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1 Introduction

The supersymmetric Born-Infeld (BI) Lagrangian [1], obtained in [2] and in a closed su-

perspace form in [3], was shown in [4] to encode the dominant low-energy couplings of the

goldstino sector in the presence of a 2 → 1 partial breaking of supersymmetry. The original

Volkov-Akulov [5, 6] action plays a similar role in the 1 → 0 case, so that this result can

be also summarized by saying that in the 2 → 1 case the goldstino is accompanied by an

N = 1 partner, the Abelian vector field strength

Wα = D̄ 2DαV . (1.1)

The supersymmetric BI action possesses a number of special features. Clearly, setting

to zero the gaugino it reduces to the standard BI action for the vector field, while setting

to zero the vector field it reduces to the standard Volkov-Akulov action. Moreover, it is

invariant under a second non-linearly realized supersymmetry, whose transformations can

be conveniently expressed in terms of Wα and of the chiral superfield X, related to Wα by

the non-linear constraint [4]

W 2 +X

(
m− 1

4
D̄2X̄

)
= 0 . (1.2)

Here m is a parameter with dimension of [mass]2 and the additional supersymmetry trans-

formations read

δWα =

(
m− 1

4
D̄2X̄

)
ηα − i ∂αᾱX η̄ᾱ , (1.3)

δX = −2W α ηα . (1.4)

Eq. (1.2) can be regarded as a non-linear nilpotency constraint for an N = 2 chiral super-

field X [11], which can be built by combining a pair of N = 1 chiral superfields X and Wα

according to

X (θ1, θ2) = X(θ1)− 2 θα2 Wα(θ1)− θ α
2 θ2α

(
m− 1

4
D̄2X̄

)
. (1.5)
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The N = 2 superfield X obeys the generalized superfield constraints [7–11]

D2
abX = ǫac ǫbd D̄

2 cd X̄ + imab , (a, b = 1, 2) (1.6)

where mab = σx
abmx, and mx = (m, 0, 0) is a magnetic charge triplet. X also obeys the

nilpotency constraint [11]

X 2 = 0 . (1.7)

The solution of eq. (1.7) is provided by eq. (1.2), which also implies the additional

constraints1

X2 = 0 , X Wα = 0 . (1.8)

These are the N = 1 nilpotency constraints proposed in [12–15]. Finally, the BI Lagrangian

is simply

L = ℑ e

∫
d 2θ X . (1.9)

Here e is a complex parameter, X is subject to the constraint (1.2), while ℜ and ℑ will

always denote real and imaginary parts.

Alternatively, in terms of X , the Lagrangian becomes the half-integral of an N = 2

Fayet-Iliopoulos term, projected on the SU(2) triplet half-chiral measure (see [9–11]). The

authors of [11] also showed that the non-linear action (1.9) can be obtained starting from

the quadratic N = 2 action considered by Antoniadis, Partouche and Taylor in [9]. In

that paper, the superpotential and the N = 1 Fayet-Iliopoulos terms were chosen to give

an N = 1 vacuum with broken N = 2 supersymmetry. A convenient way to obtain this

result is via an electric charge (e1, e2, 0), aligned with the first two components of a triplet

and a magnetic charge (m, 0, 0), aligned with the first component. In this fashion, the first

supersymmetry is unbroken and the N = 1 Fayet-Iliopoulos terms vanish [11]. On the other

hand, the partial breaking N = 2 → N = 1 is only possible if the N = 2 Fayet-Iliopoulos

magnetic charge m does not vanish [9, 10, 16, 17].

Our goal here is to extend the construction to an arbitrary N = 2 special geometry

with n vector multiplets, thus identifying the U(1)n generalization of eqs. (1.2) and (1.9).

The model is defined by magnetic and electric charges, mA and eA, which will be

defined in the next sections, and by the superpotential2

U(X) =
i

2
CAB XAXB +

1

3!M
dABC XAXB XC , (1.10)

where CAB and dABC are totally symmetric and real and M sets the scale of the problem.

For brevity, in the following we shall set M = 1, keeping in mind that the dimensionless

charge triplets Qx = (mx
A, exA) are meant to be accompanied by a factor M2 in the

final result.

