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1 Introduction

The gauge/gravity duality [1–3] has proven to be an outstandingly successful and fruitful

framework for probing the physics of strongly coupled field theories. The paradigmatic

AdS/CFT correspondence, which established the physical equivalence between d = 4,

N = 4 Super-Yang-Mills and type-IIB String Theory on AdS5×S5 [1] has been extended

over the years in a variety of ways in the hope of accounting for the physics of more realistic

quantum field theories, such as QCD and condensed matter systems (see, e.g., [4–7] for

reviews on these subjects).

One such extension consists of considering systems in which, albeit scaling symmetry

is respected, space and time do not scale in the same way, so conformal (and Lorentz)

invariance is broken. This is the case of the so-called Lifshitz fixed points, characterized

by a dynamical critical exponent z, which determines the anisotropic scaling in the time

direction t

t→ λzt , xi → λxi , i = 1, . . . , d , (1.1)

being xi the d spatial dimensions of the (d+ 1)-spacetime in which the field theory under

consideration is defined. The class of (d+ 2)-dimensional dual spacetime geometries with

the appropriate symmetries can be written, in some coordinate system, as [8–10]

ds2 = − L
2

r2z
dt2 +

L2

r2

[
dr2 + d~x2(d)

]
, (1.2)

which reduces to AdSd+2 in the Poincaré patch for z = 1. Embedding solutions of this kind

(and others which asymptote to them) into gravity and String Theory models and study-

ing their properties in the holographic framework has been subject of study in numerous

previous works (see, e.g. [11–19]), and remains an active area of research.
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Lifshitz metrics with hyperscaling violation. A further generalization can be

achieved by considering the following family of spacetime metrics [20]

ds2 = L2r
2(θ−d)
d

[
−r−2(z−1)dt2 + dr2 + d~x2(d)

]
. (1.3)

These geometries (which are conformally Lifshitz) include, in addition to z, another ex-

ponent, customarily named θ, and are characterized by the following transformation rules

under rescalings of the coordinates

t→ λzt , xi → λxi , r → λr , ds2 → λ
2θ
d ds2 . (1.4)

A system whose thermal entropy scales as Sth. ∼ T d is said to possess a hyperscaling

behaviour. When the dynamical exponent is present, this scaling gets modified to Sth. ∼
T
d
z . It can be seen that in field theories with the kind of scaling defined by (1.4), thermal

entropy scales in turn as Sth. ∼ T
d−θ
z [18, 21], and so, from the thermodynamic point

of view, d − θ acts as the effective number of space-like dimensions of the system [21].

The fact that Sth. does not scale with its naive power of the temperature corresponds

therefore to a violation of the hyperscaling behaviour [21, 22] (the hyperscaling case being

obviously θ = 0),1 and the above class of metrics has been consequently named hyperscaling-

violating Lifshitz metrics (hvLf in short). Although the r
2θ
d factor spoils dimensional

analysis in (1.3), this can be easily restored by including an additional scale rF : r
2θ
d →

(r/rF )
2θ
d , which we will often fix to 1 henceforth.

In order to have a clear interpretation of a constant r slice (with r → 0) of the

geometry defined by (1.3) as the boundary of the metric, we require θ < d from now on.2

From a different perspective, θ > d would correspond to a negative effective number of

spatial dimensions according to the arguments previously explained. Also, when θ > 0,

hvLf metrics suffer from a curvature UV-singularity in the Einstein frame: indeed, the

Kretschmann invariant scales as RµνρσR
µνρσ ∼ r−4θ/d. In appearance, this means that

hvLf metrics with θ < 0 are completely reliable in the UV, whereas those with 0 < θ < d

need to be completed asymptotically, something which is usually performed through the

assumption that spacetime is described by (1.3) only above some scale rF , but asymptotes

to some well-behaved solution, such as AdSd+2, as r � rF . As explained in [25], this

statement is imprecise. The authors argue that hvLf geometries with θ 6= 0 typically

require a UV-divergent (linear) dilaton, which allows one to tune the curvature singularity

(appearing in the cases in which 0 < θ < d) by changing to an appropriate Weyl frame,

and completely absorb it in such scalar field. The linear running character of the dilaton is

a characteristic feature of general hvLf backgrounds (with θ 6= 0) so one needs to be careful

when interpreting the UV physics from the field theory perspective not only for θ > 0, but

also for θ < 0.3 We will come back to this in the discussion section.

1From the holographic perspective, this would correspond to the entropy of a black brane whose space-

time metric asymptotes to one of these solutions [23].
2The formulation of the holographic dictionary for hvLf geometries has been addressed in [24, 25].
3We thank Robert C. Myers and Ioannis Papadimitriou for their comments and explanations about

this point.
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hvLf and asymptotically hvLf solutions have been extensively (and intensively) stud-

ied in the context of holography in e.g. [21, 26–30]. The gravity models in which so-

lutions of this kind have been found and studied include for example Einstein-Maxwell-

Dilaton (EMD) [20, 23, 31–39], Supergravity and String Theory [26, 40–45] and EMD plus

curvature-squared terms [46–48]. The motivation for including higher-curvature terms in

the gravitational action is in general motivated from the fact that these would correspond

to 1/
√
λ corrections from the dual field theory perspective, allowing us to move slightly

away from the infinitely coupled regime. In the particular case of Lifshitz and hvLf ge-

ometries, there are other reasons to include such corrections, such as changing the (θ, z)

parameter space allowed by the null energy conditions (NEC) or curing the characteristic

infrared (IR) divergent behaviour of the dilaton [21] appearing in EMD theories (see [46]

for details on these issues).

Entanglement entropy in quantum field theories and the area law. There are

several ways in which holography allows us to study the properties of the dual quantum

field theories (QFTs). A prominent example is the computation of entanglement entropy

(EE), which will be the subject of this paper.

Entanglement entropy has indeed become an essential tool in fields as diverse as

condensed matter [49–52], quantum information [53, 54], String Theory and quantum

gravity [55–66], and QFT [67–73].

For a particular QFT, given a spatial region A, EE is defined as: S = −Tr [ρA log ρA],

being ρA the reduced density matrix obtained by integrating out the degrees of freedom in

the complement Ā (in this case, the entanglement entropy is also referred to as geometric

entropy, given that the Hilbert space separation is performed through the (artificial) geo-

metric division of the spatial slice into two regions). The ultraviolet (UV) behaviour of the

EE for general (d+ 1)-dimensional QFTs is expected to be [67]:

S =
kd−1
δd−1

+ . . .+
k1
δ

+ k0 log
l

δ
+ S0 , (1.5)

where δ is a short distance cutoff, S0, k0 and ki constants, and l is a characteristic length

of A. The coefficient of the leading term is proportional to the area of the boundary of

A (kd−1 ∼ ld−1), a behaviour which is usually argued to be caused by the entanglement

between degrees of freedom living at both sides of ∂A. This is the so-called area law [55, 56]

of entanglement entropy. When the leading term in EE depends on the characteristic length

of A in a different fashion, we speak about a violation of this law. One such kind of violation

occurs when the leading contribution to S contains a factor which scales logarithmically

with the characteristic length of A (see below). Another example of this happens when the

leading term scales with a power of l different from the dimension of ∂A (see, e.g. [74]).

