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1 Introduction

The study of the entanglement entropy, S(A), of a region A with respect to its complement

in quantum field theory is marred by the difficulties involved in concrete calculations of

this quantity. The entanglement entropy is defined as the von-Neumann entropy

S(A) = −TrρA ln ρA , ρA = TrH
A
ρ (1.1)

of the reduced density matrix, associated with a decomposition of the Hilbert space into

degrees of freedom within the region A and its complement Ā, that is, H = HA ⊗ HA.
A common technique for obtaining S(A) proceeds via the so called replica trick, whereby
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one first computes the traces of powers of the reduced density matrix, or equivalently, the

n−th Rényi entropy

Sn(A) =
1

1− n lnTrρnA . (1.2)

One then obtains the entanglement entropy as the limit S(A) = limn→1 Sn(A), after an-

alytically continuing the Rényi entropy to non-integer n. The Rényi entropy at integer

values of n is obtained in terms of the partition function of the original theory on the n

replicated space, obtained by joining together n copies of the original space along branch

cuts on ∂A. We then have the Rényi entropy

Sn(A) =
1

1− n ln

[

Zn
(Z1)n

]

. (1.3)

There are few examples of interacting quantum field theories where Zn can be calculated

explicitly. For conformally invariant quantum field theories, such as the N = 4 SU(N)

SYM theory in d = 4, the subject of this paper, Casini, Huerta and Myers [1] have shown

that the computation of the Rényi entropies for the case of a ball-shaped region A of radius

R with boundary ∂A = S
d−2 is equivalent to the computation of the free energy on the

geometry S
1
n × H

d−1, a product of the circle S
1
n with period 2πn and hyperbolic space of

dimension d− 1. This space, in turn, can be conformally mapped to the branched sphere

S
d
n, which, however, has conical singularities. We shall describe the relevant geometries in

more detail in the next section. This circle of ideas is of particular appeal in the context of

the AdS/CFT correspondence, on the one hand because holographic duality allows the cal-

culation of the the free energy on S
1
n×H

d−1 in terms of the thermodynamics of topological

black holes [1–4], and on the other hand, because an increasing body of work suggests a

connection between entanglement entropy and the geometry of space-time [5, 6], an idea for

which AdS/CFT provides a fertile testing ground. It is thus of great interest to study the

properties of entanglement of quantum field theories with holographic duals. This paper

contains two main calculations of such quantities. Firstly, we compute the supersymmetric

Rényi entropy and construct its gravity dual in terms of a 1
4 -BPS hyperbolic black hole

solution of SU(2)×U(1) gauged supergravity in 5D. Secondly we also compute the contribu-

tion to the supersymmetric Rényi entropy due to the insertion of a Wilson loop, and again

construct its gravity dual by studying a fundamental string in the black hole geometry.

In [7], it has been demonstrated that the technique of supersymmetric localization

allows the computation of exact partition functions and expectation values of BPS opera-

tors,1 including examples when the theories are placed on non-trivial background geome-

tries [10]. Unfortunately one faces an immediate difficulty in applying localization to the

computation of Sn(A), namely that the replicated space breaks all of the supersymmetry.

It is however possible to switch on compensating background fields, such as sources for

conserved R-symmetry currents, in order to restore half of the original supersymmetry and

therefore enable a localization computation. Using this idea, [11] proposed a supersymmet-

ric generalization of Rényi entropy for three-dimensional SCFTs, which was successfully

1The development of these techniques was in fact initiated by the exact computations of BPSWilson-loop

expectation values using matrix models [8, 9].
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matched to a dual gravity calculation [12, 13] using a BPS hyperbolic black hole of N = 2

gauged supergravity in four bulk dimensions [14]. It was also noted in [11] that the parti-

tion function on the n-replicated three-sphere (also referred to as the ‘branched’ sphere), is

exactly equivalent to the partition function of the three-dimensional ellipsoid E3(ℓ, ℓ̃) with

squashing parameter
√

ℓ/ℓ̃. We can summarize these relationships as follows:

S
1
n ×H

2 ←→ S
3
n ←→ E3(ℓ, ℓ̃) . (1.4)

The branched three-sphere at the center corresponds to the naively replicated geome-

try (1.3) with conical singularities. On the one hand it can be related by a Weyl rescaling

to hyperbolic space, suggesting that the dual geometry is a topological black hole. On the

other hand, the localization result on the singular S
3
n coincides with that on the smooth

space E3
b . Thus one ends up in a situation where the holographic dual of a theory on the

ellipsoid is given by a bulk solution with hyperbolic spatial slices, namely a hyperbolic

black hole. For direct gravity duals of three-dimensional gauge theories on other kinds of

ellipsoids see [15, 16].

In this paper we apply a similar construction to the N = 4 theory in four dimensions.

We construct a supersymmetric version of the Rényi entropy in terms of the partition

function of the theory on an ellipsoid [10]. The related geometries are the same, lifted up

by one dimension, viz.

S
1
n ×H

3 ←→ S
4
n ←→ E4(ℓ, ℓ̃) . (1.5)

This then allows us to compute a supersymmetric generalization of the Rényi entropy to all

orders in N and the ’t Hooft coupling λ and to match the result in the supergravity limit

N →∞, λ→∞ with a corresponding calculation in the hyperbolic black hole background.

Here and throughout the paper we denote the super-Rényi entropy by Sn(A).
In addition to the super-Rényi entropy itself, we also obtain the result after inserting

a Wilson line in the fundamental representation, thus adding a non-trivial excitation to

the ‘vacuum’. Again, the calculation can be reduced to a supersymmetric matrix model,

whose large-N,λ behavior is captured by a semi-classical bulk calculation. We consider

a fundamental string which ends on the supersymmetric Wilson loop configuration at the

boundary. It is essential for this calculation that we understand the ten-dimensional lift of

the gravity solution, as it is not enough to simply study the five-dimensional effective theory.

This illustrates an interesting limitation of the use of lower-dimensional supergravities in

precision holography: for certain observables the full ten-dimensional geometry is necessary

in order to capture the dual field theory.

