expansion of the form factor in powers of the external momenta. This expansion is

equivalent to a power series in i∂ ∼ m ∼ λLλR/M∗. Therefore, the operator in eq. (4.4) is

the only modification to the Yukawa couplings at O
(
λ2Lλ

2
R/M

4
∗
)
. By using the equations

of motion we can write

KL ' ūLλLU(H)

[(
M †4M4

)−1
−
(
M †1M1

)−1]
U(H)†λ†Lm

SM
u uR , (4.5)

KR ' ūRλ†RU(H)

[(
M4M

†
4

)−1
−
(
M1M

†
1

)−1]
U(H)†λR

(
mSM
u

)†
uL . (4.6)
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Given that the dominant contributions for tch coupling come from the elements that involve

the largest eigenvalue of mSM
u , i.e. mt, we can estimate

ytc,L ∼
λtRλ

c
R

M2
∗

v

f2
mt ∼

mtmc

fM∗Vcb
∼ 4× 10−3

(
700 GeV

f

)(
700 GeV

M∗

)
, (4.7)

ytc,R ∼
λtLλ

c
L

M2
∗

v

f2
mt ∼

m2
tVcb
fM∗

∼ 2× 10−3
(

700 GeV

f

)(
700 GeV

M∗

)
, (4.8)

The resulting branching ratio is

BR(t→ ch) ∼ 5× 10−6
(

700 GeV

f

)2(700 GeV

M∗

)2

. (4.9)

This is similar to the rate found for the t → cZ decay mode. Interesting to note that

generically composite models predict that top decay to right handed cR and Higgs, which

is originated by the larger level of compositeness of cR compared to cL. As in the case

of t → cZ this can be tested via polarisation measurement of the other-side-top that is

predicted to be left handed polarised. The estimated branching ratio is well below the

current experimental bounds of BR(t → ch) < 0.56% [46] by CMS and BR(t → ch) <

0.79% [47] by ATLAS.

5 D Physics

In the MCHM5 Z and Higgs mediated flavor violation between the first two generations is

also present in addition to the one between the third and the second generations. In this

section, we estimate these non SM contributions to the D0 −D0
mixing as well as to the

D0 → `+`− decay.

Following the above discussion, see eqs. (3.2), (3.4) and appendix A, the Zcu couplings

are estimated as

gcu,L ∼
g

2
√

2cW

v

f

mt

M∗
VubVcb ∼ 3× 10−6

(
700 GeV

f

)(
700 GeV

M∗

)
, (5.1)

gcu,R ∼
g

2cW

mcmu

M2
∗

Vcb
Vub
∼ 6× 10−9

(
700 GeV

M∗

)2

. (5.2)

The hcu couplings can be estimated by using eqs. (4.5)–(4.6)

ycu,L ∼
m2
cmu

fM∗mtVcbVub
∼ 3× 10−8

(
700 GeV

f

)(
700 GeV

M∗

)
, (5.3)

ycu,R ∼
mtmcVcbVub

fM∗
∼ 2× 10−8

(
700 GeV

f

)(
700 GeV

M∗

)
. (5.4)

The current experimental bound from D0−D0
mixing on the flavor violating Yukawa

was calculated in ref. [48]. It is found to be |ycu,L/R| < 7.1× 10−5, which is well above the

estimated values of ycu,L/R.
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Regrading the bounds on the Zcu couplings, we follows the procedure given in [49]

with the updated values from [50]. The following upper bounds are found

Re [gcu,L] < 6.2× 10−5 , Im [gcu,L] < 3.6× 10−5 (5.5)

Re [gcu,Lgcu,R] < 4.1× 10−10 , Im [gcu,Lgcu,R] < 1.4× 10−10 . (5.6)

at one standard deviation. The stronger bound is still an order of magnitude above the

estimated effect.

In addition to charm mixing, off-diagonal Zcu coupling leads to non SM decays of

D0 → `+`−. The SM long distance contribution to this branching ratio is estimated as

BR(D0 → `+`−)SM ≈ 2.7 × 10−5 × BR(D0 → γγ) [51]. Given the BaBar upper bound of

BR(D0 → γγ) < 2.2 × 10−6 at 90% CL [52], it is bounded to be BR(D0 → `+`−)SM .
6× 10−11 . By using the result of ref. [53], we can estimate

BR
(
D0 → `+`−

)
≈ 1.1× 10−2 (gcu,L − gcu,R)2

≈ 9.9× 10−14
(

700 GeV

f

)2(700 GeV

M∗

)2

. (5.7)

The LHCb 95% CL bound is BR(D0 → `+`−) < 7.6 × 10−9 [54]. We conclude that the

effect of non-SM D0 → `+`− decays in the MCHM5 models is well below the current

experimental bound and the upper bound on the SM prediction.

6 Conclusions

In this work we investigate the up flavor structure of composite Higgs models, where

we focus on the flavor anarchic minimal SO(5) case. In this framework the Higgs is a

pseudo Nambu-Goldstone boson and can be naturally light. Moreover, the Zbb̄ coupling

is protected from large non Standard Model contributions due to the custodial symmetry.

