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1 Introduction

One of the most ambitious programs in lattice gauge theory is to map the phase diagram

of QCD at finite temperature and density from first principles. The difficulty of this pro-

gram resides in the fact that non-zero chemical potentials generally imply complex-valued

fermionic actions. This leads to a severe sign problem that prevents the direct sampling of

the grand canonical ensemble of lattice QCD using standard Monte Carlo techniques [1].

A promising approach to tackle this sign problem is the worldline representation of

lattice QCD [2], where link variables are integrated out before the (staggered) fermions.

This contrasts with the traditional method of integrating out the Grassmann variables first.

The heuristic argument for the worldline approach is that large cancellations in the path

integral of finite density QCD are driven by gauge fluctuations, hence by integrating out

the gauge degrees of freedom first we hope that the resulting sign problem becomes milder.

A limitation of the worldline approach is that exact integration of the link variables is

only known to be possible in the strong coupling limit, β = 0. In this limit, the plaquette

terms drop from the lattice action, and group integration over the link variables reduces to

a product of solvable fermionic one-link integrals [2]. After the gauge integration at β = 0,

the remaining degrees of freedom are worldlines of free color singlets.

Subsequently, after integrating out all the Grassmann variables, and after a clever

resummation of the final result [3], the partition function of the strong coupling limit of

lattice QCD reduces to a rather simple monomer-dimer-polymer (MDP) system.

Recent simulations of this model [4–7] and of its O(β) corrections [8–10] using worm-

inspired algorithms [11–13], have allowed to map the whole phase diagram of strong cou-

pling lattice QCD, and to confirm that the sign problem in the MDP model is mild enough
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to be tractable with reweighting methods. However, going beyond the O(β) corrections in

the strong coupling expansion of the MDP model leads to rather cumbersome expressions.

In order to approach the regime of continuum physics, it would be desirable to have a

simpler MDP model of lattice QCD for arbitrary values of the lattice coupling. However,

this would require evaluating unitary group integrals in the presence of plaquette terms,

which cannot be done directly with the available mathematical tools.

As a first step in this direction, we show in this article how to integrate out exactly

all the link variables in the canonical partition function of pure lattice gauge theory with a

unitary gauge group and the Wilson plaquette action, for any value of the lattice coupling.

Our method consists of replacing the unitary group integrals over the link variables with

Gaussian integrals over a set of auxiliary variables, using suitable Hubbard-Stratonovich

transformations. Then, the Gaussian integrals over the auxiliary variables may either

be solved exactly in the simplest cases, or directly sampled with simple heatbath algo-

rithms [14].

Trading the original link variables for auxiliary Gaussian variables achieves a decou-

pling of the four links originally coupled around a plaquette. In turn, this allows the 1-link

integrals to be performed analytically, even in the presence of quark fields, for any value

of the plaquette coupling β. We discuss the promise of this approach in the conclusion of

this article.

2 n-link lattice actions

2.1 4-link action

Let us consider pure Yang-Mills theory regularized on a periodic d-dimensional Euclidean

hypercubic lattice, with the Wilson plaquette action:

S4 = β
∑

x

d∑

µ<ν

(
1− 1

N
ReTr(Ux,µν)

)
(2.1)

where Ux,µν ≡ Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν is the plaquette matrix, Ux,µ ∈ SU(N) or U(N) are

the link variables, and β is the lattice coupling. The subscript in S4 serves to indicate that

each term in the action contains a product of four link variables. We call it 4-link action.

The partition function of this theory is:

Z =

∫
[dU ] e−S4 (2.2)

where [dU ] ≡∏x,µ dUx,µ is a product of Haar measures.

2.2 Gaussian measures

Let X be a random complex-valued N × N matrix whose elements Xij are normally dis-

tributed according to a Gaussian measure of the form:

γa(X) =
N∏

i,j=1

a

2π
dXijdX

∗
ij e

−a
2
|Xij |

2
(2.3)
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where a > 0 is a constant. The distribution above is normalized, i.e.
∫
γa(X) = 1, ∀a. For

a = 1 we drop the subscript, i.e. γ(X) ≡ γ1(X).

In our notation, the composition of a Gaussian measure with a Gaussian weight gives:

γa(X) e−
b
2
Tr(X†X) = γa+b(X)

(
a

a+ b

)N2

(2.4)

A change of variables in the form of a linear shift:

X ′ =
√
a (X − Y ) (2.5)

for constant Y and a > 0, implies the relation:

γ(X ′) e
a
2
Tr(Y †Y ) = γa(X) eaReTr(X†Y ) (2.6)

Integrating the expression above, we get:

e
a
2
Tr(Y †Y ) =

∫
γa(X) eaReTr(X†Y ) (2.7)

which is an example of a Hubbard-Stratonovich (HS) transformation [15].