In four dimensions the universal part of the supersymmetric Rényi entropy is related2

to the Weyl anomaly [17, 18] on the four-dimensional ellipsoid, which can therefore easily

be deduced from the localization result. This should be contrasted with the situation for

the ordinary Rényi entropy [19]. On the other hand this also means that one could deter-

mine the universal part of the super-Rényi entropy without a full localization calculation.

2We thank Silviu Pufu for pointing this out to us.
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However, no such shortcut seems to exist for the Wilson-loop and the full partition function

is required in order to find its contribution to the supersymmetric Rényi entropy.

This paper is structured as follows. In section 2 we calculate the supersymmetric

Rényi entropy of N = 4 theory, as the partition function of the same theory on the

four-dimensional ellipsoid. We then take the supergravity limit of the resulting partition

function. In section 3 we compute the free energy of certain BPS black holes with hyperbolic

horizons and match the result to that obtained in section 2. We conclude in section 4 with

a discussion of our results. There are two appendices, appendix A contains the details

of the BPS analysis of the SU(2) black hole solution of N = 4+ SU(2) × U(1) gauged

supergravity, while appendix B contains details of the embedding of that solution into the

N = 2 STU model.

Note added: as we were finishing this paper, we became aware of a preprint [20], in

which the authors also obtain the super-Rényi entropy from localization, matching the

result with a supergravity dual in the N = 2 STU model. We explain the detailed relation

to our dual in appendix B.

2 Computing Sn in N = 4 SYM

In this section we describe the computation of supersymmetric Rényi entropy in the N = 4

Super Yang-Mills theory. We first describe the field theory setup and then explain the

geometries this theory is studied on, namely the branched sphere and the ellipsoid. We go

on to expand the result for the localized partition function and Wilson loop on the ellipsoid

at large N,λ for gauge group SU(N).

2.1 Field theory setup

As mentioned above, the Rényi entropy of a circular region in a d dimensional conformal

field theory can be computed by calculating the Euclidean path integral for the theory on

a branched d-sphere [1, 21].

ds2
Sdn

=
(

dθ2 + n2 cos2(θ)dτ2 + sin2(θ)dΩ2
d−2

)

. (2.1)

Here θ ∈ [0, π2 ], τ ∈ [0, 2π), and we have set the radius of the sphere to 1. This space

is smooth for n = 1, and singular otherwise. We will be interested in the case of four

dimensions, d = 4.

The N = 4 theory with gauge group G consists of a vector field, Aµ, six scalars, φI ,

and four two component Weyl fermions, ψa. Each of these fields are matrices with the

indices suppressed, and take values in the Lie algebra of G. The theory has an SU(4)

R-symmetry, under which the scalars, φI , transform in the 6 (the vector of SO(6)) and the

fermions transform in the fundamental. The action is given by:

SN=4 = −
1

g2YM

∫

d4xTr





1

2
FµνF

µν +DµφID
µφI +

1

2

∑

I,J

[φI , φJ ]2 + . . .



 . (2.2)
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We will be interested in the case of G = SU(N), for which the theory has a bonus, U(1)B,

symmetry at large N and ’t Hooft coupling [22, 23].

This theory has 16 real supercharges, excluding the superconformal charges, and it is

possible to compute the Euclidean partition function exactly on S
4 [7]. We are not only

interested in the partition function for the round sphere, but for the singular space, (2.1).

2.1.1 Branched is squashed

To understand how to evaluate the partition function on the branched four sphere, let’s

first review a similar computation in three dimensions. In [11, 12], the authors were able

to compute the Euclidean partition function for N ≥ 2 SCFTs on a smoothed version of

the branched three sphere,

ds2
S3n,ǫ

=
(

fǫ(θ)dθ
2 + n2 cos2(θ)dτ2 + sin2(θ)dφ2

)

. (2.3)

Here, fǫ is a function which gives a smooth space for any ǫ > 0 and reduces to the branched

sphere for ǫ = 0. The localization result is independent of ǫ, and thus can be thought of as

computing the partition function on the singular space. This is an example of the wider

phenomenon of deformation independence of localized partition functions, as studied for

example in [24–26].

Not only is the result independent of the smoothing parameter, ǫ, but it is also equal

to the partition function on a particular squashed three sphere [27], given by the equation

x21 + x22
ℓ2

+
x23 + x24
ℓ̃2

= 1 (2.4)

with metric,

ds2
E3(ℓ,ℓ̃)

=
(

f(θ)dθ2 + ℓ2 cos2(θ)dτ2 + ℓ̃2 sin2(θ)dφ2
)

, (2.5)

where f(θ) = ℓ2 sin2(θ) + ℓ̃2 cos2(θ). To make contact with the branched sphere we can

take ℓ = n and ℓ̃ = 1.

In summary, the partition function on the branched three sphere is equal to that on

the squashed three sphere, (2.4).

In four dimensions, the geometry is quite similar. The branched four-sphere can be

thought of as a singular fibration of the branched three-sphere over an interval. For this

reason we identify the Rényi entropy with the partition function on the squashed four

sphere, given by:3

x21 + x22
ℓ2

+
x23 + x24
ℓ̃2

+
x25
r2

= 1 , (2.6)

where we take, ℓ = n, ℓ̃ = 1, and r = 1 to recover the result on the branched sphere.

Fortunately the localization of the partition function on this space was carried out for

arbitrary N = 2 gauge theories in [10].

3During the completion of this paper [20] proved that the squashed four-sphere partition function is

equal to a smoothed four-sphere partition function, and that the result is independent of the smoothing

parameter, validating the identification.
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SU(2)V SU(2)H U(1)R

Aµ 0 0 0

φ 0 0 2

λA
1
2 0 1

qIA
1
2

1
2 0

ψI 0 1
2 -1

Table 1. R-charge assignments of the various fields on the ellipsoid. The formal conjugates have

opposite charges under U(1)R.

2.1.2 The squashed theory

In order to put the N = 4 theory on the ellipsoid, (2.6), it is necessary to turn on various

background fields. This breaks the SU(4) R-symmetry to a subgroup. To see how this

works, it is easiest to split the fields into an N = 2 vector, and a hyper multiplet.

