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C O(µ2) correction to Rényi entropy and entanglement entropy of other

spins 40

D Quantum correction of partition function of higher spin black hole 41

– 1 –



J
H
E
P
1
2
(
2
0
1
4
)
0
5
5

1 Introduction

Entanglement entropy and its generalization Rényi entropy are important quantities to

study quantum systems. Entanglement entropy is a good parameter to characterize the

effective degree of freedom of a region which is entangled with the rest of the system. It

has interesting applications in condensed matter systems [3–5]. In general, they are hard

to compute. Surprisingly, inspired by AdS/CFT correspondence, Ryu and Takayanagi [46]

proposed that entanglement entropy in a conformal field theory could be calculated from a

minimal surface in the dual bulk. Their beautiful work provides an effective way to compute

entanglement entropy. At the same time, it opens a new window to study AdS/CFT ,

especially the emergence of spacetime in gravity.

On the other side, another important development in AdS/CFT in recent years is the

higher spin holography [6–8], which suggests explicit duality between Vasiliev higher spin

theory [9, 10] and vectorial conformal field theory in the large N limit. Among various

proposals, HS/CFT2 [11], which relates higher spin theory in AdS3 [12] to WN minimal

model in large N limit, is of particular interest. This duality triggered various studies in

AdS3 gravity and CFT with W symmetry, please find nice reviews [13, 14] on this topic.

Higher spin Rényi entropy (HSRE) and higher spin entanglement entropy(HSEE) arise

from the combination of the previous two separate branches. In the field theory side, when

there are higher spin deformations, the partition function can be written schematically as

Z =

〈
exp−µ

∫
W − µ̄

∫
W̄

〉
, (1.1)

where µ(µ̄) is the chemical potential, W (W̄ )is the corresponding higher spin current. It

would be interesting to consider the deformation of entanglement entropy in this case. In

the bulk, as the holographic entanglement entropy relates to a geometric object in usual

Einstein-Hilbert theory, a generalization to holographic HSEE may provide insights on

mysterious higher spin geometry. Also, they are expected to provide non-trivial check

of HS/CFT correspondence. Several works on this issue have been done. In [15, 16],

for the theory with W symmetry, two interval Rényi entropy without classical higher spin

deformation has been calculated in the short interval limit, the quantum one-loop results in

the gravity and CFT side match exactly up to O(x8), where x is the cross ratio constructed

from the two intervals. When there are higher spin chemical potential deformations, one

interesting configuration1 is the higher spin black hole [23]. In these cases, a holographic

HSEE has been proposed by Wilson line prescription [32, 47]. It has been checked up to

O(µ2) for the CFT with W3 symmetry [44, 48]. Other works related to holographic HSEE

can be found in [45].

In this paper, we develop a general prescription to calculate single interval HSRE and

HSEE from CFT side perturbatively. Instead of inserting twist operators, we use a multi-

valued conformal map from a n-sheeted Riemann surface to a complex plane. For spin 3

deformation, we find the HSRE and HSEE of W∞(λ) theory up to O(µ4). We show that

the O(µ2) correction of HSRE and HSEE are indeed universal, in the sense that they are

1There are other configurations, such as chiral deformation solution [24, 25].

– 2 –



J
H
E
P
1
2
(
2
0
1
4
)
0
5
5

independent of the value of λ up to a normalization constant. At the O(µ4), we find the

classical and all loop quantum corrections to HSRE and HSEE. For λ = 3, the classical

part matches with the gravity result exactly. Our method is sufficiently general to extend

to all kinds of higher spin deformations.

The structure of this paper is as follows. In section 2, we review the general method to

calculate N interval Rényi entropy and entanglement entropy in two dimensional conformal

field theory, emphasizing the importance of a conformal map from n-sheeted Riemann

surface to complex plane and its multi-valued property. In section 3, we review pure

higher spin gravity in AdS3, including its asymptotic symmetry, higher spin black hole and

its partition function. Some important results on W symmetry and black hole partition

function are shown at the same time. In section 4, we briefly review the holographic HSEE

and expand the results of sl(3) theory up to O(µ4). In section 5, we calculate perturbative

partition function of higher spin black hole, which is a good exercise for HSRE and HSEE.

In section 6, we calculate HSRE and HSEE up to O(µ4) and match HSEE to holographic

results in section 4. Discussion and conclusion are included in the last section. Some

technical details are collected in four appendices.

2 Rényi and entanglement entropy

To define entanglement entropy, we suppose the system has a density matrix ρ and then

divide the system into a subsystem A and its complement B. The total Hilbert space is

factorized into HA⊗HB. We trace out the information of B and obtain the reduced density

matrix of A,

ρA = trBρ, (2.1)

then the entanglement entropy of A is defined as the standard von Neumann entropy,

SA = −trAρA log ρA. (2.2)

A useful notion associated to the entanglement entropy is the n-th Rényi entropy S(n),

S
(n)
A =

1

1− n
log trρnA =

logZn − n logZ1

1− n
. (2.3)

By analytical continuation of n→ 1, we find the entanglement entropy,

SA = lim
n→1

S
(n)
A . (2.4)

The procedure by introducing Rényi entropy to find the entanglement entropy is called the

replica trick [1].

In two dimensions, the replica trick is applied as follows. Suppose the original CFT is

defined on a Riemann surface2 R1. We uplift the theory to n disconnected sheets and there

is a branch cut along A in each sheet. We glue the branch cut successively and find an

2Usually, this is the complex plane C or those can be conformally transformed to the complex plane.

Indeed, in this paper, we will consider the complex plane or the finite temperature version, say, a cylinder.
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n-sheeted Riemann surface Rn. The partition function in the n-sheeted Riemann surface

is denoted as Zn.

In general, the subsystem A consists of N intervals,

A = {ω|Imω = 0, Reω ∈ [u1, v1] ∪ · · · ∪ [uN , vN ]}. (2.5)

The partition function3 Zn,N could be determined by introducing primary twist(and anti-

twist) operators [2] with conformal dimension hn = h̄n = c
24(n − 1

n) at each point ui(vi),

such that Zn,N is a 2n point function of a Zn cyclic orbifold conformal field theory on R1,

Zn,N = 〈1〉Rn,N = 〈σn(u1)σ̃n(v1) · · ·σn(uN )σ̃n(vN )〉R1
. (2.6)

The expectation value of arbitrary operator O on Rn,N is

〈O(z)〉Rn,N =
〈O(z)σn(u1)σ̃n(v1) · · ·σn(uN )σ̃n(vN )〉R1

〈σn(u1)σ̃n(v1) · · ·σn(uN )σ̃n(vN )〉R1

. (2.7)

For the single interval, suppose the original CFT is defined on a complex plane C, there is

a direct conformal transformation which maps the n-sheeted Riemann surface Rn,1 to the

complex plane,

ωn =
z − u
z − v

, (2.8)

where z and ω are the coordinates defined on Rn,1 and C respectively. Hence we find an

identity due to the conformal transformation,4

〈O(z)〉Rn,1 =
〈

(ω′)hOO(ω) + · · ·
〉
C
, (2.9)

ω′ is the derivative to z, hO is the conformal dimension of O, · · · is the inhomogeneous

term in the conformal transformation for a general quasi-primary operator. Let N = 1

in (2.7) and compare it with (2.9), we can solve the three point correlator 〈Oσnσ̃n〉. For

example, for the stress tensor, the Schwarzian derivative will contribute to 〈T σnσ̃n〉 and

the result is consistent with those from Ward identity of T with two primary operator with

conformal dimension h = c
24(n − 1

n). This fact actually determines the partition function

Zn,1, hence the one-interval Rényi entropy and entanglement entropy are

S
(n)
[u,v] =

c(n+ 1)

6n
log
|u− v|
ε

, S[u,v] =
c

3
log
|u− v|
ε

. (2.10)

When the system is at a finite temperature 1
β , there is another conformal transformation

which maps the complex plane to the cylinder,

s =
β

2π
log z, (2.11)

3We add a subscript N to denote the number of intervals. Correspondingly, the n-sheeted Riemann

surface is now denoted as Rn,N .
4We just label the holomorphic part.
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where s is a cylinder coordinate with5 s = σ + iτ , σ ∈ (−∞,∞), τ ∈ [0, β). Then the

transformation of the twist operator under (2.11) leads to the one-interval Rényi entropy

and entanglement entropy at finite temperature,

S
(n)
β ([u, v]) =

c(n+ 1)

6n
log

β

πε
sinh

π|u− v|
β

, Sβ([u, v]) =
c

3
log

β

πε
sinh

π|u− v|
β

.

(2.12)

For one-interval, the essential part is the existence of a conformal map (2.8). This

conformal map is multi-valued, whose j-th solution is

ωj(z) = ω0(z) exp
2πij
n , j = 0, 1, · · · , n− 1, (2.13)

where ω0(z) = ( z−uz−v )
1
n .

Before we close this section, we emphasize that the conclusion (2.10) and (2.12) rely

on the partition function is6

Z1 = trqL0− c
24 , (2.14)

where q = e2πiτ . Once there is another continuous global symmetry, for instance, a higher

spin symmetry, the partition function (2.14) should be deformed to

Z1 = trqL0− c
24 e−µ

∫
W . (2.15)

One can expand the modified partition function according to the order of the chemical

potential, and solve the problem perturbatively. There is another version of the modified

partition function in the literature [38, 39], which is defined by inserting a zero mode of

the higher spin current to (2.14)

Z1 = trqL0− c
24 e2πiαW0 , (2.16)

where the parameter α = µτ̄ . However, the two ways of introducing the higher spin

chemical potentials in (2.15) and (2.16) are not manifestly equivalent7 [40]. (2.15) and (2.16)

may corresponds to canonical and holomorphic partition functions respectively. In this

work, we will use the deformation defined by (2.15) for our computation. Hence, one

should be careful to compare our CFT result with the holomorphic result in the gravity

side. However, we have checked that (2.15) and (2.16) are actually the same up to order

µ4, including the quantum corrections, please find more details in appendix D. Hence, at

least up to order µ4, we can trust the classical and quantum results in this work. However,

it is still an open issue to explain why we can obtain the same answer.

3 AdS3 higher spin gravity

The AdS3 nonlinear higher spin gravity [12] describes the interaction between scalars(and

fermions when promoting supersymmetry) and an infinite tower of spins with s ≥ 1. The

5Here σ is the spatial coordinate in the cylinder. One should distinguish it from the twist operator σn.
6There is always a barred sector here and below.
7We thank the anonymous referee for these helpful comments.
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matter multiplet can be truncated and one finds pure higher spin AdS3 theory. This pure

higher spin theory is described by two flat connection equations

F = F̄ = 0, (3.1)

where8 F = dA+A2 and the connection one form A is valued in some higher spin algebra,

which includes spin 2 algebra sl(2) as a subalgebra. A well-known higher spin algebra

is hs[λ] which includes each spin s ≥ 2 once. Another view is to write 3d gravity as a

difference of two Chern-Simons theory [17, 18],

Sgr = SCS [A]− SCS [Ā], (3.2)

with the Chern-Simons action SCS [A] = kcs
4π

∫
Tr(AdA+ 1

3A
3), A is valued in sl(2). kcs is

related to Newton constant by comparing (3.2) to Einstein-Hilbert action. The pure higher

spin gravity is constructed by embedding sl(2) into a larger algebra [19].

3.1 Asymptotic symmetry and W algebra

By gauge fixing and imposing the extended asymptotic AdS3 boundary condition, one

finds that the asymmetric symmetry is generated by a classical W algebra [20, 21]. Hence

the CFT2 dual theory have a W symmetry. A W algebra can be understood as adding

some higher spin primary fields to Virasoro algebra. The quantum version of the classical

W algebra can be found by imposing Jacobi identity condition. For the purpose of our

discussion, we only give the first few OPEs of quantum W∞(λ) as follows,

T (z)T (0) ∼ c/2

z4
+

2T
z2

+
∂T
z

(3.3)

T (z)W(0) ∼ 3W
z2

+
∂W
z

(3.4)

T (z)U(0) ∼ 4U
z2

+
∂U
z

(3.5)

1

N3
W(z)W(0) ∼ 1

z6
+

6
cT
z4

+
3
c∂T
z3

+

12
c U + 9

10c∂
2T + 96

c(5c+22)Λ

z2

+

6
c∂U + 1

5c∂
3T + 48

c(5c+22)∂Λ

z
(3.6)

W(z)U(0) ∼ 12(λ2 − 9)

5(λ2 − 4)

(
W
z4

+
1

3

∂W
z3

+
1

14

∂2W
z2

+
1

84

∂3W
z

+ · · ·
)

+ · · · (3.7)

U(z)U(0) ∼ c(λ2 − 9)

5(λ2 − 4)

1

z8
+ · · · (3.8)

Where T ,W and U are spin 2, spin 3 and spin 4 operators correspondingly. Λ is a composite

quasi-primary operator which is defined as Λ =: T T : − 3
10∂

2T . In the last two OPEs, we

just list the terms which are relevant to our discussions below. The normalization constant

N3 can be chosen freely. When N3 = c/3, These quantum W∞(λ) algebra is the same

8In this paper, we always omit the bar term to simplify notation.
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as [22]. In the following discussion, we will choose N3 = − 5c
6π2 . There is a free parameter

λ, which is related to the higher spin algebra hs[λ] in the bulk.

In a conformal field theory, for a primary operator Oi with dimension hi, the two,

three and four point functions are respectively

〈Oi(z1)Oj(z2)〉C = δij
NOi
z2h12

, (3.9)

〈Oi(z1)Oj(z2)Ok(z3)〉C =
COiOjOk

z
hi+hj−hk
12 z

hj+hk−hi
23 z

hk+hi−hj
31

, (3.10)

〈Oi(z1)Oj(z2)Ok(z3)Ol(z4)〉C =
( z24
z14

)hi−hj ( z13
z14

)hk−hl

z
hi+hj
12 zhk+hl34

fijkl(x), (3.11)

with zij = zi − zj . They are determined by global conformal symmetry. The constants

NOi , COiOjOk can be read from the OiOj OPE. And fijkl is a function of the cross ratio

x = z13z24
z14z23

. For the theory with W∞(λ) symmetry, we find

NW = N3, CWWW = 0 (3.12)

and

fWWWW = N 2
3

6∑
i=0

a[3, j]θj , (3.13)

where θ(z1, · · · , z4) = x+ 1
x − 2 =

z2
12z

2
34

z13z14z23z24
. The constants a[3, j] are respectively

a[3, 0] = 1, a[3, 1] =
18

c
, a[3, 2] = − 9(c− 98)

c(5c+ 22)
+

144(λ2 − 9)

(λ2 − 4)5c
,

a[3, 3] = 2 +
54

c
, a[3, 4] = 9 +

18

c
, a[3, 5] = 6, a[3, 6] = 1. (3.14)

Actually, the four point correlator of spin J is

N 2
J

z2J12 z
2J
34

2J∑
j=0

a[J, j]θj . (3.15)

This can be understood as follows. The exchange symmetry of 1 and 2 restrict the function

f(x) as a function of θ = (x+ 1
x)−2, while the maximal power of θ is determined by exam-

ining the most singular behavior as z1 → z3. Constants a[J, j] are found by matching (3.15)

with the spin J four point function from the Ward identity.

