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have duality groups

G of type E7, with exception of U(p, n) models. For N = 2 we prove separately that

special geometry requires a non-minimal scalar-vector coupling. Upon truncation to N = 1

supergravity, extended models generically preserve the non-minimal scalar-vector coupling,
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1 Introduction

According to inflationary theory, all elementary particles populating our universe have been

created as a result of the process of preheating and reheating of the universe after inflation.

During inflation, the energy density of the universe is dominated by the energy of the

inflaton field φ. At the end of inflation, the inflaton field may rapidly transfer a part of its

energy to other particles and fields in the process of preheating, a non-perturbative process

which may occur due to a combination of parametric resonance, tachyonic instability, and

rescattering of produced particles and waves. However, this process does not take away all

energy of the inflaton filed, so it should be followed by reheating, a perturbative particle

production and the inflaton decay [1, 2]. Reheating leads to a complete decay of the

inflaton field only if the inflaton field can actually decay to other particles, i.e. if the theory

allows the process φ → anything rather than some interaction φ + φ → anything. There

are some theories where the decay φ → anything is forbidden, reheating is incomplete, and

the universe eventually becomes dominated by the oscillating inflaton field, or by other

scalar fields produced during preheating. Such theories are cosmologically unacceptable.

Therefore it it important to understand whether there are some deep theoretical reasons

to expect the existence of interactions which could lead to a complete decay of the inflaton

field and of all other scalar fields which could be produced at the end of inflation.

A complete decay of the scalar fields may occur due to the scalar-dependent vector

coupling, which is possible in N = 1 supergravity [3]:

−1
4

(

Re fαβ(ϕ)
)

Fα
µνF

βµν + i
4

(

Im fαβ(ϕ)
)

Fα
µνF̃

βµν . (1.1)
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Here the function fαβ(ϕ) is holomorphic. However, whereas in N = 1 supergravity the

dependence of fαβ(ϕ) on scalars is possible, it is not required. The preference is often

given to the minimal, scalar-independent vector couplings, where

Re fαβ(ϕ) = δαβ , Im fαβ(ϕ) = 0 . (1.2)

Indeed, the Ockham’s razor principle generally recommends, when faced with competing

hypotheses that are equal in other respects, selecting the one that makes the fewest new

assumptions. At the level of phenomenological N = 1 supergravity the non-minimal vector

coupling requires an unmotivated extra assumption about the function fαβ(ϕ) and should

therefore be avoided, unless such a motivation is provided. Moreover, in some textbooks

N = 1 supergravity is presented only in the form (1.2), see e.g. [4].

It has been recently explained in [5] that in some models of inflation in supergravity

which provide an arbitrary inflaton potential [6, 7] there is no decay route for the inflaton

field, unless one involves the non-minimal vector coupling. An analogous situation with

reheating was noticed earlier in the string theory modular inflation models [8–11] as well

as in related supergravity inflation models [12, 13]. In [8–11] it was explained that in

string theory standard model particles can live on wrapped D7 branes. In such case the

inflaton which is the combination of the 4-cycle volume modulus Y and its axionic partner

X naturally couple to vectors

Y FµνF
µν , XFµνF̃

µν . (1.3)

This provides a possibility of the creation of matter after inflation in these models via the

inflaton decay into vectors. However, it was not clear whether this is just a specific example

of the non-minimal vector coupling, or a generic feature of all phenomenological N = 1

supergravity models derived from string theory via compactification and/or from extended

supergravities. Since this issue appears in many inflationary models based on supergravity,

we decided to investigate it.

We would like to note here that the non-minimal coupling of vectors is always com-

plemented by the Pauli couplings of the form [3]

∂ fαβ(ϕ)

∂ϕi
χ̄iσµνλ

αF βµν , (1.4)

which allow the decay of the fermions χ̄i into gaugino λα and a vector F βµν . This is in ad-

dition to the usual gaugino-gravitino-vector Pauli terms. Therefore if the superheavy scalar

fields in the inflaton multiplet may completely decay after inflation, the same conclusion

will be valid for their fermionic superpartners.