An interesting point to notice is the fact that k0 is universal in the following sense: if we

shift δ → δε, the coefficients ki are shifted by ki → kiε
−i, whereas k0 remains the same by

virtue of the properties of the logarithm (the shift is absorbed in S0). As a consequence, k0
is independent of the regularization prescription (and usually related to the central charge

of the underlying QFT in the case of CFTs).
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As we have said, although the area law turns out to hold for a vast range of systems,

it is well-known that this is not always the case. A paradigmatic example is given by 2D

CFTs, where EE scales logarithmically with the length of A, l, and k0 turns out to be

proportional to the central charge of the theory [68, 75]

S =
c

3
log

l

δ
. (1.6)

In higher dimensional theories, violations of the area law appear in QFTs with Fermi

surfaces [76–78]. In such cases, S acquires a logarithmic dependence on the characteristic

length of A

S ∼ (lkF )(d−1) log(lkF ) , (1.7)

being kF the Fermi momentum,4 and the area law is violated. It has been argued that

certain QFTs with Fermi surfaces might be holographically engineered by considering the

family of hvLf metrics in the case θ = d − 1 [21, 26, 27], as we will review in section 3;

indeed in these cases, the HEE exhibits a logarithmic violation of the area law (note that

the case θ = 0 precisely corresponds to AdS3). Also, as observed in [26], the leading term

in the HEE expression will not respect this law for any value of (d− 1) ≤ θ ≤ d.

Holographic entanglement entropy in higher-order gravities. In the context of

holography, EE for theories dual to Einstein gravity can be computed through the Ryu-

Takayanagi prescription [59].5 According to this, the holographic entanglement entropy

(HEE) for a certain region A living in the boundary of some asymptotically AdSd+2 space-

time is given by

SEG = ext
m∼V

[
A(m)

4G

]
, (1.8)

where m are codimension-2 bulk surfaces homologous to A with ∂m = ∂A, and A(m) is the

d-dimensional volume (area) of m. Hence, HEE in theories with an Einstein gravity dual

is obtained by extremizing the area functional over all possible bulk surfaces homologous

to A whose boundary coincides with ∂A.

The situation changes when we start considering higher-curvature terms in the bulk

Lagrangian. In such cases, the Ryu-Takayanagi prescription does not produce the correct

answer for the HEE. Actually, (1.8) might be somehow regarded as a generalization of the

Bekenstein-Hawking formula for the entropy of black holes [80–82], which suggests that the

expression for the EE in the presence of higher-derivative gravities might be obtained by

applying the same generalization to Wald’s formula, which gives the black hole entropy in

this class of theories [83]6

SWald =
1

4G

∫
H
d2y
√
hH

∂L
∂Rµνρσ

εµνερσ . (1.9)

4Such behaviour comes from the effective 2D CFT which governs the physics of modes at the Fermi

surface [28, 77].
5Remarkably, this prescription has been recently proven under certain conditions in [79].
6In (1.9), L is the gravity Lagrangian, H stands for the horizon, hH is the induced metric on it and εµν

is a binormal to H.
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However, in [84] this guess was shown to be wrong, since this expression would produce

incorrect universal terms. Alternative expressions yielding the right terms are known for

Lovelock gravities [84–86] as well as for curvature-squared theories [65, 87]. Remarkably

enough, a general formula for any theory involving arbitrary contractions of the Riemann

tensor L(Rµνρσ), which seems to satisfy several consistency checks, has been recently pro-

posed by Dong [88] (see also, e.g. [89–92])). The corresponding expressions would contain

a Wald-like term as well as additional terms involving contractions of extrinsic curvatures

(which vanish in the case of a Killing horizon) with second derivatives of the Lagrangian

with respect to the Riemann tensor.

Plan of the paper and motivation. In this paper we are going to study the effects

of including higher-order curvature terms in the gravity Lagrangian on the HEE formula

for hvLf geometries. The motivation for this study is manyfold. On the one hand, study-

ing higher-order gravity Lagrangians in the holographic context is intrinsically interesting,

given that such terms generically appear as α′ corrections in the appropriate String The-

ory embedding, corresponding to moving away from the infinitely coupled regime in the

dual field theory. Secondly, as we have explained, hvLf geometries have been shown to

provide interesting violations of the area law of EE for certain values of θ and, particularly

interestingly, logarithmic terms for θ = d − 1, in whose case they have been argued to be

intimately related to certain condensed matter systems. A natural question to ask is how

the inclusion of higher-curvature terms will alter the structure of the HEE and whether

these modifications can lead to new logarithmic terms, which might contain universal in-

formation about the dual theory (see the discussion about the UV interpretation of hvLf

metrics in section 4). Also, the expressions for HEE in higher-order Lagrangians which are

known at present are restricted to a handful of theories, as explained before, and have not

been proven in general. This makes interesting to check how they perform in different sit-

uations, probing whether they produce sensible results in the different cases. An example

of this is given by Gauss-Bonnet gravity in d = 2. In such case, the HEE (which can be

obtained using the so-called Jacobson-Myers (JM) functional [85])7 should not change with

respect to the Einstein gravity case, since the equations of motion are unchanged in this

case, and any remainder of λGB should be completely removed by including the boundary

term prescribed in the JM functional.

In the next section we study the structure of divergences of HEE for a stripe in the

boundary of hvLf metrics when θ ≤ 0, for higher-order gravities. We start with curvature-

squared, for which the HEE functional is known [87], dealing with the cases of R2, Gauss-

Bonnet and Ricci2. We will find that a single new divergence appears in all cases, and how

it cannot become logarithmic for any value of θ except for θ = 0, d = 1, corresponding to

the well-known AdS3 case. However, extending the analysis to higher-curvature (nth-order)

gravities we will find that new logarithmic divergences will show up for

θ =
d(d− 1)

d− 2(n− 1)
, (1.10)

7See section 2.
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provided d < 2(n − 1). We will therefore find that an infinite family of hvLf geometries

produces new logarithmic contributions to the HEE formula when these geometries are

embedded in higher-curvature gravities. For R2 gravity we will be able to compute the

O(λ1) correction to the universal constant term as well. Also, in the section devoted to

Gauss-Bonnet gravity, we show explicitly that the boundary term in the JM functional

exactly cancels the bulk surface contribution when d = 2, as expected.

In section 3 we study the case 0 < θ < d, for which we consider a UV AdS-completion of

the geometry, following the steps of [27]. We will find that (1.10) holds for the appearance of

logarithmic contributions to the HEE, with the difference that now d > 2(n−1). However,

both conditions together will turn out to restrict the allowed values of θ > 0 to the well-

known case of θ = d− 1 [21, 26, 27], corresponding to Einstein gravity.

In section 4 we summarize our findings, comment on possible extensions and conclude.

Finally, in appendix A we consider the case in which the anisotropic scaling occurs

along a spatial direction instead of time, which can be understood as a double Wick rotation

of the standard hvLf geometry [93, 94], and analyze how this changes the discussion of

the previous sections. New logarithmic terms are found here for some combinations of

z, θ and d.

2 HEE for hvLf geometries in higher-curvature gravities I: θ ≤ 0

Einstein gravity. Before considering higher-curvature corrections, let us start review-

ing the Einstein gravity result for the HEE of hvLf geometries. We do so here for

the class of metrics with θ ≤ 0, which we study in this section. Along this paper we

will consider an entangling region A consisting of a multi-dimensional infinite strip s

of width l and infinite length LS → +∞ (this length plays the role of an IR cut-off),

s = {(tE , r, x1, x2, . . . , xd) s.t., tE = 0, x1 ∈ [−l/2, l/2], x2,...,d ∈ (−LS/2,+LS/2)}. As

explained in the introduction, HEE for field theories dual to Einstein gravities8 can be

computed using the Ryu-Takayanagi prescription [59]

SEG =
1

4G

∫
m
ddx
√
gm , (2.1)

where m is the bulk surface homologous to A, with ∂m = ∂A, which extremizes the above

functional, and gm is the determinant of the induced metric on m.

The translational symmetry of the strip along the directions 2, . . . , d allows us to

parametrize the entangling surface m as r = h(x1). For our hvLf geometry (1.3), the

induced metric on such a surface reads

ds2m = L2h
2(θ−d)
d

[[
1 + ḣ2

]
dx21 + d~x2(d−1)

]
, (2.2)

where d~x2(d−1) ≡ dx
2
2 + . . .+dx2d. Using this expression and the fact that m must be mirror

symmetric with respect to the plane x1 = 0, we find

SEG =
LdL

(d−1)
S

2G

∫ l/2

0
dx1 h

(θ−d)
√

1 + ḣ2 . (2.3)

8By this we mean theories with Lagrangians given by L = R− 2Λ + Lother fields.