3.2 Higher spin black hole

A higher spin black hole [23] is a solution of (3.1) which has higher spin charges and higher

spin chemical potentials. Choosing the three coordinates to be x±, ρ, a spin 3 black hole

in sl(3) theory is

A = b−1(a+ d)b, (3.16)

– 7 –
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with

a = a+dx
+ + a−dx

−, b = eρL0 , (3.17)

a+ = L1 −
2π

k
LL−1 −

π

2k
WW−2, a− ∼ µ

(
a2+ −

1

3
tra2+

)
. (3.18)

Here we split the sl(3) generators into the spin 2 part(Li, i = 0,±1) and the spin 3

part(Wm,m = 0,±1,±2). Two parameters L,W are related to the spin 2 and spin 3

charges.9 The parameter µ is the spin 3 chemical potential. There is another implicit

parameter in this solution, which is the inverse temperature τ . It appears in the peri-

odic identification10

z ∼ z + 2π, z ∼ z + 2πτ. (3.19)

To ensure the smoothness of the solution, one should impose trivial holonomy condition

around the thermal circle. This condition relates the chemical potentials to the higher spin

charges, hence there are two freely parameters in the smooth solutions. A spin 3 black hole

in hs[λ] theory can be constructed analogously.

Though the usual notion of geometry is lack in this context, one can still define con-

sistent thermodynamics for higher spin black holes. So far, several methods have been

developed to study the first law thermodynamics of higher spin black holes. These includes,

1. Dimensional analysis [26]. In this method, one requires the consistency of first law

of thermodynamics and relies on the dimensional counting of the quantities in the

theory. The striking formula follows from Euler’s theorem on homogeneous functions.

One can regard this method as a higher spin generalization of Smarr’s formula [27]

for usual black holes.

2. Action variational principle [28–30]. In this method, the action is thought as a saddle

point approximation of the partition function. One adds suitable boundary terms to

the action to ensure the variation of the action to be consistent with the first law

of thermodynamics. It is a natural generalization of Gibbons-Hawking’s analysis of

black hole thermodynamics [31].

3. Conical singularity method [35]. The gravitational entropy can be calculated by the

conical singularity [36, 37] method, the authors in [35] found an extension to the

higher spin gravity.

4. Wilson line approach [32, 47]. This method can be generalized to calculate classical

holographic entanglement entropy straightforwardly, we will discuss it in more detail

in the following sections.

5. Noether charge method [33]. After suitability reformulating the Noether charge

method [34] in Chern-Simons language, the authors in [33] can define the entropy

9We should mention that in different formalism, the identification of the charges is different. But in any

case they can be determined by these two parameters.
10Here we have transfered the solution to Euclidean version and replaced x+(x−) with z(z̄).
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of higher spin black holes. It is interesting that another choice of the Killing param-

eter leads to a new entropy for a higher spin black hole. In this paper we will not

discuss this case.

A higher spin black hole corresponds to a CFT ensemble at finite temperature and with

(higher spin) chemical potentials. For a higher spin black hole with a spin 3 chemical

potential turning on, assuming the chemical potential µ is small,11 one can evaluate the

partition function and reproduce the tree level results in the gravity side12[38, 39]. Here

we give the perturbative partition function for spin 3 black hole in hs[λ] theory,

logZ =
iπc

12τ

(
1− 4

3

(
α

τ2

)2

+
400(λ2 − 7)

27(λ2 − 4)

(
α

τ2

)4

+ · · ·
)

+ quantum correction. (3.20)

Here α = −µτ . For λ = 3, it reproduces the partition function of sl(3) black hole. The

order O(c) part can be viewed as the tree level result and can be found either from gravity

side [38]13 or CFT side [38, 39]. The quantum correction begins with O(c0), it should

be there and there is no explicit result so far. In our perturbative approach, we will find

quantum corrections at the order µ4. The partition function should be [44]

Z =

〈
exp

(
− µ

∫
W
)〉

β

. (3.21)

We have used a subscript β to represent the thermal ensemble. One can expand the

exponential according to the order of µ and calculate the partition function directly,

logZ = logZ0 +
µ2

2

∫ ∫
〈WW〉β + · · · (3.22)

Z0 is the thermal partition function without higher spin deformation. We will develop this

perturbation method to the order µ4 and find the exact answer in the following section.

Here “exact” means that we can calculate the all loop higher spin thermodynamics at a

finite order µk, including the tree level and quantum corrections to the partition function.

The tree level results (proportional to central charge c) will reproduce the gravity answer.

4 Holographic HSEE

As discussed in section 2, we can define the entanglement entropy for a QFT. Due to

AdS/CFT correspondence, there should be a concept which is dual to entanglement en-

tropy in CFT. In [46], the authors introduced holographic entanglement entropy(HEE) to

resolve this problem. In short, for Einstein-Hilbert theory, the static HEE is the minimal

area of the surfaces which is homologous to the boundary region A, up to a coefficient
1

4GN
. In AdS3/CFT2, for one-interval [u, v], this is just the length of the geodesics which

11More precisely, the dimensionless quantity µ
τ
� 1.

12Some works on higher spin partition function can also be found in [41, 42].
13In the gravity side, there are canonical formalism or holomorphic formalism, the result we list above

is from holomorphic formalism. But one expects the same answer after one identifies the charges and

potentials properly in the canonical formalism [43].
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connects the points u and v. But in this case the story is more interesting. The entangle-

ment entropy is also equal to the logarithmic of a Wilson line [32, 47] which connects the

two points u and v. Since Wilson line can be defined for arbitrary higher spin theory, it is

natural to conjecture this object is the holographic HSEE. We discuss [47] in detail, since

it also provides the holomorphic result.

The one-interval holographic HSEE is conjectured to be

SA =
kcs
σ1/2

log lim
ρ0→∞

WR(P,Q)|ρP=ρQ=ρ0 , (4.1)

where P and Q are two bulk points. When ρ0 →∞, they tend to the points u and v. σ1/2
is a constant and can be determined by the theory. The Wilson line WR(P,Q) is defined

to be

WR(P,Q) = trR

[
P exp

∫ P

Q
Ā P exp

∫ Q

P
A

]
, (4.2)

where P means path ordering and R denotes the representation. The representation can

be found by matching the HEE to thermal entropy. In the holomorphic formalism, Wilson

line (4.2) is replaced by

WR(P,Q) = trR

[
P exp

∫ P

Q
Ā−dx

−P exp

∫ Q

P
A+dx

+

]
. (4.3)

For spin 3 black hole in sl(3) theory, σ1/2 = 1 and R is chosen to be the adjoint represen-

tation. The HSEE in the holomorphic formalism is

S(∆) =
1

3
c log

[
β

πε
sinh

π∆

β

]
+

4cπ2µ2

9β2(−1 + U)4

2∑
i=0

e[2, i] logi[U ]

+
32cµ4π4

27β4(−1 + U)8

4∑
i=0

e[4, i] logi[U ] +O(µ6), (4.4)

where U = e
2π∆
β and ∆ = |u−v|. We have expanded the HSEE to order µ4. The first term

on the right hand side is the usual entanglement entropy (2.12). There is no contribution

from odd power of µ. Actually this is related to the fact that the correlation function of

odd number of spin 3 operators is zero in the CFT side. For each even power of µ, the

(µβ )2k correction is of the form

2k∑
i=0

g[2k, i;U ] logi[U ], (4.5)

where g[2k, i;U ] is a rational function of U. In the limit U →∞, the terms g[2k, 1;U ] log[U ]

dominate. This is because that the HSEE should be proportional to the thermal entropy

in the large interval limit,

S(∆)→ sthermal∆, as ∆→∞. (4.6)
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We have rewritten g[2, i;U ], g[4, i;U ] in (4.4) in terms of the functions e[2, i;U ] and e[4, i;U ].

They are defined to be

e[2, 0;U ] = −(−1 + U)2(5 + 2U + 5U2),

e[2, 1;U ] = 4(−1− U + U3 + U4), (4.7)

e[2, 2;U ] = −6(U + U3),

e[4, 0;U ] = −(−1 + U)4(43− 52U + 162U2 − 52U3 + 43U4),

e[4, 1;U ] = 8(−1 + U)3(5 + 12U + 19U2 + 19U3 + 12U4 + 5U5),

e[4, 2;U ] = −4(−1 + U)2U(43 + 26U + 78U2 + 26U3 + 43U4), (4.8)

e[4, 3;U ] = 12U(−3− 8U + U2 − U4 + 8U5 + 3U6),

e[4, 4;U ] = −3U(1 + 8U + 7U2 + 16U3 + 7U4 + 8U5 + U6).

Before ending this section, we remark that the Wilson line conjecture only reproduce the

O(c) part of the HSEE. It would be an interesting issue to find out the quantum correction

in the bulk side.

5 Partition function of higher spin black hole

The first step towards the HSEE is to find the higher spin partition function as indicated

by formula (2.3). We develop a different method to calculate (3.20), including its quantum

correction. This is also a warmup exercise before we tackle the more tough problem on

HSRE and HSEE.

Let us consider a spin J chemical potential in (3.21). We expand the exponential

in (3.21), using the fact (3.9)–(3.11) and (3.15) on the correlator of spin J operator and

the conformal map (2.11), then the partition function logZ can be written out order

by order

O(µ1) : 0 (5.1)

O(µ2) :
µ2J
2
NJ
(

2π

β

)2J(β2
2π

)2

I2[J ] (5.2)

O(µ3) :
µ3J
6
CJJJ

(
2π

β

)3J(β2
2π

)3

I3[J ] (5.3)

O(µ4) :
µ4J
24
N 2
J

(
2π

β

)4J(β2
2π

)4 2J∑
j=0

a[J, j]I4[J, j]−
µ4

8
N 2
J

(
2π

β

)4J( β

2π

)4

(I2[J ])2 (5.4)

where NJ , CJJJ , a[J, j] are constants which are determined by two, three and four spin J

correlation functions. Please find the details on NJ , CJJJ , a[J, j] in subsection 3.1. The

integrals I2[J ], I3[J ], I4[J, j] are defined respectively as

I2[J ] =

∫
dt1dt2

(t1t2)
J−1

t2J12
, (5.5)

I3[J ] =

∫
dt1dt2dt3

(t1t2t3)
J−1

(t12t23t31)J
, (5.6)

I4[J, j] =

∫
dt1dt2dt3dt4

(t1t2t3t4)
J−1

t2J−2j12 t2J−2j34 tj13t
j
14t

j
23t

j
24

. (5.7)
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All the integrals are definite integrals ranging from 0 to ∞. Let us explain (5.2)–(5.7) in

more detail. The integral in (3.21) is over the whole cylinder∫
W =

∫ β

0
dτ

∫ ∞
−∞

dσW. (5.8)

The integral ofW in the spatial direction is just a conserved charge, hence we first anticipate

the integral of τ to yield a factor β. To integrate σ, we use the coordinate transformation

t = e
2π
β
σ
, hence the integral replacement rule is∫ β

0
dτ

∫ ∞
−∞

dσ =
β2

2π

∫ ∞
0

dt

t
. (5.9)

In perturbation expansion (5.2)–(5.4), the factor 2π
β is from the conformal map (2.11),

whilst the factor β2

2π is from (5.9). The two dimensional integrations in I2 and I4 become

one dimensional integral ranging from 0 to ∞.

However, there are divergences originating from the infinite length of the cylinder. We

introduce an IR cutoff by setting the length of the cylinder to be L. Define M = 2πL
β , then

the answer can be written as a function of M.

For spin 3, the three point function is zero. We need to evaluate I2[3], I4[3, j](j =

0, · · · , 6) , they are

I2[3] = −M
30
, I4[3, 0] =

M2

900
, I4[3, 1] =

7M

648
+

M3

1890
,

I4[3, 2] =
M

36
, I4[3, 3] = −M

36
+
M3

630
, I4[3, 4] =

17M

162
− M3

189
,

I4[3, 5] = −3M

8
+

2M3

105
, I4[3, 6] =

49M

36
− 22M3

315
+
M2

450
.

Including the spin 3 coefficients (3.14), we find the partition function to be

2π

L
lnZBH =

iπc

12τ

[
1− 4

3

(
α

τ2

)2

+
80(−1154 + 206λ2 + 25c(−7 + λ2)

27(22 + 5c)(−4 + λ2)

(
α

τ2

)4

+ · · ·
]
. (5.10)

The interesting fact is that the higher order divergence cancel, leaving out the linear diver-

gence, which shows the extensive property of the partition function. If we choose the large

c limit, c→∞, the O(c) partition function is exactly the same in (3.20). We can also read

out the quantum correction at O(µ4),14

logZ|µ4,quan =
i640πc

27(22 + 5c)τ

(
α

τ

)4

. (5.11)

Some remarks follow.

1. At the order µ4, the quantum correction to the higher spin black hole partition

function is independent of λ.

14This is the contribution of the holomorphic part. There should be a similar anti-homomorphic part.
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2. In the large c limit, the quantum correction contributes a finite term

128iπ

27τ

(
α

τ

)4

. (5.12)

This is the one-loop contribution. Of course, one can expand (5.11) in terms of

1/c and find the higher loop contribution. (5.11) contains all loop corrections to the

partition function of spin 3 black hole at O(µ4).

3. When we use another description (2.16), we find the same partition function of higher

spin black hole up to O(µ4).15 This is included in appendix D.

6 HSRE and HSEE

In this section we compute the HSRE and HSEE to O(µ4). From (2.3), the unknown

quantity is logZn.