The purpose of this note is to prove that the non-minimal scalar-dependent vector cou-

pling is compulsory (except for hyperscalars) in all N > 1 supergravities, that have scalars,

and in related superstring theory compactifications. This provides a motivation to use such

couplings in phenomenological N = 1 models inspired by the superstring theory/extended

supergravity. We will also prove that generic N > 1 supergravities consistently truncated

to N = 1 supergravity forbid the minimal choice (1.2). The only exception are U(p, n)

models and the ones where scalars originate from N = 2 hypers.

– 2 –
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N G R

N = 3 U(3, n) (3+ n)

N = 4 SL(2,R)⊗ SO(6, n) (2,6+ n)

N = 5 SU(1, 5) 20

N = 6 SO∗(12) 32

N = 8 E7(7) 56

Table 1. N > 3 supergravity sequence of groups G of the corresponding G

H
symmetric spaces,

and their symplectic representations R

2 Extended d = 4 N > 1 supergravity

The bosonic part of d = 4 N > 1 supergravities depends on metric, vectors and scalars.

In particular, the action depends on Abelian vectors AΛ
µ via the field strength FΛ

µν =

∂µAΛ
ν − ∂νAΛ

µ , on scalars and on the metric1

Scl(F, φ, g) =
1

4κ2

∫

d4x e
(

−
1

2
R+ ImNΛΣF

Λ
µνF

µνΣ

+
1

2 e
ReNΛΣǫ

µνρσFΛ
µνF

Σ
ρσ +

1

2
gij(φ)∂µφ

i∂µφj
)

(2.1)

Here the kinetic term for vectors NΛΣ(φ) in general depends on scalars. The matrix

ImNΛΣ is a metric in the vector moduli space. It must be negative definite to provide

the positive energy and it must be invertible so that a consistent quantization is possible.

These properties of the kinetic matrix NΛΣ(φ) will be used in the following.

One should keep in mind that the N = 1 supergravity vector coupling fαβ(z) cor-

responds to −4iNΛΣ. The manifold of scalars for 3 ≤ N ≤ 8 is in each case a unique

symmetric coset space G/H, where the group G is the Gaillard-Zumino duality symme-

try [14], see table 1. In case N = 2 it can be a symmetric coset space G/H, see table 2 for

7 choices, or it can be also a non-symmetric space described by a Hodge Kähler manifold

of N = 2 special geometry (we will discuss separately the case of N = 2 hypermultiplets,

which are decoupled from the vector multiplets) [15]–[18–20].

The first set of all extended supergravities d = 4 N > 1 based on symmetric coset

spaces G/H has a remarkable property that almost all groups G are of type E7 [21–25], see

tables 1, 2. This universal property will be used to prove that for all extended supergravities

d = 4 N > 1 based on symmetric coset space G/H the vector coupling NΛΣ(φ) must be

scalar dependent, with exception of hyper scalars. In this first set

∂

∂φi
NΛΣ(φ) ≡ ∂iNΛΣ 6= 0 . (2.2)

In the remaining non-symmetric N = 2 supergravities we will prove that eq. (2.2) is

required for a consistency of the special Hodge Kähler manifold. It is quite remarkable

1In N = 2 models the kinetic term for (vector multiplet) scalars has a Kähler form: gij̄∂µφ
i∂µφ̄j̄ with

gij̄ = ∂i∂j̄K and K further restricted in virtue of eq. (2.17), see below.

– 3 –
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G R

U(1, n) (1+ n)c

SL(2,R)⊗ SO(2, n) (2,2+ n)

SL(2,R) 4

Sp(6,R) 14′

SU(3, 3) 20

SO∗(12) 32

E7(−25) 56

Table 2. N = 2 choices of groups G of the G

H
symmetric spaces and their symplectic representations

R. The last four lines refer to “magic N = 2 supergravities”.

that when ∂iNΛΣ 6= 0 N > 1 supergravities require a Pauli coupling of the type (1.4). We

will present the details in the N = 2 case below.