– 6 –



J
H
E
P
1
2
(
2
0
1
4
)
0
7
8

The Lagrangian does not depend explicitly on x1, so we have a conserved quantity

h
(θ−d)
∗ =

h(θ−d)√
1 + ḣ2

, (2.4)

where h∗ is the turning point of the surface, in which ḣ|h∗ = 0. Substituting this expression

in (2.3), we find

SEG =
LdL

(d−1)
S h

(θ−d+1)
∗

2G

∫ 1

δ/h∗

u(θ−d)du√
1− u2(d−θ)

, (2.5)

where we made the change of variable u = h/h∗ and introduced the UV cut-off (h(x1) →
δ)↔ (x1 → ±l/2). The turning point is related to the strip width through

l

2
=

∫ l/2

0
dx1 = h∗

∫ 1

0

u(d−θ) du√
1− u2(d−θ)

= h∗

√
πΓ
(
1+d−θ
2(d−θ)

)
Γ
(

1
2(d−θ)

) . (2.6)

These two integrals allow us to obtain the final expression for the entanglement entropy of

the strip

SEG =
LdL

(d−1)
S

2G(d− θ − 1)

δ−(d−θ−1) − (l/2)(θ−d+1)

√πΓ
(
1+d−θ
2(d−θ)

)
Γ
(

1
2(d−θ)

)
(d−θ) . (2.7)

This is the beautiful formula found in [26]. As we can see, the scaling behavior of the HEE

gets modified with respect to the AdSd+2 case [60] by factors with dimensions of (length)θ.

In particular, we find a corrected exponent for the divergent term of order

B0 ≡ d− θ − 1 . (2.8)

Of course, B0 is always positive for θ < 0. One can introduce an intermediate scale

rF as explained in the introduction, which would modify the factors δθ → (δ/rF )θ and

(l/2)θ → (l/(2rF ))θ. When θ = 0, we recover the usual AdSd+2 expression [60]

SEG =
LdL

(d−1)
S

2G(d− 1)

δ−(d−1) − (l/2)(1−d)

[√
πΓ
(
1+d
2d

)
Γ
(

1
2d

) ]d , (2.9)

which in the limit case of d = 1, corresponding to AdS3, yields a logarithmic divergence

SEG =
L

2G
log

[
l

δ

]
. (2.10)

It is well-known that hvLf geometries can produce logarithmic terms in the HEE for θ =

d− 1. However, given that these cases correspond to metrics with 0 < θ < d for d ≥ 2, we

will review them in section 3, along with the corresponding new higher-order terms.
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Higher-curvature corrections to HEE. We are interested now in considering higher-

order curvature corrections to the bulk action and see how they affect the HEE expression

for hvLf geometries. In general, the gravitational action will be given by Einstein’s gravity

plus an (infinite) sum of higher-curvature terms with small coupling constants (otherwise,

the semiclassical approximation would not make sense)

Ig=
1

16πG

∫
dd+2x

√
g

[
R+

d(d+1)

L̃2
+L̃2

[
λ1R

2+λ2RµνR
µν+λ3RµνρσR

µνρσ
]
+L̃4O

(
R3
)]
,

(2.11)

being L̃ a length scale which would coincide with the AdSd+2 radius L for Einstein gravity,

but would be different in general otherwise, and λ1,2,3,... dimensionless couplings.

The next step would correspond now to choose some matter content and solve the

equations of motion for the corresponding fields trying to determine if our hvLf family of

metrics (1.3) can be embedded into the theory. The case of curvature-squared gravity was

studied in [46], where the authors consider an EMD system with general curvature-squared

corrections. For our purposes, it suffices to recall the fact that hvLf geometries are indeed

solutions of the corresponding equations of motion, and are expected to appear as well

as solutions to similar EMD gravities with even higher-curvature corrections. Another

interesting piece of information we can extract from [46] is the fact that the NEC arising

in a general EMD curvature-squared gravity reduces in general to a pair of conditions on

(z, θ) and the couplings of the new terms, plus the well-known NEC of the Einstein gravity

case [26]

(z − 1)(z − θ + d) ≥ 0 , (2.12)

(d− θ)(d(z − 1)− θ) ≥ 0 , (2.13)

which in the case under consideration in this paper, i.e., d > θ, reduces to the condition

z ≥ 1. From now on, we restrict ourselves to this case, although as we will see, our results

would not get modified for z < 1 since z will not appear in the exponents of the different

terms in the HEE expressions for our hvLf geometries.9

Unfortunately, computing HEE in general higher-curvature gravities is a very hard task

at present because Dong’s recipe [88] turns out to be difficult to apply in most cases, with

some exceptions: Lovelock [84, 85], curvature-squared [87] and f(R) gravities [83, 88]. Nev-

ertheless, making use of the results found in curvature-squared gravity plus some general

arguments, which we will discuss in a moment, we will to try to say something about the

structure of divergences of the HEE in any higher-curvature gravity for our hvLf geometries.

There are two steps one needs to take in order to successfully obtain the HEE expression

in any higher-curvature gravity for any background, assuming the HEE functional is known.

The first is extremizing such a functional, whereas the second corresponds to evaluating

the on-shell integral. The first one is undeniably harder in general, since the equations

of motion we pretend to solve will usually be of high order in derivatives, and very non-

linear. However, we can note the following: in the HEE expression we will find in general

a sum of divergent terms coming from the on-shell evaluation of the integral near the

9The situation will change in appendix A, where we will consider a doubly Wick-rotated version of (1.3).
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boundary, plus a constant term related to the bulk contribution. In geometries in which

the higher the order of the curvature term the faster it goes to zero in the UV, we will find

an expression consisting of a leading Einstein gravity divergence plus possible subleading

divergences coming from the higher-order terms, plus a constant term. The question is now

how the fact that the entangling surface is different in higher-order gravities with respect

to the Einstein gravity case affects the HEE expression, given that the functional we need

to extremize is different. We expect the surface to be significantly different away from

the UV, where the new terms become large, producing therefore new corrected constant

terms. However, as we approach the boundary, where the divergences are to appear,

the higher-order terms will die out, and the shape of the entangling surface should not

differ much from the Einstein gravity one. This is analogous to computing the area for

different surfaces sharing boundary with the extremal area one, m. The result will of course

differ, but the order of the divergences will be the same as the one found for m. Thus,

it is reasonable to expect that the new divergent terms (if any) appearing in the HEE

expression for higher-curvature terms will be produced from the evaluation of the on-shell

integral using the surface which extremizes the area functional of Einstein gravity, without

having to find the surface which extremizes the new functional. In other words, the new

entangling surface should not change the structure of divergences with respect to the one

with extremal area and this has two interesting consequences. First, we can identify the

order of the divergences of higher-order gravity terms using the extremal area surface, and

second, every new divergence will appear at order O(λ) in the corresponding gravitational

coupling. Therefore, any term of order O(λ2) or higher will appear next to a constant,

arising from the bulk contribution to the integral.

At this point it is convenient to stress that the study of the structure of divergences of

the HEE is physically motivated by the fact that it allows us to determine the dependence

of the different terms with the size of the entangling region. In particular, we can use this

to check if the area law holds, unveil the presence of universal terms, etc.

Let us now turn to the real calculations. We are going to study in full detail the case

of R2 gravity, in which we will be able to compute the corrected extremal surface. This will

allow us to illustrate how the above argument works, and use it to compute the structure

of divergences for general curvature-squared gravities, including the more involved cases

of Gauss-Bonnet and Ricci2 gravities. We will finish this section showing how the results

found for these theories allow us to conjecture the form of all divergences in any higher-order

curvature gravity for our hvLf metrics. Let us start with curvature-squared gravities.