The vector multiplet consists of a vector, a complex scalar, and two Weyl fermions,

as well as their formal conjugates: (Aµ, φ, φ̃, λA, λ̃A). Here, A = 1, 2 and λA is in the fun-

damental of an SU(2)V subgroup of the R-symmetry group. The hypermultiplet contains

the remaining four scalars, and two Weyl fermions. They can be packaged as (qIA, ψI , ψ̃I).

The index I = 1, 2 and indicates an SU(2)H subgroup of the R-symmetry group.

In order to put this theory on the squashed four-sphere, one must introduce couplings

to several background fields, (M, (Vµ)
A
B, T

µν , T̃µν). These background fields are coupled

through the interaction terms:

LVbg=Tr
(

Mφ̃φ+ 16Fµν φ̃T
µν + 64φ̃2TµνT

µν + . . .
)

+ conjugate

LHbg=Tr

(

1

8
(1+M)qIAq

IA−qIBqIC(Vµ)BA(V µ)CA+
i

2
qIAD

µqIB(V
AB
µ +V BA

µ ) . . .

)

.
(2.7)

The ellipses indicate fermionic couplings. The round sphere corresponds to M = −1/3,
with vanishing T, T̃ , V . These couplings preserve an SU(2)V ×SU(2)H×U(1)R R-symmetry,

where the complex fields (φ, λA, ψI) have U(1)R charges (2, 1,−1), the formal conjugates

have the opposite charge, and the remaining fields are neutral.

On the squashed sphere, however, T , T̃ , and V are non-vanishing, and thus only the

SU(2)H remains,

SU(4)R −→ SU(2)H
enhanced−−−−−→ SU(2)H ×U(1)B . (2.8)

This unbroken SU(2)H , enhanced by the bonus U(1)B, will be useful in identifying the bulk

dual in section 3. The charge assignments are summarized in table 1.

The authors of [10] were able to use such background couplings for arbitrary N = 2

gauge theories and compute the localized partition function.4 For the particular case of

4For a pedagogical review of these techniques, albeit with a focus on three dimensions, see [28].

– 6 –



J
H
E
P
1
2
(
2
0
1
4
)
0
0
1

N = 4 SYM, the partition function is given by:

Z =

∫

dae
− 8π2

g2
Y M

Tr(a2)
|Zinst|2

∏

α∈∆+

Υ(ia · α)Υ(−ia · α)
Υ(ia · α+ Q

2 )
2

. (2.9)

Here, α runs over the positive roots of the gauge group, the matrix a = aihi parame-

terizes the Cartan of G, |Zinst|2 is the Nekrasov partition function, [29], Q =
√
n+ 1/

√
n,

and we have introduced the function

Υ(x) =
∏

p,q≥0

(

p
√
n+

q√
n
+Q− x

)(

p
√
n+

q√
n
+ x

)

. (2.10)

In fact, The ratio in (2.9) is divergent in a way that cannot be removed be the addition

of a local counter term. In the free energy, F = −T logZ, this divergence shows up as a

logarithmic divergence,

F ⊃ an log(R/δ) , an =
Q2

4
a1 , (2.11)

where an is a universal constant related to the Weyl anomaly and the explicit expression

for an applies to the ellipsoid. We will be interested in the case G = SU(N) for which (2.12)

becomes:

Z =

∫ N−1
∏

i=1

dai=1e
− 8π2N

λ

∑N
i=1 a

2
i |Zinst|2

∏

i<j

Υ(iaij)Υ(iaji)

Υ(iaij +
Q
2 )

2
, (2.12)

where aij = ai − aj and we have introduced aN = −∑N−1
i=1 ai.

2.2 The partition function at large N

We will follow the procedure outlined in [30–32] to obtain the large N , λ limit of the

localization result of SU(N)N =4 SYM on the ellipsoid obtained in section 2.1. In the large

N limit, the integral (2.12) can be evaluated exactly in the saddle point approximation, and

the contributions of Zinst are exponentially suppressed, as in the N = 2∗ theory [30–33].

The saddle-point equations5 are

∑

j 6=i

(

K (aij)−K (aji)− 2K

(

aij − i
Q

2

))

=
16π2N

λ
ai, (2.13)

where

K(x) = i
Υ′(ix)
Υ(ix)

= i
∞
∑

p,q=0

Q− 2ix
(√

np+ q√
n
+Q− ix

)(√
np+ q√

n
+ ix

) . (2.14)

5There are subleading in N contributions that arise from the SU(N) constraint, which we suppress here.
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In the large N continuum limit, the saddle-point equation becomes an integral equation

for the eigenvalue density ρ(y):

−
∫ µ

−µ
ρ(y)

(

K (x− y)−K (y − x)− 2K

(

x− y − iQ
2

))

dy =
16π2

λ
x, (2.15)

where −
∫ µ
−µ denotes the principal-value integral. As in [30–32], we assume that the symmetry

breaking scale is much larger than the deformation, so that µ≫ Q. We will see below that

this holds for large λ. In this case, the integral will be dominated by the leading behavior

in 1
x . Expanding the integrand about x =∞ yields for the integral equation

−
∫ µ

−µ
ρ(y)

Q2

4 (x− y)dy =
8π2

λ
x. (2.16)

The solution is given by the Wigner semi-circle distribution,

ρ(x) =
2

πµ2

√

µ2 − x2, (2.17)

where

µ =

√
λQ

4π
. (2.18)

We see that the assumption that µ ≫ Q is justified for large λ. With this eigenvalue

distribution, we can compute the value of the partition function, yielding

F = −N2Q
2

4
log (R/δ)− N2

8
Q2 lnλ+ . . . , (2.19)

where we have restored the divergence proportional to the universal constant an and the

neglected terms are subleading in λ. Though the second term in (2.19) is scheme-dependent,

we can compare to a gravity calculation, by choosing on both sides the particular scheme

advocated in [30–32]. This allows us to precisely match both the universal part and the

leading λ dependence below. Finally, the large N,λ scaling of the free energy is

Fn =
(n+ 1)2

4n
F1. (2.20)

2.3 Wilson loop

The localization procedure goes through also in the presence of a BPSWilson loop operator.