In the cosmological context of creation of matter in the early universe it is important

that groups of type E7 do not admit a quadratic bilinear polynomial.

2.1 Groups of type E7 and compulsory non-minimal vector coupling in N > 1

Simply put, groups of type E7 have a symplectic representation R admitting a symmetric

quartic invariant polynomial, but not a quadratic one. We will elaborate further with

relevant examples. These were first defined and studied in [21–24]. This was about a decade

before2 the discovery of supergravity. In fact, surprisingly, all extended supergravities

2 ≤ N ≤ 8 described by coset spaces G
H

have G of type E7 [25–27], with the exception of

N = 2 group G = U(1, n) and N = 3 group G = U(3, n). These G = U(p, n) groups are

not of type E7, since they have a primitive quadratic symmetric invariant (in addition to

a symplectic bilinear form).

For N between 8 and 3 there are 4 classes of type E7 groups:

E7(7) , SO∗(12) , SU(1, 5) , SL(2,R)⊗ SO(6, n) , (2.3)

and one class U(3, n) which is not of type E7, see table 1. In N = 2 cases of symmetric

spaces there are 6 classes of type E7 groups [28], see table 2

E7(−25) , SO∗(12) , SU(3, 3) , Sp(6,R) , SL(2,R) , SL(2,R)⊗ SO(2, n) , (2.4)

and one class U(1, n) which is not of type E7. Here n is the integer describing the number

of matter multiplets for N = 4, 3, 2.

Given a symplectic representation R of dimension r

(R1,R2) = −(R2,R1) (2.5)

one can construct a quartic invariant q(R1,R2,R3,R4) which is completely symmetric so

that the quartic G-invariant polynomial is

I4(R) = q(R1,R2,R3,R4)R1=R2=R3=R4=R . (2.6)

2The first paper in [21–24] by Brown was submitted in 1967 and published in 1969.
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The famous example of such a quartic invariant in G = E7(7) is the Cartan-Cremmer-

Julia invariant [29, 30] which defines the area of the N = 8 black hole horizon [31]. In

groups of type E7 the quadratic symmetric invariant is generically not available, only an

antisymmetric one is available, therefore

(R1,R2)R1=R2
= 0 . (2.7)

Cases of N = 2 with G = U(1, n) and N = 3 with G = U(3, n) in fact have a quadratic

invariant hermitian form (R1,R2) whose imaginary part is the symplectic (antisymmet-

ric) invariant and whose real part is the symmetric quadratic invariant defined as follows

(see appendix)

Re (R1,R2)R1=R2
= I2(R) ≡

√

|I4(R)| 6= 0 , (2.8)

Im (R1,R2)R1=R2
= 0 . (2.9)

Thus, the fundamental representations of pseudounitary groups U(p,n), which have a her-

mitean quadratic invariant form, do not strictly qualify for groups of type E7. The reason

is that they have, in addition to the symplectic invariant, also a symmetric real quadratic

invariant instead of a quartic one. This is the reason why from all models of extended

supergravities only G = U(p, n) with p = 1, 3 are not groups of type E7.

Note, however, in all cases with n 6= 0 and N = 2, 3 these groups are non-compact and

the relevant quadratic invariants can not describe the negative definite vector couplings,

as we will see later. In n = 0 case the groups are compact but there are no scalars. All of

this will be important for our consequent analysis. In particular, these U(p, n) models will

form an exceptional case in truncation to N = 1.

We will now prove here that all vector couplings in extended supergravities with scalars

must be non-minimal: they must depend on all scalars with the exception of N = 2 hypers.

For type E7 models this follows from the absence of a symmetric quadratic invariant tensor.

For symmetric spaces with G = U(p, n) it follows from the fact that their symmetric

quadratic invariant tensor is not negative definite.