2.1 R2 gravity

The most general curvature-squared gravity action can be written in terms of three con-

tractions involving the Riemann tensor. These can be chosen to be

Icurv2 =
1

16πG

∫
dd+2x

√
g

[
R+

d(d+ 1)

L̃2
+ L̃2

[
λ1R

2 + λ2RµνR
µν + λGBX4

]]
, (2.14)

where X4 = R2 − 4RµνR
µν + RµνρσR

µνρσ is the Gauss-Bonnet term, which in four bulk

dimensions corresponds to the Euler density of the spacetime manifold.
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Figure 1. Curves (θ, z) for which the Ricci scalar of hvLf metrics vanishes. d = 1 is depicted in

yellow, whereas darker lines correspond to d = 2, 3, . . ..

In the case of R2 gravity, the HEE functional10 is given by [87]

SR2 =
1

4G

∫
m
ddx
√
gm

[
1 + 2λ1L̃

2R
]
. (2.15)

For our hvLf metrics (1.3) the Ricci scalar reads

R = κ
r−2θ/d

L̃2
, (2.16)

where we have defined the constant

κ ≡ −2L̃2

L2

[
z2 + zd+

d+ 1

2

[
d− 2θ − θ

d
(2z − θ)

]]
. (2.17)

As a curiosity, there are certain combinations of (z, θ) for which κ vanishes, meaning that

the R2 contribution identically vanishes, and does not produce any correction at all with

respect to the Einstein gravity result. The corresponding curves for which this happens

are shown in figure 1. Leaving this case aside, the expression for the entanglement entropy

of the strip becomes, using (2.2)

SR2 =
LdL

(d−1)
S

2G

∫ l/2

0
dx1 h

(θ−d)
√

1 + ḣ2
[
1 + 2κλ1h

−2θ/d
]
. (2.18)

Since the functional does not depend on x1 explicitly, there is again a first integral which

we can use to write the expression for ḣ in terms of h. We have√
1 + ḣ2 =

f(h)h(θ−d)

f(h∗)h
(θ−d)
∗

, with f(x) ≡
[
1 + 2κλ1x

−2θ/d
]
, (2.19)

10The functional proposed by [87] for the HEE of curvature-squared gravities has been used in several

works, including [95–97].
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where h∗ is again the turning point of the surface, characterized by ḣ|h∗ = 0. We can use

this relation to rewrite (2.18) in terms of u ≡ h/h∗ as

SR2 =
LdL

(d−1)
S hθ−d+1

∗
2G

∫ 1

δ/h∗

du
u(θ−d)f(uh∗)√

1− u2(d−θ) f(h∗)
2

f(uh∗)2

, (2.20)

where we have introduced again an ultraviolet cut-off h → δ to account for the divergent

terms. Note that despite the intricated appearance of the integrand it is already possible

at this level to keep track of those divergences. Indeed we can study its behaviour in the

limit u→ 0

lim
u→0

u(θ−d)f(uh∗)√
1− u2(d−θ) f(h∗)

2

f(uh∗)2

= u(θ−d)
[
1 + 2κλ1(uh∗)

−2θ/d
] [

1 +O
(
u2(d−θ)

)]
, (2.21)

so the terms with a negative power in u, and therefore those resulting into divergences, arise

from the product u(θ−d)
[
1 + 2κλ1(uh∗)

−2θ/d]. This agrees with what we anticipated in our

previous discussion: had we taken the Einstein gravity surface (2.2), and computed the

HEE integral (2.18), we would have found the same divergent terms. It is also important

to stress that this expression is valid for any value of the coupling λ1, so if we expanded

in powers of λ1, the only divergence would appear at order O(λ1), as anticipated. Taking

into account (2.21) we find that the entanglement entropy is of the form

SR2 =
LdL

(d−1)
S

2G

[
1

B0
δ−B0 +

2κλ1
B1

δ−B1

]
+ S0 , (2.22)

with

B0 ≡ d− θ − 1 , (2.23)

B1 ≡ B0 +
2θ

d
, (2.24)

and S0 being a constant term which we will discuss later. As we can see, the inclusion of the

R2 term introduces a new divergence in the HEE. This contribution is not dominant, and

the leading divergence is again the Einstein gravity, one as expected. It is also impossible to

produce a logarithmic divergence from this term, since this would correspond to θ = d(d−1)
(d−2) ,

which is larger than 0 for any d > 1. An exception is d = 1, θ = 0, which would correspond

to AdS3, for which both B0 and B1 would be logarithmic. In the special case of Lifshitz

geometries, θ = 0, the Ricci scalar is constant and the entanglement entropy diverges as

SR2 |θ=0 = (1 + 2κ|θ=0λ1)SEG|θ=0 , (2.25)

where SEG|θ=0 is just the HEE for a strip in AdSd+2 (recall that, although z 6= 1 in general,

the dynamical exponent does not enter into the HEE expression for Einstein gravity), which

can be read from (2.7), and

κ|θ=0 = −2L̃2

L2

[
z2 + zd+

d(d+ 1)

2

]
. (2.26)
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As we can see, the dynamical exponent does appear in the HEE formula (through κ) when

we consider this curvature-squared contribution, as opposed to the Einstein gravity case.11

However, it does not contribute to the exponents of the divergences, and it will not do

so for any higher-curvature gravity, simply because the induced metric on any entangling

surface extremizing the corresponding functional will not depend on z in general, given

that it only appears in the gtt component of the hvLf metric (1.3). In order to make z

appear in the exponents of the HEE terms, we need to consider an anisotropic scaling of

a spatial coordinate instead of time. This will be studied in appendix A. The appearance

of the new divergence δ−B1 is a distinctive feature of hvLf geometries: for AdS or even

Lifshitz geometries, the inclusion of additional higher-curvature terms in the bulk action

just shifts the coefficient in front of δ−B0 , without producing any new divergent term.

Coming back to R2 gravity, in order to extract information about the finite term S0
in (2.22) we are going to consider the case λ1 � 1 (which is a reasonable assumption as

we are considering the higher-curvature terms to be corrections to the leading Einstein

gravity action), so we can Taylor-expand around λ1 = 0. We do so in the expression for

the entanglement entropy up to order λ1 and perform the integration afterwards. The

result reads

S0=−
LdL

(d−1)
S

2G

{
G0h

−B0
∗

B0
+2κλ1h

−B1
∗

[
G0

(B0+1)
+G1

[
1

B1
− 1

(B0+1)

]]}
+O

(
λ21
)
, (2.27)

where we defined the constants

G0 ≡

√
πΓ
(

B0+2
2(B0+1)

)
Γ
(

1
2(B0+1)

) , G1 ≡

√
πΓ
(
2+2B0−B1
2(B0+1)

)
Γ
(
1+B0−B1
2(B0+1)

) . (2.28)

The turning point h∗ is in this case related to the strip width through

l

2
=

∫ l/2

0
dx1 = h∗

∫ 1

0

f(h∗)u
(d−θ) du

f(uh∗)
√

1− u2(d−θ) f(h∗)
2

f(uh∗)2

. (2.29)

At first order in λ1, we can perform the integral and invert the expression to find

h∗ =
l/2

G0

[
1 +

2κλ1
(B0 + 1)

[
l/2

G0

](B0−B1) [
1− G1

G0

]]
. (2.30)

Substitution into (2.27) leads to a kind simplification, and the full entanglement entropy

expression at this order is finally given by

SR2 =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ 2κλ1

[
δ−B1

B1
− (l/2)−B1GB1

0 G1

B1

]}
+O(λ21) .

(2.31)

This expression is exact at linear order in λ1. The Einstein gravity result, given by the first

two terms, is corrected by a divergent plus a constant term at first order, plus a constant

contribution of order O
(
λ21
)
.

