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1 Introduction

It is well known that pure Einstein gravity is ultraviolet (UV) divergent at two loops [1, 2].

This result, along with general power-counting arguments, has led to the widespread be-

lief that a UV finite pointlike theory of gravity cannot be constructed. However, explicit

calculations of scattering amplitudes in maximally supersymmetric (N = 8) supergravity

have displayed an ultraviolet behavior that is much better than prior expectations, show-

ing that the theory in four dimensions is finite up to at least four loops. Furthermore,

N = 8 supergravity exhibits the same UV behavior, when continued to higher spacetime

dimensions, as does N = 4 super-Yang-Mills (sYM) [3–5]. Surprising cancellations are also

visible at lower loop orders [6–17], and even at tree level where the amplitudes are nicely

behaved at large (complex) momenta [16, 18–22].

In pure supergravity theories (where all states are related by supersymmetry to the

graviton) no counterterm can be constructed below three loops. This is because the only

possible two-loop counterterm, R3 ≡ Rλρ
µνR

µν
στRστ

λρ , where R
µν
στ is the Riemann tensor, gener-

ates non-zero four-graviton amplitudes with helicity assignment (±,+,+,+) [23–25]. Such

amplitudes are forbidden by the Ward identities for the minimal N = 1 supersymme-

try [26, 27]. The counterterm denoted by R4 is allowed by supersymmetry and could

appear at three loops [24, 28–31]. However, as mentioned earlier, N = 8 supergravity was

found to be finite at this order [7, 8]. It was recently understood that the R4 countert-

erm is forbidden [32, 33] by the nonlinear E7(7) symmetry realized by the 70 scalars of

the theory [34–36]. In fact, E7(7) should delay the divergence in N = 8 supergravity to at

least seven loops, where the first E7(7)-invariant counterterm can be constructed [37–39].
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Non-maximal (N < 8) supergravity does not have this extra E7(7) symmetry, and may

therefore diverge at only three loops in four dimensions.

Recently, the constraints that the smaller duality symmetries of non-maximal super-

gravities impose on potential counterterms have also been investigated [38, 39]. In four

dimensions, N = 6 supergravity is expected to be finite at three and four loops, and N = 5

supergravity should be finite at three loops [38]. These results still allow for a three-loop

divergence in N ≤ 4 supergravities. In particular, for N = 4 supergravity, although the

volume of superspace vanishes on shell, it has been argued that the usual three-loop R4

counterterm can appear [39]. The finiteness results for N = 5, 6 could in principle be

checked, and potential divergences for N ≤ 4 investigated, via explicit three-loop ampli-

tude calculations in non-maximal supergravities. Because the same situation, in which the

superspace volume vanishes on shell, and yet a counterterm appears to be allowed, holds

for N = 8 supergravity at seven loops, as for N = 4 supergravity at three loops, this latter

case may be of particular interest.

On the other hand, relatively few loop amplitudes have been computed for any non-

maximal supergravities. At one loop, the four-point amplitudes with N ≤ 8 supersym-

metries were presented in refs. [40, 41], while the N = 6 supergravity all-point maximally-

helicity-violating (MHV) and six-point non-MHV amplitudes were first obtained in ref. [42].

The N = 4 supergravity one-loop five-point amplitude was also computed in refs. [42, 43].

In the following, we present expressions for the two-loop four-graviton amplitudes in

N = 4, 5, 6 supergravity. The calculations were performed using the gravity “squar-

ing” relations [44, 45], or double-copy property, which follows from the color-kinematics,

or Bern-Carrasco-Johansson (BCJ), duality obeyed by gauge-theory amplitudes at the

loop level [46].

The BCJ relations allow us to combine the N = 4 sYM amplitude [47] with the

N = 0, 1, 2 sYM amplitudes [48] in order to obtain the corresponding amplitudes in su-

pergravity. Although they have been tested now in several loop-level amplitude computa-

tions [5, 17, 44, 46], the underlying mechanism or symmetry behind the general loop-level

BCJ relations is still not well understood. (In the self-dual sector at tree level, a diffeomor-

phism Lie algebra appears to play a key role. [49].) Therefore it is important to validate

results obtained using BCJ duality. We will verify the expected infrared divergences and

forward-scattering behavior for the two-loop amplitudes that we compute.