The group G is first embedded into an Sp(2nv,R) one. The duality symmetry of the

theory transforms the symplectic representation as follows

R′ = SR , (2.10)

where a real symplectic Sp(2nv,R) matrix is

S =

(

A B

C D

)

, St Ω S = Ω , Ω =

(

0 −I

I 0

)

, (2.11)

so that AtC − CtA = 0, BtD − DtB = 0, AtD − CtB = 1. The gauge kinetic term N

transforms via fractional transformations

N ′ = (C +DN )(A+BN )−1 . (2.12)

– 5 –
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A new symmetric symplectic matrix of dimension 2nv × 2nv can be constructed from the

nv × nv matrix N as follows [32]

M (N ) =







ImN +ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1






(2.13)

such that

MTΩM = Ω , MT = M . (2.14)

This matrix transforms as a tensor under duality transformations. If N would be constant,

M would also be constant. This would imply that there is a symmetric invariant tensor of

the group G. However, none of these theories with E7 type G has an invariant symmetric

quadratic form for the symplectic representation R of G, by definition. The only extended

supergravities, which have a symmetric quadratic invariant are the N = 3 and N = 2

theories with U(p, n) groups. However, their quadratic real form does not have all negative

eigenvalues but has a Lorentzian structure, having the signature (p, n), due to the non-

compactness of G for n ≥ 1: U(3, n) for N = 3 and U(1, n) for N = 2, see the first row in

table 1 and table 2, respectively. Note that ImN and M must be negative definite: for

ImN this is a condition for positive energy, for M the proof can be found in [18–20]. Thus,

only in absence of scalars when n = 0 in U(3, n) and U(1, n) models the constant matrix

M exist, but they are irrelevant since there are no scalars and the Gaillard-Zumino duality

group [14] becomes a compact group U(p). This proves eq. (2.2) for all scalar-dependent

N > 2 supergravities based on coset spaces.

2.2 N = 2

The case of N = 2 requires a separate study since scalars may belong to either vector

multiplets or hypermultiplets [15, 18–20]. Hypermultiplets and vector multiplets are de-

coupled: the interactions of hyper multiplets are described by a quaternionic geometry

whereas the interactions of the vector multiplets are described by the special geometry.

Therefore in N > 2
∂

∂φi
NΛΣ(φ) 6= 0 for all scalars , (2.15)

whereas in N = 2 the kinetic term of vectors depends on all scalars from the vector

multiplets φi
v and does not depend on any scalars from the hypermultiplets qu

∂

∂φi
v

NΛΣ(φ) 6= 0 ,
∂

∂qu
NΛΣ(φ) = 0 . (2.16)

2.2.1 N = 2 special geometry and compulsory non-minimal vector coupling

In N = 2 special geometry [15]–[18–20] the Riemann tensor of the Kähler manifold is

Rij̄kl̄ = −(gij̄gkl̄ + gil̄gkj̄) + CikpCj̄ l̄p̄g
pp̄ , (2.17)

– 6 –
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where Cijk is a covariantly holomorphic 3-form defined on a Hodge Kähler manifold. The

theory is based on covariantly holomorphic symplectic section (LΛ,MΛ). We also define

fΛ
i = DiL

Λ, hiΛ = DiMΛ. The Kähler metric in these notation is

gij̄ = −2ImNΛΣf
Λ
i f̄

Σ
j̄ (2.18)

and the Cikj tensor is

Cijk = fΛ
i ∂j NΛΣ fΣ

k . (2.19)

Here NΛΣ is the vector kinetic matrix, providing the following relations:

MΛ = NΛΣL
Σ , DiMΛ = NΛΣDiL

Σ . (2.20)

It follows that

∂iNΛΣL
Σ = −(N −N )ΛΣf

Σ
i . (2.21)

The Pauli terms with non-minimal vector couplings in N = 2 supergravity are

Cijkλ̄
iAσµνλ

jBF kµνǫAB = ∂j NΛΣ λ̄ΛAσµνλ
iBFΣµνǫAB (2.22)

and for non-vanishing ∂iNΛΣ they remain upon a consistent truncation in the correspond-

ing version of N = 1 supergravity in agreement with eq. (1.4).