2.3 2-link action

The 4-link action (2.1) can be expressed as a “sum of squares”:

S4 = − β

2N

∑

x

d∑

µ<ν

Tr(W †W )x,µν + 2βNP (2.8)

where NP = 1
2d(d − 1)V is the total number of plaquettes, V being the lattice volume.

Wx,µν is the complex-valued N ×N matrix defined by:

Wx,µν =Wx,νµ = Ux,µUx+µ̂,ν + Ux,νUx+ν̂,µ (2.9)

which can be thought of as a “square root” of a plaquette.

Let Q′
x,µν (= Q′

x,νµ) be random complex-valued N ×N matrices with normal distribu-

tion γ(Q′
x,µν); they are naturally associated with the “diagonal link” connecting the lattice

sites x and x+ µ̂+ ν̂ (see figure 1).

Using the HS transformation (2.7) for a change of variables of the form:

Q′
x,µν =

√
β

N
(Qx,µν −Wx,µν) (2.10)

the Boltzmann weight of the partition function (2.2) can be expressed as a Gaussian integral

over diagonal links:

e−S4 = e−2βNP

∏

x,µ<ν

e
β
2N

Tr(W †W )x,µν

= e−2βNP

∏

x,µ<ν

∫
γ β

N

(Qx,µν) e
β
N
ReTr(Q†W )x,µν

=

∫
γ β

N

[Q] e−S2 (2.11)
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x

Qx,µν

µ

ν

.

x

Rx,µν

µ

ν

.

Rx,νµ

Figure 1. Graphical representation of the auxiliary variables necessary for the construction of the

n-link actions. The diagonal link (left) splits the original plaquette into two halves ( 1
2
-plaquettes),

while the folded links (right) split each half into two quarters ( 1
4
-plaquettes).

where γ β
N

[Q] ≡ ∏x,µ<ν γ β
N

(Qx,µν) is a product of Gaussian measures, and S2 is the 2-link

action:

S2 = β
∑

x

d∑

µ 6=ν

(
1− 1

N
ReTr

(
Q†

x,µνUx,µUx+µ̂,ν

))
(2.12)

The partition function (2.2) then becomes:

Z =

∫
γ β

N

[Q]

∫
[dU ] e−S2 (2.13)

Graphically, each term of the 2-link action represents the contribution of a “1
2 -plaquette”

composed of one diagonal link and two ordinary links.

The method of splitting plaquette terms of the Wilson action into 1
2 -plaquette terms

was originally proposed by Fabricius and Haan in the context of the twisted Eguchi-Kawai

model [16]. It was also used for lattice simulations of non-commutative U(1) gauge the-

ory [17], and later extended to certain classes of lattice gauge actions that have a polynomial

dependence on the link variables [18].

2.4 1-link action

The 2-link action (2.12) also can be expressed as a “sum of squares”:

S2 = − β

2N

∑

x

d∑

µ 6=ν

Tr(W †W )x,µν +
β

N

∑

x

d∑

µ<ν

Tr(Q†Q)x,µν + 3βNP (2.14)

where Wx,µν is now defined by:

Wx,µν = Qx,µνU
†
x+µ̂,ν + Ux,µ (2.15)

Let R′
x,µν be random complex-valued N × N matrices with normal distribution

γ(R′
x,µν). R′

x,µν ( 6= R′
x,νµ) is naturally associated with the “folded link” connecting the

lattice sites x and x+ µ̂ and contained in the (µ, ν)-plaquette (see figure 1).

Using the HS transformation (2.7) for a change of variables of the form:

R′
x,µν =

√
β

N
(Rx,µν −Wx,µν) (2.16)

– 4 –
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the Boltzmann weight of the partition function (2.13) can be expressed as a Gaussian

integral over folded links:

e−S2 = N e−
β
N
Tr[Q†Q]

∏

x,µ 6=ν

e
β
2N

Tr(W †W )x,µν

= N e−
β
N
Tr[Q†Q]

∏

x,µ 6=ν

∫
γ β

N

(Rx,µν) e
β
N
ReTr(R†W )x,µν

= N e−
β
N
Tr[Q†Q]

∫
γ β

N

[R] e−S1 (2.17)

where N = e−3βNP is a normalization factor, γ β
N

[R] ≡ ∏
x,µ 6=ν γ β

N

(Rx,µν) is a product of

Gaussian measures, Tr[Q†Q] ≡∑x,µ<ν Tr(Q
†Q)x,µν is a contribution from diagonal links,

and S1 is the 1-link action:

S1 = − β

N

∑

x,µ

ReTr
(
J†
x,µUx,µ

)
(2.18)

where Jx,µ depends on the auxiliary variables only:

Jx,µ =
d∑

ν=1
(ν 6=µ)

(
R

†
x−ν̂,νµQx−ν̂,µν +Rx,µν

)
(2.19)

Graphically, each term of the 1-link action represents the contribution of a “1
4 -

plaquette” composed of one folded link and one ordinary link (or of one folded, one diagonal

and one ordinary link, which effectively covers a different 1
4 -plaquette).

