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1 Introduction

The decay Bs → µ+µ− is well known as a probe of physics beyond the Standard Model

(SM). Recently, it has attracted a lot of attention since the LHCb and the CMS experiments

at the CERN LHC have provided first measurements of its branching ratio [1–3]. Their

current results for the average time-integrated branching ratio read

B(Bs → µ+µ−) =
(

2.9+1.1
−1.0

)

× 10−9 , LHCb [2],

B(Bs → µ+µ−) =
(

3.0+1.0
−0.9

)

× 10−9 , CMS [3], (1.1)

which leads to the weighted average [4]

B(Bs → µ+µ−) = ( 2.9± 0.7)× 10−9 . (1.2)

Previous upper limits can be found in refs. [5–9]. Although the experimental uncertainties

are still quite large, they are expected to get significantly reduced within the next few years.

As far as the theory side is concerned, the Bs meson decay into two muons is quite

clean. In fact, the only relevant quantity that needs to be calculated at the leading order in

αem and cannot be determined within perturbation theory is the leptonic decay constant
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fBs . Its square enters the branching ratio as a multiplicative factor. Recent progress in

the determination of fBs from lattice calculations [10–15] gives a motivation for improving

the perturbative ingredients, in particular the two-loop electroweak [16] and the three-loop

QCD corrections.

Evaluation of the latter corrections is the main purpose of the present paper. Renor-

malization scale dependence of the truncated perturbation series is going to be significantly

reduced. In our case, it refers to the branching ratio dependence on the scale µ0 at which

the top-quark mass and αs are renormalized. At the two-loop order, the corresponding

uncertainty amounts to around 1.8%, which is a non-negligible component of the overall

theoretical uncertainty.

We introduce the effective Lagrangian as

Leff = LQCD×QED(leptons and five light quarks) +N
∑

n

CnQn + h.c. , (1.3)

with

N =
V ∗

tbVtsG
2
FM

2
W

π2
, (1.4)

and the operators

QA = (b̄γαγ5s)(µ̄γ
αγ5µ) ,

QS = (b̄γ5s)(µ̄µ) ,

QP = (b̄γ5s)(µ̄γ5µ) . (1.5)

In the SM, the operator QA alone is sufficient because contributions from QS and QP to the

branching ratio are suppressed by M2
Bs
/M2

W with respect to that from QA. In beyond-SM

theories, the Wilson coefficients CS and CP can get enhanced, especially for an extended

Higgs sector (see, e.g., refs. [17, 18]). Note that QV = (b̄γαγ5s)(µ̄γ
αµ) does not contribute

at the leading order in αem due to the electromagnetic current conservation.

Using eq. (1.3), the following result for the average time integrated branching ratio

can be derived

B(Bs → µ+µ−) =
|N |2M3

Bs
f2
Bs

8π ΓsH
β
[

|rCA − uCP |2FP + |uβCS |2FS
]

+ O(αem) , (1.6)

where ΓsH stands for the total width of the heavier mass eigenstate in the BsB̄s system.

The quantities r, β and u are given by

r =
2mµ

MBs

, β =
√

1− r2, u =
MBs

mb +ms
. (1.7)

In the absence of beyond-SM sources of CP-violation, we have FP = 1 and FS = 1 −
∆Γs/ΓsL, where ΓsL is the lighter eigenstate width, and ∆Γs = ΓsL − ΓsH . In a generic case,

from the results in refs. [19, 20] one derives

FP = 1− ∆Γs

ΓsL
sin2

[

1

2
φNP
s + arg(rCA − uCP )

]

,
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FS = 1− ∆Γs

ΓsL
cos2

[

1

2
φNP
s + argCS

]

, (1.8)

where φNP
s describes the CP-violating “new physics” contribution to BsB̄s mixing, i.e.

φcc̄ss ≃ arg[(V ∗

tsVtb)
2] + φNP

s (see section 2.2 of ref. [21]).

In the SM, the branching ratio of Bs → µ+µ− is proportional to the square of the

Wilson coefficient CA which can be computed within perturbation theory. The calculation

amounts to matching the amplitude1 for s → b µ+µ− in the full SM to the one of the

effective theory defined in eq. (1.3). At the matching scale µ0, the W and Z bosons

together with the top quark are integrated out simultaneously.

Barring higher-order electroweak (EW) corrections, the perturbative expansion of CA
reads

CA = C
(0)
A +

αs
4π

C
(1)
A +

(αs
4π

)2
C

(2)
A + . . . , (1.9)

where αs ≡ αs(µ0) in the MS scheme with five active quark flavours. No other definition

of αs is going to be used throughout the paper. The one-loop term C
(0)
A has been cal-

culated for the first time in ref. [22], and the two-loop correction C
(1)
A has been found in

refs. [23–26]. In this work, we compute the three-loop QCD correction C
(2)
A .

Let us note that C
(n)
A are µ0-dependent, but CA itself is not, up to higher-order QED

effects. It follows from the fact that the quark current in QA is classically conserved in the

limit of vanishing quark masses, while the chiral anomaly plays no role here, as we work

at the leading order in flavour-changing interactions. Once the perturbation series on the

r.h.s. of eq. (1.9) is truncated, a residual µ0-dependence arises. Our present calculation

aims at making this dependence practically negligible.

At each loop order, we shall split the coefficients C
(n)
A into contributions originating

from the W -boson box and the Z-boson penguin diagrams (see figures 1 and 4)

C
(n)
A = C

W,(n)
A + C

Z,(n)
A , (1.10)

which are separately finite but gauge-dependent with respect to the EW gauge fixing. Here,

we use the background field version of the ’t Hooft-Feynman gauge for the electroweak

bosons, and the usual ’t Hooft-Feynman gauge for the gluons. Most of the results have

also been cross-checked using the general Rξ gauge for the gluons.