For constant NΛΣ eq. (2.21) implies, since ImNΛΣ must be invertible for a consistent

quantization of supergravity, that

fΛ
i = 0 . (2.23)

In such case it follows from eq. (2.18) that

gij̄ = 0 . (2.24)

Also for constant NΛΣ eq. (2.19) implies that Cijk = 0. The vanishing metric of the Kähler

geometry gij̄ = 0 means that there are no vector multiplet scalars. In fact, ∂iNΛΣ = 0

in N > 1 is only possible if there are no scalars, except for hypers in N = 2 case. For

example, N = 3 models of the type defined in [33–35] can be reduced to N = 2 models

with vector multiplets with Cijk = 0 and hypermultiplets. When further reduced to N = 1

these models have only minimal kinetic terms [36].

We conclude therefore that eq. (2.2) is compulsory for a consistent N = 2 special

geometry. We remind that in this case we only used properties of special geometry which

encompass both symmetric and non-symmetric special Kähler manifolds.

N = 2 non-symmetric space models of special geometry also universally require a non-

minimal vector coupling. These couplings remain non-minimal and scalar dependent, when

truncated to N = 1, provided that Cijk 6= 0. So, special geometry with a non-vanishing

Cijk tensor can be regarded as a generalization of groups of type E7 for non-symmetric

special manifolds, see the appendix for the details.

It is particularly interesting that the simplest cases of non-symmetric spaces with a

non-vanishing Cijk correspond to the Calabi-Yau special geometries, as they come in type

II string theory compactifications [37]. The related c-map hypergeometry is also non-

symmetric (although it is an Einstein space). It may also be useful to remind here that

the examples of 10500 string landscape vacua [38] are based on such Calabi-Yau threefold

with the non-vanishing triple intersection numbers Cijk.

– 7 –
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2.3 All kinetic terms in N > 1

We have focused our attention to the fact that the vector kinetic terms are non-minimal

since we are interested in cosmological applications of the vertices which allow the decay

of the inflaton and unwanted relics into particles of the standard model. However, we may

add here that all kinetic terms in N > 1 supergravities are “non-minimal” which means

that they depend on scalars. For supergravity manifolds of N > 2 this is obvious because

they are Einstein spaces with (negative) constant curvature.

For N = 2 theories vector multiplets are coupled to special geometry space which is

never flat, while hypermultiplets are described by quaternionic geometries which are gener-

ically not symmetric and belong to Einstein spaces with constant negative curvature [39].

This means that the kinetic terms for scalars in all cases of N = 2 are non-minimal, how-

ever, the vector kinetic matrix depends only on scalars from the vector multiplets and does

not depend on hypers.

3 Consistent truncations of N > 1 to N = 1

A detailed study of the consistent truncation of N > 1 supergravity to an N = 1 was

performed in [40–42]. Here we would like to ask whether a theory with N > 1 can be

consistently truncated to an N = 1 supergravity with minimally coupled vectors. This is a

very strong constraint since it would require not only the matrix N to become holomorphic,

but in fact constant. For symmetric spaces this is only possible in one particular case if we

consider the CPn models with Cijk = 0, keep nc chiral multiplets and nv = n− nc vector

multiplets. These models may also include some hypermultiplets decoupled from vector

multiplets. Then the reduced theory will have a constant N matrix.

For N ≥ 4 consistent truncations to N = 2 exist which include, beyond vector mul-

tiplets, also hypermultiplets (see f.e. table 1 in [43]). Then further reduced to N = 1

hyperscalars will be minimally coupled to vectors. However, the scalar sector coming from

vectors will not be minimally coupled, since in general Cijk 6= 0. There is only a univer-

sal truncation to N = 1 which is minimally coupled which is the axion-dilaton N = 2

multiplet further truncated to a N = 1 vector multiplet. We observe that this is always

possible because this corresponds to the N = 1 truncation of a decoupled space for a
SL(2,R)
U(1) × SO(2,n)

SO(2)×SO(n) manifold when we set n = 0.