We shall find it convenient to introduce shifted superfields Y A, (A = 1, . . . , n), de-

fined by

XA = xA + Y A . (1.11)

1This corresponds to dropping Wα in eq. (1.2) while keeping the nilpotency constraint in eq. (1.8).
2The cubic truncation leaves out higher-order non-renormalizable terms that are expected to be sub-

dominant at low energies. Interestingly, this choice results in a shift symmetry of the axion fields ℜXA.
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The vacuum expectation values (VEV)s xA = 〈XA〉 are determined by the N = 1 vacuum

condition

UAB(x)m
B = eA , (1.12)

with

UAB(X) =
∂ 2U(X)

∂XA ∂XB
. (1.13)

As we shall see, the Y A satisfy the generalized BI constraints

dABC

[
WB WC + Y B

(
mC − D̄2 Ȳ C

)]
= 0 , (1.14)

which involve the totally symmetric sets of coefficients dABC and reduce to eq. (1.2) for

n = 1, up to a slight change of conventions. As a result, the U(1)n generalized BI actions

will depend on the choice of such symmetric tensors. We shall also examine in detail the

available choices for the dABC in the n = 2 case. Moreover, we shall see that the n-extended

Lagrangians can be cast in the form

L = ℑ
∫

d2θ eA Y A −ℜ
∫

d2θ CAB

[
WAWB + Y A

(
mB − D̄2 Ȳ B

)]
, (1.15)

or alternatively, making use of the vacuum condition (1.12) and of the non-linear con-

straint (1.14), in the form

L = − ℑ
[
UAB(x)

∫
d2θ

(
WAWB − Y A D̄2 Ȳ B

)]
. (1.16)

Note that in the n = 1 case the second term in eq. (1.15) vanishes identically on account

of the constraint (1.14). This reflects the fact the single CAB that is present in that case

can be eliminated by a field redefinition. However, for n > 1 the CAB are needed, in

general, to guarantee positivity, as is manifest from the alternative form of the Lagrangian

in eq. (1.16).

2 Special geometry, Fayet-Iliopoulos terms and N = 1 attractors

In this section we generalize the models of refs. [9] and [11] to the multi-field case. To

this end, let us first observe that the data of the problem are the N = 2 Fayet-Iliopoulos

terms, which build up an Sp(2n) symplectic triplet of electric and magnetic charges Qx =

(mx
A, exA), with x = 1, 2, 3, A = 1, . . . , n, and the prepotential of eq. (1.10).

Eq. (1.10) clearly identifies the dABC as third derivatives of the prepotential U . More-

over, the N = 2 Lagrangian with an N = 2 Fayet-Iliopoulos term, written in N = 1

language, acquires a symplectic structure due to the underlying special geometry, which is

encoded in the symplectic vector [18–21]

V =

(
XA, UA ≡ ∂U

∂XA

)
. (2.1)

The scalar-field dependent n×n symmetric matrices gAB and θAB determine the quadratic

terms in the vector fields as

L = − 1

4
gAB GA

µν G
B µν +

1

8
θAB GA

µν G
B
ρσ ǫµνρσ . (2.2)

– 3 –
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Moreover, in N = 2 special geometry

gAB = ℑUAB , θAB = ℜUAB , UAB =
∂ 2 U

∂XA∂XB
, (2.3)

and it is convenient to define the symplectic metric

Ω =

(
0 −1

1 0

)
. (2.4)

The 2n× 2n matrix M, with entries

M =

(
g + θ g−1 θ − θ g−1

− g−1 θ g−1

)
, (2.5)

then satisfies the two conditions of being symplectic and positive definite:

M = MT , MΩM = Ω , (2.6)

for a positive definite g, as required by the Lagrangian terms in eq. (2.2).

The contributions to the potential involve the triplets Qx = (mA
x , exA) of electric and

magnetic charges. The first two combine into the complex sets

Q ≡ (mA , eA) = (mA
1 + imA

2 , e 1A + i e 2A) (2.7)

and determine the superpotential

W = V T Ω Q =
(
UA mA −XA eA

)
. (2.8)

The last,

Q3 =
(
mA

3 , e3A
)
, (2.9)

is real and determines, in N = 1 language, magnetic and electric Fayet-Iliopoulos D-terms.