For the top quark mass renormalization, we shall always use the MS scheme in the

full SM, i.e. mt ≡ mt(µ0). The ratio mt/MW will enter our results via the following three

variables:

x =
m2
t

M2
W

, w = 1− 1

x
, y =

1√
x
. (1.11)

The ratio x is the only parameter on which the coefficients C
(n)
A depend, apart from the

logarithms ln(µ0/MW ) or ln(µ0/mt). For the Z-penguins, this is true after taking the

leading-order EW relations between MZ , MW and sin2 θW into account.

1More precisely, we shall match the b̄sµ̄µ one-light-particle-irreducible (1LPI) Green’s functions at van-

ishing external momenta.
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(a) (b) (c)

s b

l− l+

W W

ν

u, c, t s b

l− l+

W W

ν

u, c, t s b

l− l+

W W

ν

u, c, t

Figure 1. Sample W -boson box diagrams contributing to CA.

Our paper is organized as follows: in the next two sections, we evaluate the matching

coefficient CA up to three loops. Calculations of the W -boxes and the Z-penguins are

discussed in sections 2 and 3, respectively. Section 4 is devoted to a numerical analysis and

examining the size of the evaluated three loop QCD corrections. We conclude in section 5.

Logarithmically enhanced QED corrections to CA are summarized in the appendix.

2 W -boson boxes

2.1 General remarks

Sample Feynman diagrams contributing to C
W,(n)
A at one-, two- and three-loop order are

shown in figure 1. The up- and charm-quark contributions differ only by the corresponding

Cabibbo-Kobayashi-Maskawa (CKM) factors because we neglect masses of these quarks.

Consequently, it is possible to write C
W,(n)
A in terms of the top- and charm-quark contri-

butions

C
W,(n)
A = C

W,t,(n)
A − C

W,c,(n)
A , (2.1)

where unitarity of the CKM matrix has been applied.

To obtain C
W,t,(n)
A and C

W,c,(n)
A , we compute off-shell 1LPI amplitudes both in the full

theory and in the effective theory, and require that they agree at the scale µ0 up to terms

suppressed by heavy masses. In fact, on the full-theory side, all the external momenta can

be set to zero, which leads to vacuum integrals up to three loops. On the other hand, in the

effective theory, all loop corrections vanish in dimensional regularization after setting the

external momenta and light quark masses to zero because the loop integrals are scaleless

in this limit. Thus, we are only left with tree contributions.

There are basically two approaches to perform the matching. In the first one, the

matching is performed in d = 4−2ǫ dimensions setting all the light masses strictly to zero.

As a consequence, one generates spurious infrared divergences both in the full and effective

theories. Such divergences cancel while extracting CA. However, due to the presence of

additional poles in ǫ at intermediate steps, one has to introduce the so-called evanescent

operators in the effective Lagrangian, which complicates the calculations. In an alternative

matching procedure, finite light quark masses are introduced to obtain infrared and ultra-

violet finite results, which allows for a matching in four dimensions. In the latter case, no
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(a) (b)
l− l+

s b

l− l+

s b

Figure 2. Sample one- and two-loop Feynman diagrams needed for determination of the renor-

malization constants ZNN , ZNE , ZEN and ZEE . Squares represent the operators QA and QE
A.

evanescent operators matter. In the following, we describe both matching procedures in

more detail.

2.2 Matching in d dimensions

The evanescent operator which enters the effective Lagrangian when the matching is per-

formed in d dimensions reads [25]

QE
A = (b̄γα1

γα2
γα3

γ5s)(µ̄γ
α3γα2γα1γ5µ)− 4QA . (2.2)

Note that this operator vanishes in d = 4 dimensions, and thus the limit d → 4 can only

be taken after matching in d dimensions.

Before performing the matching, we have to replace the combination CAQA + CE
AQ

E
A

by the corresponding renormalized expression that can be written as [25]

CAQA + CE
AQ

E
A → Zψ

(

CAZNNQA + CAZNEQ
E
A + CE

AZENQA + CE
AZEEQ

E
A

)

, (2.3)

where Zψ is the MS quark wave function renormalization constant. Loop corrections to

Zψ, ZNN , ZEE and ZNE contain no finite parts2 but at most poles in ǫ. As far as ZEN
is concerned, we require that amplitudes proportional to CE

A vanish for d → 4. In con-

sequence, ZEN may contain both pole parts and (uniquely defined) finite terms. For our

purpose, the renormalization constants are needed up to two loops.

The renormalization constants ZNN , ZNE , ZEN and ZEE are computed from the

diagrams like those in figure 2, with insertions of QA and QE
A. Since we are only interested

in ultraviolet poles of momentum integrals, all the masses can be set to zero, and an

external momentum q flowing through the quark lines is introduced. Our results read

ZNN = 1 ,

ZNE = 0 ,

ZEN =
αs
4π

32 +
(αs
4π

)2
[

1

ǫ

(

−176 +
32

3
nf

)

+
1192

3
− 112

9
nf

]

+ O(α3
s) ,

ZEE = 1 +O(α2
s) , (2.4)

2In our conventions, n-loop integrals are normalized with µ̃nǫ, where µ̃2
≡ µ2eγ/(4π) and γ denotes the

Euler-Mascheroni constant. Thus, no ln 4π or γ appear in the MS renormalization constants.
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where nf = 5 denotes the number of active quark flavours. The results for ZNN and ZNE
are true to all orders in QCD due to the (already mentioned) quark current conservation for

massless quarks. Concerning ZEN , we confirm the one-loop result from ref. [25], whereas

the two-loop expression is new. Note that ZEE does not matter for our calculation, and

thus we have left its two-loop part unevaluated.

In the first step of our matching calculation, we determine the s → bµ+µ− transition

amplitude in the full theory, where the Dirac structure of each Feynman diagram is pro-

jected onto QA and QE
A (see, e.g., ref. [27]). This gives us the unrenormalized amplitudes,

which we denote by CW
A,bare and CE

A,bare, respectively. In this step, vacuum diagrams up to

three loops with two different mass scales have to be computed. Although some classes of

Feynman diagrams of this type have been studied in the literature (see, e.g., ref. [28]), we

have decided to perform expansions in various limits, which leads to handy results for the

matching coefficients. Actually, we follow the same strategy as in refs. [29, 30], namely, we

expand in the limits MW ≪ mt and MW ≈ mt, i.e. y ≪ 1 and w ≪ 1, where terms up to

order y12 and w16 are evaluated, respectively. A simple combination of the two expansions

provides an approximation to the three-loop contribution, which for all practical purposes

is equivalent to an exact result.