We then conclude that minimally coupled scalars in N = 1 truncation from higher N

can only be obtained if, at the level of N = 2 the scalars come from hypermultiplets or from

CPn submanifolds of the N = 2 manifolds (the axion-dilaton N=2 multiplet corresponds

to the CP 1 case in which case no scalar is left from this sector).

Following [40–42] the NΛΣ matrix in N = 2 is

NΛΣ = F̄ΛΣ − 2iT̄ΛT̄Σ(L
ZImFZWLW ) , (3.1)

where FZW is the holomorphic second derivative of the prepotential, LZ is the relevant

part of the covariantly holomorphic section and TΛ are the projectors on the graviphoton.

– 8 –
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We now redefine the indices so that the original Λ taking values 0, 1, . . . , n is split into an

index α taking values 1, . . . , nv for N = 1 vector multiplets and an index X taking values

in 0, 1, . . . , nc. Here n = nc + nv. Note that the N = 1 vector index α does not include 0.

A consistent truncation to N = 1 from N = 2 models with Cijk = 0 means that

one starts with the quadratic holomorphic prepotential F (X). In such case one finds

from (3.1) that

Nαβ = F̄αβ = −iδαβ (3.2)

and ImN < 0 as it should be. Here the relation between the N = 2 and N = 1 kinetic

matrix is F̄αβ = Nαβ = − i
4 f̄αβ(z̄) which agrees with [3].

Generic models derived from higher dimensions3 have Cijk 6= 0. Therefore the non-

minimal vector coupling NΛΣ reduced to N = 1 will not be constant, in general. As an

example one can consider the effective action of type N = 1 Calabi-Yau orientifolds derived

from the compactification of string theory in [44–46]. This is a generic case of superstring

inspired N = 1 supergravities which arise from compactified Calabi-Yau orientifolds. They

produce the cubic coupling associated with the holomorphic vector coupling

Nαβ(z) = dαβp z
p . (3.3)

Here as above α, β = 1, . . . , nv and p = 1, . . . , nc and dαβp codifies the Calabi-Yau threefolds

intersection numbers. The kinetic holomorphic vector coupling matrix is linear in the

scalars of a chiral multiplets zp = ap + iϕp and is proportional to

dαβp ϕ
pFα

µνF
βµν + dαβp a

pFα
µνF̃

βµν . (3.4)

Thus, if one of the scalars in the chiral multiplet zp or their combination is an inflaton field

or any other heavy scalar we would like to get rid of, it has a cubic vertex and a route of

decay into two vectors. In the same models there is a Pauli interaction of the following

form, see eq. (1.4)

dαβp χ̄
pσµνλ

αF βµν . (3.5)

If the fermion partner of the inflaton or any other heavy fermion was created at the non-

perturbative stage of preheating, it will also decay into a gaugino and a vector field at a

later stage via the compulsory Pauli interaction.

4 Discussion

The minimal N = 1 supergravity seems to be the simplest one and described in [4] with

the minimal vector coupling (1.2). It may be viewed, however, as an incomplete theory,

when the creation of matter in the Universe after inflation is studied. In this paper we have

argued that any version of N = 1 supergravity inspired by either supergravities with more

supersymmetries (extended N > 1 supergravities), or originating from higher dimensions

and compactifications of superstring theory, must have a non-minimal scalar dependent

3With exception of the string theory derivation of N = 3 supergravity model with U(3, n) duality group

based on a T6

Z2 orientifold [35].

– 9 –
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vector couplings, as well as Pauli couplings. In non-supersymmetric theories the coupling

aF F̃ of vectors with axion field a(x) was studied intensely in QFT and in applications to

cosmology, see for example [47] and references therein. The couplings of vectors to moduli

fields eφFF were also studied in various situations in QFT and cosmology.