The potential of the theory can thus be expressed, in N = 1 language, as

V = VF + VD , (2.10)

where

VF = (ℑU−1)AB ∂W
∂XA

∂W
∂XB

= Q̄T (M− iΩ)Q , (2.11)

VD = QT
3 MQ3 . (2.12)

Vacua preserving an N = 1 supersymmetry aligned with the N = 1 superspace [11]

are determined by critical points of the potential3, and thus by the attractor equations

∂W
∂XA

= 0 , (2.13)

3Notice that this is not the case in the model of [9] where the D-term has a non-vanishing VEV, so that

the unbroken supersymmetry is a mixture of the two original N = 2 superspace supersymmetries [22]. The

N = 2 SU(2) R-symmetry allows in fact to rotate N = 1 Fayet-Iliopoulos terms into superpotential terms.

– 4 –
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which are in this case

(M− iΩ)Q = 0 . (2.14)

This equation can admit a solution for nonzero Q only if

i Q̄T ΩQ = i
(
mB ēB − m̄B eB

)
> 0 , (2.15)

while the condition VD = 0 implies Q3 = 0, since at the critical point M is positive definite.

In solving the attractor equations we shall take mA real and eA complex, so that eq. (2.15)

will translate into the condition

mA e 2A > 0 . (2.16)

These are indeed attractor equations for the N = 2 theory quadratic in vector field

strengths. It is interesting to stress the analogy with the attractor equations for N = 2

extremal black holes with symplectic vector Q = (mA, eA). In terms of the M matrix the

black hole potential [23–28],

VBH =
1

2
QTMQ , (2.17)

is also determined by the last expression in eq. (2.11), but for a real Q, so that the Ω term

vanishes identically. However, in this case the value attained by VBH at the attractor point

is positive and gives the Bekenstein-Hawking entropy

VBH(Xattr) =
A

4π
=

S(Q)

π
. (2.18)

On the other hand, when expressed in terms of the central charge Z, which is the counter-

part of W, the black-hole potential contains an additional term [23–28], and reads

VBH = |DiZ|2 + |Z|2 . (2.19)

Hence, at the 1
2 — BPS critical point, where Di Z = 0,

Vcrit ≡ VBH(Xattr) = |Z|2attr . (2.20)

Instead, in our case Vcrit = 0, which implies ∂W

∂XA = 0 in order to leave N = 1 supersym-

metry unbroken.

3 Born-Infeld attractors

We can now exhibit a limit where the original theory quadratic in the field strengths gives

rise to a generalized supersymmetric BI system, characterized by eqs. (1.14) and (1.15). In

N = 1 language, the initial action reads

L = − ℑ
∫

d2θ

[
UAB WAWB +W(X) +

b

2
D̄2

(
XA ŪA − X̄A UA

)]
, (3.1)

where

W(X) = UA mA −XA eA . (3.2)

– 5 –
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Therefore, the Euler-Lagrange equations for XA are

UABC WB WC + UAB

(
mB − b D̄2X̄B

)
− eA + b D̄2 ŪA = 0 . (3.3)

The Lagrangian (3.1) is manifestly N = 1 supersymmetry, while N = 2 supersymmetry

fixes the relative coefficients of the second and third terms. However, the coefficient of the

superpotential can be changed by a rescaling of the complex charge vector Q, while the

normalization b of the scalar kinetic term reflects itself in the normalization of the N = 2

supersymmetry anticommutator.

In the Introduction we have anticipated that U(1)n generalized BI Lagrangians can

be defined via a set of n constrained N = 2 vector multiplets satisfying eq. (1.14). As we

have stressed already, the parameters that enter the action combine into a constant, totally

symmetric tensor dABC and into a matrix UAB(x), which depends via eq. (1.12) on the

dABC and on the charge vector. The generalization of eqs. (1.3) and (1.4) is

δWA
α = mA ηα − b D̄2 X̄A ηα − i c ∂αᾱX

A η̄ ᾱ , (3.4)

δ XA = −2WAα ηα . (3.5)

The closure of the supersymmetry algebra fixes the parameter c = 4 b, and in the following

we shall choose b = 1.4 Note that only the magnetic charges, and not the electric ones,

enter the supersymmetry transformations. The reason is that the contribution to the

superpotential W containing the electric charge is linear in XA, and therefore is also

invariant under the second supersymmetry [4]. Note also that the action (3.1) contains no

other parameters.