This paper is organized as follows. In section 2 we review BCJ duality and the squaring

relations for gravity. In section 3 we illustrate the method for N = 8 supergravity at two

loops. In section 4 we present our main formula for the two-loop amplitudes in N =

4, 5, 6 supergravity. In section 5 we expand the (dimensionally regulated) amplitudes for

D = 4 − 2ǫ around ǫ = 0. We discuss the infrared (IR) pole structure, which agrees with

general expectations, thus providing a cross check on the construction. We present the

finite remainders in the two independent kinematic channels. In section 6 we examine the

behavior of the amplitudes in the limit of forward scattering. In section 7, we present

our conclusions and suggestions for future research directions. An appendix provides some

one-loop results that are required for extracting the two-loop finite remainders.
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2 Review of the BCJ duality and squaring relations

We now briefly review BCJ duality and the gravity squaring relations that follow from it.

For a more complete treatment see, for example, the recent reviews [50, 51]. Here, we will

focus solely on applications to loop amplitudes.

We can write any m-point L-loop-level gauge-theory amplitude, where all particles are

in the adjoint representation, as

A(L)
m = iL gm−2+2L

∑

j

∫ L
∏

l=1

dDpl
(2π)D

1

Sj

njcj
∏

αj
p2αj

, (2.1)

where g is the gauge coupling. The sum runs over the set of distinct m-point L-loop graphs,

labeled by j, with only cubic vertices, corresponding to the diagrams of a φ3 theory. The

product in the denominator runs over all Feynman propagators of each cubic diagram. The

integrals are over {pµl }, a set of L independent D-dimensional loop momenta. The ci are

the color factors, obtained by dressing every three-vertex with a structure constant, defined

by f̃abc = i
√
2fabc = Tr

(

[T a, T b]T c
)

. The nj are kinematic numerator factors depending

on momenta, polarizations and spinors. The Sj are the internal symmetry factors for each

diagram. The form of the amplitude presented in eq. (2.1) can be obtained in various ways.

For example, one can start from covariant Feynman diagrams in Feynman gauge, where the

contact terms are absorbed into kinematic numerators using inverse propagators, i.e. by

inserting factors of 1 = p2αj
/p2αj

.

Triplets (i, j, k) of color factors are related to each other by ci = cj + ck if their

corresponding graphs are identical, except for a region containing (in turn for i, j, k) the

three cubic four-point graphs that exist at tree level. The relation holds because the

products of two f̃abc structure constants corresponding to the four-point tree graphs satisfy

the Jacobi identity

f̃abe f̃ cde = f̃ace f̃ bde + f̃ade f̃ cbe , (2.2)

and the remaining structure constant factors in the triplet of graphs are identical. The

relations ci = cj+ck mean that the representation (2.1) is not unique; terms can be shuffled

from one graph to others, in a kind of generalized gauge transformation [44].

A representation (2.1) is said to satisfy the BCJ duality if the three associated kine-

matic numerators are also related via Jacobi identities. Namely, we must have:

ci = cj + ck ⇒ ni = nj + nk , (2.3)

where the left-hand side follows directly from group theory, while the right-hand side is the

highly non-trivial requirement of the duality. Moreover, we demand that the numerator

factors have the same antisymmetry property as the color factors under the interchange of

two legs attached to a cubic vertex,

ci → −ci ⇒ ni → −ni . (2.4)

The relations (2.3) were found long ago for the case of four-point tree amplitudes [52, 53];

the idea that the relations should hold for arbitrary amplitudes is more recent [44, 46].

– 3 –
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As remarked earlier, the representation (2.1) is not unique. Work is often required in

order to find a BCJ-satisfying representation of a given amplitude in a particular gauge

theory. At loop level, such representations were found initially at four points through

three loops for N = 4 sYM, and through two loops for identical-helicity pure Yang-Mills

amplitudes [44]. A BCJ-satisfying representation was recently obtained at five points

through three loops in N = 4 sYM [17]. Very recently, a four-point four-loop representation

was found in the same theory [5].