The localized ϕ Wilson loop, in the nomenclature of [10], is given by an insertion of

WR = TrR exp
(

−2π√na
)

(2.21)

in the localized partition function for a given representation R. For N = 4 SYM on the

ellipsoid at large N , λ, we then have, for a Wilson loop in the fundamental representation,

〈W 〉 = −
∫ µ

−µ
dxρ(x)e−2π

√
nx. (2.22)
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The integral evaluates to

〈W 〉 =
√

2

π

(

λn
Q2

4

)− 3

4

e
√
λnQ

2 + . . . , (2.23)

yielding

lnWn =
n+ 1

2

√
λ (2.24)

and the corresponding scaling relation,

lnWn =
(n+ 1)

2
lnW1. (2.25)

2.4 Supersymmetric Rényi entropies

Substituting into the definition of the supersymmetric Rényi entropy given in section 1, we

find, in the absence of the Wilson loop, from the result for Fn given in subsection 2.2.1,

Sn = −3n+ 1

4n
F1. (2.26)

In the presence of the Wilson loop, the additional contribution to the supersymmetric

Rényi entropy, from the result for lnWn given in subsection 2.2.2, is

S(W )
n =

1

2
lnW1, (2.27)

independently of n. All the results obtained in this section for the n-scaling of quantities

are the same as those of the analogous quantities in three dimensions found in [11, 12]. We

can compare this result with [34]. Using the formula obtained there, our logW1 gives for

the entanglement entropy of the Wilson loop

SEE =

(

1− 4

3
λ∂λ

)

logW1

=
1

3

√
λ (2.28)

in agreement with the expression obtained in [34], and previously in [35], using results of [36]

(see also [37]). If we calculate the n→ 1 limit of our super-Rényi entropy, however, we find

S
(W )
1 =

1

2

√
λ. (2.29)

These results are not guaranteed to coincide, as the limits involve the first derivative away

from n = 1 of the Wilson loop action. In the entanglement entropy calculation, this deriva-

tive is taken with the charge fixed to be zero, where as in our supersymmetric background,

a non-trivial charge is switched on.

3 The gravity dual of Sn

In section 2.1.2 we identified the unbroken global symmetries of the original SU(4) ∼= SO(6)

R-symmetry of N = 4 SYM theory on the ellipsoid to be SU(2)H , which gets enhanced

by the bonus symmetry to SU(2)H × U(1)B. We now want to find a bulk dual which

holographically encodes this pattern. It is well-known that boundary global symmetries

are represented by local symmetries in the bulk. We will now describe how this works in

detail in our case.
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3.1 SU(2) × U(1) gauged supergravity

Given the global symmetries on the boundary, (2.8), the natural candidate dual is the

N = 4 supersymmetric gauged supergravity theory with SU(2) × U(1) local symmetry in

five dimensions, which was derived by Romans in [38], and denoted N = 4+. This theory

can be viewed as a sub truncation of the SO(6)-gauged N = 8 supergravity, which is

known to be dual to the N = 4 SYM theory with unbroken R-symmetry on the boundary.

Thus the way the N = 4+ bulk theory sits in the SO(6) theory is exactly the bulk dual

of the global symmetry pattern resulting from putting N = 4 SYM on the ellipsoid in the

supergravity limit. The theory can be lifted to type IIB theory in ten dimensions, as shown

in [39], relying on previous results in [40]. We shall use the conventions of these references.

The N = 4+ supersymmetry is carried by four USp(4) symplectic Majorana super-

charges with a total of 16 real degrees of freedom. The bosonic sector of the five-dimensional

N = 4+ theory contains a metric g, a scalar field X, a U(1) gauge field Bµ, an SU(2) gauge

field AIµ, and two 2-form tensor fields T aµν , where a is a doublet index under U(1). We note

that this field content exactly mirrors the background multiplet needed to put N = 4 SYM

on the ellipsoid [10]. Here we show that the theory contains black hole solutions, charged

under the SU(2), which we will construct now. These solutions have T aµν = 0 and Bµ = 0,

so it suffices to consider only the action for the remaining fields. This takes the simple form

S =
1

16πG
(5)
N

∫

d5x
√−g

(

R+ g2 V − 3X−2∂µX∂
µX − 1

4
X−2F IµνF

I µν

)

+ · · · , (3.1)

where the omitted terms include a Chern-Simons term for the gauge field and the fermions.

These do no not contribute to any of the solutions in this paper. Until further notice we

work in units where 16πG
(5)
N = 1. Then the scalar potential reads

V = 4(X2 + 2X−1) . (3.2)

This theory has a particular black-hole solution, which asymptotes to hyperbolically sliced

AdS5. The metric is

ds25 = −
f(r)

H(r)4/3
dt2 +H(r)2/3

(

dr2

f(r)
+ r2ds2(H3)

)

, (3.3)

where the functions f and H, as well as the scalar field X are given by

f(r) = −1− m

r2
+ g2r2H2 , X = H−1/3 , H(r) = 1 +

q

r2
. (3.4)

For later use, let us write down the line element of H3 we work with:

ds2(H3) = du2 + sinh2 u dΩ2
2 . (3.5)

We can choose a gauge such that AIΓI lies entirely in the direction of the Cartan element

of SU(2),

AI=3 =

[

i

√

2

(

1− m

q

)

(1−H−1) + µ

]

dt

=
i
√

2q(q −m)

r2 + q
dt+ µdt , AI = 0 , (I = 1, 2) , (3.6)
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where the chemical potential µ is determined by requiring the gauge field to vanish at the

horizon.

3.2 Uplift to ten dimensions

In [39] it is shown how to obtain the full N = 4+ from a non-abelian sphere reduction of

type IIB theory in ten dimensions. Here we only need the special case which lifts the fields

active in the solution (3.1) to type IIB, which is considerably simpler. The ten dimensional

metric is

ds210 =
√
∆ds25+g

−2X
√
∆dξ2+g−2∆−1/2X2s2dτ2+

1

4
g−2∆−1/2X−1c2

3
∑

I=1

(

σI −
√
2gAI

)2
,

(3.7)

where τ and ξ are angles on the S5, s = sin ξ and c = cos ξ and σI are the standard

left-invariant one-forms on SU(2) parametrizing the remaining three angles on S5. They

can be expressed in terms of the Euler angles as

σ1 + iσ2 = e−iψ (dθ + i sin θdφ) ,

σ3 = dψ + cos θdφ. (3.8)

We then have

∆ = X−2s2 +Xc2 . (3.9)

The solution has vanishing axi-dilaton, and we do not need the functional form of the

remaining fields. They are given in detail in [39].