The explicit form of the vacuum equations (2.13) and (2.14) is given in (3.10) and

implies that the goldstino is

λg =

(
i

2
Q̄T ΩQ

)−
1

2

mA ℑUAB(x) λ
B =

(
i

2
Q̄T ΩQ

)−
1

2

e2A λA ; (3.6)

therefore, the corresponding superfield takes the form

Wg α =

(
i

2
Q̄T ΩQ

)−
1

2

e2A WA
α . (3.7)

Its non-linear variation under the second supersymmetry, making use of eqs. (2.15)

and (3.4), reads

δWg α =

(
i

2
Q̄T ΩQ

)−
1

2

e2A mA ηα + . . . =

(
i

2
Q̄T ΩQ

) 1

2

ηα + . . . , (3.8)

so that, in units of M , the supersymmetry breaking scale is

E =

(
i

2
Q̄T Ω Q

) 1

4

, (3.9)

which is a symplectic invariant, as expected.

4If one demands, as in [4], that theN = 2 anticommutators have the same normalization, then c = 4b = 1.

– 6 –
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Because of the nilpotency constraints on X, some care will be needed to obtain the

non-linear actions of eqs. (1.15) and (1.16) from the spontaneously broken theory of n linear

vector multiplets of section 2. In particular, in order to satisfy the vacuum conditions (2.13)

it is necessary to introduce VEVs 〈XA〉 = xA 6= 0. In fact, eq. (2.14) is

UAB(x) m
B ≡

(
i CAB + dABC xC

)
mB = eA , mB real , eA = e1A + i e2A , (3.10)

and implies the two real equations
(
CAB + dABC ℑxC

)
mB = e2A , dABC ℜxC mB = e1A . (3.11)

A non-vanishing CAB is needed to restore positivity of the kinetic term when the matrix

dABC mC is not positive definite.

If we now define chiral superfields Y A with vanishing VEV, letting XA = xA + Y A,

with the xA c-numbers, the equations of motion (3.3) become

dABC

[
WB WC + Y B

(
mC − D̄2Ȳ C

)
+

1

2
D̄2

(
Ȳ B Ȳ C

)]
+
[
ŪAB(x)− UAB(x)

]
D̄2Ȳ B = 0 .

(3.12)

Only the last term depends on xA (and also on eA via the vacuum equations (3.10)).

The BI Lagrangians emerge in the limit in which UAB(x) is negligible with respect to

the dABC , where the equations of motion reduce to

dABC

[
WB WC + Y B

(
mC − D̄2Ȳ C

)
+

1

2
D̄2

(
Ȳ B Ȳ C

)]
= 0 . (3.13)

The last contribution contains only overall derivatives, and therefore can be neglected in

the IR limit where our effective actions will be well defined. One can then insert the ansatz

UABC Y B Y C = 0 (3.14)

in (3.13), solve the resulting equation and check the self-consistency of the solution. This

leads to the multi-field generalization of the BI constraint of [4, 11],

dABC

[
WB WC + Y B

(
mC − D̄2Ȳ C

)]
= 0 , (3.15)

which was already presented in eq. (1.14) in the Introduction. Taking into account that

the equations of motion are solved by DA = 0, the θ 2 component of (3.15) reads

dABC

[
GB

+ ·GC
+ + FB

(
mC − F̄C

)]
= 0 , (3.16)

where G+ is the self-dual vector field strength and, here and in the next section, “dots”

indicate full Lorentz contractions5

These complex algebraic equations determine the auxiliary fields FA as non-linear

functions of G+ · G+ and G− · G−, and are the seed of the generalized BI non-linear

Lagrangians. For n = 1 the Lagrangian corresponding to eq. (1.15) reduce to the form

L =

(
e1ℑF + e2ℜF

)
= − e1

m
G · G̃+

e2m

2

[
1−

√
1 +

4

m2
G ·G− 4

m4

(
G · G̃

)2
]
.