6.1 O(µ2) correction

As a first step, let us consider the O(µ2) correction. It is

µ2J
2

∫
ds1ds2 〈WJ(s1)WJ(s2)〉Rn,β =

µ2J
2

∫
ds1ds2

(
2π

β

)2J

zJ1 z
J
2 〈WJ(z1)WJ(z2)〉Rn . (6.1)

Here we use a spin J chemical potential deformation. β in the subscript means that we are

in a thermal ensemble now. On the right hand side of the equality, we use the conformal

map (2.11) from cylinder to complex plane. In this map, a point si in the correlation

function is mapped to16 zi = e
2πsi
β and the end point of the interval u, v are mapped to17

l1 = e
2πu
β , l2 = e

2πv
β . To find 〈WJ(z1)WJ(z2)〉Rn , we can use the conformal map (2.8) from

Rn to complex plane. Since the theory is a Zn orbifold theory, W (z) =
∑n−1

j=0 W (zj), the

field in j-th sheet should be mapped to a value ωj(z), hence

〈WJ(z1)WJ(z2)〉Rn =
n−1∑

j1,j2=0

(
∂ωj1
∂z1

)J(∂ωj2
∂z2

)J
〈WJ(ωj1)WJ(ωj2)〉C (6.2)

The summation can be found by the residue theorem,

〈WJ(z1)WJ(z2)〉Rn =
NJ
z2J12

J−1∑
j=0

b[J, j;n]ξj , (6.3)

15We thank the anonymous referee of this paper for suggesting such kind of check.
16Note the integral variables in the right hand side are still si, the coordinates zi should be understood

as zi = z(si) = e
2πsi
β .

17Since the Rényi and entanglement entropy is a function of the distance |u − v|, we can safely set

u = 0, v = ∆. In this convention, the two points are mapped to l1 = 1, l2 = U .
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where ξ is defined to be ξ =
z2
12l

2
12

(z1−l1)(z2−l1)(z1−l2)(z2−l2) . Please find more details on this two

point correlation function on Rn in appendix A. The O(µ2) correction to logZn is

logZn|µ2 =
µ2J
2
NJ
(

2π

β

)2J(β2
2π

)2 J−1∑
j=0

b[J, j;n](U − 1)2jF [J, j], (6.4)

where the integral F [J, j] is defined to be

F [J, j] =

∫
dt1dt2

(t1t2)
J−1

t2J−2j12 (t1 − 1)j(t1 − U)j(t2 − 1)j(t2 − U)j
. (6.5)

Due to the identities

F [J, 0] = I2[J ], b[J, 0;n] = n, (6.6)

the j = 0 term is cancelled in n-th Rényi entropy (2.3), so finally

S(n)|µ2 =
µ2J
2
NJ
(

2π

β

)2J(β2
2π

)2 J−1∑
j=1

b̃[J, j;n](U − 1)2jF [J, j]. (6.7)

The constants b̃[J, j;n] = b[J,j;n]
1−n whose value can be found in appendix A. The integral

F [J, j] can be evaluated, please find appendix B for details. There the reader can find the

integral from spin 3 to spin 6. For spin 3 , the O(µ2) correction of Rényi entropy is

S
(n)
spin 3|µ2 = − 8π4µ2N3

β2(U − 1)4
×

×
[

1 + n

48n
(c[3, 1, 0] + c[3, 1, 1] log[U ] + c[3, 1, 2] log2[U ]) (6.8)

+
−4− 4n+ n2 + n3

240n3
(c[3, 2, 0] + c[3, 2, 1] log[U ] + c[3, 2, 2] log2[U ])

]
.

The definition of c[J, j, i] can be found in appendix B. Taking the limit n→ 1, the entan-

glement entropy is

Sspin 3|µ2 = − 4π4µ2N3

15β2(U − 1)4

2∑
i=0

e[2, i]Logi[U ], (6.9)

where e[2, i] is the same ones in (4.4). Once we choose normalization convention N3 = − 5c
6π2

and take into account of the contribution from anti-holomorphic part, (6.9) is equal to order

µ2 term in (4.4).

As the function b[J, j;n] can be determined by the residue theorem and F [J, j] can

always be integrated out, the µ2J correction from the spin J deformation to the Rényi and

entanglement entropy can be obtained. In appendix C, we list these entropies for other

spins, including the spin 4, 5 and 6 cases.
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6.2 O(µ3) correction

We just introduce the method briefly as the three point function of spin 3 field is vanishing.

However, for other kinds of fields or when there are many chemical potentials, the three

point function may not be zero. So they can contribute to the Rényi and entanglement

entropy. There is only one single chemical potential µJ in our example, but the reader can

extend it to the cases with arbitrary number of chemical potentials.

As in the previous subsection, we first map finite temperature n-sheeted Riemann

surface Rn,β to Rn and then map the Rn to complex plane. After carefully collecting the

conformal transformation factor and noticing the multi-value of the second transformation,

we find the correction is

logZn|µ3
J

=
CJJJµ

3
J

6

(
π

β

)3J(β2
2π

)3

× (6.10)

×
∫
dt1dt2dt3

(U − 1)3J

n3J
f [J, t1]f [J, t2]f [J, t3]S[J, J, J ;x12, x23, x31].

The function f [J, t] is defined as

f [J, t] =
tJ−1

(t− 1)J(t− U)J
(6.11)

and xij is

xij =
(ti − 1)(tj − U)

(tj − U)(tj − 1)
. (6.12)

The summation function S[a, b, c;x, y, z] is more involved, please find it in appendix A.

The µ3 correction depends only on the three point function of the operators. The general

type of integration is ∫
dtR[t] log[t]k (6.13)

with k ≤ 2 and R[t] = P [t]
Q[t] is just a rational function of t where P [t] andQ[t] are polynomials

of t. All such kind of integrals can be reduced to those discussed in appendix B. For spin

3, the three point function is just zero. At least for this special example, we need not do

the summation and integral at all. But such kind of consideration is useful to compute the

µ4 correction, which is indeed relevant even for spin 3.

6.3 O(µ4) correction

After some algebra, we find the partition function of n-sheeted Riemann surface Rn is

logZn|µ4
J

=
N 2
Jµ

4
J

24

(
π

nβ

)4J(β2
2π

)4

(U − 1)4J

×
{( 4∏

i=1

∫
dtif [J, ti]

)
×

×
2J∑
j=0

a[J, j]S[2J − 2j, j, j, j, j, 2J − 2j;x12, x13, x14, x23, x24, x34]

}
−1

2
(O(µ2J))2, (6.14)
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where O(µ2J) is (6.4). The definition of S can be found in appendix A.3. The number

of S increases linearly with spin J . We choose the smallest number, J = 3 to study. In

this case, there are 7 kinds of S. The number of independent terms is estimated of order

O(102) for j = 1, 2, · · · , 6 and O(10) for j = 0. We note that the gravity result is of order

c. While in Rényi entropy, there is O(c2) contribution superficially. We expect this O(c2)

contribution to be vanish, especially when we compute the entanglement entropy. Note

that one has to prove this fact from the CFT side in principal. However, we haven’t proved

it as the summation of the j = 6 term is extremely difficult. Therefore we just throw out

all the terms which is O(c2) before computation. Next, we look for O(c) term, which is

the combination18

S[4, 1, 1, 1, 1, 4]− 1

10
S[2, 2, 2, 2, 2, 2] + 3S[0, 3, 3, 3, 3, 0] + S[−2, 4, 4, 4, 4,−2] (6.15)

There are also quantum corrections, which are contributed from j = 2 term.

6.3.1 O(c)

As mentioned above, we need to evaluate S for j = 1, 2, 3, 4. All of the terms in S can

be written as the product of some functions like cothaij (log
√
xij) with aij being positive

integers, 1 ≤ i < j ≤ 4. Using an identity

coth[log
√
xij ] = 2yij − 1 (6.16)

with

yij =
(ti − 1)(tj − U)

(ti − tj)(1− U)
(6.17)

then (6.15) becomes a function P(yij). One can find the function P(yij) in appendix A.3.

Each term in P(yij) is

ya12y
b
i3y

c
j4 (6.18)

with a, b, c are positive integers. Since i < 3, j < 4, there are actually six type of integrals

in (6.14). Each type of integrals can be done, please find more details in appendix B.

Finally, the answer is

logZn|µ4,c = −3N 2
3 µ

4π8

64cβ4
1

(U − 1)8
1

n5
× (6.19)

×

(
3∑
j=0

4∑
i=0

gj [i;U ]n2j logi[U ] +

(
− 16384M

135
n6(U − 1)8

))

18We choose W3 theory here, the W∞(λ) can be found later.
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with

g3[0;U ] =
2048

675
× (−12(−1 + U)4(1 + 128U + 630U2 + 128U3 + U4))

g3[1;U ] =
2048

675
× 8(−1 + U)3(5 + 159U + 2500U2 + 2500U3 + 159U4 + 5U5)

g3[2;U ] = −2048

675
× 48(−1 + U)2U(8 + 277U + 762U2 + 277U3 + 8U4)

g3[3;U ] =
2048

675
× 36U(−1− 84U − 421U2 + 421U4 + 84U5 + U6)

g3[4;U ] = −2048

675
× U(1 + 224U + 2455U2 + 5296U3 + 2455U4 + 224U5 + U6)

g2[0;U ] = −2048

225
× (−1 + U)4(5− 2028U − 7234U2 − 2028U3 + 5U4)

g2[1;U ] = −2048

225
× 24(−1 + U)3U(89 + 851U + 851U2 + 89U3)

g2[2;U ] =
2048

225
× 4(−1 + U)2U(173 + 3730U + 9114U2 + 3730U3 + 173U4)

g2[3;U ] = −2048

225
× 4U(−21− 920U − 3737U2 + 3737U4 + 920U5 + 21U6)

g2[4;U ] =
2048

225
× U(3 + 296U + 2677U2 + 5328U3 + 2677U4 + 296U5 + 3U6)

g1[0;U ] = −2048

225
× (−1 + U)4(21 + 2468U + 7070U2 + 2468U3 + 21U4)

g1[1;U ] =
2048

225
× 24(−1 + U)3U(129 + 875U + 875U2 + 129U3)

g1[2;U ] = −2048

225
× 4(−1 + U)2U(293 + 4162U + 9162U2 + 4162U3 + 293U4)

g1[3;U ] =
2048

225
× 8U(−21− 554U − 1841U2 + 1841U4 + 554U5 + 21U6)

g1[4;U ] = −2048

225
× 8U(1 + 49U + 365U2 + 676U3 + 365U4 + 49U5 + U6)

g0[0;U ] =
4096

675
× 3(−1 + U)4(15 + 476U + 1178U2 + 476U3 + 15U4)

g0[1;U ] = −4096

675
× 4(−1 + U)3(5 + 519U + 2716U2 + 2716U3 + 519U4 + 5U5)

g0[2;U ] =
4096

675
× 24(−1 + U)2U(38 + 385U + 774U2 + 385U3 + 38U4)

g0[3;U ] = −4096

675
× 48U(−3− 55U − 151U2 + 151U4 + 55U5 + 3U6)

g0[4;U ] =
4096

675
× 8U(1 + 32U + 199U2 + 346U3 + 199U4 + 32U5 + U6)

There is a IR divergence term in logZn|µ4,c. It is canceled by the similar term in

n logZ1|µ4,c, so the Rényi entropy is finite at this order. We plug (6.19), (5.10) into19 (2.3)

and find the O(c) Rényi entropy to be

S(n)|µ4,c =
1

n− 1

3N 2
3 µ

4π8

64cβ4
1

(U − 1)8
1

n5
×

(
3∑
j=0

4∑
i=0

gj [i;U ]n2j logi[U ]

)
. (6.20)

19As we are dealing with CFT with W3 symmetry, we choose λ = 3 here.
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Taking the limit n→ 1, the entanglement entropy is

S|µ4,c =
16cµ4π4

27β4(−1 + U)8

4∑
i=0

e[4, i] logi[U ]. (6.21)

Note that e[4, i] are those in (4.4). After including the anti-holomorphic part, we reproduce

exactly the large c limit of HSEE (4.4)!

6.3.2 Quantum correction

As we have mentioned, there is quantum correction at O(µ4). It is from j = 2 term

in (6.14). So it is important to derive this term seperately. The method is the same as

before. We give the result of logZn|µ4,quan below.

logZn|µ4,quan = −π
8µ4N 2

3 (a[3, 2])|quan
384β4n5(U − 1)8

× (6.22)

×

[
3∑
j=0

4∑
i=0

γj [i;U ]n2j logi[U ] +

(
− 1024M

9
n6(U − 1)8

)]
,

where (a[3, 2])|quan is the quantum parts of a[3, 2],

(a[3, 2])|quan =
4608

5c(22 + 5c)
. (6.23)

That means the quantum correction to the Rényi and entanglement entropy at O(µ4) is

universal in the sense that it is independent of λ. This is similar to the quantum correction

to the thermal partition function, which is also λ independent at this order. There is also

a IR divergence term here, it is canceled by n logZ1|µ4,quan exactly. So to find the Rényi

entropy, we just delete the term related to M in (6.22) and then divide 1−n. The functions

γj [i;U ] are

γ3[0;U ] =
256

315
× 4(−1 + U)4(7− 704U − 4150U2 − 704U3 + 7U4)

γ3[1;U ] =
256

315
× 4(−1 + U)3(35 + 323U + 10730U2 + 10730U3 + 323U4 + 35U5)

γ3[2;U ] = −256

315
× 12(−1 + U)2U(37 + 2128U + 6758U2 + 2128U3 + 37U4)

γ3[3;U ] =
256

315
× 4U(−9− 1316U − 8429U2 + 8429U4 + 1316U5 + 9U6)

γ3[4;U ] = −256

315
× U(1 + 324U + 5095U2 + 11336U3 + 5095U4 + 324U5 + U6)

γ2[0;U ] = −512

45
× 2(−1 + U)4(5− 488U − 1914U2 − 488U3 + 5U4)

γ2[1;U ] = −512

45
× 48(−1 + U)3U(19 + 221U + 221U2 + 19U3)

γ2[2;U ] =
512

45
× 24(−1 + U)2U(11 + 310U + 798U2 + 310U3 + 11U4)

γ2[3;U ] = −512

45
× 4U(−7− 440U − 1979U2 + 1979U4 + 440U5 + 7U6)
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γ2[4;U ] =
512

45
× U(1 + 132U + 1359U2 + 2776U3 + 1359U4 + 132U5 + U6)

γ1[0;U ] = −256

45
× (−1 + U)4(29 + 2932U + 8910U2 + 2932U3 + 29U4)

γ1[1;U ] =
256

45
× 24(−1 + U)3U(151 + 1085U + 1085U2 + 151U3)

γ1[2;U ] = −256

45
× 12(−1 + U)2U(109 + 1706U + 3786U2 + 1706U3 + 109U4)

γ1[3;U ] =
256

45
× 4U(−43− 1352U − 4583U2 + 4583U4 + 1352U5 + 43U6)

γ1[4;U ] = −256

45
× U(7 + 468U + 3585U2 + 6712U3 + 3585U4 + 468U5 + 7U6)

γ0[0;U ] =
256

315
× (−1 + U)4(315 + 9676U + 25378U2 + 9676U3 + 315U4)