Note that in the special case when the gauge field is in the Cartan direction, the

uplift given becomes identical to that of the U(1)3 abelian gauged supergravity in five

dimensions [40], used in [20].

We give the details of this embedding in appendix B.

3.3 BPS analysis

In order to determine the supersymmetry properties of this solution, we must study the

fermion variations. Let ε be a USp(4) symplectic Majorana spinor. The fermion variations

are given in detail in appendix A, consisting of the spin-1/2 gaugino and the spin-3/2

gravitino variation. Here we write the gaugino variation, (A.1) in the schematic form

M(q,m)a
bεb = 0 . (3.10)

For this linear equation to admit non-trivial solutions, we must demand that the determi-

nant of the operatorM vanish.

After some algebra one can show that for q 6= 0 this equation implies the condition

0 = Pa
bεb =

1

2

(

δba +
1√
f

[

γ0 ⊗ (Γ3)a
b + igrHγ1 ⊗ (Γ45)a

b
]

)

εb , (3.11)

where γ0,1 are tangent-space gamma matrices. Computing its determinant, we find

(detP )1/8 =
m

r2f(r)
, (3.12)
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so that nontrivial solutions must have m = 0.

The condition (3.11) projects out half of the components of the spinor ε. We show in

appendix A that the gravitino variation imposes a further projection condition

ε = iΓ345ε , (3.13)

so that the black hole is a 1
4 -BPS solution, preserving four real supercharges. The same

amount is preserved by the N = 4 SYM theory on the ellipsoid [10]. We give a detailed

treatment of the supersymmetry of this solution including the full set of preserved Killing

spinors in appendix A.

We next record some useful facts about the BPS solution. The horizon position is

determined by the the equation f(rh) = 0, which gives rise to the condition

q = −rh(grh ± 1)

g
. (3.14)

The Hawking temperature is found with the usual Euclidean methods to be

T =
g2

2πrh

(

r2h − q
)

. (3.15)

We will later need the solution at some reference temperature Tn = T0/n , where T0 =

limq→0 T . Hence, by combining (3.14) and (3.15) we can find a relation between the

horizon radius and the replica index n,

rh =
n± 1

2gn
. (3.16)

Interestingly this takes the same form as in four bulk dimensions [13], the significance of

which will become apparent soon. Since grh should go to unity, when n = 1, we choose the

positive branch. The same reasoning reveals that we should choose the minus sign in (3.14)

in order to get grh = 1 when n = 1. Finally we can express the charge in terms of the

replica index as

q =
n2 − 1

4g2n2
. (3.17)

3.4 The Euclidean action

Defining the Gibbs free energy F (β, µ) = −T lnZ(β, µ) via the usual grand canonical

partition function Z(β, µ) = e−IE , we have

F (β, µ) = IE(β, µ) , (3.18)

so we need to compute the Euclidean partition function of the dual bulk gravity. In

order to compute the free energy holographically, we need to evaluate the on-shell value

of the Euclidean action. The analytic continuation is achieved by setting t = −iτ , so that

−iS = −IE . To the action (3.1) we first add the Gibbons-Hawking boundary term, in order
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to have a well-defined variational principle. As usual the action contains UV divergences,

which are dealt with by introducing UV counter terms. One obtains a finite expression

IE = lim
Λ→∞

[∫ Λ

rh

d5x
√
gELE + IGH(Λ) + Ict(Λ)

]

, (3.19)

with IGH the Gibbons-Hawking term, and Λ is a UV regulator. The terms Ict being given

by the usual expression for 5D bulk gravity [41]

Ict = 3g

∫

d4x
√
γ

[

1 +
1

12g2
Rb

]

, (3.20)

where Rb is the curvature scalar of the induced metric. We now compute the action on the

solution itself. For this it is useful to observe that one may schematically write the bosonic

part of the supergravity action (3.1) as

S =

∫ Λ

rh

√
gE (R+ Lm) (3.21)

so that the Einstein equation becomes

Rµν −
1

2
Rgµν =

1

2
Lmgµν + T̂µν . (3.22)

On the right hand side we split up the energy momentum tensor into the piece that comes

from varying the
√
gE part of the action and the explicit variation of Lm with respect to

the metric, denoted T̂µν . It is easy to see that for a solution of the form (3.3) the H
3

components of T̂ vanish identically. We may thus use the uu component of the Einstein

equation to find

Lm = −R+ 2guuRuu . (3.23)

Note that at an intermediate stage we have also used that the metric is diagonal. Now the

full on-shell action reads simply

Sonshell = 2

∫ √
gEg

uuRuud
5x . (3.24)

A brief computation of the relevant curvature term for the 1
4 BPS black hole (3.3) reveals

that we can write this integral as a bulk term plus a total derivative

Sonshell = −2βvol
(

H
3
)

[∫ Λ

rh

2rdr +

∫ Λ

rh

∂r

(

r2f(r) +
1

3
r3f(r)

H ′(r)
H(r)

)

dr

]

, (3.25)

where β = 2πn/g. The total derivative terms give no contribution from the lower end of

the integral due to the fact that f(rh) = 0, so their contributions come entirely from the

UV end of the integral. Together with the UV contribution from the first term these are

cancelled by the UV counter terms. Thus the action becomes

In = 4πng−1vol
(

H
3
)

r2h = 4πvol
(

H
3
) (n+ 1)2

4g3n
. (3.26)
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As explained, for example in [4], the volume of hyperbolic space is divergent, in accordance

with the usual power law divergence for entanglement entropies. In odd dimensions, there

is a subleading logarithmic term [4], and it is the coefficient of this term, which is universal.