(3.17)

5The superfield expansion corresponding to our definition of FA is XA(θ1) = . . .− 1

4
θ α
1 θ1α FA.
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A simple way to verify that a field solving eq. (3.15) does indeed satisfy the ansatz (3.14)

is to notice that the lowest component of (3.15) is

dABC

[
λB λC + yB

(
mC − F̄C

)]
= 0 , (3.18)

where λA = WA|θ=0 and FA is the auxiliary θ 2 — component of Y A. Multiplying eq. (3.18)

by λA and using the Fierz identity λ(AλBλC) = 0 implies that

dABC λA yB
(
mC − 2 F̄C

)
= 0 , (3.19)

with yA = Y A|θ=0. Since the factor within parentheses is arbitrary, this condition re-

quires that

dABC λA yB = 0 , (3.20)

and multiplying eq. (3.18) by yA and using (3.20) one then finds

dABC yA yB = 0 . (3.21)

Therefore, eq. (3.14) holds at θ = 0, and N = 1 supersymmetry then implies that the

entire multiplets vanishes. We have thus shown that the Y A obey the nilpotency equations

dABC Y B Y C = 0 , dABC Y B WC
α = 0 . (3.22)

Eq. (3.22) and eq. (3.15) combine in the N = 2 superspace constraint

dABC XB XC = 0 , (3.23)

which is the multi-field generalization of eq. (1.7) of the Introduction.

The Lagrangian corresponding to eqs. (3.12) is

L = − 1

2 i

∫
d 2θ

[
UAB(x)W

AWB + dABC

(
WAWB +

1

2
mA Y B

)
Y C

]
+ h.c.

− 1

2 i

∫
d 2θ d 2θ̄

[
ŪAB(x̄)Y

A Ȳ B − UAB(x)Y
A Ȳ B

+
1

2
dABC

(
Y A Ȳ B Ȳ C − Ȳ A Y B Y C

) ]
. (3.24)

Let us notice that the solution of eq. (3.12) can be expressed as the solution of (3.13) with

an additional term linear in UAB(x): Y = Y |UAB=0 + δ Y . As a result δ Y = O(1/ξ),

where ξ is an overall rescaling of the dABC , and after using the constraints (3.15) and (3.22)

and some integrations by parts, one is then led in the ξ → ∞ limit to the two equivalent

Lagrangians presented in eqs. (1.15) and (1.16) of the Introduction.

Before concluding this section, we would like to comment on two aspects of multi-field

BI actions. First of all, let us emphasize some analogies and some differences with the

multi-field case considered in [11, 29–31]. In those papers, the chiral superfield X is a

matrix, while in our case it is a vector. Moreover, their constraints are stronger. In fact, a

U(n) e.m. duality is imposed, while in our case we generally expect only a U(1)n duality

even if the vectors are coupled.

– 8 –
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Finally, we notice that our U(1)n construction is not a mere complexification of the

construction in [4], since for one matter it also applies for odd values of n. Moreover the

terms containing CAB are crucial, in general, to grant positivity. This will be manifest in

the simple examples that we are about to discuss, one of which could be related to the

complexified nilpotency constraints (X±iY )2 = 0 in superspace. However, the correspond-

ing action would contain ghosts unless a quadratic term involving CAB were added to the

prepotential, and this term necessarily breaks the complex structure. Therefore, even in

that particular case the model is different from the U(1)2n generalizations proposed in [29].

4 Explicit examples: the n = 2 case

The generalized BI Lagrangians are determined by the superfield constraints

dABC

[
WAWB + Y B

(
mC − D̄2 Ȳ

)]
= 0 . (4.1)

To find them explicitly one needs only the F-term equations (3.16), since the DA-terms

vanish. Since eq. (4.1) is clearly solved by FA = 0 when GA
+ = 0, it is useful to perform

the change of variables

ℜFA =
1

2
mA −HA , (4.2)

thus turning imaginary and real parts of eq. (4.1) into

dABC ℑFB mC = − dABC GB · G̃C , (4.3)

dABC

(
1

2
mB +HB

)(
1

2
mC −HC

)
= dABC

(
− GB ·GC + ℑFB ℑFC

)
. (4.4)

Notice that eqs. (4.3) are linear, while eqs. (4.4) are quadratic.