As a remarkable consequence of the BCJ duality, one can combine two gauge-theory

amplitudes in the form (2.1), in order to obtain a gravity amplitude, as long as one of the

two gauge-theory representations manifestly satisfies the duality [44, 45]. We have,

M(L)
m = iL+1

(κ

2

)m−2+2L ∑

j

∫ L
∏

l=1

dDpl
(2π)D

1

Sj

njñj
∏

αj
p2αj

, (2.5)

where either the nj or the ñj must satisfy eqs. (2.3) and (2.4). Here κ is the gravitational

coupling constant, which is related to Newton’s constant GN and the Planck mass MPlanck

by κ2 = 32πGN = 32π/M2
Planck. The proof of eq. (2.5) at tree level is inductive, and uses

on-shell recursion relations [54, 55] for the gauge and gravity theories, which are based

on the same complex momentum shift [45]. The extrapolation to loop level is based on

reconstructing loop amplitudes from tree amplitudes using (generalized) unitarity.

The relations (2.5) are similar in spirit to the KLT relations [56]. Both types of

relations express gravity amplitudes as the “square” of gauge-theory amplitudes, or more

generally as the product of two different types of gauge-theory amplitudes, as the ni and

ñj numerator factors may come from two different Yang-Mills theories. However, the KLT

relations only hold at tree level, which means that at loop level they can only be used on

the (generalized) unitarity cuts. Although the gravity cuts can be completely determined

by the KLT relations in terms of local Yang-Mills integrands, the gravity integrand found in

this way is not manifestly local. That is, it does not manifestly have the form of numerator

factors multiplied by scalar propagators for some set of φ3 graphs. Reconstructing a local

representation can be a significant task [3, 7, 8].

In contrast, eq. (2.5) is a loop-level relation, and furnishes directly a local integrand

for gravity. Most of the applications of this formula to date have been to maximal N = 8

supergravity, viewed as the tensor product of two copies of maximal N = 4 super-Yang-

Mills theory. The squaring relations were shown to reproduce the N = 8 supergravity

four-point amplitudes through four loops [5, 44] and the five-point amplitudes through

two loops [17]. Quite recently, in the first loop-level applications for N < 8, the one-loop

four- and five-point N ≤ 8 supergravity amplitudes were shown to satisfy the double-copy

property [43]. In this paper, we would like to extend this kind of analysis for N < 8

supergravity to two loops. First, however, we briefly review the N = 8 case.

3 Two-loop N = 8 supergravity

In this section we review the construction of the two-loop four-graviton amplitude in N = 8

supergravity based on squaring relations, as preparation for a similar construction for

N = 4, 5, 6 supergravity in the next section.

– 4 –
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Figure 1. The planar and nonplanar cubic diagrams at two loops. The marked (colored) propa-

gators in the planar diagram are used in the text to describe different color and kinematic Jacobi

identities.

As mentioned previously, a manifestly BCJ-satisfying representation of the four-gluon

N = 4 sYM amplitude is known at two loops [44, 47],

A(2)
4 (1, 2, 3, 4) = −g6stAtree

4 (1, 2, 3, 4)
(

c
(P)
1234 s I

(P)
4 (s, t) + c

(P)
3421 s I

(P)
4 (s, u) (3.1)

+c
(NP)
1234 s I(NP)

4 (s, t) + c
(NP)
3421 s I(NP)

4 (s, u) + cyclic
)

,

where s, t, u are the usual Mandelstam invariants (s = (k1 + k2)
2, t = (k2 + k3)

2, u =

(k1+k3)
2) and “+ cyclic” instructs one to add the two cyclic permutations of (2,3,4). The

tree-level partial amplitude is

Atree
4 (1, 2, 3, 4) = i

〈j k〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 , (3.2)

where j and k label the two negative-helicity gluons. The two-loop planar and nonplanar

scalar double-box integrals are, respectively,

I(P)
4 (s, t) =

∫

dDp

(2π)D
dDq

(2π)D
1

p2 (p− k1)2 (p− k1 − k2)2 (p+ q)2q2 (q − k4)2 (q − k3 − k4)2
,

I(NP)
4 (s, t) =

∫

dDp

(2π)D
dDq

(2π)D
1

p2 (p− k2)2 (p+ q)2 (p+ q + k1)2 q2 (q − k3)2 (q − k3 − k4)2
,

and they are depicted in figure 1. The color factors c
(P,NP)
ijkl are obtained by dressing each

vertex of the associated diagram with a factor of f̃abc, and each internal line with a δab. All

helicity information is encoded in the prefactor stAtree
4 (1, 2, 3, 4), which is invariant under

all permutations, thanks to a Ward identity for N = 4 supersymmetry.