γ0[1;U ] = −256

315
× 4(−1 + U)3(35 + 3473U + 19172U2 + 19172U3 + 3473U4 + 35U5)

γ0[2;U ] =
256

315
× 24(−1 + U)2U(246 + 2695U + 5458U2 + 2695U3 + 246U4)

γ0[3;U ] = −256

315
× 16U(−53− 1155U − 3201U2 + 3201U4 + 1155U5 + 53U6)

γ0[4;U ] =
256

315
× 4U(9 + 438U + 2791U2 + 4864U3 + 2791U4 + 438U5 + 9U6)

The quantum correction to the entanglement entropy is

S|µ4,quan =
512cµ4π4

63β4(22 + 5c)(−1 + U)8

4∑
i=0

q[i;U ] logi[U ], (6.24)

where the functions q[i;U ] are respectively

q[0;U ] = −(−1 + U)4(133 + 548U + 1662U2 + 548U3 + 133U4)

q[1;U ] = 4(−1 + U)3(35 + 309U + 1168U2 + 1168U3 + 309U4 + 35U5)

q[2;U ] = −24((−1 + U)2)U(43 + 161U + 348U2 + 161U3 + 43U4)

q[3;U ] = 16U(−11− 91U − 163U2 + 163U4 + 91U5 + 11U6)

q[4;U ] = −8U(1 + 23U + 97U2 + 136U3 + 97U4 + 23U5 + U6)

6.3.3 W∞(λ) theory

We find the difference between W∞(λ) and W3 theory is just the j = 2 coefficient of

a[3, j] at O(µ4). So the Rényi and entanglement entropy of W∞(λ) theory can be read out

directly without any further computation. The difference of the Rényi entropy between

W∞(λ) and W3 theory is

S
(n)
W∞(λ) − S

(n)
W3

=
1

n− 1

π8µ4N 2
3 δ

384β4n5(U − 1)8
×

[
3∑
j=0

4∑
i=0

γj [i;U ]n2j logi[U ])

]
+O(µ6). (6.25)

Here δ is the difference of a[3, j] for arbitrary λ and λ = 3, it is

δ =
144(−9 + λ2)

5c(−4 + λ2)
. (6.26)
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Taking the limit n → 1 and choosing the normalization N3, we find the difference of the

entanglement entropy is

SW∞(λ) − SW3 =
16cµ4π4(λ2 − 9)

63β4(λ2 − 4)(−1 + U)8

4∑
i=0

q[i;U ] logi[U ] +O(µ6). (6.27)

Note the difference is of O(c), indicating the quantum correction is the same for different

λ at this order. However, it is not clear whether this property holds to higher order of µ.

7 Conclusion and discussion

In this work, we have developed a perturbation formulation to calculate HSRE and HSEE

at finite temperature and with finite chemical potential. As suggested in [48], by using

a multi-valued conformal map from Rn to complex plane, the correlation functions of

primary operators on Rn is mapped to a multi-summation of the correlation functions of

the same operators in the complex plane. After doing tedious summation and integration,

we reproduced the universality property which is first observed in [44] and proved in [48]

at the order O(µ2) up to a normalization constant. This university holds not only for

spin 3 theory but also for arbitrary kinds of higher spin deformation and arbitrary number

of higher spin deformations. The results for spin 4 to spin 6 are given in appendix C,

but we can extend the computation to any spin without difficulty. We also check the

holographic HSEE [32, 47] up to O(µ4) for W3 theory. This strongly supports the Wilson

line prescription of HSEE.

Besides the confirmation of the existing results in the literature, there are many novel

results from our study:

1. We can calculate not only HSEE but also HSRE. It would be interesting to develop

the dual holographic computation of HSRE.

2. We obtained the quantum correction to HSRE and HSEE at order O(µ4) which is

absent in the classical Wilson line prescription. We also find quantum correction to

the partition function of higher spin black holes. These provides interesting results

to probe the quantum property of higher spin gravity, for example, the fluctuation

of fields on the higher spin black hole background.

3. For the higher spin black holes other than sl(3) black hole, our method can also be

used to calculate the HSRE and HSEE from CFT side and check the Wilson line

prescription. However, as the rank of the gauge group increases, the holographic cal-

culation becomes more difficult quickly. For the black holes appeared in hs[λ] theory,

the exist prescription [32, 47] faces technical problem due to the infinite dimension of

the group. However, our CFT calculation overcome this difficulty without trouble.

In fact, in this work, we have calculated the HSRE and HSEE for W∞(λ) up to

O(µ4). In the holographic prescription, there is no explicit computation so far. We

also found that at O(µ4), the difference of HSEE(and HSRE) between W∞ and W3

theory is purely classical, without any quantum correction! It would be interesting

to check this fact at higher order of µ.
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4. There is another point we do not discuss extensively in this paper. When there

are many higher spin potentials, the O(µ3) can be non-zero. Except for a theory

dependent three point function constant CJ1J2J3 , our method indicates that the total

correction of HSRE and HSEE at this order is also universal. This is similar to µ2

correction. In conformal field theory, the structure of two and three point function of

primary operators are determined by global conformal symmetry, as shown in (3.9)

and (3.10). This means the universal property found in O(µ2) and O(µ3) actually

originates from the global conformal symmetry in the theory.

Besides the previous concrete conclusion, we can give some discussions below.

1. We can calculate the correction to arbitrary order O(µk) with finite20 k > 4. To

O(µk), we only need to know the k-point function of higher spin operators which is

determined by the Ward identity, this may be complicated but can be evaluated.

2. Our formulation does not use the usual prescription of the twist operator. Instead, we

just used a conformal map from n-sheeted Riemann surface to complex plane. Since

the twist operator method should give the same answer as here, one may read out

some interesting information about the twist operator from our result. For instance,

the most singular term of the OPE between a spin J(J > 2) operator WJ with twist

operator σn should be

WJ(z)σn(0) ∼ σ′n(0)

zJ−1
+ · · · (7.1)

where σ′n is another primary operator with dimension c
24(n − 1

n) + 1. We expect to

find a complete OPE between WJ and σn, with the results found in this work.

3. When the interval number N > 1, there is no similar conformal map. In that case,

we can not get the answer for all interval lengths. However, for short intervals,we

can use all the technics [49–52] to calculate HSRE and HSEE.

4. Our method to evaluate HSEE(and HSRE) is perturbative, it give new results which is

beyond the holographic method. However, we notice that the holographic description

provides the classical correction to all order of µ in the large c limit. In CFT side,

to get a result analogously is quite difficult due to the complicated summation and

integrals shown in the appendices. It would be interesting to develop some new

methods to evaluate the all order µ result from CFT side directly.

There are some open issues in the computation which are listed below.

1. In our computation, we throw out all the O(c2) terms. Moreover, for O(µk)k > 4

correction, there are many O(cl)(l ≥ 2) terms. It is still an open issue to prove that

we can throw them out consistently.

2. When we compute the integrals, we use the replacement rules (B.6), (B.10), (B.12)

by hand. This leads to the correct answer. A better understanding of these rules is

valuable.
20Some technical subtleties will be discussed at the end.
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A Correlation function on Rn

A.1 Two point function on Rn

In (6.3), we use the two point function in complex plane and notice the multi-valued

solution of the conformal map (2.8), then

〈WJ(z1)WJ(z2)〉Rn =
NJ

(2n)2J

(
l212

(z1 − l1)(z1 − l2)(z2 − l1)(z2 − l2)

)J
×

×
n−1∑

j1,j2=0

1

sinh2J
(
log
√
x

n + πi(j1−j2)
n

) , (A.1)

where the cross ratio of the four points z1, z2, l1, l2 is defined to be

x =
(z1 − l1)(z2 − l2)
(z1 − l2)(z2 − l1)

. (A.2)

(A.1)is universal for different theory up to a spin J normalization. This confirms the

conclusion in [48]. Let’s define a function

S[a;x] =

n−1∑
j1,j2=0

1

sinh2a
(
log
√
x

n + πi(j1−j2)
n

) . (A.3)

Since the summation depends on the difference between j1 and j2, we get a factor n by

eliminating one summation index,

S[a;x] = n

n−1∑
j=0

1

sinh2a
(
log
√
x

n + πij
n

) . (A.4)

Since a is an integer, the summation can be converted to a contour integral,

P [a;x] =

∮
C

dz

2πi

1

sinh2a( log
√
x

n + z)
coth(nz), (A.5)

in which the contour can be chosen as follows,

-

6

-

6

�

?

z

C

×z∗

×

qqq
× 0

πi(n−1)
n
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The contour C includes the singularities z = πij
n , j = 0, · · · , n − 1 and z = z∗,with

z∗ = − log
√
x

n . The height of the contour is π, since under a shift of z → z+πi the function

to be integrated is invariant when a is an integer. The total contour integral is zero so that

S[a;x] = −n2Res
z=− log

√
x

n

1

sinh2a
(
log
√
x

n + z
) coth(nz). (A.6)

We use (2.7) to organize the answer. The two point function on Rn should proportional

to a four point function with operators WJ ,WJ , σn, σ̃n. The same reason as (3.15) tells us

〈WJ(z1)WJ(z2)〉Rn =
NJ
z2J12

J−1∑
j=0

b[J, j;n]ξj . (A.7)

Note the maximal power of ξ is J−1, this is just a direct consequence of the residue (A.6).

We evaluate the residue (A.6) for the first few spins.It is enough to give the n related

constants b[J, j;n],

b[3, 0;n] = n, b[3, 1;n] =
n2 − 1

4n
, b[3, 2;n] =

n4 − 5n2 + 4

120n3

b[4, 0;n] = n, b[4, 1;n] =
−1 + n2

3n
, b[4, 2;n] =

7− 10n2 + 3n4

120n3
,

b[4, 3;n] =
−36 + 49n2 − 14n4 + n6

5040n5
, b[5, 0;n] = n, b[5, 1;n] =

5(−1 + n2)

12n
,

b[5, 2;n] =
13− 20n2 + 7n4

144n3
, b[5, 3;n] =

−164 + 273n2 − 126n4 + 17n6

12096n5
,

b[5, 4;n] =
576− 820n2 + 273n4 − 30n6 + n8

362880n7
, b[6, 0;n] = n, b[6, 1;n] =

−1 + n2

2n
,

b[6, 2;n] =
31− 50n2 + 19n4

240n3
,

b[6, 3;n] =
−695 + 1302n2 − 735n4 + 128n6

30240n5
,

b[6, 4;n]=
1916− 3475n2 + 1953n4 − 425n6 + 31n8

604800n7
,

b[6, 5;n]=
−14400 + 21076n2 − 7645n4 + 1023n6 − 55n8 + n10

39916800n9
.

The terms with j = 0 is always n, because these terms should contribute to the divergent

terms (proportional to M) and cancel with the terms coming from n logZ1. To simplify

notation for Rényi entropy, we also introduce constants b̃[J, j;n] = b[J,j;n]
1−n for 1 ≤ j ≤ J−1,

b̃[3, 1;n] =
−1− n

4n
, b̃[3, 2;n] =

4 + 4n− n2 − n3

120n3

b̃[4, 1;n] =
−1− n

3n
, b̃[4, 2;n] =

7 + 7n− 3n2 − 3n3

120n3
,

b̃[4, 3;n]= −36 + 36n− 13n2 − 13n3 + n4 + n5

5040n5

b̃[5, 1;n] = −5(1 + n)

12n
, b̃[5, 2;n] = −(1 + n)(−13 + 7n2)

144n3
,
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b̃[5, 3;n] = −(1 + n)(164− 109n2 + 17n4)

12096n5
,

b̃[5, 4;n] = −(1 + n)(−576 + 244n2 − 29n4 + n6)

362880n7

b̃[6, 1;n] = −(1 + n)

2n
, b̃[6, 2;n] = −(1 + n)(−31 + 19n2)

240n3
,

b̃[6, 3;n] = −(1 + n)(695− 607n2 + 128n4)

30240n5

b̃[6, 4;n]= −(1 + n)(−1916 + 1559n2 − 394n4 + 31n6)

604800n7
,

b̃[6, 5;n]= −(1 + n)(14400− 6676n2 + 969n4 − 54n6 + n8)

39916800n9
.

A.2 Three point function on Rn

As in the previous subsection, we map Rn to complex plane,

〈WJ1(z1)WJ2(z2)WJ3(z3)〉Rn =
CJ1J2J3

(2n)J1+J2+J3
h[z1]

J1h[z2]
J2h[z3]

J3 ×

×S[J1 + J2 − J3, J2 + J3 − J1, J3 + J1 − J2; r12, r23, r31]
(A.8)

Here

h[z] =
l12

(z − l1)(z − l2)
, rij =

(zi − l1)(zj − l2)
(zi − l2)(zj − l1)

(A.9)

and S is a multi-summation,

S[a, b, c;x, y, z] =

n−1∑
j1,j2,j3=0

sinh−a
(

log
√
x

n
+
πi(j1 − j2)

n

)
sinh−b

(
log
√
y

n
+
πi(j2 − j3)

n

)

× sinh−c
(

log
√
z

n
+
πi(j3 − j1)

n

)
(A.10)

This summation can be done similar to (A.3). In (A.8),

rijrjk = rik (A.11)

which is not the case for general x, y, z in (A.10). So for the special summation in (A.8), the

summation of j3 is contributed by the poles at
log
√
r13

n + πij1
n and

log
√
r23

n + πij2
n . This doesn’t

causing new poles. Then the j2 summation is contributed from the poles at
log
√
r12

n + πij1
n .

The summation j1 contributes a factor n as there is no pole now.

A.3 Four point function on Rn

We only consider the case with four higher spin operators being the same.

〈WJ(z1) · · ·WJ(z4)〉Rn =
N 2
J

(2n)4J
(h[z1]h[z2]h[z3]h[z4])

J × (A.12)

×
2J∑
j=0

a[J, j]S[2J − 2j, j, j, j, j, 2J − 2j; r12, r13, r14, r23, r24, r34],
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S is defined as

S[{aij}; {rij}; 1 ≤ i < j ≤ 4] =

n−1∑
j1,j2,j3,j4=0

∏
1≤k<l≤4

sinh−akl
(

log
√
rkl

n
+
πi(jk − jl)

n

)
.