Using (2.4), we get:

γ β
N

(Qx,µν) e
− β

N
Tr(Q†Q)x,µν = γ 3β

N

(Qx,µν) 3
−N2

(2.20)

and the partition function becomes:

Z = N1

∫
γ 3β

N

[Q]γ β
N

[R]

∫
[dU ] e−S1 (2.21)

where N1 = e−(3β+N2 log 3)NP .

2.5 0-link action

The partition function (2.21) is a multiple Gaussian integral whose integrand clearly factor-

izes as a product of one-link integrals, also known as Brézin-Gross-Witten (BGW) integrals:

IG(J, J†) =

∫

G

dU eTr(JU
†+UJ†) (2.22)

where G = SU(N) or U(N) is the gauge group, and J is a complex N ×N matrix.

– 5 –



J
H
E
P
1
2
(
2
0
1
4
)
0
3
8

Exact solutions of BGW integrals for general J are known in closed form for some

unitary groups of small rank [19]. Each of those solutions provides an alternative represen-

tation, without link variables, of the partition function of the corresponding lattice gauge

theory:

Z = N0

∫
γ 3β

N

[Q]γ β
N

[R]
∏

l

IG
(
β

2N
Jl,

β

2N
J
†
l

)

= N0

∫
γ 3β

N

[Q]γ β
N

[R] e−S0 (2.23)

where l labels lattice links, S0 is the 0-link action:

S0 = −
∑

l

log IG
(
β

2N
Jl,

β

2N
J
†
l

)
(2.24)

and the normalization factor is N0 = e−(3β+N2 log 3)NP .

In the SU(2) case, for example, the one-link integral is very simple [19] and the 0-link

action reduces to:

S0 = −
∑

l

log

(
2I1(

β
2 zl)

β
2 zl

)
(2.25)

where z2l = Tr(JlJ
†
l ) + det(Jl) + det(J†

l ) is an SU(2) invariant, and I1(z) is a modified

Bessel function of the first kind.

The auxiliary variables which we have introduced transform covariantly under a local

gauge transformation, so that our expressions for the actions are naturally gauge-invariant.

Center symmetry is preserved as well.

3 Observables

For n ≥ 1, gauge-invariant observables retain their original definition in terms of link

variables. The auxiliary fields decouple from the link variables after an inverse HS trans-

formation, so the expectation values of lattice observables must not depend on them. Only

statistical fluctuations are affected, which can be seen in table 1.

However, for n = 0 the link variables are integrated out. In this case, bulk observables

(e.g. energy density, specific heat, etc.) can be obtained from derivatives of the 0-link

partition function with respect to β. For example, we may define the energy density by:

ε(β) = − 1

NP

∂

∂β
logZ = 1− 〈up〉

=
3

2βNNP

∑

x,µ<ν

〈
βTr(Q†

x,µνQx,µν)
〉
+

1

2βNNP

∑

x,µ 6=ν

〈
βTr(R†

x,µνRx,µν)
〉

− 1

NP

∑

l

〈
∂

∂β
log IG

(
β

2N
Jl,

β

2N
J
†
l

)〉
− 3N2

β
+ 3 (3.1)

where up is the plaquette operator. The first term in the r.h.s. of the expression above is the

contribution from the normalization constant, the next three terms are contributions from

– 6 –
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the Gaussian measure, and the last term is the contribution from the 0-link action (2.24).

In particular for SU(2), the contribution from the 0-link action reduces to:

∂

∂β
log IG

(
β

2N
Jl,

β

2N
J
†
l

)
=
zl

2

I2(
β
2 zl)

I1(
β
2 zl)

(3.2)

The apparently divergent contributions coming from the Gaussian measure cancel out,

and result in a finite quantity that vanishes at β = 0. However, the cancellations are difficult

to control during Monte Carlo simulations at very strong coupling. In that situation it is

natural to expect increased variance in bulk observables.

Other observables require a re-evaluation of the group integrals, to take into account

the link variables in their definition. This can also be achieved by taking derivatives

of (2.22) with respect to the sources Jl. For example, the expectation value of the Wilson

loop operator over a non-self-intersecting closed curve C is given by:

〈W (C)〉 =
N1

Z

∫
γ 3β

N

[Q]γ β
N

[R]

∫
[dU ]e−S1

1

N
Tr

(
P
∏

l∈C

Ul

)

=

〈
1

N
Tr

(
P
∏

l∈C

Ũl

)〉
(3.3)

where products are path-ordered around C, and Ũl is the “effective link” defined by:

Ũ
ij
l =

1

IG
(

β
2N Jl,

β
2N J

†
l

)
∫

G

dU e
β
N
ReTr(J†

l
U) U ij

=
2N

β

∂

∂(J†
l )

ji
log IG

(
β

2N
Jl,

β

2N
J
†
l

)
(3.4)

In particular, the effective link for SU(2) is given by:

Ũl =
1

zl

I2(
β
2 zl)

I1(
β
2 zl)

(
Jl + adj(J†

l )
)

(3.5)

where adj(J†
l ) is the adjugate matrix of J†

l .