The actual calculation has been performed with the help of QGRAF [31] to generate the

Feynman diagrams, q2e and exp [32, 33] for the asymptotic expansions [34] and MATAD [35],

written in Form [36], for evaluation of the three-loop diagrams. We have performed our

calculation for an arbitrary gauge parameter in QCD, and have checked that it drops out

in our final result for the matching coefficient.

For renormalization of the full-theory contributions, we need the one-loop renormal-

ization constant for the QCD gauge coupling

ZSM
g = 1 +

αs
4π

(

−23

6ǫ
+

1

3ǫ
Nǫ

)

+O(α2
s) . (2.5)

Here, Nǫ = (µ2
0/m

2
t )
ǫ eγǫ Γ(1 + ǫ) makes the renormalized αs in the full SM equal to the

MS-renormalized αs in the five-flavour effective theory, to all orders in ǫ. As far as the top

quark mass is concerned, its two-loop MS renormalization constant Zmt in the full SM is

expressed in terms of the above-defined αs, which gives

Zmt = 1− 4

ǫ

αs
4π

+
(αs
4π

)2
(

74

3ǫ2
− 27

ǫ
− 8

3ǫ2
Nǫ

)

+O(α3
s). (2.6)

Furthermore, for the wave-function renormalization, only the difference between the renor-

malization constants in the full and effective theories has to be taken into account (see

section 4 of ref. [29]):

∆Zψ =
(αs
4π

)2
N2
ǫ

(

2

3ǫ
− 5

9

)

+O(α3
s, ǫ) . (2.7)

At this point, all the ingredients are available to perform the matching according to

the following equations (Q = c, t):

CE,Q
A = C

E,Q,(0)
A,bare +

αs
4π

(

C
E,Q,(1)
A,bare + δtQ∆TE,t,(1)

)

+O
(

α2
s

)

,

– 6 –
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CW,Q
A = (1 +∆Zψ)

2
∑

n=0

(αs
4π

)n [
(

ZSM
g

)2n
C
W,Q,(n)
A,bare + δtQ∆TW,t,(n)

]

−ZEN CE,Q
A +O

(

α3
s

)

, (2.8)

where ∆TE,t,(1) and ∆TW,t,(n) denote contributions from the top-quark mass counterterms

which can be written as

∆TE,t,(1) =
(

C
E,t,(0)
A,bare

∣

∣

mbare
t →Zmtmt

)

αs

,

∆TW,t,(0) = 0 ,

∆TW,t,(1) =
(

C
W,t,(0)
A,bare

∣

∣

mbare
t →Zmtmt

)

αs

,

∆TW,t,(2) =
(

C
W,t,(0)
A,bare

∣

∣

mbare
t →Zmtmt

+
αs
4π

C
W,t,(1)
A,bare

∣

∣

mbare
t →Zmtmt

)

α2
s

. (2.9)

Here, the following notation has been used: “mbare
t → Zmtmt” means that the bare top

quark mass is replaced by the renormalized one times the renormalization constant. After-

wards, we expand in αs and take the coefficient at [αs/(4π)]
n (n = 1, 2), which is indicated

by the subscript at the round bracket.

Our final results for the evanescent Wilson coefficients up to two loops read

C
E,t,(0)
A =

1

64

(

µ2
0

m2
t

)ǫ [
2

x− 1
− 2x lnx

(x− 1)2
+ ǫ

(

3

x− 1
− (x+ 2) lnx+ x ln2 x

(x− 1)2

)]

+O(ǫ2) ,

C
E,t,(1)
A =

7− 23x

24(x− 1)2
+

7x+ 9x2

24(x− 1)3
lnx+

x

4(x− 1)2
Li2

(

1− 1

x

)

+ ln

(

µ2
0

m2
t

)[ −x

2(x− 1)2
+

x+ x2

4(x− 1)3
lnx

]

+ O(ǫ) ,

C
E,c,(0)
A = − 1

64

(

µ2
0

M2
W

)ǫ

(2 + 3ǫ) + O(ǫ2) ,

C
E,c,(1)
A =

7

24
+ O(ǫ) . (2.10)

The results for CW,t
A and CW,c

A will be given in subsection 2.4.

2.3 Matching in four dimensions

In order to have a cross check of the results for CW
A from the previous subsection, we

have performed the matching also for infrared finite quantities, which can be done in four

dimensions avoiding evanescent operators [25]. No spurious infrared divergences arise when

small but non-vanishing masses are introduced for the strange and bottom quarks. In the

full theory, this leads to Feynman diagrams with up to four different mass scales. We

evaluate them using asymptotic expansions in the limit

mt,MW ≫ mb ≫ ms . (2.11)

– 7 –
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In addition, we use either mt ≫ MW or mt ≈ MW , as in the previous subsection. All the

external momenta are still set to zero. Asymptotic expansions are conveniently performed

with the help of exp [32, 33].

On the effective-theory side, the loop corrections do not vanish any more due to the

finite quark masses. We compute the necessary one- and two-loop Feynman integrals in

the limit

mb ≫ ms . (2.12)

After renormalization of the two-loop expression on the effective-theory side and the

three-loop result on the full-theory side, the finite parts are matched for ǫ → 0. After

the matching, it is possible to take the limit ms → 0 and mb → 0. This way, we obtain

the same results as in the previous calculation where the infrared divergences have been

regulated using dimensional regularization.

Although we only had to compute the leading non-vanishing contributions in the light

quark masses, the calculational effort has been significantly higher than for the matching

in d dimensions described in the previous subsection. Thus, we have applied the method

with light masses only to cross check the first two (three) terms in the expansion in y (w),

using a general Rξ gauge though.