We identify the different sources of flavor violation in this framework and emphasise the

differences from the anarchic Randall-Sundrum scenario. The fact that the SO(5) symmetry

does not commute with the global flavor group of the model typically leads to reduction

in the flavor parameters of the model. We consider the interplay between the fine tuning

of the model and flavor violation. We find that generically the tuning of this class of

models is worsen in the anarchic case due to the contributions from the additional fermion

resonances. Due to the large mixing, they all couple rather strongly to the top sector and,

as a result, contribute to the Higgs potential in a “democratic” manner. We show that,

even in the presence of custodial symmetry, large top flavor violating rates are naturally

expected.

A t → cZ branching ratio (BR) of order of 10−5 is generic for this class of models,

and is typically mediated by right-handed currents. Thus, polarization measurements of

t → cZ transition provide an additional test for this generic framework. Moreover, the

possibility of adopting charm-tagging at the LHC [55] can help us to distinguish between

t→ cZ and t→ uZ transitions (that are further suppressed in our framework). The above
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results impliy that this framework can be tested in the next run of the LHC as well as in

other future colliders.

We also find that the top flavor violation is weakly correlated with an increased amount

of fine tuning. In the general case the above two phenomena are unrelated. However, in

the case in which the misalignment between the composite flavor parameters is vector like,

i.e. the left and right rotations are identical, one can identify a correlation between top

flavor violation and the tuning of the model. In a simplified case, this correlation can

be manifested in a simple analytic relation. Other related flavor violation effects, such as

t→ ch and in the D system, are found to be too small to be observed by the current and

near future colliders.
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A Diagonalization of the mass matrix

Here we give a more detailed description of the parametric structure of the off diagonal Z

couplings. Let us start in the basis where both λL and λR are diagonal, where the ratios

between their eigenvalues are given in eq. (1.1)

λ̂L = λtLdiag [Vub, Vcb, 1] ∼ λtLdiag
[
λ3, λ2, 1

]
, (A.1)

λ̂R = λtRdiag [mu/(mtVub),mc/(mtVcb), 1] ∼ λtRdiag
[
λ4, λ, 1

]
, (A.2)

where λ ∼ 0.2 is the Cabibo angle. In this basis both M1 and M4 are anarchic. For

convenience we define

∆X ≡M−14 −M−11 ∼ 1/M∗ , (A.3)

X̂ ≡
(
M †1M1

)−1
+
(
M †4M4

)−1
∼ 1/M2

∗ , (A.4)

Q ≡
(
M4M

†
4M4

)−1
∼ 1/M3

∗ . (A.5)

The SM particles mass matrix can be written as

mSM
u =

ε√
2

λtLλ
t
R

mt

 ∆X1,1mu ∆X1,2mcVub/Vcb ∆X1,3mtVub
∆X2,1muVcb/Vub ∆X2,2mc ∆X1,3mtVcb

∆X3,1mu/Vub ∆X3,2mc/Vcb ∆X3,3mt

 ∼ mt

λ7 λ4 λ3λ6 λ3 λ2

λ4 λ 1

 .

(A.6)
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The non-universal parts of the Z couplings matrices are

gSMZ,L =
gε2

4cW

(
λtL
)2 X̂1,1V

2
ub X̂1,2VcbVub X̂1,3Vub

X̂2,1VcbVub X̂2,2V
2
cb X̂2,3Vcb

X̂3,1Vub X̂3,2Vcb X̂3,3

 ∼ gε

2
√

2cW

mt

M∗

λ6 λ5 λ3λ5 λ4 λ2

λ3 λ2 1

 , (A.7)

gSMZ,R =
gε

2
√

2cW
mSM
u λtLλ

t
R

 Q1,1mu/mt Q1,2mcVub/(mtVcb) Q1,3Vub
Q2,1muVcb/(mtVub) Q2,2mc/mt Q1,3Vcb
Q3,1mu/(mtVub) Q3,2mc/(mtVcb) Q3,3

+ h.c.

∼ g

2cW

mt

M2
∗
mSM
u

λ7 λ4 λ3λ6 λ3 λ2

λ4 λ 1

+ h.c. . (A.8)

The rotation of mSM
u to the mass-eigenstates basis is done by

Vu,L ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , Vu,R ∼

 1 λ3 λ4

λ3 1 λ

λ4 λ 1

 . (A.9)

Since the parametric suppressions of mSM
u , gSMZ,L and the relevant part of gSMZ,R are similar,

these rotations will not change the parametric structure of gSMZ,R and gSMZ,L. Thus, in the

mass-eigenstates basis we can write

gSMZ,L ∼
g

2
√

2cW
ε
mt

M∗

 V 2
ub VcbVub Vub

VcbVub V 2
cb Vcb

Vub Vcb 1

 , (A.10)

gSMZ,R ∼
g

2cW

1

M2
∗

 m2
u mumcVub/Vcb mumtVub

mumcVcb/Vub m2
c mcmtVcb

mtmu/Vub mtmc/Vcb m2
t

+ h.c. . (A.11)
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