11The fact that a Lifshitz geometry (θ = 0) produced an unaltered HEE with respect to the AdS case for

Einstein gravity was first observed in [98].
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2.2 Gauss-Bonnet gravity

Let us now turn to the case of Gauss-Bonnet gravity. The HEE functional for this theory

was proposed in [84] and, as we mentioned, corresponds to a particular case of the JM

functional, suitable for Lovelock gravities. Including the boundary term, which we will

make use of for d = 2, the expression reads

SGB =
1

4G

∫
m
ddx
√
gm

[
1 + 2λGBL̃

2Rm
]

+
λGBL̃

2

G

∫
∂m

dd−1y
√
g∂mK , (2.32)

where Rm is the Ricci scalar of m, ∂m is the (d − 1)-dimensional boundary of m, h∂m
stands for the determinant of the induced metric on ∂m, and K is the trace of its extrinsic

curvature.

In the case of our hvLf geometries, the Ricci scalar of the induced metric on m (2.2)

reads

Rm =
(d− 1)(d− θ)h−2θ/d

(1 + ḣ2)2L2

[(
ḣ2 + ḣ4

)((d− 2)θ

d2
− 1

)
+

2hḧ

d

]
. (2.33)

As we can see, it identically vanishes for d = 1, which was expectable since the Gauss-

Bonnet term X4 is identically zero in 3D gravity.12

The way to proceed now is again trying to extremize (2.32) and evaluate the on-shell

integral. The simplest case and, at the same time, one of singular interest, is given by d = 2.

There, the Gauss-Bonnet contribution reduces to a boundary term, and does not modify

the gravitational equations of motion. From the HEE perspective, the integral of the Ricci

scalar of a 2D surface embedded in a certain manifold (which is precisely the expression

we have here) is proportional to its Euler characteristic, which is a topological quantity,

independent of the geometry of m. Therefore, when d = 2 we expect the entangling surface

to be the same as in Einstein gravity and the Gauss-Bonnet bulk contribution ∝
∫
Rm to

be cancelled by the boundary term involving the integral of the extrinsic curvature of ∂m.

Let us explicitly show that this is indeed the case for hvLf geometries.

It is straightforward to check that the equations of motion for h(x1) do not get modified,

and we have the very same first integral as in the Einstein gravity case (2.4), which we

rewrite here for convenience

h
(θ−2)
∗ =

h(θ−2)√
1 + ḣ2

. (2.34)

The Ricci scalar on m simplifies to

Rm =
(θ − 2)

hθ∗L
2

[
u−θ − (θ − 1)u(4−3θ)

]
, (2.35)

where we have used again u ≡ h/h∗. We can now compute the integral involving the bulk

terms in (2.32). The result is a sum of the Einstein gravity term (2.7) and the following

divergence
1

4G

∫
m
ddy
√
gm

[
2λGBL̃

2Rm
]

=
(2− θ)L̃2LSλGB

2G

1

δ
. (2.36)

12The same would occur for d = θ, so no corrections to HEE are produced by this term in such a limit case.
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Interestingly, the exponent of the divergence does not depend on θ. In order to verify the

cancellation of this term with the boundary one, we need to compute the metric induced on

∂m, and the trace of the extrinsic curvature of such boundary understood as an embedding

on m. ∂m is characterized by h→ δ, x1 = const. We find, after some algebra

√
g∂m = Lδ(

θ−2
2 ) , (2.37)

K∂m =
(θ − 2)

2

δ−
θ
2

L
,

and hence
λGBL̃

2

G

∫ LS

0
dx2
√
g∂mK =

(θ − 2)L̃2LSλGB

2G

1

δ
. (2.38)

As we can see, this contribution exactly cancels the intrinsic curvature contribution

of (2.36), as expected.

In the case d > 2 things get much more involved. The functional we pretend to

extremize contains derivatives of h(x1) up to order two, so no first integral is available now.

Similarly, although the equations of motion are second-order as well, and not fourth-order

as one would expect for a random second-order gravity,13 they turn out to be impossible

to treat analytically. However, as we argued before we do not need to obtain the surface

extremizing (2.32) in order to obtain the divergent terms in the HEE expression (although

we would if we wanted to provide the corresponding corrected constant terms). Indeed, let

us use (2.4) to compute the divergences produced by the bulk integral in (2.32). Following

the same steps as for R2 gravity we find14

SGB =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ ξλGB

[
δ−B1

B1
+ c1,GB

]}
+O

(
λ2GB

)
, (2.39)

where now

ξ ≡ L̃2

L2
(d− 1)(d− θ) , (2.40)

and c1,GB is a constant term that should be computed using the entangling surface extrem-

izing (2.32). As we can see, the expression is completely analogous to the one found for

R2 gravity (2.31): added to the Einstein gravity contribution we find a single divergence of

the same order as the one encountered in that case plus a constant correcting the universal

term. The fact that the divergences produced by R2 and Gauss-Bonnet gravities match

is not trivial, given that in the first case we are simply adding a term scaling as ∼ u−2θ/d

(see (2.18)) to the “1” of Einstein gravity in the HEE integral, whereas for Gauss-Bonnet

we find two terms when we substitute ḣ(h) and ḧ(h) in (2.33) and (2.32)): one scaling like

the R2 one, plus another one going as ∼ u−2θ/d+2(d−θ) which, however, does not produce

divergences when θ ≤ 0. In this case, the dynamical exponent does not appear in the

curvature-squared contribution, simply because it does not appear in the pull-back metric

on m and, as a consequence, in Rm. Let us see what happens for our last curvature-squared

theory: Ricci-squared gravity.

13Recall Gauss-Bonnet is a particular Lovelock gravity, which is the most general family of higher-order

gravity theories in any dimension with second-order equations of motion.
14For the case d = 3, the appearance of B1 in Gauss-Bonnet was anticipated in [99].
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2.3 RµνR
µν gravity

For this theory, the entanglement entropy functional reads [87]

SRicci2 =
1

4G

∫
m
ddx
√
gm

[
1 + λ2L̃

2

(
R(â)

(â) − 1

2
K(â) 2

)]
. (2.41)

In this expression, the first term stands for the contraction of the Ricci tensor associated

to the spacetime metric with the two mutually orthogonal unit vectors normal to the

entangling surface m, n(â), â = 1, 2 according to

R(â)
(â) ≡ Rµνnµ(â)n

ν
(b̂)
δ(â)(b̂) . (2.42)

The second term is the sum of the squares of the two extrinsic curvatures of m

K(â)
µν = ∇µn(â)ν , (2.43)

associated to those two vectors

K(â) 2 ≡ gµνgρσK(â)
µν K

(b̂)
ρσ δ(â)(b̂) . (2.44)

For the hvLf metrics (1.3), the two vectors normal to the entangling surface m associated

to our strip are given by

n(1) =
rz−θ/d

L
∂t , n(2) =

r1−θ/d

L
√

1 + ḣ2

(
∂r − ḣ∂x1

)
. (2.45)

Making use of this we can evaluate the above expressions to get

R(â)
(â) − 1

2
K(â) 2 =

h−2θ/d

d2L2

d(d+ dz − 2θ)(θ − d− z) +
d
[
θ2 + d((1− z)z − θ)

]
1 + ḣ2

(2.46)

−

[
(θ(d+ 1)− d(d+ z))(1 + ḣ2) + dhḧ

]2
2
[
1 + ḣ2

]3
 .