Polyakov loops are defined in the same way. From the second line of (3.4) it is clear

that they are covariant but not invariant under the global center symmetry now applied

to Jl, which still makes them suitable order parameters for its spontaneous breaking.

4 Monte Carlo simulations

In numerical simulations of n-link actions (n ≥ 1), link and auxiliary variables are treated

on an equal footing when it comes to local updates. In practice, diagonal and folded links

are updated with a Gaussian heatbath [14], followed by the HS transformations (2.10)

and (2.16), respectively; the unitary link variables are updated with the Cabibbo-Marinari

pseudo-heatbath algorithm [20], taking into account their coupling to all surrounding links

(ordinary, diagonal and folded).

– 7 –
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U(1) SU(2) SU(3)

β 〈up〉 β 〈up〉 β 〈up〉
S4 1.00 0.58529(20) 2.25 0.586199(19) 5.70 0.549189(18)

S2 1.00 0.58526(37) 2.25 0.586240(29) 5.70 0.549218(39)

S1 1.00 0.58556(55) 2.25 0.586247(53) 5.70 0.549068(64)

S0
† 1.00 0.58555(55) 2.25 0.586252(53) 5.70 0.549139(63)

S0
‡ 1.00 0.58549(54) 2.25 0.586310(60) —

S4
§ — 2.25 0.586207(29) 5.70 0.549123(56)

Table 1. Expectation values of the plaquette operator up ≡W (�) in numerical simulations of the

various n-link actions, estimated from 105 configurations generated on a 84 lattice. For the 0-link

action we evaluate the plaquette vev using both (3.3) (†) and (3.1) (‡), whenever possible. We also

compare our results with the literature [22] (§).

We have simulated the n-link actions numerically, and compared the expectation values

of the plaquette operator for fixed values of the lattice parameters. They coincide within

statistical errors, as expected (see table 1).

For the 0-link models we used the configurations of Q,R variables generated in the

simulation of the 1-link model. This is equivalent to treating the unitary link variables as

auxiliary to the dynamics of the Gaussian variables. The expectation value of the 0-link

plaquette operator (3.3) is consistent with the expectation value calculated with the other

n-link actions (see table 1).

The accurate computation [21] of modified Bessel functions in (2.25) and their ratios

in (3.2) and (3.5), for large Jl, is essential to obtain the correct expectation value of 0-

link observables in the SU(2) gauge theory. For SU(3), the effective link is constructed

numerically with a simple Monte Carlo averaging.

5 Discussion

The one-link integrals (2.22) can ultimately be expressed as power series [19] of the com-

ponents Qij
x,µν and R

ij
x,µν . Therefore, the Gaussian integrals in the 0-link partition func-

tion (2.23) can be solved analytically, term by term, at least in principle.

The Gaussian integration would leave behind residual dynamical degrees of freedom in

the form of integer occupation numbers of certain geometrical objects on the lattice, similar

to the picture that emerges in the flux representation of the SU(3) spin model [23, 24].

Such a representation for the simplest gauge groups, U(1) and SU(2), may actually be

constructed explicitly, which we leave for future publications.

For larger N , such representations are much harder to construct. However, we do not

exclude the possibility that different HS transformations and/or lattice geometries may

lead to simpler and more symmetric expressions for Jx,µ, and consequently for the 0-link

partition function, which could circumvent such a difficulty.
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In practice, these new representations do not bring any clear advantage to the simula-

tion of pure gauge theories: extra Gaussian degrees of freedom require more computational

time and they worsen autocorrelations. However, the 1-link and 0-link cases provide suit-

able representations for the simulation of lattice gauge theories with matter fields.

In fact, it is straightforward to extend the 0-link action (2.24) to include Nf flavours

of staggered fermions, by simply generalizing the one-link integrals (2.22) with sources of

the form β
2N Jx,µ +

∑Nf

α=1K
α
x,µ, where K

αij
x,µ ∝ ψαi

x ψ̄
αj
x+µ̂ are N ×N fermionic matrices with

pure Grassmann-even components. This is possible because the staggered action is already

linear with respect to the link variables. Such an extension is the natural step towards a

worldline representation of finite density lattice QCD at finite β, on which we will elaborate

further in future publications.
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