(A.13)

This summation can be done using the residue theorem as before. In this work, we only

need the four summations

S[4, 1, 1, 1, 1, 4], S[2, 2, 2, 2, 2, 2], S[0, 3, 3, 3, 3, 0], S[−2, 4, 4, 4, 4,−2], (A.14)

each S are quite lengthy. For the O(c) computation, we need the combination (6.15). As

discussed in section 6.3.1, we can use the identity (6.16) to express (6.15) as P(yij)

P(yij) ≡ −
1

n4
(S[4, 1, 1, 1, 1, 4]− 1

10
S[2, 2, 2, 2, 2, 2]

+3S[0, 3, 3, 3, 3, 0] + S[−2, 4, 4, 4, 4,−2])

=

4∑
α=1

2α+2∑
a=1

n1+2αya12θα,a(yij). (A.15)

Similarly, to compute the quantum correction, we define

Q(yij) ≡ −
1

n4
S[2, 2, 2, 2, 2, 2] =

4∑
α=1

2α+2∑
a=1

n1+2αya12ψα,a(yij). (A.16)

The functions θα,a are21

θ1,1 = −8192

675
(3d3(e− h) + d(−5(−2 + e)e+ 3g − 6g2 + 2(1− 2h)h) + f(e(3− 6f)

+e2(−2 + 4f) + g(1− g + f(−5 + 3f + 3g)) + h+ (1− 3f)fh+ (−2 + 3f)h2)

+d2(e(−10 + 3e)− 2g + 4g2 + h(2 + 3h))), (A.17)

θ1,2 =
8192

675
(3d3(e− h)− d(e(−25 + 9e) + g(3 + 10g)− 3h+ 6h2) + f(e2(2 + 4f)− e(3 + 10f)

+g(−2 + 3g + 3f(f + g))− 3f2h+ 3fh2) + d2(3(−5 + e)e+ 2g + 4g2 + 3h(1 + h))), (A.18)

θ1,3 =
8192

675
(d2(5e− 4g − h) + f(−4e2 + 4e(3 + f)− g(3 + 5f + 4g) + h+ fh− 2h2)

+d(e(−21 + 4e) + 4g(3 + g) + h(−1 + 2h))), (A.19)

θ1,4 =
16384

225
(d− f)(e− g), (A.20)

θ2,1 =
1024

225
(24d5(e− h) + f(50e3(1− 2f) + 20e4(−1 + 2f) + 4e2(−1 + 2f)(12 + 5(−1 + f)f)

+e(22− 2f(37 + 15f(−3 + 2f))) + g(5 + f(−39 + f(71 + f(−65 + 24f)))− 15g

+3f(27 + f(−25 + 9f))g + 10(2 + f(−8 + 3f))g2 + 10(−1 + 3f)g3) + (4 + f(4

+f(−20 + (31− 24f)f)))h+ 3(−6 + f(4 + f(−2 + 9f)))h2 − 10(−3 + f(2 + 3f))h3

+10(−2 + 3f)h4) + d4(e(−109 + 27e) + 20g(−1 + 2g) + h(35 + 27h)) + 2d(5e(11

+e(−18− 5(−3 + e)e)) + g(11 + g(−37 + 15(3− 2g)g)) + 2h(2 + h(−9 + 5(3− 2h)h)))

21To simplify notation, we define d = y13, e = y14, f = y23, g = y24, h = y34.
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+2d2(e(−105 + e(114 + 5e(−13 + 3e))) + 2g(−1 + 2g)(12 + 5(−1 + g)g) + h(4

+h(3 + 5h(−1 + 3h)))) + d3(3e(69 + e(−41 + 10e))− 2(25g(−1 + 2g) + h(11 + 3h(2 + 5h))))),

(A.21)

θ2,2 = −1024

225
(24d5(e− h) + d4(9e(−17 + 3e) + 20g(1 + 2g) + 3h(13 + 9h))− 2d(e(−400

+e(337 + 5e(−34 + 9e))) + g(11 + g(131 + 5g(−7 + 10g))) + h(−1 + 2h)(31 + 15(−1 + h)h))

+2d2(e(−410 + 3e(83 + 5(−6 + e)e)) + 2g(12 + g(63 + 5g(−1 + 2g))) + h(31 + 15h(2 + h2)))

+d3(e(463 + 3e(−57 + 10e))− 2(5g(5 + 14g) + 3h(14 + h(3 + 5h)))) + f(20e4(1 + 2f)

−10e3(5 + 14f) + 4e2(12 + f(63 + 5f(−1 + 2f)))− 2e(11 + f(131 + 5f(−7 + 10f)))

+(−19 + f(−35 + f(55 + 3f(−7 + 8f))))g + (53 + 3f(19 + 9(−1 + f)f))g2 + 10(−5

+3(−1 + f)f)g3 + 30(1 + f)g4 + h(10− 20h+ f(10− 24f3 + 27f2(1 + h) + 6h(13

+5(−1 + h)h)− 6f(13 + 5h2))))), (A.22)

θ2,3 = −1024

225
(f(−40e4 + 40e3(4 + f)− 2e2(199 + 4f(34 + 5f)) + e(568 + 2f(291 + 20f(2 + f)))

−g(33 + 44f3 + 8f2(13 + 6g) + g(203 + 10g(−1 + 4g)) + f(109 + g(99 + 50g))) + 2(12

+f(12 + f(59 + 2f)))h− 2(29 + 3f(21 + f))h2 + 10(3 + f)h3 − 20h4) + d4(44e− 4(10g + h))

+2d3(4e(−47 + 6e) + 20g(4 + g) + h(61 + 3h)) + d(e(−2259 + 5e(211− 50e+ 8e2))

+2g(284 + g(291 + 20g(2 + g))) + 2h(−1 + 2h)(72 + 5(−1 + h)h)) + d2(e(1321

+e(−393 + 50e))− 2(g(199 + 4g(34 + 5g)) + h(72 + h(57 + 5h))))), (A.23)

θ2,4 =
1024

225
(60d3(−2e+ g + h) + f(60e3 − 2e2(267 + 68f) + 2e(742 + f(313 + 30f))− g(513

+f(377 + 120f) + 367g + 123fg + 60g2) + 10(7 + f(7 + 6f))h− 20(7 + 3f)h2) + d(e(−3033

+(793− 60e)e) + 2g(742 + g(313 + 30g)) + 130h(−1 + 2h))− d2(e(−983 + 123e)

+2g(267 + 68g) + 10h(13 + 6h))), (A.24)

θ2,5 = −8192

225
(d2(34e− 29g − 5h) + f(−29e2 + e(180 + 29f)− g(117 + 34f + 29g)

+5(1 + f)h− 10h2) + d(e(−243 + 29e) + g(180 + 29g) + 5h(−1 + 2h))), (A.25)

θ2,6 = −32768

15
(d− f)(e− g), (A.26)

θ3,1 = −256

225
(120d5(e− h) + f(−4e(−1 + 2f)(17 + 75(−1 + f)f) + 4e2(−1 + 2f)(53 + 175(−1 + f)f)

−250e3(−1 + f(5− 9f + 6f2)) + 100e4(−1 + f(5− 9f + 6f2)) + g(11 + f(−125 + f(313

+5f(−65 + 24f)))− 61g + 3f(121 + 5f(−25 + 9f))g + 50(2 + f(−8 + 3f))g2 + 50(−1 + 3f)g3)

+(6 + f(6 + f(−58 + 5(31− 24f)f)))h+ (−62 + 3f(6 + 5f(−2 + 9f)))h2 − 50(−3 + f(2

+3f))h3 + 50(−2 + 3f)h4) + 5d4(e(−109 + 27e) + 20g(−1 + g(5− 9g + 6g2)) + h(35 + 27h))

+d3(3e(331 + 5e(−41 + 10e))− 250g(−1 + g(5− 9g + 6g2))− 2h(34 + 15h(2 + 5h)))

+2d(−5e(−41 + e(83 + 25(−3 + e)e))− 2g(−1 + 2g)(17 + 75(−1 + g)g) + 2h(3

+h(−31 + 25(3− 2h)h))) + 2d2(e(−455 + e(549 + 25e(−13 + 3e))) + 2g(−1 + 2g)(53

+175(−1 + g)g) + h(6 + h(−6 + 25h(−1 + 3h))))), (A.27)

θ3,2 =
256

225
(840d5(e− h) + 5d4(3e(−313 + 63e) + 20g(1 + g(11− 3g + 6g2)) + 9h(29 + 21h))

+2d2(e(−7045 + 3e(2013 + 25e(−37 + 7e))) + 2g(53 + g(1111 + 25g(−31 + 38g))) + h(134
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+3h(−1 + 5h)(2 + 35h))) + d3(e(11063 + 15e(−351 + 70e))− 50g(5 + g(71 + 3g(−9

+14g)))− 6h(118 + 5h(18 + 35h)))− 2d(e(−4975 + e(6557 + 25e(−181 + 51e))) + 2(g(17

+25g(27 + g(−35 + 38g))) + h(−1 + 2h)(67 + 225(−1 + h)h))) + f(100e4(1

+f(11− 3f + 6f2))− 50e3(5 + f(71 + 3f(−9 + 14f)))− 4e(17 + 25f(27 + f(−35 + 38f)))

+4e2(53 + f(1111 + 25f(−31 + 38f))) + (−67 + f(−235 + f(863 + 15f(−93 + 56f))))g

+(373 + 9f(117 + 5f(−37 + 21f)))g2 + 50(−14 + 3f(−12 + 7f))g3 + 150(3 + 7f)g4

+h(−840f4 + 15f3(67 + 63h)− 6f2(93 + 5h(3 + 35h))− 50(−1 + h(5− 9h+ 6h2))

+2f(25 + 3h(73 + 25h(−6 + 7h)))))), (A.28)

θ3,3 = −256

225
(1440d5(e− h) + f(100e4(23 + 3f(7 + 2f))− 50e3(163 + f(169 + 12f(3 + f)))

+2e2(5902 + 5f(1402 + 5f(37 + 78f)))− 2e(4486 + f(6122 + 25f(−7 + 166f)))

+g(123 + 2339g + 5(f(119 + 4f(29 + 2f(7 + 36f))) + 3f(37 + 4f(1 + 27f))g

+10(−5 + 4f)(11 + 9f)g2 + 40(16 + 9f)g3))− 2(53 + f(53 + 5f(185 + 4f(−37 + 36f))))h

+2(281 + 15f(71 + f(7 + 54f)))h2 − 50(21 + f(43 + 36f))h3 + 100(7 + 18f)h4)

+20d4(e(−536 + 81e) + 5g(23 + 3g(7 + 2g)) + h(124 + 81h))− d(e(−66441 + e(58559

+850e(−35 + 8e))) + 2g(4486 + g(6122 + 25g(−7 + 166g))) + 2h(−1 + 2h)(833

+1075(−1 + h)h)) + 10d3(2e(1729− 597e+ 90e2)− 5g(163 + g(169 + 12g(3

+g)))− h(235 + 3h(43 + 60h))) + d2(5e(−12515 + e(7461 + 10e(−251 + 36e)))

+2(g(5902 + 5g(1402 + 5g(37 + 78g))) + h(833 + 5h(63 + 5h(7 + 36h)))))), (A.29)

θ3,4 =
256

225
(720d5(e− h) + 30d4(e(−307 + 27e) + 50g(3 + g) + h(53 + 27h))− d(e(−204081

+5e(23851 + 30e(−275 + 46e))) + 2g(28238 + 5g(3826 + 15g(83 + 50g))) + 10h(−1

+2h)(449 + 195(−1 + h)h)) + 30d3(e(1553− 339e+ 30e2)− 5g(13 + 2g)(11 + 3g)− h(125

+39h+ 30h2)) + f(1500e4(3 + f)− 150e3(13 + 2f)(11 + 3f) + 10e2(4614 + f(2546

+15f(39 + 10f)))− 2e(28238 + 5f(3826 + 15f(83 + 50f))) + (8781 + 5f(1601

+6f(193 + f(133 + 24f))))g + 5(1969 + 3f(371 + 6f(47 + 9f)))g2 + 150(15 + f(29

+6f))g3 + 300(17 + 3f)g4 + 10h(−131− f(131 + 3f(105 + f(−13 + 24f))) + 367h+ 3f(133

+3f(7 + 9f))h− 15(21 + f(13 + 6f))h2 + 30(7 + 3f)h3)) + 5d2(e(−25499 + 3e(3311

+10e(−71 + 6e))) + 2g(4614 + g(2546 + 15g(39 + 10g))) + 2h(449 + 3h(73 + 5h(7 + 6h))))),

(A.30)

θ3,5 =
1024

45
(12d4(11e− 10g − h) + f(−120e4 + 30e3(33 + 5f)− e2(3649 + 3f(369 + 50f))

+e(7353 + f(3163 + 30f(27 + 4f)))− 2g(1188 + f(715 + 6f(53 + 11f)) + 707g

+36f(9 + 2f)g + 15(17 + 5f)g2 + 60g3) + 2(77 + f(77 + 69f + 6f2))h− 2(169 + 9f(9

+f))h2 + 30(3 + f)h3 − 60h4) + 6d3(−242e+ 24e2 + 5g(33 + 5g) + h(25 + 3h))

+d(2e(−8433 + e(3146 + 15e(−43 + 4e))) + g(7353 + g(3163 + 30g(27 + 4g)))

+2h(−1 + 2h)(149 + 15(−1 + h)h)) + d2(10e(674 + 3e(−51 + 5e))− g(3649

+3g(369 + 50g))− 2h(149 + 3h(21 + 5h)))), (A.31)
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θ3,6 =
1024

15
(4d3(29e− 25g − 4h) + d(5e(1037 + 5e(−45 + 4e))− g(3169 + g(827 + 100g))

+64(1− 2h)h) + f(−100e3 + e2(881 + 123f)− e(3169 + f(827 + 100f)) + g(1657

+f(615 + 116f) + 583g + 121fg + 100g2)− 16(3 + f(3 + f))h+ 16(6 + f)h2)

+d2(e(−1205 + 121e) + g(881 + 123g) + 16h(4 + h))), (A.32)

θ3,7 =
4096

15
(d2(65e− 61g − 4h) + f(−61e2 + e(504 + 61f)− g(378 + 65f + 61g)

+4(1 + f)h− 8h2) + d(e(−630 + 61e) + g(504 + 61g)− 4h+ 8h2)), (A.33)

θ3,8 =
172032

5
(d− f)(e− g), (A.34)

θ4,1 =
256

675
(72d5(e− h) + f(−36e(−1 + 2f)(1 + 15(−1 + f)f) + 124e2(−1 + 2f)(1 + 15(−1 + f)f)

−150e3(−1 + 2f)(1 + 15(−1 + f)f) + 60e4(−1 + 2f)(1 + 15(−1 + f)f) + g(5 + f(−67

+3f(61 + f(−65 + 24f)))− 35g + 3f(71 + 3f(−25 + 9f))g + 30(2 + f(−8 + 3f))g2

+30(−1 + 3f)g3) + (2 + f(2− 3f(−2 + 3f)(−5 + 8f)))h+ (−34 + 3f(2 + 3f(−2 + 9f)))h2