In our particular case (recall we use the line element (3.5))

vol(H3)univ = −2π ln (2R/δSG) . (3.27)

Here R is the radius of the spherical entangling surface6 and δSG ≪ R is a UV scale in the

supergravity calculation, defined by cutting off the integral over hyperbolic space at some

maximum coshumax = R/δSG. Note finally that we can rewrite this in the familiar form

In = −1

4
Q2 π

2g3G
(5)
N

ln (2R/δSG) , (3.28)

where we also have restored dimensionful units. Using the relationship

π

2g3G
(5)
N

= N2 (3.29)

and also [42, 43] that the field theory cutoff is rescaled from the one used here by a factor

of
√
λ, that is R/δSG ∼ R/δ

√
λ, we arrive at

In = −Q
2

4
N2 ln (R/δ)− Q2

8
N2 lnλ (3.30)

matching the field theory result (2.19) precisely. Additionally, from (3.26) we get the

scaling relation

In =
(n+ 1)2

4n
I1 . (3.31)

However, it would be more correct to say that we worked in a particular renormalization

scheme in which the entire action scales like (3.31). More generally it is only the universal

part, i.e. the coefficient of the logarithm, that obeys such an identity. The scaling results

here translate into the results for the supersymmetric Rényi entropies in section (2.4) upon

using the definition (1.3).

3.5 Holographic Wilson loop

We wish to find the action associated with a Wilson loop in the fundamental representation

holographically, using the relationship

Sstring = − lnWn. (3.32)

To do this, we find the on-shell action of a stationary string solution

Sstring =
1

2πα′

∫

d2s e−Φ
√

detGMN∂αXM∂βXN , (3.33)

6Strictly speaking, in our computation R = LAdS = g−1 as can be seen from the metric (3.3), but also

by tracing through the details of the standard conformal map in [1]. However, as further shown in [1],

with a bit of care, one can incorporate an arbitrary size interval R in the conformal map to S
1
n ×H

3. The

universal scaling result (3.30) follows irrespective of whether R = g−1 or is kept arbitrary.
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in the uplifted type IIB background given in section 2.2. As we shall see below, it is not

sufficient to study the string embedding merely in the five dimensional effective theory,

as this will lead to the wrong result for the Wilson loop. This illustrates a subtle point

about the use of consistent truncations in holography: while computations concerning the

supergravity sector, such as the value of the Euclidean partition function, are by definition

consistently calculated by the truncated lower-dimensional theory, stringy probes can be

sensitive to the full ten-dimensional background, and not just through the dependence of

the action (3.33) on the dilaton. In fact Φ, the IIB dilaton, is constant in our background,

e−Φ = 1. (3.34)

The non-zero AI in the metric components would induce an angular velocity for the angles

on the S3. The S3 degenerates to a point at

cos ξ = 0, (3.35)

so the string should sit at this point on the internal manifold in order to preserve the SU(2)

R-symmetry. This corresponds to the string being uncharged under the R-symmetry. The

string configuration is therefore given by a worldsheet spanning the r and t directions,

which we will take to be the worldsheet coordinates:

s1 = t, s2 = r, (3.36)

such that

ξ(r, t) =
π

2
. (3.37)

We can choose the angles on the S3 and τ ,

τ(r, t) = θ(r, t) = φ(r, t) = ψ(r, t) = 0, (3.38)

without loss of generality. This loop, wrapping the t direction, corresponds to the ϕ loop

of [10], for which the large N localization result was calculated in section 2.2.2. In terms

of the induced worldsheet metric

γαβ ≡ GMN∂αX
M∂βX

N , (3.39)

the Nambu-Goto equations of motion in this curved background are given by

∂α

(

√

− det γ γαβGMN∂βX
N
)

+
1

2

√

− det γ γαβ∂αX
N∂βX

P∂XMGNP = 0. (3.40)

With our ansatz and background, the equations of motion are indeed satisfied. The asso-

ciated on-shell string world-sheet action is then given by

Sstring = lim
Λ→∞

1

2πα′

∫ 2πn/g

0
dt

∫ Λ

rH

drH− 1

3∆
1

2

= lim
Λ→∞

n

gα′ (Λ− rh)

= −n+ 1

2α′g2
, (3.41)
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where we have subtracted the infinite counterterm from the UV end of the string. Crucially

the measure gets a contribution ∆
1

2 = H
1

3 from the S5 part of the geometry (3.7). Without

considering the full ten-dimensional geometry of the string, one would thus not be able to

obtain the correct Wilson-loop expectation value.

Using the relation
√
λ = 1

g2α′
, this can be expressed in terms of field theory quantities

as

lnWn =
n+ 1

2

√
λ. (3.42)

The corresponding scaling relations are given by

lnWn =
(n+ 1)

2
lnW1, (3.43)

and, for the Wilson loop contribution to the Rényi entropy,

S(W )
n =

1

2
lnW1. (3.44)

The quantities agree precisely with those obtained by localization after taking the large N

limit. Again, the scaling is the same as that obtained in bulk dimension d+ 1 = 4 in [11].

4 Discussion

In this paper we have found the exact expression for the supersymmetric Rényi entropy

across a spherical entangling surface in N = 4 SYM theory to all orders in N,λ. We

were able to obtain this result by mapping the computation of the Rényi entropy to that

of a partition function on a four-dimensional ellipsoid. This calculation in turn can be

performed using supersymmetric localization [10]. At large-N,λ the field-theory result can

be reproduced by a holographically dual calculation involving a supersymmetric black hole

solution of Romans’ N = 4+ truncation of five-dimensional gauged supergravity. This

precise match opens a number of interesting questions.

Firstly, the quantity we calculated in this work is a natural supersymmetric general-

ization of the usual information-theoretic Rényi entropy. In that case the Rényi entropies

give one access to a fine-grained description of the entanglement properties of the state or

ensemble of states. It would be interesting to understand whether the super-Rényis also

contain useful information about the entanglement of the state.