Following our previous steps, we can make use of (2.4) to determine the divergences in the

HEE for this theory. The result is

SRicci2 =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ γλ2

[
δ−B1

B1
+ c1,Ricci2

]}
+O

(
λ22
)
, (2.47)

where now

γ ≡ L̃2

L2

(d+ dz − 2θ)(θ − d− z)
d

, (2.48)

and c1,Ricci2 is the correction to the constant term at first order in λ2. Again, we find

the same kind of term as in the two previous cases. In light of this, we conclude that

B1 = 2θ/d+ d− θ − 1 is the only new divergent term produced at the level of curvature-

squared gravities when θ < 0. As we already said, this means that no additional logarithmic

divergences can appear at this order of curvature for this class of metrics.
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2.4 Higher-curvature gravities and new logarithmic terms

In the previous subsections we have studied the structure of terms of HEE for general

curvature-squared gravities in the case of an entangling region A consisting of a strip in

the boundary of hvLf metrics with θ ≤ 0. The result is that, in spite of the different terms

appearing for the distinct HEE functionals in the various curvature-squared theories, we

find that one single additional divergent term appears. This might suggest that if we

moved on and considered even higher curvature gravities, one single additional divergence

would appear at each order in curvature (this would mean, e.g., that the 10 independent

curvature-cubed gravities [100], with their different corresponding functionals would give

rise to the same single divergent term, and so on). Although this conjecture seems to ask

for stronger evidence, it is important to notice that at the curvature-squared gravities level

we are already considering the two kinds of terms that are expected to appear in the HEE

functional at all orders in curvature [88], namely: contractions of curvature bulk tensors

with normal vectors to the entangling surface m, and contractions of extrinsic curvatures

of m with bulk tensors. If our conjecture was right, we could extract the divergent term

common to all theories at each order in curvature by computing the HEE expression for

the simplest higher-order gravity in each order. This is, of course, Rn gravity.

For an Rn gravity or, more in general, for an f(R) gravity

If(R) =
1

16πG

∫
dd+2x

√
g

[
R+

d(d+ 1)

L̃2
+ λf(R)f(R)

]
, (2.49)

(where λf(R) is now a dimensionful coupling), the HEE functional is known to be [88]

Sf(R) =
1

4G

∫
m
d2x
√
gm

[
1 + λf(R)

df(R)

dR

]
, (2.50)

and so for f(R) = Rn, λf(R) = λRnL̃
2(n−1) and

SRn =
1

4G

∫
m
d2x
√
gm

[
1 + nλRnL̃

2(n−1)R(n−1)
]
. (2.51)

We can actually extremize this functional and find the HEE expressions following exactly

the same steps as in the case of R2. The result is

SRn =
LdL

(d−1)
S

2G

[
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+nκ(n−1)λRn

[
δ−B1

B1
− (l/2)−B1GB1

0 G1

B1

]]
+O

(
λ2Rn

)
,

(2.52)

where B1 is now given by

B1 =
2(n− 1)θ

d
+ d− θ − 1 . (2.53)

G0 and G1 are again given by (2.28) taking the new value of B1. As we can see, (2.52) in-

cludes the O(λRn) correction to the universal term as well as a divergence of order B1. This

is always subleading with respect to B0 and, interestingly, it becomes logarithmic when

θ =
d(d− 1)

d− 2(n− 1)
, (2.54)
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Figure 2. Values of n and d for which the corresponding Rn gravities produce terms including a

logarithmic dependence on l for certain values of θ ≤ 0. The graph extends to the n > 6, d > 6

region in an obvious way.

provided that 2(n − 1) > d. This value of θ resembles the θ = d − 1 famous result for

which a logarithmic divergence is found in the HEE for Einstein gravity (n = 1), as we

will review in a moment. However, this new set of divergences is found for θ < 0, whereas

the other occurs with θ = d− 1 ≥ 0. Obviously, when n = 2, the only possibility is d = 1,

which makes θ = 0 and reduces to the AdS3 case already studied at the beginning of the

section. For n > 2, however, the situation is much richer, and we find a plethora of new

logarithmic divergences (see figure 2).

When (2.54) is satisfied and 2(n− 1) > d, the HEE expression becomes

SRn =
LdL

(d−1)
S

2G

[
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ nκ(n−1)λRn

[
log

[
l

δ

]
+ cRn

]]
, (2.55)

where now

B0 =
2(n− 1)(d− 1)

2(n− 1)− d
, (2.56)

and cRn is a constant correcting the universal term. Therefore, we see that starting from

curvature-cubed gravities, introducing higher-order terms in the gravitational action allows

one to find new logarithmic contributions to the HEE for hvLf geometries. In both (2.52)

and (2.55) we find a leading divergence whose coefficient scales with the area of the bound-

ary of our entangling region. However, while in (2.52) the coefficient of the subleading term

is also proportional to ∂A, in (2.55) we find a different scaling, provided there appears a

factor which depends logarithmically on the width of the stripe l.

If our guess is right, (2.52) (and (2.55) when it applies) would be the right expression

(swapping κ, λRn and so on for the corresponding parameters) for the HEE of a strip in

the boundary of a hvLf geometry with θ ≤ 0 for any higher-order gravity of n-th order in

the Riemann tensor.
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3 HEE for hvLf geometries in higher-curvature gravities II: 0 < θ < d

In this section we turn to the case of 0 < θ < d, corresponding to hvLf metrics whose

curvature invariants diverge in the UV (as r → 0). In order to do so, we follow the

steps of [27] and consider these hvLf metrics to be completed asymptotically by an AdS

geometry.15 Hence, we will assume them to hold only above certain scale rF .

Again, HEE for this class of hvLf spacetimes was studied for Einstein gravity, e.g.,

in [27] and [26]. In order to be consistent with the conventions in [27], whose results we

plan to generalize here, let us make a change of coordinates in (1.3)

r = R
d

(d−θ) , (3.1)

and let us relabel R → r so there is no confusion between the radial coordinate and the

Ricci scalar. Our hvLf geometries read now

ds2 =
L2

r2

[
− dt2

r
2d(z−1)
d−θ

+ r
2θ
d−θ dr2 + d~x2(d)

]
. (3.2)

The idea is to start with a metric of the form

ds2 =
L2

r2

[
−f(r)dt2 + g(r)dr2 + d~x2(d)

]
, (3.3)

and require it to be asymptotically AdSd+2 while assuming it to posses some intermediate

hvLf-like behaviour

g(r) '
[
r

rF

] 2θ
d−θ

, (r � rF ) , (3.4)

g(r) ' 1 , (r � rF ) ,

f(r) '
[
r

rF

] 2d(1−z)
d−θ

, (r � rF ) ,

f(r) ' 1 , (r � rF ) .

Now, if we parametrize the entangling surface as x1 = F (r), computing the induced metric

to obtain the area-functional is straightforward, and the result reads [27]

SEG =
LdLd−1S

2G

∫ r∗

δ

dr

rd

√
g(r) + Ḟ (r)2 . (3.5)

r∗ is the turning point now, where Ḟ (r) diverges. For this functional there is a first integral

given by

Ḟ =
rd

rd∗

√
g(r)

1− r2d/r2d∗
, (3.6)

so in the end we find

SEG =
LdLd−1S

2G

∫ r∗

δ

dr

rd

√
g(r)

1− r2d/r2d∗
. (3.7)

15See [26] for a different approach, analogous to the one we follow in the previous section.
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The turning point is related to the strip width through

l

2
=

∫ r∗

0
dr
rd

rd∗

√
g(r)

1− r2d/r2d∗
. (3.8)

In order to compute these integrals, we need to specify what the exact functional form of

g(r) is. However, we can simplify the issue by assuming the entangling surface to probe

deep into the IR, so r∗ � rF [27]. In such a case, (3.7) and (3.8) can be estimated making

use of (3.4), and the result is [27]

SEG =
LdLd−1S

2G

[
δ−(d−1)

(d− 1)
+

c

rd−1F

l−B0

r−B0
F

+ . . .

]
, (3.9)

where c is a numerical constant and the dots refer to subleading contributions which we

are neglecting in the limit r∗ � rF . Therefore, we find an area-law term, plus a term

which depends on the intermediate scale rF . When θ = d− 1, (3.9) produces a logarithmic

dependence on rF [27],

SEG =
LdLd−1S

2G

[
δ−(d−1)

(d− 1)
+

c

rd−1F

log

[
l

rF

]
+ . . .