2.4 Results

At the one- and two-loop orders, we have confirmed the results with full dependence on

x from ref. [25], and evaluated in addition terms up to O(ǫ2) and O(ǫ), respectively. For

completeness, we present the results for ǫ → 0 which are given by

C
W,t,(0)
A (µ0) =

1

8(x− 1)
− x

8(x− 1)2
lnx ,

C
W,t,(1)
A (µ0) = − 3 + 13x

6(x− 1)2
+

17x− x2

6(x− 1)3
lnx+

x

(x− 1)2
Li2

(

1− 1

x

)

+ ln

(

µ2
0

m2
t

)[ −2x

(x− 1)2
+

x+ x2

(x− 1)3
lnx

]

,

C
W,c,(0)
A (µ0) = −1

8
,

C
W,c,(1)
A (µ0) = −1

2
. (2.13)

Analytic expressions including O(ǫ) terms can be downloaded from [37].

With the help of the exact two-loop result, we can extract the full x-dependence in

front of the lnµ0 terms at the three-loop level. We find

C
W,t,(2)
A (µ0) = C

W,t,(2)
A (µ0 = mt) + ln

(

µ2
0

m2
t

)[

69 + 1292x− 209x2

18(x− 1)3

−521x+ 105x2 − 50x3

9(x− 1)4
lnx− 47x+ x2

3(x− 1)3
Li2

(

1− 1

x

)]

– 8 –
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+ ln2
(

µ2
0

m2
t

)[

61x+ 11x2

3(x− 1)3
− 49x+ 96x2 − x3

6(x− 1)4
lnx

]

,

C
W,c,(2)
A (µ0) = C

W,c,(2)
A (µ0 = MW )− 23

6
ln

(

µ2
0

M2
W

)

. (2.14)

We have chosen µ0 = mt and µ0 = MW as default scales for the top and charm sectors,

respectively. Analytical results for all the coefficients can be downloaded from [37]. In the

following, we present the results in a compact numerical form. For our two expansions, the

coefficient in the charm sector reads

C
W,c,(2)
A (µ0 = MW ) = −5.222− 0.2215 y2 + 0.1244 y2 ln y − 0.08889 y2 ln2 y + 0.04146 y4

−0.02955 y4 ln y+0.009524 y4 ln2 y−0.001092 y6+0.0006349 y6 ln y

−0.00004286 y8 + 0.00003207 y8 ln y − 3.109 · 10−6 y10

+2.643 · 10−6 y10 ln y − 3.009 · 10−7 y12 + 2.775 · 10−7 y12 ln y

+O
(

y14
)

, (2.15)

C
W,c,(2)
A (µ0 = MW ) = −5.403 + 0.09422w + 0.02786w2 + 0.01355w3 + 0.008129w4

+0.005469w5 + 0.003957w6 + 0.003009w7 + 0.002373w8

+0.001925w9 + 0.001596w10 + 0.001346w11 + 0.001153w12

+0.0009996w13 + 0.0008757w14 + 0.0007742w15 + 0.0006898w16

+O
(

w17
)

. (2.16)

The corresponding coefficient in the top sector is given by

C
W,t,(2)
A (µ0 = mt) = 2.710 y2 + 6.010 y2 ln y − 8.156 y4 − 1.131 y4 ln y − 0.5394 y6

−13.97 y6 ln y + 35.32 y8 + 15.64 y8 ln y + 103.9 y10

+149.2 y10 ln y + 207.7 y12 + 454.8 y12 ln y +O
(

y14
)

, (2.17)

C
W,t,(2)
A (µ0 = mt) = −0.4495− 0.5845w + 0.1330w2 + 0.1563w3 + 0.1233w4

+0.09333w5 + 0.07134w6 + 0.05561w7 + 0.04425w8

+0.03589w9 + 0.02960w10 + 0.02478w11 + 0.02102w12

+0.01803w13 + 0.01562w14 + 0.01366w15 + 0.01204w16

+O
(

w17
)

. (2.18)

In figure 3, the results from eqs. (2.15)–(2.18) are shown as functions of y = MW /mt.

The dashed and solid lines correspond to the y → 0 and y =
√
1− w → 1 expansions,

respectively. Thin lines are obtained by using less expansion terms in y and w. They can

be used to test convergence of the expansions, as it is expected that good agreement with

the unknown exact result is achieved up to the point where two successive orders almost

coincide.

In the case of C
W,c,(2)
A (left panel of figure 3), there is a significant overlap of the

expansions around the two limits in the region from y ≈ 0.3 to y ≈ 1.4. The agreement
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Figure 3. C
W,(2)
A as a function of y = MW /mt for the charm (left) and top quark sector (right).

The (blue) dashed lines are obtained in the limit y ≪ 1, and the (grey) solid line for w = 1−y2 ≪ 1.

Thinner lines contain less terms in the expansions. The physical region for y is indicated by the

(yellow) vertical band.

over such a large range arises probably due to the relatively simple dependence of C
W,c,(2)
A on

the top quark mass: mt only occurs through one-loop corrections to the gluon propagator.

Note also that the numerical effect of the top quark mass is moderate: C
W,c,(2)
A changes

only by around 1.5% between the mt → ∞ limit and the physical value of mt.

Also in the case of C
W,t,(2)
A (right panel of figure 3) one observes an overlap of the ex-

pansions for y → 0 and y → 1 around y ≈ 0.35. This feature allows us to use the expression

in eq. (2.17) for y ≤ 0.35, and the one in eq. (2.18) for y > 0.35. Due to the convergence

properties (cf. thin lines) these expressions are excellent approximations to the exact result

in the respective regions. In particular, for the physical region of y, it is sufficient to use

the expansion around mt = MW .

For practical applications, it is useful to have short formulae which approximate CA
near the physical value of y. In the range 0.3 < y < 0.7, the fits

C
W,c,(2)
A (µ0 = MW ) ≃ −0.015y2 − 0.182y − 5.211 ,

C
W,t,(2)
A (µ0 = mt) ≃ 2.255 y2 − 2.816 y + 0.189 (2.19)

are accurate to better than 1% in the corresponding quantities.