In this paper we proved that in N = 1 supergravity obtained via truncation from ex-

tended N > 1 supergravities, or originating from higher dimensions and compactifications

of superstring theory, the interactions between vectors and scalars and the corresponding

Pauli interactions are compulsory (with exception of U(p, n) models and hyperscalars),

namely N = 1 action includes the following interactions:

ImNΛΣ(φ)F
Λ
µνF

µνΣ +ReNΛΣ(φ)F
Λ
µνF̃

µνΣ +
∂NΛΣ

∂φp
χ̄pσµνλ

ΛFΣµν + . . . . (4.1)

When the kinetic function NΛΣ(φ) is linear in scalars

NΛΣ(φ) = dΛΣpz
p (4.2)

and dΛΣp are some constants (which have a simple interpretation in Calabi-Yau compact-

ifications or special geometry in N = 2), the theory has a cubic coupling between scalars

and vectors. If the scalar is an inflaton or some heavy scalar it has a simple route of decay

via creation of vector particles, which in turn couple to other standard model particles and

create the whole matter in the universe. Some unwanted fermions, partners of inflaton or

of the heavy scalars, will also decay via the cubic Pauli coupling.

A remarkable feature of N > 1 supergravities is the fact that the non-minimal vector

couplings and Pauli couplings are compulsory and universal (with exception of models

in N = 2 which have only hyper scalars). One quick look at tables 1 and 2, which

give the list of duality symmetries G of all symmetric space G/H supergravities, shows

how different they are and how distinct are their duality groups G. The non-symmetric

spaces of N = 2 special geometry have enormous amount of choices associated with the

non-vanishing 3-forms Cijk. The proof of non-minimal vector couplings for all N > 1

symmetric as well as non-symmetric supergravities is based on the universal feature of all

of these models: they are based on duality groups of type E7. The proof follows from the

definition of these groups.

Exceptional cases of U(p, n), p = 3, 1 groups, which are not of type E7, also re-

quire a non-minimal vector coupling in N > 1 models, the proof being based on the

non-compactness of these groups for n 6= 0 and negative definiteness of the kinetic term

for vectors.

The vector couplings remain non-minimal, scalar dependent, when truncated to N =

1 for all models of type E7, which form a majority of extended supergravity models.

These couplings become minimal, scalar independent, in the exceptional case U(p, n),

p = 3, 1, with vanishing 3-forms Cijk = 0 in N = 2 case, or when all scalars originate

from the hypers.

This universality of a scalar dependent vector coupling may have a cosmological sig-

nificance: it suggests that creation of matter in the universe via non-minimal vector and

Pauli couplings may be a dominant factor in theories inspired by superstring theory and

extended supergravity.
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A Special geometry and groups of type E7

The contact of special geometry with groups of type E7 can be made by introducing a

quartic functional of central charge Z and matter charges Zi = DiZ, as shown in [48]

I(φ,Q) = (ZZ̄ − ZiZ̄
i)2 +

2

3
i(ZN3(Z̄)− Z̄N̄3(Z))− gīiCijkCīj̄k̄Z̄

jZ̄kZ j̄Z k̄ . (A.1)

The quartic invariant I(φ,Q) is actually the coordinate covariant expression of the “h”

function introduced in eq. (2.31) of [49] if one replaces (half of) the quaternionic coordinates

with the dyonic charge vector Q, in the c-map construction of [37].

This quartic invariant has the property that at the attractor points

2Z̄Zi + iCijkZ̄
jZ̄k = 0 (A.2)

it takes the following value

I(φH , Q) = V 2
H −

32

3
|Z|2(ZiZ̄

i)H , (A.3)

whereVH is the black hole potential (at the attractor point) at the black hole horizon [26, 27].

As a result, either

I(φH , Q) = I4(Q) (A.4)

for symmetric special geometries of E7 type, or

I(φH , Q) = (I2(Q))2 (A.5)

for symmetric geometries with Cijk = 0, i.e. U(1,n)
U(1)⊗U(n) CPn models. Therefore, as stated

in the text, in N = 2 groups of type E7 require Cijk 6= 0, which is the condition for the

existence of the “primitive quartic invariant”.

For non-symmetric spaces the quartic functional exists (as shown in eq. (4.2) of [26, 27])

however, it is not invariant as it is scalar dependent. Note that the case Cijk = 0 is the

only case which can give a consistent truncation to the minimally coupled N = 1 theories.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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