]
. (3.10)

This expression resembles the EE expression expected for a QFT with a Fermi

surface [76, 77]

S = α
Ld−1S

δd−1
+ βLd−1S kd−1F log(lkF ) + . . . , (3.11)

being kF de Fermi momentum and α, β numerical positive constants. We see that the

parameter rF can be thus interpreted as the Fermi surface scale rF ∼ k−1F .

In order to study the effect of higher-curvature gravities we should repeat the analysis

of section 2 and start considering curvature-squared gravities one by one. However, taking

into account that our approach relies on approximating the spacetime geometry by two

different metrics, namely AdS in the UV and hvLf above some scale rF without specificating

its exact form, the calculations for the Gauss-Bonnet and Ricci2 terms become rather filthy

and obscure the main goal of this section, which is nothing but studying the kind of terms

that one should expect from general higher-order gravities. Therefore, let us stick to Rn

gravity, for which we can find the surface extremizing the HEE functional for the general

metric (3.3) and make a treatment as rigorous as the one performed in [27] for Einstein

gravity. Following previous steps we find the expression for the HEE functional to be

SRn =
LdLd−1S

2G

∫ r∗

δ

dr

rd
T (r)

√√√√ g(r)

1− T (r∗)2

T (r)2
r2d

r2d
∗

, (3.12)

where

T (x) ≡
[
1 + nλRnL̃

2(n−1)R(n−1)(x)
]
, (3.13)
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with the turning point being related to l/2 by

l

2
=

∫ r∗

0
dr
rd

rd∗
T (r)

√√√√ g(r)

1− T (r∗)2

T (r)2
r2d

r2d
∗

. (3.14)

It is a tedious but otherwise straightforward calculation to perform the previous on-shell

integral and rewrite it in terms of l at order O(λRn).16 The final result is

SRn =
LdLd−1S

2G

[
δ−(d−1)

(d− 1)
(1 + λRnc0) +

c

rd−1F

l−B0

r−B0
F

+
c1λRn

rd−1F

l−B1

r−B1
F

+O
(
λ2Rn

)]
, (3.15)

where, just as in the θ ≤ 0 case

B0 ≡ d− θ − 1 , (3.16)

B1 ≡ B0 +
2θ(n− 1)

d
, (3.17)

and c0, c1 are numerical constants. As we can see, the kind of terms appearing here

resembles those found for θ ≤ 0 geometries. In particular, the term with the power B1

produces a logarithmic term when

θ =
d(d− 1)

d− 2(n− 1)
, (3.18)

as long as d > 2(n − 1) and θ < d. This seems to generalize the case θ = d − 1 to Rn

gravities for positive values of the hyperscaling violation exponent. However, θ < d imposes

the following constraint on the order of the gravitational theory admitting such a term

3− 2n > 0 , (3.19)

which of course is only satisfied for n = 1. This reduces to the well-known case of Einstein

gravity corresponding to θ = d−1. Therefore, as opposed to the θ ≤ 0 case, we do not find

additional logarithmic terms in this case for any higher-curvature gravity. Nevertheless,

it is not clear that B1 is the only new contribution susceptible of arising in this case for

general nth-order gravities. Further study in this direction would be desirable.

4 Discussion and perspectives

In this paper we have considered the effects of higher-order gravity Lagrangians on the HEE

expression for geometries with hyperscaling violation. Although the cut-off dependence of

the HEE In section 2 we have argued that for θ ≤ 0, in order to extract the structure of

terms for general higher-curvature gravities, it suffices to evaluate the corresponding on-

shell functionals on the extremal area surface, without having to obtain the new surfaces

16It is interesting to note that expanding in powers of λRn and neglecting higher order contributions is

right in this case because the term which goes with the coupling in T (r) scales as ∼ 1/r2θ(n−1)/d, with a

positive exponent for θ > 0, so when we evaluate the integral at r → r∗ � rF , the term involving λRn is

small, and the expansion makes sense.
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extremizing those functionals, something that would be nevertheless necessary for obtaining

the right corrected constant terms. This argument is explicitly illustrated for R2 gravity,

for which we can actually extremize the new functional and find the first-order correction

to the universal term of the HEE. Our results show that for a general curvature-squared

gravity, in addition to the Einstein gravity divergence (δ−B0 , with B0 = d− θ − 1), there

appears a single new one, at order O(λ) in the gravitational coupling of the form δ−B1 ,

with B1 = 2θ/d+ d− θ − 1.

The fact that, in spite of the different structure of the corresponding HEE functionals

for R2 (2.31), Gauss-Bonnet (2.39) and Ricci2 (2.47) gravities, we find only one divergence

of the same order in all cases led us to conjecture that this result extends to arbitrary

nth-order gravities, so the divergent term found for Rn, B1 = 2(n − 1)θ/d + d − θ − 1

, would be the only one appearing for any other theory of that order in curvature when

θ ≤ 0. It might be that the result does not extend to n ≥ 3 and that new divergent terms

appear when those nth-order Lagrangians differ from the simple Rn case. Even if that

were the case, that would imply that we are forgetting new contributions, not that B1 gets

substituted by them. Indeed, the on-shell evaluation of the Wald-like term [88]

∂L
∂Rµνρσ

εµνερσ , with εµν = n(â)µ n(b̂)ν ε(â)(b̂) , (4.1)

will always contain at least one term scaling with the (n− 1)th power of the Ricci scalar,

which is precisely the one giving rise to B1. Therefore, B1 will always be there for nth-

order gravities, although in some cases it might be followed by other divergences appearing

for n ≥ 3.

We have observed that the behaviour arising from Einstein gravity gets corrected for

higher-order gravities (at least) by the addition of a new divergent term in which the cut-off

scales with a different power, depending on θ, but which is also proportional to the area of

the entangling region boundary. Area-law usually tells us about local correlations amongst

UV degrees of freedom in the boundary theory. Our findings seem to be suggesting that

such correlations get significantly modified when the higher-order couplings are turned

on, something which happens to be distinctive of general hvLf geometries with respect

to the cases of AdS or Lifshitz without hyperscaling violation, for which the structure of

divergences remains unchanged (θ = 0 and so B0 = B1 = d − 1) and the only difference

produced by the inclusion of such terms is a shift on the coefficient in front of δ−(d−1)

(see (2.25) [98]). Nevertheless, it is important to note that, as explained in the introduction,

hvLf backgrounds with θ 6= 0 generically suffer from a linearly divergent dilaton in the

UV. This obscures the interpretation of the structure of divergences found in the HEE

expression in terms of the degrees of freedom of the dual theory (which, to the best of our

knowledge, is not known at present for general hvLf backgrounds). The situation is similar

to that found for non-conformal branes, where the dual theory is known to be SYM (with

d 6= 4). In that case, the dilaton, which is related to the YM coupling, also runs in the

UV, which means that the theory is either asymptotically free or it needs a UV completion

(depending on the dimension). In order to determine what the case is, one needs the exact

relation between the dilaton and the coupling. When the YM coupling blows up in the UV,
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supergravity is not a valid description and S-duality needs to be used. For hvLf metrics,

however, the dual theory is not known and the approach taken in the literature is more

phenomenological/engineering-like since the supergravity result is taken to define what is

meant by the dual theory.17 Either way, comparing the results found in sections 2 and 3,

we see that, regardless of the approach we take in computing HEE for these geometries, to

wit: either assuming them to be valid descriptions in the UV (as in [26]), or considering

some AdS completion (as in [27]), we find that the structure of the result does not change,

and the novelty is always related to the appearance of a new term Λ−B1 , being Λ the scale

at which the hvLf geometry is reliable.