3 Z-boson penguins

3.1 General remarks

The second type of contribution to CA arises from the so-called Z-boson penguins. Sample

diagrams at the one-, two- and three-loop orders are shown in figure 4. In contrast to the

W -box diagrams, there is no contribution from evanescent operators to C
Z,(n)
A . However,

flavour non-diagonal loop contributions to the light quark kinetic terms require introduction

of an EW counterterm which already appears at the one-loop level. The corresponding
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(a) (b) (c)
l− l+

s bW

Z

u, c, t u, c, t

l− l+

s bu, c, t

Z

W W

l− l+

s b

Z

W W

Figure 4. Sample Z-boson penguin diagrams contributing to CA.

(a) (b) (c)
W

u, c, t

s b

W

s b

W

s b

Figure 5. Sample Feynman diagrams contributing to ZQ
2,sb.

counterterm Lagrangian (see eq. (13) of ref. [30]3) can be written in the following form

Lew
counter = i

GFM
2
W

4
√
2π2

V ∗

tbVts
(

Zt2,sb − Zc2,sb
)

b̄L 6DsL , (3.1)

where Dµ is the covariant derivative involving the neutral gauge boson fields (Z, γ, g).

While only the one-loop contributions to ZQ2,sb were needed in the B̄ → Xsγ case [29], now

also the two- and three-loop corrections of order αs and α2
s matter. The two-loop ones were

also necessary in refs. [23–27]. Perturbative expansions of ZQ2,sb are conveniently written as

Zc2,sb =
∑

n=0

(

µ2
0

M2
W

)(n+1)ǫ
(αs
4π

)n

Z
c,(n)
2,sb ,

Zt2,sb =
∑

n=0

(

µ2
0

m2
t

)(n+1)ǫ
(αs
4π

)n

Z
t,(n)
2,sb . (3.2)

For determination of ZQ2,sb, a two-point function with incoming strange quark and outgo-

ing bottom quark has to be considered. Sample diagrams at one, two and three loops

are shown in figure 5. We refrain from explicitly listing the results but refer to [37] for

computer-readable expressions.

The counterterm ZQ2,sb is either inserted in the tree-level amplitude or in two-loop

diagrams containing a closed top quark loop on the gluon propagator, as shown in figure 6.

Insertions of the counterterm into other loop contributions lead to massless tadpoles which

vanish in dimensional regularization.

3Flavour non-diagonal renormalization of the mass terms does not matter in the present calculation

because we can treat the bottom quark as massless.
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(a) (b) (c)

Z

s b

t

l− l+

Z

s b

t

l− l+

Z

s b

t

l− l+

Figure 6. Sample two-loop counterterm diagrams to the Z-penguin contribution. Altogether,

there are five such diagrams.

(a) (b)l− l+

s b

Z

W

l− l+

s b

Z

Figure 7. Sample Feynman diagrams containing a closed triangle fermion loop that contribute to

C
Z,(2)
A . The counterterm contribution in the right diagram comes from eq. (3.1).

3.2 Fermion triangle contribution

There is a class of Feynman diagrams which require special attention, namely those contain-

ing a closed triangle quark loop (see figure 7). For these contributions, a naive treatment of

γ5 as anticommuting is not possible, and a more careful investigation is necessary. We have

followed two approaches which are described below. Similarly to the anomaly cancellation

in the SM, contributions with the up, down, strange and charm quarks running in the

triangle loop cancel pairwise within each family. Thus, only the top and bottom quarks

need to be considered, as the top is the only massive quark in our calculation.

In our first approach, we adopt the prescription from ref. [38] and replace the axial-

vector coupling in the triangle loop as follows

γµγ5 → i

12
εµνρσ (γνγργσ − γσγργν) . (3.3)

In a next step, we pull out the ε tensor and take the trace of the loop diagram in d

dimensions. In the resulting object, we perform the replacements

i εµνρσγνγργσγ5 ⊗ γµγ5 → 6 γµ ⊗ γµγ5

i εµνρσγνγργσ ⊗ γµγ5 → 6 γµγ5 ⊗ γµγ5 , (3.4)

and proceed from now on in the same way as with the other diagrams contributing to CZ
A .

In the second approach, we do not take the trace in the triangle loop at all, but only

use the cyclicity property for traces and anticommutation relations for the γ matrices (not
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for γ5) in order to put γ5 to the end of each product under the trace. Afterwards, we

perform the tensor loop integration, and use again anticommutation relations to bring the

resulting expressions to the form

γνγργσγ5 ⊗ γµγ5 Tr (γνγργσγµγ5) ,

γνγργσ ⊗ γµγ5 Tr (γνγργσγµγ5) , (3.5)

where only the axial-vector part of the (Z boson)-lepton coupling has been taken into ac-

count. In a next step, we add and subtract 24γµ ⊗ γµγ5 to the first, and 24γµγ5 ⊗ γµγ5 to

the second structure in eq. (3.5). This way, we obtain the Wilson coefficients for the trace

evanescent operators [39]

QE
1 = γνγργσγ5 ⊗ γµγ5 Tr (γνγργσγµγ5) + 24 γµ ⊗ γµγ5 ,

QE
2 = γνγργσ ⊗ γµγ5 Tr (γνγργσγµγ5) + 24 γµγ5 ⊗ γµγ5 (3.6)

and a contribution to CA. Actually, the latter is given by (−24) times the prefactor of the

second structure in eq. (3.5).

The two methods, which lead to identical results for CZ
A , have been applied both to

the three-loop diagrams themselves and to the counterterm contributions (cf. figure 7).

3.3 Matching formula

In analogy to eq. (2.1) we can write

C
Z,(n)
A = C

Z,t,(n)
A − C

Z,c,(n)
A + δn,2

(

CZ,t,tria.
A − CZ,c,tria.

A

)

, (3.7)

where CZ,Q,tria.
A are the contributions from the triangle diagrams described in the previous

subsection.

The calculation of C
Z,(n)
A proceeds along the same lines as for the W -box contribution.