−30(−3 + f(2 + 3f))h3 + 30(−2 + 3f)h4) + 3d4(e(−109 + 27e) + 20g(−1 + 2g)(1

+15(−1 + g)g) + h(35 + 27h))− 2d(5e(−23 + e(49 + 15(−3 + e)e)) + 18g(−1 + 2g)(1

+15(−1 + g)g) + 2h(−1 + 2h)(1 + 15(−1 + h)h)) + 2d2(e(−265 + 3e(109 + 5e(−13 + 3e)))

+62g(−1 + 2g)(1 + 15(−1 + g)g) + h(−1 + 3h)(−2 + 15h2)) + 3d3(e(197 + 3e(−41

+10e))− 50g(−1 + 2g)(1 + 15(−1 + g)g)− 6h(2 + h(2 + 5h)))), (A.35)

θ4,2 = −256

675
(2232d5(e− h) + 3d4(−4083e+ 837e2 + 20g(1 + g(47 + 15g(−13 + 14g)))

+3h(383 + 279h))− 2d(e(−10525 + 3e(5257 + 5e(−769 + 219e))) + 2(g(9 + g(1319

+15g(−341 + 350g))) + 39h(−1 + 2h)(1 + 15(−1 + h)h))) + 2d2(3e(−5485 + e(5059

+15e(−161 + 31e))) + 2g(31 + g(2609 + 15g(−691 + 722g))) + 3h(26 + 5h(−22

+3h(−5 + 31h)))) + 3d3(3e(3081 + e(−1527 + 310e))− 2(5g(5 + g(299 + 15g(−81 + 86g)))

+h(202 + 3h(78 + 155h)))) + f(60e4(1 + f(47 + 15f(−13 + 14f)))− 30e3(5 + f(299

+15f(−81 + 86f)))− 4e(9 + f(1319 + 15f(−341 + 350f))) + 4e2(31 + f(2609

+15f(−691 + 722f))) + (−37 + 3f(−95 + 3f(225 + f(−437 + 248f))))g + 3(193

+f(857 + 9f(−173 + 93f)))g2 + 30(−50 + 3f(−56 + 31f))g3 + 90(11 + 31f)g4

+3h(−744f4 + f3(897 + 837h)− 2f2(139 + 15h(3 + 31h)) + 10(1 + h(−17 + 15(3− 2h)h))

+2f(5 + h(79 + 15h(−26 + 31h)))))), (A.36)

θ4,3 =
256

675
(12960d5(e− h) + f(60e4(107 + 15f(7 + 2f + 24f2))− 30e3(751 + f(829

+60f(−3 + 49f)))− 2e(10242 + f(14938 + 15f(−1147 + 3694f))) + 2e2(15382

+3f(6466 + 5f(−911 + 4710f))) + g(69 + f(637 + 12f(−49 + 4f(−151 + 270f)))

+4709g + 9f(53 + 4f(−281 + 405f))g + 30(−631 + 5f(−77 + 108f))g2 + 120(166

+135f)g3)− 2(31 + f(31 + 3f(689 + 16f(−148 + 135f))))h+ 2(527 + 9f(271

+f(31 + 810f)))h2 − 30(93 + f(571 + 540f))h3 + 60(31 + 270f)h4) + 12d4(e(−7226

+1215e) + 5g(107 + 15g(7 + 2g + 24g2)) + h(1786 + 1215h)) + 6d3(2e(20419

+3e(−2689 + 450e))− 5g(751 + g(829 + 60g(−3 + 49g)))− h(1291 + 3h(571
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+900h)))− d(e(−331647 + 5e(73453 + 6e(−7195 + 1744e))) + 2(g(10242 + g(14938

+15g(−1147 + 3694g))) + 571h(−1 + 2h)(1 + 15(−1 + h)h))) + d2(e(−376153

+3e(88653 + 50e(−679 + 108e))) + 2(g(15382 + 3g(6466 + 5g(−911 + 4710g)))

+h(571 + 3h(−993 + 5h(31 + 540h)))))), (A.37)

θ4,4 = −256

225
(9360d5(e− h) + 30d4(e(−2671 + 351e) + 10g(51 + g(41 + 12g(3 + g)))

+h(569 + 351h)) + f(300e4(51 + f(41 + 12f(3 + f)))− 30e3(2147 + 5f(349 + 42f(7

+4f))) + 2e2(56022 + f(46478 + 75f(471 + 442f)))− 2e(51762 + f(44338 + 15f(1847

+2890f))) + (6793 + f(6497 + 30f(189 + f(409 + 312f))))g + (8377 + 3f(1691

+30f(131 + 117f)))g2 + 30(−173 + 5f(77 + 78f))g3 + 300(101 + 39f)g4

+10h(−31− f(31 + 3f(73 + f(−289 + 312f))) + 527h+ 3f(197 + 93f + 351f2)h− 15(93

+f(109 + 78f))h2 + 30(31 + 39f)h3)) + 30d3(e(9709 + 3e(−989 + 130e))− g(2147

+5g(349 + 42g(7 + 4g)))− 3h(71 + h(109 + 130h)))− d(e(−698533 + e(577243

+30e(−8927 + 1790e))) + 2(g(51762 + g(44338 + 15g(1847 + 2890g))) + 545h(−1

+2h)(1 + 15(−1 + h)h))) + d2(e(−584723 + 3e(104591 + 50e(−623 + 78e)))

+2(g(56022 + g(46478 + 75g(471 + 442g))) + 5h(109 + 3h(−223 + 5h(31 + 78h)))))), (A.38)

θ4,5 =
1024

225
(2160d5(e− h) + 30d4(e(−877 + 81e) + 20g(16 + 3g(3 + g)) + h(155 + 81h))

−d(2e(−288783 + e(176264 + 75e(−829 + 130e))) + g(148725 + g(98743 + 150g(375

+172g))) + 370h(−1 + 2h)(1 + 15(−1 + h)h)) + f(600e4(16 + 3f(3 + f))− 150e3(339

+f(203 + 6f(15 + 2f))) + e2(116293 + 75f(981 + 2f(257 + 72f)))− e(148725

+f(98743 + 150f(375 + 172f))) + 2(g(12087 + f(10054 + 15f(553 + f(355 + 72f)))

+10034g + 45f(183 + f(125 + 27f))g + 75(101 + f(77 + 18f))g2 + 150(47 + 9f)g3)

−5(19 + f(19 + 3f(5 + f(−43 + 72f))))h+ 5(323 + 9f(27 + f(19 + 27f)))h2 − 75(57

+f(37 + 18f))h3 + 150(19 + 9f)h4)) + 30d3(e(4361− 969e+ 90e2)− 5g(339

+g(203 + 6g(15 + 2g)))− h(61 + 3h(37 + 30h))) + d2(2e(−177364 + 75e(933

+e(−203 + 18e))) + g(116293 + 75g(981 + 2g(257 + 72g))) + 10h(37

+3h(−87 + 95h+ 90h2)))), (A.39)

θ4,6 = −1024

15
(48d5(e− h) + f(60e4(11 + 3f)− 100e3(49 + 3f(6 + f)) + e2(15749

+3f(2309 + 60f(11 + f)))− e(28589 + f(14183 + 20f(266 + 51f))) + g(8303

+f(5277 + 2f(1351 + 3f(125 + 8f))) + 5245g + f(2767 + 54f(15 + f))g

+20(137 + 3f(14 + f))g2 + 60(13 + f)g3)− 2(6 + f(6 + f(−10 + 3f(3 + 8f))))h

+2(102 + f(62 + 27f(2 + f)))h2 − 60(9 + f(4 + f))h3 + 60(6 + f)h4) + 6d4(3e(−61 + 3e)

+10g(11 + 3g) + h(25 + 9h))− d(e(−74453 + 25e(1305 + 4e(−82 + 9e))) + g(28589

+g(14183 + 20g(266 + 51g))) + 16h(−1 + 2h)(1 + 15(−1 + h)h)) + 2d3(e(4207− 603e

+30e2)− 50g(49 + 3g(6 + g))− 2h(16 + 3h(12 + 5h))) + d2(e(−32705 + e(8941

+60(−21 + e)e)) + g(15749 + 3g(2309 + 60g(11 + g))) + 4h(4 + h(−32 + 15h(3 + h))))),
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θ4,7 = −2048

15
(12d4(11e− 10g − h) + 6d3(12e(−29 + 2e) + 5g(55 + 9g) + h+ 3h2)

+f(−120e4 + 30e3(55 + 9f)− 2e2(4219 + 27f(42 + 5f)) + 2e(11466 + f(3967

+15f(57 + 4f)))− g(10143 + 132f3 + 24f2(53 + 6g) + g(4469 + 30g(43 + 4g))

+f(4477 + 3g(441 + 50g))) + 2(1 + f − 3f2 + 6f3)h− 2(17 + 9f(1 + f))h2 + 30(3

+f)h3 − 60h4) + d(e(−43785 + e(13037 + 30e(−69 + 4e))) + 2g(11466 + g(3967

+15g(57 + 4g))) + 2h(−1 + 2h)(1 + 15(−1 + h)h)) + d2(5e(2609− 441e

+30e2)− 2(g(4219 + 27g(42 + 5g)) + h− 9h2 + 15h3))), (A.40)

θ4,8 =
14336

5
(20d3(−e+ g)− 3d2(e(−89 + 7e) + g(73 + 9g)) + f(20e3 − 3e2(73 + 9f)

+e(993 + f(213 + 20f))− g(609 + 20f2 + 5g(33 + 4g) + 3f(55 + 7g))) + d(e(−1473

+(267− 20e)e) + g(993 + g(213 + 20g)))), (A.41)

θ4,9 =
688128

5
(d2(−e+ g)− d((−12 + e)e+ g(10 + g)) + f(e2 − e(10 + f) + g(8 + f + g))), (A.42)

θ4,10 = −1376256

5
(d− f)(e− g). (A.43)

The functions ψα,a are

ψ1,1 =
256

315
(52d3(−e+ h) + d(70(−2 + e)e+ 27g(−1 + 2g) + 43h(−1 + 2h))− d2(e(−165

+52e) + 18g(−1 + 2g) + h(43 + 52h))− f(e(27− 54f) + 18e2(−1 + 2f) + (34

+f(−95 + 52f))g + (−34 + 52f)g2 + h(9− 18h+ f(9− 52f + 52h)))), (A.44)

ψ1,2 =
256

315
(52d3(e− h) + f(18e2(1 + 2f)− 9e(3 + 10f) + g(2(−9 + g) + f(−25 + 52f

+52g))− (25 + f(25 + 52f))h+ 2(25 + 26f)h2)− d(2e(−150 + 53e) + 9g(3 + 10g)

+77h(−1 + 2h)) + d2(e(−235 + 52e) + 18g(1 + 2g) + h(77 + 52h))), (A.45)

ψ1,3 =
512

315
(d2(35e− 18g − 17h) + f(−18e2 + 18e(3 + f)− g(1 + 35f + 18g) + 17(1

+f)h− 34h2) + d(e(−107 + 18e) + 18g(3 + g) + 17h(−1 + 2h))), (A.46)

ψ1,4 =
1536

35
(d− f)(e− g), (A.47)

ψ2,1 =
64

45
(192d5(e− h) + 3d(−30(−2 + e)e+ 7(1− 2g)g + 23(1− 2h)h) + 96d4((−7 + e)e

+h(5 + h))− 4d3(e(−219 + 56e) + h(99 + 64h)) + d2(3e(−185 + 68e) + 14g(−1 + 2g)

+h(69 + 268h)) + f(e(21− 42f) + 14e2(−1 + 2f) + (30 + f(−177 + 4f(107 + 24f(−5

+2f))))g + 2(−15 + 2f(27 + 8f(−5 + 3f)))g2 + h(7− 14h

+f(7 + 76h+ 4f(−35− 32h+ 24f(3− 2f + h)))))), (A.48)

ψ2,2 =
64

45
(192d5(−e+ h) + f(−14e2(1 + 14f) + 7e(3 + 58f) + g(−18 + 66g + f(255− 276g

+4f(−85 + 24g − 24f(−3 + 2f + g)))) + (55 + f(55 + 4f(61 + 24f(−1 + 2f))))h

−2(55 + 122f + 48f3)h2)− 96d4((−9 + e)e+ h(7 + h)) + d(6e(−250 + 97e)

+7g(3 + 58g) + 491h(−1 + 2h)) + 4d3(e(−421 + 72e) + h(253 + 96h))− d2(3e(−695

+188e) + 14g(1 + 14g) + h(491 + 820h))), (A.49)

ψ2,3 =
128

45
(96d4(−e+ h) + f(14e2(13 + 12f)− 14e(33 + 37f) + g(−33 + 102g + f(8f(17

+12f + 4g) + 27(3 + 8g)))− (211 + f(211 + 8f(29 + 12f)))h+ 2(211 + 4f(33 + 8f))h2)
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−d(3e(−727 + 210e) + 14g(33 + 37g) + 571h(−1 + 2h))− 8d3(e(−73 + 4e) + h(61 + 8h))

+d2(3e(−563 + 104e) + 14g(13 + 12g) + h(571 + 456h))), (A.50)

ψ2,4 =
128

15
(60d3(−e+ h) + f(−28e2(4 + f) + 7e(61 + 24f)− g(99 + 96g + 4f(39 + 15f + 11g))

+60(2 + f(2 + f))h− 60(4 + f)h2)− 4d2(e(−106 + 11e) + 7g(4 + g) + 15h(3 + h))

+d(e(−959 + 184e) + 7g(61 + 24g) + 180h(−1 + 2h))), (A.51)

ψ2,5 =
512

15
(d2(−29e+ 14g + 15h) + f(14e2 − 7e(15 + 2f) + g(62 + 29f + 14g)− 15(1 + f)h

+30h2)− d(2e(−74 + 7e) + 7g(15 + 2g) + 15h(−1 + 2h))), (A.52)

ψ2,6 = −3584

3
(d− f)(e− g), (A.53)

ψ3,1 =
128

45
(120d5(−e+ h) + f(e2(2− 4f) + e(−3 + 6f) + g(6(−1 + g) + f(75− 48g

−4f(62− 25g + 15f(−5 + 2f + g)))) + (−1 + f(−1 + 4f(17 + 15f(−3 + 2f))))h

+2(1− 2f(7 + 5f(−4 + 3f)))h2)− 60d4((−7 + e)e+ h(5 + h)) + 3d(10(−2 + e)e

+g(−1 + 2g) + 9h(−1 + 2h)) + 4d3(e(−132 + 35e) + h(57 + 40h))− d2(3e(−95

+36e)− 2g + 4g2 + h(27 + 148h))), (A.54)