Coming back to our results, as we saw, the new term found becomes logarithmic when

d < 2(n− 1) for hvLf geometries with

θ =
d(d− 1)

d− 2(n− 1)
, (4.2)

which extends the famous result of θ = d−1 valid for Einstein gravity to negative values of

θ. For Einstein gravity (n = 1) B0 = B1 and this becomes the leading divergence, whereas

in the rest of cases (n > 1) we have an area-law-like term with the cut-off scaling as δ−B0

plus the subleading logarithmic term.

Trying to extend this also to the 0 < θ < d range, we considered the hvLf geometry to

be UV-completed by AdSd+2, arising the former above some scale rF and computed HEE in

that case for Rn gravity. We found that B1 was the only new contribution again. However,

for 0 < θ < d we saw that this exponent could not vanish for any n except n = 1, reducing

to the well-known case θ = d−1. In our computation we assume the turning point to probe

the IR region, r∗ � rF , in order to be able to approximate the on-shell integrals. It could be

that an exact calculation making also use of an exact geometry interpolating between hvLf

and AdS in the UV such as the one proposed in [27] gives rise to additional contributions

to the HEE when embedded in higher-curvature gravities (and possibly including new

logarithmic terms in some cases). Clarifying this possibility and, in general, proving (or

refuting) our conjecture on the presence of B1 as the only new divergence for general

gravities would be interesting. Of course, this looks like a hard task at present.

As we have seen, the fact that all contributions coming from higher-curvature terms are

subleading with respect to the Einstein gravity ones forbids these to produce violations of

the area law, although we have shown that in certain cases they would yield universal terms

which contain factors scaling logarithmically with the stripe width. Therefore, according

to our results, only in the exotic case in which the considered gravitational theories did not

include the Einstein gravity term could the HEE exhibit new violations of the area law.

In figure 3 we show the values of n and θ for which Rn (and general nth-order gravities)

introduce logarithmic terms for different values of d. The points on the horizontal line n = 1

as well as those on the axis θ = 0 correspond, respectively, to the cases already known in

the literature, namely: hvLf with θ = d−1 and AdS3, whereas those in the quadrant n > 0,

θ < 0 are the new ones (extending infinitely for larger values of n and −θ).
17We thank again Robert C. Myers and Ioannis Papadimitriou for the explanations appearing in this

paragraph.
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Figure 3. Values of n and θ for which Rn gravities produce logarithmic divergences for different

values of d. Orange dots correspond to d = 1 and those in blue to d = 6.

Finally, the results obtained here should be extendable to other entangling regions

different from the strip, such as cylinders, m-spheres and, ideally, arbitrary entangling

regions. In principle, we expect subleading divergences to appear when more complicated

entangling surfaces are considered. These would be produced by geometric integrals along

the entangling surface (see [60] for an account of this for pure AdSd+2). It would be of

most interest to investigate how these divergences get modified in hvLf backgrounds. For

n-spheres, for example, this has not been accomplished yet (to the best of our knowledge);

not even in the simplest case of Einstein gravity.
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A HEE for a doubly-Wick-rotated hvLf geometry

In this appendix we study HEE for a class of geometries for which the anisotropic scaling

occurs along one of the spatial dimensions instead of time [93, 94]

ds2 = L2r
2θ
d

(
−dt

2

r2
+
dr2

r2
+
d~x2(d−1)

r2
+
dy2

r2z

)
. (A.1)
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This can be understood as obtained through a double Wick rotation of the usual hvLf

metric (1.3). Indeed we just have to apply the following transformation to it

t→ iy , xd → it , (A.2)

where xd stands for the dth spatial coordinate. This makes the geometry covariant under

the following transformations

y → λzt , t→ λt , xi → λxi , i = 1, . . . , d− 1 . (A.3)

HEE in the framework of Einstein gravity has been already studied for this geometry

in [93, 94]. Here we are going to extend the study to the case of Rn gravity to illustrate how

the result changes with respect to the usual hvLf case. The motivation to consider such a

perversion is to make the dynamical exponent z appear in the exponents of the divergent

terms in the HEE expression. This indeed results in the production of new divergences,

which become logarithmic in a certain subset of the parameter space.

The region at the boundary for which we compute the entanglement entropy is the

same as in the rest of the article, with the particularity that now we have anisotropic

spatial scaling. We consider the strip to extend infinitely (up to the IR cut-off LS → ∞)

along the special scaling coordinate, so s = {(tE , r, x1, x2, . . . , xd−1, y) s.t., tE = 0, xd−1 ∈
[−l/2, l/2], x1,...,d−2 ∈ (−LS/2,+LS/2), y ∈ (−LS/2,+LS/2)}. The procedure used here

is the same as that of section (2), so we will skip redundant discussions.

The HEE functional is

SRn =
1

4G

∫
m
d2y
√
gm

[
1 + nλRnL̃

2(n−1)Rn−1
]
. (A.4)

The Ricci scalar for (A.1) is the same as that for (1.3), that is, R = κr−2θ/d/L̃2. We can

parametrize the entangling surface m as xd−1 = h(r), so that the metric induced in such

surface is

ds2m = L2r
2θ
d

[
dy2

r2z
+
(

1 + ḣ2
) dr2
r2

+
d~x2d−2
r2

]
. (A.5)

The expression for the entanglement entropy becomes

SRn =
LdL

(d−1)
S

2G

∫ r∗

δ
dr

√
1+ḣ2f(r)r(θ−d−z+1) , with f(x)≡

[
1+nκ(n−1)λRnx

−2θ(n−1)/d
]
,

(A.6)

r∗ being the turning point of the surface, where ḣ|r∗ = ∞. The functional has a first

integral associated to h, so we can express ḣ in terms of h. By doing so and after some

rearrangement we find

SRn =
LdL

(d−1)
S rθ−d−z+2

∗
2G

∫ 1

δ/r∗

du
u(θ−d−z+1)f(uh∗)√

1− u2(d−θ+z−1) f(r∗)
2

f(ur∗)2

. (A.7)
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We need d−θ+z−1 > 0 for the perturbative analysis to be consistent. Under this condition

the expression looks exactly like the one in section 2 after promoting (d−θ)→ (d−θ+z−1).

This implies the following result for the HEE

SRn =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ nκ(n−1)λRn

[
δ−B1

B1
− (l/2)−B1GB1

0 G1

B1

]}
+O

(
λ2Rn

)
,

(A.8)

with

B0 ≡ d− θ + z − 2 , (A.9)

B1 ≡ B0 +
2θ(n− 1)

d
, (A.10)

G0 ≡

√
πΓ
(

B0+2
2(B0+1)

)
Γ
(

1
2(B0+1)

) , G1 ≡

√
πΓ
(
2+2B0−B1
2(B0+1)

)
Γ
(
1+B0−B1
2(B0+1)

) . (A.11)

The divergence with B1 becomes logarithmic when

θ =
d(d+ z − 2)

d− 2(n− 1)
, (A.12)

which gives a broad range of possibilities. However, we still need to take into account the

NEC, which are different with respect to those for the standard hvLf case. For Einstein

gravity, this is computed as GµνN
µNν ≥ 0, Nµ being appropriate null vectors and Gµν the

Einstein tensor. For higher-curvature gravities, we will find additional conditions involving

the couplings of the theory, which we assume to be susceptible of being satisfied by tuning

those. For this metric a convenient null vector is

N r =
sr
L
r1−θ/d , N i =

si
L
r1−θ/d , Ny =

sy
L
rz−θ/d , (A.13)

N t =

√∑
s2i + s2r + s2y

L
r1−θ/d , (A.14)

with the sµ being positive constants. The NEC produces two inequalities

d(z − 1)z + θ(d− θ) ≤ 0 , (A.15)

(z − 1)(z + d− θ) ≤ 0 . (A.16)

After some algebra, one can see that these limit the allowed values of z to lie in the interval

1−
√

1 + 4θ θ−dd

2
≤ z ≤ 1 . (A.17)

So for each dimension d and each order in curvature n, any metric with z satisfying (A.17)

will give rise to a logarithmic contribution as long as (A.12) is satisfied.
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