In particular, we set all the external momenta to zero, and expand the Feynman integrals

in the full theory both for mt ≫ MW and mt ≈ MW . Furthermore, we renormalize the

top-quark mass, αs and the wave function in analogy to the W -box case. As before, all

loop corrections vanish in the effective theory, which finally leads to the following matching

equation for CZ,Q
A (Q = c, t)

CZ,Q
A = (1 +∆Zψ)

2
∑

n=0

(αs
4π

)n [
(

ZSM
g

)2n
C
Z,Q,(n)
A,bare + δtQ∆TZ,t,(n) +KQ,(n)

]

+K̃Q +O
(

α3
s

)

, (3.8)

with top-quark mass counterterms

∆TZ,t,(0) = 0 ,

∆TZ,t,(1) =
(

C
Z,t,(0)
A,bare

∣

∣

mbare
t →Zmtmt

)

αs

,

∆TZ,t,(2) =
(

C
Z,t,(0)
A,bare

∣

∣

mbare
t →Zmtmt

+
αs
4π

C
Z,t,(1)
A,bare

∣

∣

mbare
t →Zmtmt

)

α2
s

. (3.9)
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KQ,(n) denote tree-level contributions from the EW counterterm (3.1) which take a simple

form

Kt,(n) =

(

− 1

16
+

sin2 θW
24

)(

µ2
0

m2
t

)(n+1)ǫ

Z
t,(n)
2,sb ,

Kc,(n) =

(

− 1

16
+

sin2 θW
24

)(

µ2
0

M2
W

)(n+1)ǫ

Z
c,(n)
2,sb . (3.10)

Finally, K̃Q stands for the counterterm contributions from two-loop diagrams like those in

figure 6.

We observe that after inserting explicit results on the right-hand side of eq. (3.8), all

the terms proportional to sin2 θW cancel out, and CZ,t
A becomes independent of the weak

mixing angle. This can be understood by recalling similarities between the Z boson and the

photon couplings to other particles in the background field gauge, as well as the structure

of the counterterm in eq. (3.1). Once the quark kinetic terms in the effective theory are

imposed to be flavour diagonal, the same must be true for dimension-four quark-photon

couplings. In effect, the counterterm in eq. (3.1) automatically renormalizes away all the

zero-momentum quark-(Z boson) interactions that come with sin2 θW .

Another interesting thing to note is that C
Z,c,(n)
A = 0 at each loop order in the back-

ground field version of the ’t Hooft-Feynman gauge, which means that only the triangle

contributions are non-vanishing in the charm sector. One of the ways to understand this

fact is again by considering diagrams where the Z boson (together with the muons) is

replaced by an external photon.

3.4 Results

With our calculation, we have confirmed the one- and two-loop results from ref. [23] which

are given by (for ǫ → 0)

C
Z,t,(0)
A (µ0) =

−6x+ x2

16(x− 1)
+

2x+ 3x2

16(x− 1)2
lnx ,

C
Z,t,(1)
A (µ0) =

29x+ 7x2 + 4x3

6(x− 1)2
− 23x+ 14x2 + 3x3

6(x− 1)3
lnx− 4x+ x3

2(x− 1)2
Li2

(

1− 1

x

)

+ ln

(

µ2
0

m2
t

)[

8x+ x2 + x3

2(x− 1)2
− x+ 4x2

(x− 1)3
lnx

]

. (3.11)

Furthermore, similarly to CW
A , we obtain exact dependence on MW and mt for the µ0-

dependent terms which read

C
Z,t,(2)
A (µ0) = C

Z,t,(2)
A (µ0 = mt) + ln

(

µ2
0

m2
t

)[

188x+ 4x2 + 95x3 − 47x4

6(x− 1)3
Li2

(

1− 1

x

)

+
1468x+ 1578x2 − 25x3 − 141x4

18(x− 1)4
lnx −4622x+ 1031x2 + 582x3 − 475x4

36(x− 1)3

]

+ ln2
(

µ2
0

m2
t

)[

49x+315x2−4x3

6(x− 1)4
lnx− 440x+257x2+72x3−49x4

12(x− 1)3

]

. (3.12)

– 14 –



J
H
E
P
1
2
(
2
0
1
3
)
0
9
7

For the generic three-loop contributions, terms up to order y12 and w16 have been evaluated,

as in the W -box case in section 2. In a numerical form, they read

C
Z,t,(2)
A (µ0 = mt) =

0.1897

y2
+ 2.139 + 28.59 y2 + 33.85 y2 ln y + 28.01 y4 + 97.98 y4 ln y

−31.41 y6 + 106.2 y6 ln y − 167.0 y8 − 78.59 y8 ln y − 387.4 y10

−618.3 y10 ln y − 697.9 y12 − 1688. y12 ln y +O
(

y14
)

,

C
Z,t,(2)
A (µ0 = mt) = −1.934 + 0.8966w + 0.7399w2 + 0.6058w3 + 0.5113w4 + 0.4439w5

+0.3948w6 + 0.3582w7 + 0.3303w8 + 0.3087w9 + 0.2916w10

+0.2778w11 + 0.2667w12 + 0.2575w13 + 0.2498w14 + 0.2433w15

+0.2379w16 +O
(

w17
)

. (3.13)

For the fermion triangle contributions, all the lnµ0 contributions have cancelled out

after matching. We find

CZ,t,tria.
A = −0.9871

y2
− 2.388− 1.627 y2 − 3.516 y2 ln y − 1.830 y4 − 6.959 y4 ln y

−2.038 y6 − 10.83 y6 ln y − 2.210 y8 − 15.09 y8 ln y − 2.353 y10 − 19.65 y10 ln y

−2.473 y12 − 24.48 y12 ln y +O
(

y14
)

,

CZ,t,tria.
A = −2.418− 1.334w − 1.147w2 − 1.080w3 − 1.048w4 − 1.030w5 − 1.019w6

−1.012w7 − 1.007w8 − 1.003w9 − 1.001w10 − 0.9984w11 − 0.9968w12

−0.9955w13 − 0.9944w14 − 0.9936w15 − 0.9928w16 +O
(

w17
)