Further, concerning the properties of the supersymmetric Rényi entropy, it is striking

that the universal content of our four-dimensional computation has resulted in identical

expressions as those previously obtained in three dimensions [11–13], once normalized by

the entanglement entropy. For example, the universal part of the Rényi entropy obeys the

scaling relation

Sn =
3n+ 1

4n
S1 . (4.1)

It would be interesting to understand whether supersymmetric Rényi entropies in dimen-

sions greater than two take this form quite generally, similarly to the universal result of

Rényi entropies in 2D CFT [44].
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Our computation implies a number of interesting relationships between seemingly un-

related field theories. Both on the field-theory side and on the gravity side our work shows

a surprising duality with an a priori completely different object. Namely the partition

function of the N = 2∗ massive deformation of N = 4 theory evaluated on S
4 [7, 45]. In

fact the results of our paper, at large N,λ, can be mapped into those of the N = 2∗ theory

by the simple replacement

Q2

4
←→ 1 +M2 , (4.2)

where M is the mass parameter of the N = 2∗ theory. This is particularly intriguing since

we were able to obtain the gravity result by an analytic computation in N = 4+ theory,

while [45] numerically solved the BPS equations of a newly constructed truncation of max-

imally gauged supergravity in five dimensions. We believe that the correspondence extends

to all N and λ and it would be enlightening to understand the reason for the agreement

between the two calculations, both on the field-theory side and for their bulk duals.

Finally, in a similar vein, one would like to understand the bulk representation of the

deformation independence of the boundary field theory, discussed in section 2.1.1, which

ensures that the localized partition function on different geometries are equal to each other.

In our work, we saw explicitly that the bulk partition function of a non-abelian black

hole in non-abelian SU(2)×U(1) gauged supergravity precisely coincides with that of the

maximally abelian U(1)3 gauged supergravity in 5D [20]. This result is easy to understand

at the classical level: we showed that the SU(2) gauge field can be entirely oriented along

the Cartan generator, and then explicitly embedded in the abelian theory (for an analogous

story involving monopoles see [46]). However, as soon as fluctuations are taken into account,

i.e. moving away from the classical limit, one would expect the theories to differ. Yet, we

know from the field theory analysis that the full quantum partition functions exactly

coincide. The question is thus: how is this non-trivial equivalence encoded in the bulk?

Acknowledgments

We would like to thank Hong Liu, Joe Minahan, Duff Neill, Eric Perlmutter and Silviu

Pufu for helpful conversations and correspondence. JS acknowledges the hospitality the

of LANL theory division. JS and ED acknowledge the hospitality of the Santa Fe Insti-

tute while this paper was being finalized. This work was supported in part by the U.S.

Department of Energy (DOE) under cooperative research agreement Contract Number

DE-FG02-05ER41360.

A Supersymmetry of the N = 4+ theory

After accounting for the signature change from mostly minus to mostly plus (remember γ

matrices have to be multiplied by i) and the necessary rescaling g2Romans = 8g2 to put the
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relevant sector of [38] into the form (3.1), we find the following fermion variations [38]

δχa =
1√
2
iγµ (∂µφ) εa +Aabε

b +
1

2
√
6
γµνHµνabε

b ,

δψµa = Dµεa + iγµTabε
b +

i

6
√
2
(γµ

νρ + 4δµ
νγρ)Hνρabε

b , (A.1)

where

Dµεa = ∇µεa +
g√
2
AIµ (ΓI45)a

bεb (A.2)

and

X = e−
√

2/3φ ,

Aab =
g√
3

(

X −X−2
)

(Γ45)ab ,

Tab =
g

3

(

X +
1

2
X−2

)

(Γ45)ab

Hµνab =
1

2X
F Iµν (ΓI)ab . (A.3)

The matrices Γi are USp(4) ∼= Spin(5) Euclidean gamma matrices

(Γi)a
b (Γj)b

c + (Γj)a
b (Γi)b

c = 2δijδ
c
a (A.4)

with ΓI = Γi for i = 1, 2, 3. We also have

{γµ , γν} = 2gµν . (A.5)

In this appendix, we adopt the convention to write position-space components of gamma

matrices as γt, γr . . ., while tangent-space components are numbered γ0, γ1 . . .. We also

adopt and obvious tensor-product notation: matrices such as γµ(Γ3)a
b act in an obvious

way on the spin and USp(4) indices of εa. This action can be concisely written as γµ⊗Γ3ε,

now suppressing all spinorial indices.

A.1 Killing spinor

We now want to solve for the bulk Killing spinor explicitly. For this purpose it is useful to

record the non-vanishing components of the spin connection

ω01 =

(

f ′

2H
− 2fH ′

3H2

)

dt ,

ω12 = −
√

f

(

1 +
rH ′

3H

)

du ,

ω13 = −
√

f

(

1 +
rH ′

3H

)

sinhudθ ,

ω14 = −
√

f

(

1 +
rH ′

3H

)

sinhu sin θdϕ ,

ω23 = − coshudθ ,

ω34 = − cos θdϕ (A.6)
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We find that if we impose the condition (A.1), as well as the additional algebraic constraint

P̃ ε = 0 with P̃ = 1− iΓ345 , (A.7)

the components of the Killing spinor equation become

(

∂t +
g

2

(

1−
√
2iµ

))

ε = 0 ,
(

∂r +
ig

3
√
f

(

1 +
H

2

)

γ1 ⊗ Γ45 +
H ′

3H
√
f
γ0 ⊗ Γ3

)

ε = 0 ,

(

∂u −
1

2
γ0γ1γ2 ⊗ Γ3

)

ε = 0 ,

(

∂θ −
1

2
sinhuγ0γ1γ3 ⊗ Γ3 −

1

2
coshuγ2γ3

)

ε = 0 ,

(

∂ϕ −
1

2
sinhu sin θγ0γ1γ4 ⊗ Γ3 −

1

2
coshu sin θγ2γ4 −

1

2
cos θγ3γ4

)

ε = 0. (A.8)

The solution to systems of equations of this type is given in general terms in [14], whose

notation we follow here. Matrices acting in the tensor product γ⊗Γ are abstractly denoted

by Γ. Since Γ345 commutes with the condition (3.11), we can simply impose this projection

independently, that is to say, we can work with a spinor ε that satisfies (A.7) from the outset

and follow the steps in [14] without paying attention to the additional constraint. The

temporal and angular equations, having no dependence on r, can be solved immediately,

resulting in the expression

ε(r) = exp

(

−gt
2

(

1−
√
2iµ

)

)

exp
(u

2
γ012

)