Any specific class of models solving these constraints is defined by the U polynomial

modulo field redefinitions by Sl(n,R) transformations.6 Inequivalent theories are thus

classified by the Sl(n,R) orbits of the cubic polynomials

U =
1

3!
dABC XAXB XC . (4.5)

As a first nontrivial example, let us consider the n = 2 case, where the dABC , with A,B,C =

1, 2, take values in the spin–3
2 representation of Sl(2, R). This possesses a unique quartic

invariant, which also corresponds to the discriminant of the cubic. The quartic invariant is

I4 = − 27 d 2
222 d

2
111 + d 2

221 d
2
112 + 18 d222 d111 d112 d221 − 4 d111 d 3

122 − 4 d222 d
3
211 , (4.6)

and is a truncation of Cayley’s hyperdeterminant, an object that also emerges from studies

of black-hole entropies [32, 33] and of q-bit entanglement in Quantum Information The-

ory [33–35]. Different types of roots are associated to different properties of its four orbits:

Ot, Os, Ol, Oc.

6The more general symplectic duality Sp(2n,R) is broken by the presence of the N = 2 Fayet-Iliopoulos

electric and magnetic charges (mA
x , exA).
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For I4 > 0 the cubic has three real simple roots and Ot is a time-like orbit. When the

roots are simple but two are complex conjugates, I4 < 0 and the orbit Os is space-like. A

double root I4 = 0, ∂I4 6= 0 corresponds to a light-like orbit Ol, and finally a triple root

corresponds to I4 = ∂I4 = 0 and to the critical orbit Oc made of a single point.

The four inequivalent theories can be associated to the four representative polynomials

determined by the conditions

I4 > 0 d222 = d211 6= 0 Ot ,

I4 < 0 d222 = d111 6= 0 Os ,

I4 = 0 d222 = d221 6= 0 Ol ,

∂ I4 = 0 d222 6= 0 Oc ,

(4.7)

which read

Ot =
1

3!
X 3 − 1

2
X Y 2 , (4.8)

Os =
1

3!

(
X 3 + Y 3

)
, (4.9)

Ol =
1

3!
X 3 − 1

2
X 2 Y , (4.10)

Oc =
1

3!
X 3 . (4.11)

The imaginary parts of the Hessian matrices of these polynomials contribute to the kinetic

terms. It is simple to see that only in the Os case the Hessian is positive definite. On the

other hand, the Hessians of the Ot and Ol cases have negative determinant, so that their

eigenvalues have opposite signs. Finally, in the Oc case there is a vanishing eigenvalue.

Hence, aside from the Os case a CAB term is needed in the generalized BI Lagrangians.

We can now consider the solutions of the constraints given in eqs. (4.3) and (4.4).

The Oc and Os cases are trivial, since there is no coupling between the two vectors in

the non-linear constraints. The other two cases are nontrivial and are determined by the

nilpotency constraints

Ot : X2 − Y 2 = 0 , X Y = 0 ,

Ol : X2 = 0 , X Y = 0 . (4.12)

Still, eqs. (4.4) can be solved by elementary techniques, since they only involve quadratic

radicals.

For example, the explicit solution of eqs. (4.3) for the Ot case is

ℑFX =
mX RX +mY RY

(mX)2 + (mY )2
, ℑF Y =

− mY RX +mX RY

(mX)2 + (mY )2
, (4.13)

where

RX = − GX · G̃X +GY · G̃Y , RY = − 2GX · G̃Y . (4.14)

On the other hand, eqs. (4.4) become

−
(
HX

)2
+
(
HY

)2
= SX , 2HX HY = SY , (4.15)

– 10 –
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where

SX = TX −
(
mX

)2

4
+

(
mY

)2

4
, SY = T Y +

mX mY

2
, (4.16)

and

TX = −GX ·GX+GY ·GY +(ℑFX)2−(ℑF Y )2 , T Y = 2
(
GX ·GY + ℑFX ℑF Y

)
. (4.17)

In terms of these quantities, the explicit solutions for HX and HY read

HX =
1√
2

(√
(SX)2 + (SY )2 − SX

) 1

2

, HY =
1√
2

(√
(SX)2 + (SY )2 + SX

) 1

2

. (4.18)

The solutions of eqs. (4.4) become apparently more and more complicated with in-

creasing n, when the number of inequivalent cases and their degeneracies also increase.

Their classification rests on the theory of invariant polynomials, which was only completed

for the n = 3 and n = 4 cases so far [36–39].
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[12] M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].
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