,

CZ,c,tria.
A = −1.250 + 1.500 ln y − 0.5331 y2 + 0.2778 y2 ln y − 0.2222 y2 ln2 y + 0.1144 y4

−0.08194 y4 ln y + 0.02778 y4 ln2 y − 0.003538 y6 + 0.002143 y6 ln y

−0.0001573 y8 + 0.0001235 y8 ln y − 0.00001283 y10 + 0.00001145 y10 ln y

−1.383 · 10−6 y12 + 1.338 · 10−6 y12 ln y +O
(

y14
)

,

CZ,c,tria.
A = −1.672− 0.5336w − 0.3100w2 − 0.2181w3 − 0.1683w4 − 0.1370w5

−0.1156w6 − 0.09997w7 − 0.08808w8 − 0.07873w9 − 0.07118w10

−0.06495w11 − 0.05973w12 − 0.05529w13 − 0.05147w14 − 0.04814w15

−0.04522w16 +O
(

w17
)

. (3.14)

In the limit of large top quark mass, the coefficient C
Z,(2)
A grows as m2

t , which has its

origin in the Yukawa interaction of the charged pseudo-goldstones with the top quark. For

this reason, we plot in figure 8 the combination y2C
Z,(2)
A where sums of the results from

eqs. (3.13) and (3.14) are shown as dashed (MW ≪ mt) and solid lines (MW ≈ mt). Note

that after multiplication by y2, the latter is expanded in w = 1− y2. Again, one observes

that the two approximations coincide for y ≈ 0.4, which suggests that a combination of

the two expansions covers the whole range between y = 0 and y = 1. In the physical

region, the expansion around MW = mt provides an excellent approximation. It is inter-

esting to note that the fermion triangle contribution is more than an order of magnitude

larger than C
Z,t,(2)
A . This is particularly true for the physical value of y where we have

y2C
Z,t,(2)
A ≈ −0.02.
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Figure 8. y2 C
Z,(2)
A as a function of y = MW /mt. The (blue) dashed lines are obtained in the

limit y ≪ 1 and the (grey) solid line for w = 1 − y2 ≪ 1. Thinner lines contain less terms in the

expansions. The physical region for y is indicated by the (yellow) vertical band.

A handy approximation formula which works to better than 1% for 0.3 < y < 0.7 reads

C
Z,(2)
A (µ0 = mt) ≃ 36.802 y3 − 79.060 y2 + 57.988 y − 17.222 . (3.15)

4 Numerical analysis

In this section, we shall discuss numerical effects of our three-loop QCD corrections. The

B(Bs → µ+µ−) branching ratio in the SM is proportional to |CA|2 (cf. eq. (1.6) with

CS = CP = 0 and FP = 1). Here, we shall consider |CA|2 only. Evaluation of the

branching ratio itself is relegated to a parallel article [40] where also the new two-loop EW

corrections [16] are included.

The relevant parameters are as follows. For the gauge boson masses, we take MZ =

91.1876GeV [41] andMW = 80.358GeV (calculated fromGF ,MZ and αem). For the strong

coupling, αs(MZ) = 0.1184 in the five-flavour QCD is used [41]. Four-loop renormalization

group equations (RGE) are applied to evolve it to other scales. For the top-quark mass,

our input is Mt = 173.1GeV [41] which we treat as the pole mass. We convert it to the

MS scheme with respect to QCD, but include no shift due to the EW interactions. This

means that our mt should be understood as renormalized on-shell with respect to the EW

interactions. As far as QCD is concerned, we use a three-loop relation for converting Mt

to mt(mt), which gives mt(mt) ≃ 163.5GeV. Next, four-loop RGE are used to find mt(µ0)

at other values of µ0.

Figure 9 shows the matching scale dependence of |CA|2. The dotted, dashed and

solid curves show the leading order (LO), next-to-leading-order (NLO) and next-to-next-

to-leading-order (NNLO) results, respectively. In the current case, they correspond to one-,

two- and three-loop matching calculations.

The range of the plot corresponds roughly to µ0 ∈
[

1
2MW , 2mt

]

, which might be consid-

ered reasonable given that both the W -boson and the top quark are decoupled simultane-

ously. However, our Wilson coefficient has a trivial RGE (at the LO in EW interactions) but

it is quite sensitive to mt. In consequence, the main reason for its µ0-dependence here is the
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Figure 9. Matching scale dependence of |CA|2 and the LO, NLO and NNLO in QCD but at the

LO in EW interactions. The top quark mass is renormalized on shell with respect to the EW

interactions, and at µ0 in MS with respect to QCD.

top-quark mass renormalization. Thus, for estimating uncertainties due to truncation of the

QCD perturbation series at each order, we shall use a more narrow range µ0 ∈
[

1
2mt, 2mt

]

.

One observes in figure 9 that the prediction for |CA|2 has already improved a lot after

including the NLO QCD corrections. The variation at the NLO level amounts to around

1.8% only, for µ0 ∈
[

1
2mt, 2mt

]

. Once the new three-loop corrections are taken into ac-

count, the uncertainty gets reduced to less than 0.2%, which can be treated as negligible

for all practical purposes.

Another conclusion that can be drawn from figure 9 is that for µ0 = mt the NLO

correction is moderate (2.2%), while the NNLO correction essentially vanishes. Although

µ0 = mt has been anticipated to be an optimal scale in the past [24], there has been no

convincing theoretical argument for such a choice. Our explicit three-loop calculation has

been actually necessary to suppress the QCD matching uncertainties in |CA|2 to the current

sub-percent level.

For µ0 = 160GeV, our final result for CA is well approximated by the fit

CA = 0.4802

(

Mt

173.1

)1.52(αs(MZ)

0.1184

)

−0.09

+O(αem) , (4.1)

which is accurate to better than 0.1% for αs(MZ) ∈ [0.11, 0.13] and Mt ∈ [170, 175]GeV.