ψ3,2 =
128

45
(840d5(e− h)− d(6e(−250 + 99e) + g(3 + 250g) + 653h(−1 + 2h)) + 60d4(e(−57

+7e) + h(43 + 7h))− 4d3(e(−1312 + 285e) + h(667 + 360h)) + d2(27e(−145 + 44e)

+2g(1 + 62g) + h(653 + 1948h)) + f(2e2(1 + 62f)− e(3 + 250f) + (18 + f(−285

+4f(262 + 15f(−27 + 14f))))g + 6(−7 + 2f(24 + 5f(−9 + 7f)))g2 + h(−25 + 50h

+f(−25 + 148h− 4f(67 + 15f(−13 + 14f − 7h) + 60h))))), (A.55)

ψ3,3 =
256

45
(720d5(−e+ h) + 20d3(e(−367 + 61e) + 220h+ 86h2) + f(−2e2(121 + 180f)

+e(606 + 962f) + g(21− 72g − 5f(−3 + 78g + 4f(17− 11g + 3f(−11 + 12f + 6g))))

+(313 + f(313 + 20f(20 + 3f + 36f2)))h− 2(313 + 10f(27 + 2f(7 + 9f)))h2)

+d(3e(−1731 + 544e) + 606g + 962g2 + 1993h(−1 + 2h))− 60d4(e(−61 + 6e)

+h(49 + 6h))− d2(15e(−535 + 126e) + 242g + 360g2 + h(1993 + 3540h))), (A.56)

ψ3,4 =
256

15
(120d5(e− h) + f(20e2(22 + 13f)− e(1441 + 960f) + g(9(19 + 30g) + 10f(33

+29g + 2f(7 + 4g + 3f(4 + 2f + g))))− 20(28 + f(28 + f(25 + 6f(3 + f))))h+ 20(56

+f(32 + f(14 + 3f)))h2) + 60d4((−16 + e)e+ h(14 + h))− d(e(−5471 + 1330e)

+g(1441 + 960g) + 1740h(−1 + 2h))− 20d3(e(−147 + 16e) + h(105 + 26h))

+10d2(e(−517 + 89e) + 2(g(22 + 13g) + h(87 + 92h)))), (A.57)

ψ3,5 =
1024

3
(12d4(e− h) + f(−4e2(11 + 3f) + 2e(99 + 34f)− g(61 + 34g + f(55 + 18g

+2f(13 + 6f + 2g))) + (59 + f(59 + 2f(19 + 6f)))h− 2(59 + f(21 + 4f))h2)

+d(e(−461 + 82e) + 2g(99 + 34g) + 113h(−1 + 2h)) + d3(−82e+ 4e2 + 2h(35 + 4h))

−d2(5e(−53 + 6e) + 4g(11 + 3g) + h(113 + 66h))), (A.58)

ψ3,6 =
2048

3
(9d3(e− h) + f(e2(19 + 2f)− e(131 + 23f) + g(17(4 + g) + f(35 + 9f + 4g))

−9(3 + f(3 + f))h+ 9(6 + f)h2) + d2(−70e+ 4e2 + g(19 + 2g) + 9h(4 + h))− d(5e(−43

+5e) + g(131 + 23g) + 36h(−1 + 2h))), (A.59)
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ψ3,7 = 2048(d2(5e− 2g − 3h) + f(−2e2 + 2e(14 + f)− g(21 + 5f + 2g) + 3(1 + f)h− 6h2)

+d(e(−35 + 2e) + 2g(14 + g)− 3h+ 6h2)), (A.60)

ψ3,8 = 14336(d− f)(e− g), (A.61)

ψ4,1 =
64

315
(336d5(e− h) + d(−70(−2 + e)e+ 3g − 6g2 + 67(1− 2h)h) + f(e(3− 6f)

+e2(−2 + 4f) + g(−10(−1 + g) + f(−191 + 124g + 4f(171− 70g + 42f(−5 + 2f + g))))

+h+ f(1− 12f(15 + 14f(−3 + 2f)))h+ 2(−1 + 2f(17 + 14f(−4 + 3f)))h2)

+168d4((−7 + e)e+ h(5 + h))− 4d3(e(−367 + 98e) + h(157 + 112h)) + d2(e(−765

+292e)− 2g + 4g2 + h(67 + 404h))), (A.62)

ψ4,2 =
64

315
(−10416d5(e− h) + d(2e(−5850 + 2333e) + g(3 + 1018g) + 6013h(−1 + 2h))

−168d4(e(−249 + 31e) + h(187 + 31h)) + 4d3(e(−15473 + 3486e) + h(7619 + 4368h))

−d2(e(−41155 + 12892e) + 2g + 508g2 + h(6013 + 21740h)) + f(−2e2(1 + 254f)

+e(3 + 1018f) + (−54 + f(2305− 4f(3125 + 42f(−123 + 62f))))g + (118− 4f(577

+42f(−41 + 31f)))g2 + h(65− 130h+ f(65− 572h+ 4f(563 + 42f(−61

+62f − 31h) + 840h))))), (A.63)

ψ4,3 =
128

315
(30240d5(e− h) + f(e2(2186 + 3864f)− 2e(2733 + 4957f) + g(−59 + 366g

+7f(−91 + 564g + 8f(248− 239g + 3f(−239 + 180f + 90g))))− (2973 + f(2973

+56f(71 + 3f(−59 + 180f))))h+ 2(2973 + 56f(51 + f(31 + 135f)))h2)− d(e(−88103

+28590e) + 5466g + 9914g2 + 44133h(−1 + 2h)) + 168d4(e(−841 + 90e) + h(661 + 90h))

−56d3(e(−4462 + 841e) + h(2479 + 1142h)) + d2(7e(−30221 + 7788e) + 2186g

+3864g2 + 3h(14711 + 35616h))), (A.64)

ψ4,4 =
128

105
(−21840d5(e− h) + f(−84e2(104 + 81f) + e(27301 + 22344f) + g(−3(579 + 1036g)

+28f(−2(63 + 67g) + 5f(13 + 16g − 6f(−8 + 26f + 13g)))) + 140(98 + f(98 + f(95

+12f(9 + 13f))))h− 140(196 + f(157 + 2f(62 + 39f)))h2) + d(e(−180797 + 47572e)

+g(27301 + 22344g) + 83580h(−1 + 2h))− 840d4(e(−148 + 13e) + h(122 + 13h))

+140d3(e(−1947 + 296e) + h(1215 + 436h))− 28d2(e(−10759 + 2234e) + 3g(104 + 81g)

+5h(597 + 997h))), (A.65)

ψ4,5 =
512

15
(720d5(e− h) + d2(e(−24221 + 3900e) + 6g(231 + 100g) + 8555h+ 9780h2)

+f(6e2(231 + 100f)− 3e(1825 + 862f) + g(908 + 686g + f(881 + 540g + 20f(19 + 20g

+6f(10 + 6f + 3g))))− 5(499 + f(499 + 4f(115 + 12f(8 + 3f))))h+ 10(499

+2f(153 + 2f(38 + 9f)))h2)− d(−21022e+ 4406e2 + 3g(1825 + 862g) + 8555h(−1 + 2h))

+120d4(e(−46 + 3e) + h(40 + 3h))− 20d3(e(−803 + 92e) + h(563 + 148h))), (A.66)

ψ4,6 =
512

3
(48d5(−e+ h) + f(−4e2(151 + 38f) + e(3109 + 908f) + g(−913− 380g − 4f(173

+58g + 3f(41 + 10g + 2f(15 + 2f + g)))) + 12(101 + f(101 + f(75 + 34f + 4f2)))h

−12(202 + f(87 + 2f(12 + f)))h2)− 24d4((−27 + e)e+ h(25 + h)) + d(e(−8053 + 1300e)
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+g(3109 + 908g) + 2736h(−1 + 2h))− 4d2(2e(−785 + 92e) + g(151 + 38g)

+171h(4 + 3h)) + 12d3(3e(−79 + 6e) + h(187 + 32h))), (A.67)

ψ4,7 = −2048(12d4(e− h) + f(−2e2(29 + 4f) + e(412 + 74f)− g(183 + 44g + f(107

+18g + 4f(13 + 3f + g))) + (127 + f(127 + 4f(16 + 3f)))h− 2(127 + 34f + 4f2)h2)

+4d3((−27 + e)e+ 2h(12 + h)) + d(e(−785 + 92e) + 412g + 74g2 + 207h(−1 + 2h))

−d2(5e(−79 + 6e) + 58g + 8g2 + 23h(9 + 4h))), (A.68)

ψ4,8 = −2048(20d3(e− h) + f(2e2(17 + f)− e(373 + 38f) + g(229 + 90f + 20f2

+6(5 + f)g)− 20(2 + f)2h+ 20(8 + f)h2) + 2d2(3(−27 + e)e+ g(17 + g) + 10h(5 + h))

−d(7e(−79 + 6e) + g(373 + 38g) + 100h(−1 + 2h))), (A.69)

ψ4,9 = −8192(d2(7e− 2g − 5h) + f(−2e2 + e(45 + 2f)− g(36 + 7f + 2g) + 5(1 + f)h− 10h2)

+d(2(−27 + e)e+ g(45 + 2g) + 5h(−1 + 2h))), (A.70)

ψ4,10 = −73728(d− f)(e− g). (A.71)

A.4 Higher point function on Rn

As the m(m ≥ 5) point function in complex plane can be solved by using Ward identities

recursively. The m point function on Rn can be transformed to a set of summations. The

basic k summation function is

S[{aij}; {rij}; 1 ≤ i < j ≤ m] =

n−1∑
j1,··· ,jm=0

∏
1≤k<l≤m

sinh−akl
(

log
√
rkl

n
+
πi(jk − jl)

n

)
.

(A.72)

This function is reduced to two,three and four point case when m = 2, 3, 4. Though residue

theorem can be used to compute it, it would become tedious quickly as m increases. As

an example, for four spin 3 point function on Rn, the number of independent terms is

expected to be O(102) as it is proportional to six point functions(four spin 3 and two twist

operator). So for m > 4, to find an explicit answer is horrible. It is interesting to study

this summation in other methods, this would be important to read out the information of

µm correction to Rényi and entanglement entropy.

B Integrals

All the integrals appeared in this work can be converted to a few types of basic integral

labeled by two real number p and q,

G[p, q;x] =

∫ x

dx logp x/(x− a)q. (B.1)

In general, p and q can be real numbers. However, in this work p is always a non-negative

integer and q is an integer. If q ≤ 0, after doing integral by parts, we can find the answer.

Also, if p = 0, the answer is simple. So we only focus on positive integers p, q. Due to the

recursion relation
1

(x− a)q
=

1

q − 1

d 1
(x−a)q−1

da
, (B.2)
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it is safe to study q = 1. Actually to calculate the O(µk) correction of HSEE, we only need

the integrals p ≤ k − 1. In this work, k ≤ 4, then there are three types of integrals.

1. p = 1.

G[1, 1;x] = log[x] log[1− x/a] + PolyLog[2, x/a] (B.3)

The actual integral is from 0 → ∞, hence the limit behaviour x → 0 and x → ∞ of

G[p, q;x] is important.

lim
x→0

G[1, 1;x] = 0 (B.4)

lim
x→∞

G[1, 1;x] =
1

6

(
− π2 − 3 log

[
− 1

a

]2
+ 3 log[1/x]2

)
(B.5)

For the terms −π2 − 3 log[− 1
a ]2 in (B.5), it seems that we can set them to zero as

this will lead to correct answer. We just throw them out by hand. Therefore we find

a rule before taking the limit of x→∞,

PolyLog[2, x/a]→ − log[x] log[1− x/a] +
1

2
log[x]2 (B.6)

2. p = 2.

G[2, 1;x] = log[x]2 log[1− x/a] + 2 log[x]PolyLog[2, x/a]− 2PolyLog[3, x/a] (B.7)

and the limit behaviour is

lim
x→0

G[2, 1;x] = 0 (B.8)

lim
x→∞

G[2, 1;x] =
1

3

(
π2 log

[
− 1

a

]
+ log

[
− 1

a

]3
− log[1/x]3

)
(B.9)

The same reasoning as p = 1 case leads us to a replacement rule when x→∞,

PolyLog[3, x/a]→ 1

3
log[x]3 − 1

2
log[x]2 log[1− x/a] (B.10)

3. p = 3,

G[3, 1;x] = log[x]3 log[1− x/a] + 3 log[x]2PolyLog[2, x/a]

−6 log[x]PolyLog[3, x/a] + 6PolyLog[4, x/a] (B.11)

Then the replacement rule is

PolyLog[4, x/a]→ 1

8
log[x]4 − 1

6
log[x]3 log[1− x/a] (B.12)

The three replacement rules (B.6), (B.10)and (B.12) are all we need when we take the

x→∞ limit.
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B.1 Integral F [J, j]

Here, we list the integral of F [J, j] up to spin 6.