× exp

(

θ

2
γ23

)

exp
(ϕ

2
γ34

)

ξ(r) . (A.9)

Using the projection constraint (3.11) we can rewrite the radial equation in the form

∂rξ(r) =
(

a(r) + b(r)Γ1

)

ξ(r) , (A.10)

where we write the projector (3.11) as

P =
1

2

(

1 + x(r)Γ1 + y(r)Γ2

)

, (A.11)

where

x(r) = − i√
f
, y(r) =

grH√
f

(A.12)

and

a(r) =
1

3rH

(

1 +
1

2
H

)

. (A.13)

We have defined the matrices

Γ1 = iγ0 ⊗ Γ3 , Γ2 = iγ1 ⊗ Γ45 (A.14)
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satisfying

Γ
2
1 = Γ

2
2 = 1 , Γ1Γ2 = −Γ2Γ1 . (A.15)

The solution to this equation, given in [14], is

ξ(r) =
1

2

(

u(r) + v(r)Γ2

) (

1− Γ1

)

(1− i1⊗ Γ345)ξ0 , (A.16)

where we have also inserted the second, compatible, constraint on the spinor. The functions

work out to be

u(r) =

√

1 + x(r)

y(r)
ew(r) , v(r) = −

√

1− x(r)
y(r)

ew(r) , w(r) =

∫ r

a(r′)dr′ . (A.17)

The two projections manifest in (A.16) make the black hole a 1
4 -BPS solution preserving

four real supercharges. Explicitly we find
∫

a(r′)dr′ =
1

6
ln
(

r3H
)

, (A.18)

so that the Killing spinor becomes

ξ(r) =
H−1/3

2
√
g

(
√

√

f − i − Γ1

√

√

f + i

)

(

1− Γ1

)

(1− iΓ345) ξ0 (A.19)

in terms of an arbitrary constant symplectic Majorana spinor ξ0.

B Embedding into U(1)3 truncation

The recent preprint [20] finds the gravity dual of the field theory on the singular space in

terms of a solution of five dimensional N = 2 U(1)3 gauged supergravity, specifically the

STU model. In this appendix we describe the U(1)3 truncation of the N = 8 SO(6) gauged

supergravity in five dimensions and comment on the relation to our work. This theory can

be seen as arising from an S5 reduction of type IIB supergravity in ten dimensions [40].

The action of the bosonic sector of the resulting N = 2 supergravity can be written as

S =

∫ √−g
[

R+ g2V − 1

4
GijF

(i)
µν F

µν(i) − 1

2
Gij∂µX

(i)∂µX(j)

]

+ SCS . (B.1)

As in the case of the N = 4+ theory we do not need the Chern-Simons part of the action

as its contribution vanishes throughout the analysis of this paper. We work in units setting

16πG
(5)
N = 1. In addition to the metric g and three vector fields A(i), there are three scalar

fields Xi, satisfying the constraint

X1X2X3 = 1 . (B.2)

The moduli-space metric Gij is diagonal

Gij =









(X(1))−2 0 0

0 (X(2))−2 0

0 0 (X(3))−2









(B.3)
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and the potential is

V = 2
3

∑

i=1

(X(i))−1 , (B.4)

both evaluated on solutions of the constraint (B.2), so that the theory only contains two

independent scalar fields. We now discuss black hole solutions of this theory, which carry

charges under all three U(1) gauge fields [47].

B.1 Hyperbolic three-charge black hole

Here we review the salient features of the three-charge black hole solutions of theory (B.1).

These were found by [47], their BPS limit was discussed in [48] and their embedding into

type IIB supergravity established in [40].

The metric of the hyperbolic three-charge black hole can be written as

ds2 = − f(r)

(H1H2H3)
2/3

dt2 + (H1H2H3)
1/3

(

dr2

f(r)
+ r2ds2(H3)

)

(B.5)

with

f(r) = −1− m

r2
+ g2r2H1H2H3 , Hi = 1 +

qi
r2
. (B.6)

The gauge fields Ai as well as scalars Xi take the form

Air = µi −
iq̃i

r2 + qi
, , Xi = H−1

i (H1H2H3)
1/3 (B.7)

One often sees the notation X1 = S ,X2 = T ,X3 = U and the theory being referred to

as the STU model. The solution of interest to us is the two equal charge solution, which

is a special case of the above, with q̃i = qi, and q1 = q2 = q , q3 = 0. The BPS solution,

preserving half of the super symmetries further has m = 0. We denote H1 = H2 := H.

It is manifest that the two equal charge solution of this theory can be identified with the

special solution (3.3) of SU(2)×U(1) gauged supergravity considered in this paper. In order

to understand this embedding better, is instructive to study the the full ten-dimensional

geometry, as a solution to the low-energy limit of type IIB string theory. This has been

worked out before [40], so we will present only the necessary ingredients here. We refer the

reader to [40] for more details.

B.1.1 Uplift to type IIB

The five dimensional theory (B.1) corresponds to a consistent truncation of type IIB on S5

with non-trivial five form flux and constant dilaton. The only relevant ingredient for the

present analysis is the uplift formula of the metric

ds210 =
√
∆ds25 +

1

g2
√
∆

3
∑

i=1

X−1
i

(

dµ2i + µ2i
(

dφ2i + gAi
)2
)

, (B.8)

with

µ1 = sin θ , µ2 = cos θ sinψ , µ3 = cos θ cosψ , (B.9)

– 21 –



J
H
E
P
1
2
(
2
0
1
4
)
0
0
1

and

∆ =

3
∑

i=1

Xiµ
2
i . (B.10)

By setting A3 = 0 and A1 = A2, one can show that the five-sphere uplift becomes identical

to that of SU(2)×U(1) theory, eq. (3.7), with AI = 0 for I = 1, 2, i.e. a gauge field entirely

in the Cartan direction of SU(2). This explains why the two bulk duals give the same

answer. As remarked upon in the discussion, it is less obvious that the two theories should

agree away from the classical limit.

Since this uplift coincides with the uplift of the SU(2)×U(1) gauged supergravity, when

the gauge field is in the Cartan, one sees immediately that the Wilson loop expectation

value is also matched by a string embedded in (B.8).
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