Let us stress that the O(αem) term in eq. (4.1) stands for both the NLO EW matching

corrections at µ = µ0, as well as effects of the evolution of CA down to µ = µb ∼ mb,

according to the RGE. Once the QCD logarithms get resummed, the latter effects behave

not only like O(αem), but also like O(αem/αs) and O(αem/α
2
s), which means that they are

potentially more important than the NNLO QCD corrections evaluated here. However,

the actual numerical impact of the O(αem/αs) and O(αem/α
2
s) terms on the decay rate

amounts to around −1.5% only [42], which has been checked using anomalous dimension

matrices from refs. [43, 44]. The necessary expressions are given in the appendix.

As far as the NLO EW matching corrections are concerned, they have been known for

a long time only in the mt ≫ MW limit [45]. A complete calculation of these two-loop cor-

rections has recently been finalized [16]. Their numerical effect depends on the scheme used
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at the LO. A detailed discussion of this issue is presented in ref. [16]. Let us only mention

that the semi-perfect stabilization of µ0-dependence in figure 9 at the NNLO in QCD takes

place only because we have renormalized mt and MW on shell with respect to the EW inter-

actions. If we used MS at µ0 for the EW renormalization of mt and MW , then acceptable

stability would be observed only after including the very two-loop EW corrections.

5 Conclusions

We have evaluated the NNLO QCD corrections to the Wilson coefficient CA that param-

etrizes the Bs → µ+µ− branching ratio in the SM. For this purpose, three-loop matching

between the SM and the relevant effective theory has been performed. Tadpole integrals

depending onmt andMW have been evaluated with the help of expansions starting from the

limits mt ≈ MW and mt ≫ MW , which for all practical purposes is equivalent to an exact

calculation. When masses of the light quarks and their momenta are set to zero, care has

to be taken about the so-called evanescent operators, similarly to the NLO case [25]. Such

operators have also been helpful in dealing with diagrams where γ5 was present under traces.

Our results for the renormalized matching coefficients CW
A and CZ

A can be downloaded

in a computer-readable form from [37]. Including the new corrections makes CA more

stable with respect to the matching scale µ0 at which the top-quark mass and αs are

renormalized. Apart from Bs → µ+µ−, our calculation is directly applicable to all the

Bs(d) → ℓ+ℓ− decay modes, and it matters for other processes mediated by Z-penguins

and W -boxes, e.g., B̄ → Xsνν̄, K → πνν̄, or short-distance contributions to KL → µ+µ−.

However, it is only Bs → µ+µ− for which the three-loop accuracy is relevant at present.

An updated SM prediction for B(Bs → µ+µ−) is presented in a parallel article [40]

where also the new two-loop EW corrections [16] are included.
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A Logarithmically enhanced QED corrections

In this appendix, we present explicit expressions for the logarithmically-enhanced QED

corrections to CA. Beyond the LO in αem, its perturbative expansion at the matching

scale µ0 reads

CA(µ0) = Cs
A +

αem(µ0)

4π
C
e,(1)
A (µ0) + O(α2

em, αemαs) , (A.1)
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i 1 2 3 4 5 6 7 8

ai −2 −1 6
23 −12

23 0.4086 −0.4230 −0.8994 0.1456

pi −0.0222 −0.0768 −0.0714 0.0672 0.0074 0.0360 0.0614 −0.0014

qi 0 0 0.2440 −0.2231 0.1204 −0.2874 −0.3080 −0.0429

ri 0.4464 0.1626 −0.0116 −0.0316 0.0027 −0.0299 −0.0421 0.0004

si 0.0040 0.0183 0 0 0.0017 0.0076 −0.0320 0.0004

ti 0.0271 0.0469 −0.0114 −0.0214 0.0018 −0.0093 −0.0337 −0.0001

Table 1. Powers and coefficients in eq. (A.3).

where Cs
A stands for the scale-independent O(α0

em) contribution as given in eq. (1.9). Using

the RGE from refs. [43, 44] one obtains the following result at the scale µb

CA(µb) = Cs
A +

αem(µb)

α2
s(µb)

F1 sin2 θW +
αem(µb)

αs(µb)

[

F2 + F3 sin2 θW
]

+ αemG + O
(

α2
em

α3
s

, αemαs

)

, (A.2)

where G includes all the NLO EW corrections that are not logarithmically enhanced. The

quantities F1,2,3 depend on η = αs(µ0)
αs(µb)

and x =
m2

t

M2

W

. We find

F1 =
8

∑

i=1

piη
ai ,

F2 =
3(η − 1)

23 η
Y (x) ,

F3 =
3(η − 1)

23 η
V (x) +

z ln η

η
+

8
∑

i=1

ηai
[

qi + η ri + η E(x)si + η ti ln

(

µ2
0

M2
W

)]

, (A.3)

with z ≃ 0.0553 and the remaining coefficients summarized in table 1. The functions

Y (x), V (x) and E(x) originate from the one-loop SM matching conditions [22] for various

operators in the effective theory. They read

Y (x) =
3x2

8(x− 1)2
lnx +

x2 − 4x

8(x− 1)
,

V (x) =
−24x4 + 6x3 + 63x2 − 50x+ 8

18(x− 1)4
lnx +

−18x4 + 163x3 − 259x2 + 108x

36(x− 1)3
,

E(x) =
−9x2 + 16x− 4

6(1− x)4
lnx +

x3 + 11x2 − 18x

12(x− 1)3
. (A.4)
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The coefficients in table 1 satisfy the following identities:

8
∑

i=1

piai =
8

∑

i=1

pi =
8

∑

i=1

(qi + ri) =
8

∑

i=1

si =
8

∑

i=1

ti = 0. (A.5)

With the help of them one can easily check that the terms in eq. (A.2) proportional to F1,2,3

are finite in the limit αs → 0. Logarithms lnn
µ2
0

µ2
b

with n = 1, 2 arise in this limit, which

explains why the corresponding QED corrections are called logarithmically enhanced. The

QED logarithms αem ln
µ2
0

µ2
b

are not being resummed here. It is the resummation of QCD

logarithms αs ln
µ2
0

µ2
b

in the corresponding terms that brings inverse powers of αs into the

final results.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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