1. J = 3. Since j = 0 term is canceled, there are only two integrals.

(a)

F [3, 1] =
1

12(U − 1)6

2∑
i=0

c[3, 1, i] logi[U ] (B.13)

with

c[3, 1, 0] = −(−1 + U)2(1− 14U + U2)

c[3, 1, 1] = 2(−1 + 8U − 8U3 + U4)

c[3, 1, 2] = 12U2

(b)

F [3, 2] =
1

2(U − 1)8

2∑
i=0

c[3, 2, i] logi[U ] (B.14)

with

c[3, 2, 0] = (−1 + U)2(5 + 26U + 5U2)

c[3, 2, 1] = −2(−1− 16U + 16U3 + U4)

c[3, 2, 2] = 4U(2 + 5U + 2U2)

2. J = 4, j = 1, 2, 3.

(a)

F [4, 1] =
1

180(−1 + U)8

2∑
i=0

c[4, 1, i] logi[U ] (B.15)

with

c[4, 1, 0] = (−1 + U)2(2− 23U + 222U2 − 23U3 + 2U4)

c[4, 1, 1] = −6(−1 + 9U − 45U2 + 45U4 − 9U5 + U6)

c[4, 1, 2] = 180U3

(b)

F [4, 2] =
1

36(−1 + U)10

2∑
i=0

c[4, 2, i] logi[U ] (B.16)

with

c[4, 2, 0] = −(−1 + U)2(11− 248U − 966U2 − 248U3 + 11U4)

c[4, 2, 1] = 6(−1 + 18U + 207U2 − 207U4 − 18U5 + U6)

c[4, 2, 2] = 36U2(9 + 22U + 9U2)
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(c)

F [4, 3] =
1

3(−1 + U)12

2∑
i=0

c[4, 3, i] logi[U ] (B.17)

with

c[4, 3, 0] = (−1 + U)2(10 + 209U + 462U2 + 209U3 + 10U4)

c[4, 3, 1] = −3(−1− 54U − 189U2 + 189U4 + 54U5 + U6)

c[4, 3, 2] = 9U(3 + 24U + 46U2 + 24U3 + 3U4)

3. J = 5; j = 1, 2, 3, 4.

(a)

F [5, 1] =
1

5040(−1 + U)10

2∑
i=0

c[5, 1, i] logi[U ] (B.18)

with

c[5, 1, 0] = −(−1 + U)2(9− 110U + 779U2 − 6396U3+779U4−110U5+9U6)

c[5, 1, 1] = 12(−3 + 32U − 168U2 + 672U3 − 672U5 + 168U6 − 32U7 + 3U8)

c[5, 1, 2] = 5040U4

(b)

F [5, 2] =
1

360(−1 + U)12

2∑
i=0

c[5, 2, i] logi[U ] (B.19)

with

c[5, 2, 0] = (−1 + U)2(19− 314U + 4745U2 + 16300U3

+4745U4 − 314U5 + 19U6)

c[5, 2, 1] = −12(−1 + 16U − 184U2 − 1776U3 + 1776U5

+184U6 − 16U7 + U8)

c[5, 2, 2] = 720U3(8 + 19U + 8U2)

(c)

F [5, 3] =
1

72(−1 + U)14

2∑
i=0

c[5, 3, i] logi[U ] (B.20)

with

c[5, 3, 0] = −(−1 + U)2(31− 1218U − 17907U2

−37412U3 − 17907U4 − 1218U5 + 31U6)

c[5, 3, 1] = 12(−1 + 32U + 1232U2 + 3744U3

−3744U5 − 1232U6 − 32U7 + U8)

c[5, 3, 2] = 144U2(18 + 128U + 233U2 + 128U3 + 18U4)
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(d)

F [5, 4] =
1

36(−1 + U)16

2∑
i=0

c[5, 4, i] logi[U ] (B.21)

with

c[5, 4, 0] = (−1 + U)2(141 + 6874U + 42935U2

+76500U3 + 42935U4 + 6874U5 + 141U6)

c[5, 4, 1] = −12(−3− 352U − 3312U2 − 7008U3

+7008U5 + 3312U6 + 352U7 + 3U8)

c[5, 4, 2] = 144U(4 + 66U + 300U2 + 485U3 + 300U4 + 66U5 + 4U6)

4. J = 6; j = 1, 2, 3, 4, 5.

(a)

F [6, 1] =
1

25200(−1 + U)12

2∑
i=0

c[6, 1, i] logi[U ] (B.22)

with

c[6, 1, 0] = (−1 + U)2(8− 109U + 774U2 − 4343U3 + 32540U4

−4343U5 + 774U6 − 109U7 + 8U8)

c[6, 1, 1] = −20(−2 + 25U − 150U2 + 600U3 − 2100U4 + 2100U6

−600U7 + 150U8 − 25U9 + 2U10)

c[6, 1, 2] = 25200U5

(b)

F [6, 2] =
1

25200(−1 + U)14

2∑
i=0

c[6, 2, i] logi[U ] (B.23)

with

c[6, 2, 0] = −(−1 + U)2(261− 4228U + 42408U2 − 538956U3 − 1720570U4

−538956U5 + 42408U6 − 4228U7 + 261U8)

c[6, 2, 1] = 60(−3 + 50U − 475U2 + 4400U3 + 37800U4 − 37800U6

−4400U7 + 475U8 − 50U9 + 3U10)

c[6, 2, 2] = 25200U4(25 + 58U + 25U2)

(c)

F [6, 3] =
1

1800(−1 + U)16

2∑
i=0

c[6, 3, i] logi[U ] (B.24)

with

c[6, 3, 0] = (−1 + U)2(137− 3601U + 94286U2 + 1146173U3 + 2288810U4

+1146173U5 + 94286U6 − 3601U7 + 137U8)
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c[6, 3, 1] = −60(−1 + 25U − 525U2 − 16400U3 − 45100U4 + 45100U6

+16400U7 + 525U8 − 25U9 + U10)

c[6, 3, 2] = 3600U3(50 + 325U + 573U2 + 325U3 + 50U4)

(d)

F [6, 4] =
1

360(−1 + U)18

2∑
i=0

c[6, 4, i] logi[U ] (B.25)

with

c[6, 4, 0] = −(−1 + U)2(187− 11376U − 382064U2 − 2076752U3 − 3527190U4

−2076752U5 − 382064U6 − 11376U7 + 187U8)

c[6, 4, 1] = 60(−1 + 50U + 4175U2 + 32800U3 + 62800U4 − 62800U6

−32800U7 − 4175U8 − 50U9 + U10)

c[6, 4, 2] = 3600U2(10 + 140U + 575U2 + 902U3 + 575U4 + 140U5 + 10U6)

(e)

F [6, 5] =
1

180(−1 + U)20

2∑
i=0

c[6, 5, i] logi[U ] (B.26)

with

c[6, 5, 0] = (−1 + U)2(786 + 70697U + 873858U2 + 3485019U3 + 5427680U4

+3485019U5 + 873858U6 + 70697U7 + 786U8)

c[6, 5, 1] = −60(−3− 625U − 11125U2 − 56500U3 − 89250U4 + 89250U6

+56500U7 + 11125U8 + 625U9 + 3U10)

c[6, 5, 2] = 900U(5 + 140U + 1160U2 + 3820U3 + 5626U4 + 3820U5

+1160U6 + 140U7 + 5U8)

B.2 Integral in O(µ4)

The basic integral is (
4∏

k=1

∫
dtkf [J, tk]

)
ya12y

b
i3y

c
j4. (B.27)

In this work, a, b, c are positive integers and 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. It is convenient to define

a set of integrals as22

ma[t] =

∫ ∞
0

dt′f [t′]y[t, t′]a

gab[t] =

∫ ∞
0

dt′f [t′]mb[t
′]y[t, t′]a

22We omit the dependence of J to simplify notation. In the following, our calculation is done for J = 3.
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kabc[t] =

∫ ∞
0

dt′f [t′]mb[t
′]mc[t

′]y[t, t′]a

labc[g] =

∫ ∞
0

dt′f [t′]gbc[t
′]y[t, t′]a.

Then after integrating out t4, t3, t2, the terms ya12y
b
i3y

c
j4 are replaced by

ya12y
b
13y

c
14 → ma[t1]mb[t1]mc[t1]

ya12y
b
23y

c
14 → gab[t1]mc[t1]

ya12y
b
13y

c
24 → gac[t1]mb[t1]

ya12y
b
23y

c
24 → kabc[t1]

ya12y
b
13y

c
34 → ma[t1]gbc[t1]

ya12y
b
23y

c
34 → labc[t1].

So the building blocks are these defined functions. One can integrate out them term by

term, though very tedious. In our computation, we use a slightly different method. Instead

of integrating out t4, t3, t2 term by term, we just integrate out t4, t3 at first. And then we

sum over the results. After that, the integral t2, t1 are done. That means we just do the

following replacement,

yb13y
c
14 → mb[t1]mc[t1]

yb23y
c
14 → mb[t2]mc[t1]

yb13y
c
24 → mb[t1]mc[t2]

yb23y
c
24 → mb[t2]mc[t2]

yb13y
c
34 → gbc[t2]

yb23y
c
34 → gbc[t2].

The relevant mas are the ones with a = 1, 2, · · · , 5, and the relevant gbc are

b+ c ≤ 6, b ≥ 1, c ≥ 1 (B.28)

So the number of integrals we need to do is (5 + 5 + 4 + 3 + 2 + 1) =20.

Then we classify the function according to the power of n and y12. A general function

is

n2α+1ya12Fα,a(t1, t2)/n8 (B.29)

where Fα,a(t1, t2) is determined by ma, gab. α, a satisfy

1 ≤ α ≤ 4, 1 ≤ a ≤ 2α+ 2 (B.30)

So there are (4+6+8+10 =)28 different integrals of t2 in (B.29). In the work, we calculate

the O(c) part and the quantum correction, there is no divergence after we sum over the

integrals of t4, t3, t2.

After all these have been done, we need to integrate t1. We can integrate it according

to the power of n. So there are 4 integrals of t1. Since the Rényi entropy at this order
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should be finite, the integration should cancel the divergent term in the partition function

n logZ1. So the divergence should come from α = 4 terms. For α = 4, we should be

careful to seperate the divergence term. There is no other subtlety except these. In total,

we need to do (28 + 20 + 4 =)52 integrals. We just mention that the first 28 and the last 4

integrals is relatively simple, whilst the other 20 integrals of t2 is a bit complicated. As an

illustration, we just give the results of m1[t], the other functions ma[t], gab[t] are similar.

m1[t] =
1

−1 + U
(−1 + t)

(
− 1

2(−1 + t)(−1 + U)2
− U

(−1 + U)3(−t+ U)

− 1 + U − 2tU

(−1 + t)2(−1 + U)3
− t2 log[t]

(−1 + t)3(t− U)2

+
U(−t(2 + U) + U(1 + 2U)) log[U ]

(t− U)2(−1 + U)4

)
. (B.31)

C O(µ2) correction to Rényi entropy and entanglement entropy of other

spins

The formula for Rényi entropy to O(µ2J) is (6.7). One can plug the value of b̃[J, j;n] and

F [J, j] to find their explicit expression. Taking the limit n → 1, we can list the O(µ2J)

corrections of entanglement entropies from spin 4 to spin 6 below,

S|spin4,µ2
4

=
8µ24N4π

6

105β4(U − 1)6

2∑
i=0

κ[4, i]Logi[U ], (C.1)

S|spin5,µ2
5

= − 32µ25N5π
8

2835β6(U − 1)8

2∑
i=0

κ[5, i]Logi[U ], (C.2)

S|spin6,µ2
6

=
64µ26N6π

10

10395β8(U − 1)10

2∑
i=0

κ[6, i]Logi[U ] (C.3)

with

κ[4, 0] = −5(5 + 27U2 − 64U3 + 27U4 + 5U6) (C.4)

κ[4, 1] = 6(−3− 8U − 35U2 + 35U4 + 8U5 + 3U6) (C.5)

κ[4, 2] = −36U(1 + U + 6U2 + U3 + U4) (C.6)

κ[5, 0] = −(−1 + U)2(213 + 982U + 7175U2 + 8460U3

+7175U4 + 982U5 + 213U6) (C.7)

κ[5, 1] = 24(−6− 29U − 279U2 − 381U3 + 381U5 + 279U6 + 29U7 + 6U8) (C.8)

κ[5, 2] = −360U(1 + 3U + 21U2 + 20U3 + 21U4 + 3U5 + U6) (C.9)

κ[6, 0] = −(−1 + U)2(463 + 3751U + 43414U2 + 119077U3 + 195790U4

+119077U5 + 43414U6 + 3751U7 + 463U8) (C.10)

κ[6, 1] = 60(−5− 37U − 597U2 − 1972U3 − 2912U4 + 2912U6

+1972U7 + 597U8 + 37U9 + 5U10) (C.11)
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κ[6, 2] = −900U(1 + 6U + 56U2 + 126U3 + 210U46

+126U5 + 56U6 + 6U7 + U8) (C.12)

D Quantum correction of partition function of higher spin black hole

In this appendix, we use the zero mode insertion method [39] to calculate the quantum

correction of the partition function of spin 3 black hole. We will find the same result as

section 5. In their method, the partition function is supposed to be23

ZCFT (τ̂ , α) = Trq̂L0− c
24 yW0 , q̂ = e2πiτ̂ , y = e2πiα (D.1)

In the perturbation theory, the partition function is expanded by the power of α,

ZCFT (τ̂ , α) = Tr(q̂L0− c
24 ) +

(2πiα)2

2
Tr(W 2

0 q̂
L0− c

24 ) +
(2πiα)4

4!
Tr(W 4

0 q̂
L0− c

24 ) + · · · (D.2)

In the high temperature regime, after a S modular transformation, the trace is contributed

by vacuum state. There is no quantum correction at order α2, hence we proceed to the α4

correction. Borrowing the notation in [39],

Z(4) =
α4τ8

4!

(
3I1(A1 +A2) + 3I2A6 +

5

2
I3A3 +

5

3
I4A4 + I5A5

)
(D.3)

As they ignore the subleading order in 1/c, we denote their result (3.19) and (3.20) by Acli .

Schematically, we can write

Ai = Acli +Aqui (D.4)

To read out the quantum correction, we consider the effect from the composite operator

Λ =: TT : (z)− 3
10∂

2T (z). In their convention, it is easy to find

[Λm,Λn] =
c(5c+ 22)

10× 7!
m(m2 − 1)(m2 − 4)(m2 − 9)δm,−n + · · · (D.5)

The · · · term has no contribution at order α4. We define some notation,

W [0] = (2πi)−1
∑
j≥−2

ajWj

W [1] = (2πi)−2
∑
j≥−1

bjWj

W [2] = (2πi)−3
∑
j≥0

cjWj

W [3] = (2πi)−4
∑
j≥1

djWj (D.6)

23In [39], τ̂ is the parameter τ in this paper. Only in this appendix, we change our convention to match

those in [39]. The parameter τ in this appendix is τ = − 1
τ̃

.
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The values of aj , bj , cj , dj can be read from [39], appendix B.1. We use A1 as an example.

A1 = b5b−1b−1 〈W5W−1W−1W−3〉+ b4b0b−1 〈W4W0W−1W−3〉
+b4b−1b0 〈W4W−1W0W−3〉+ b3b0b0 〈W3W0W0W−3〉
+b3b−1b1 〈W3W−1W1W3〉+ b3b1b−1 〈W3W1W−1W−3〉 (D.7)

We note that in each term above, it is actually the vacuum expectation value of two

commutator, for example

〈W5W−1W−1W−3〉 = 〈[W5,W−1][W−1,W−3]〉 (D.8)

Using the nonlinear W∞(λ) algebra

[Wm,Wn] ∼ Um+n + Lm+n + δm,−n +
40N3

5c+ 22
(m− n)Λm+n, (D.9)

The first three terms in the right hand side contribute Acli , whist the last term contributes

Aqui . We find

Aqu1 = − 416cN2
3

63(22 + 5c)
= Aqu5 , A

qu
2 = − 32cN2

3

7(22 + 5c)
= Aqu3 , A

qu
4 = −Aqu6 = 3/2Aqu2 . (D.10)

Substituting the values of Ii, N3, aj , bj , cj , dj in that paper, we find the quantum correction

of partition function at α4,

logZ|µ4,quan =
640iα4cπ

27(22 + 5c)τ̂9
, (D.11)

Note (D.11) is exactly the same as (5.11).
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