Comparing eqs. (2.1) and (3.1) we can identify the numerators as

n
(P)
1234 = n

(P)
3421 = n

(NP)
1234 = n

(NP)
3421 = s× stAtree

4 (1, 2, 3, 4) ,

n
(P)
1342 = n

(P)
4231 = n

(NP)
1342 = n

(NP)
4231 = u× stAtree

4 (1, 2, 3, 4) ,

n
(P)
1423 = n

(P)
2341 = n

(NP)
1423 = n

(NP)
2341 = t× stAtree

4 (1, 2, 3, 4) . (3.3)

It is easy to see that the two-loop expression (3.1) satisfies the duality [44]. For instance,

let’s look at the diagrams related by a Jacobi identity applied to a four-point tree-level

subdiagram of the planar double-box graph on the left-hand side of figure 1. The tree

– 5 –
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Figure 2. Two-loop diagrams related by a Jacobi identity. The Jacobi identity is applied to the

four-point tree-level subdiagram that contains the (light blue) intermediate line marked a. The rest

of the diagram is unchanged.

subdiagram is the one whose intermediate propagator is the light-blue line marked a in

the figure. We replace the “s-channel” tree subdiagram with the corresponding t- and

u-channel tree subdiagrams, by appropriately permuting the attachments of line a to the

rest of the graph. This Jacobi identity is illustrated in figure 2. Because the N = 4 sYM

diagrams with triangle one-loop subdiagrams all have vanishing coefficients in eq. (3.1),

the duality (2.3) requires the equality of the planar and nonplanar numerator factors,

n
(P)
1234 = n

(NP)
1234 . Similarly, applying a Jacobi identity to the red propagator marked b in the

planar double-box diagram in figure 1, we find two graphs, one of which again contains

a vanishing triangle subgraph. Therefore the numerator of the planar box graph should

be symmetric under the exchange of legs 1 and 2, or equivalently n
(P)
1234 = n

(P)
3421. Looking

at eq. (3.3), we see that these two conditions are satisfied.

Having verified that eq. (3.1) satisfies the BCJ relations, we may combine two copies

of (3.1) following prescription (2.5) to obtain the two-loop four-graviton N = 8 amplitude.

We obtain

M(2)
4 (1, 2, 3, 4) = −i

(κ

2

)6
[stAtree

4 (1, 2, 3, 4)]2
(

s2 I(P)
4 (s, t) + s2 I(P)

4 (s, u)

+ s2 I(NP)
4 (s, t) + s2 I(NP)

4 (s, u) + cyclic
)

, (3.4)

which is precisely the known result [6]. We also recall that the four-graviton and four-gluon

tree-level partial amplitudes are related to each other by

stuM tree
4 = −i [stAtree

4 (1, 2, 3, 4)]2 . (3.5)

4 Two-Loop 4 ≤ N < 8 supergravity

Now we move to the main subject of this paper, the construction of the two-loop four-

graviton amplitudes for N = 4, 5, 6 supergravity. As we mentioned earlier, only one of

the two gauge-theory amplitudes entering the double-copy formula (2.5) needs to satisfy

the BCJ duality. We will combine the duality-satisfying N = 4 sYM amplitude (3.1) with

four-gluon amplitudes for N ≡ NYM = 0, 1, 2 sYM, in order to obtain the corresponding

two-loop four-graviton amplitudes in supergravities with N = 4 +NYM = 4, 5, 6. Looking

at the multiplicities of states for various supergravities and super-Yang-Mills theories in

– 6 –
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helicity 0 +1/2 +1 +3/2 +2

N = 8 supergravity 70 56 28 8 1

N = 6 supergravity 30 26 16 6 1

N = 5 supergravity 10 11 10 5 1

N = 4 supergravity 2 4 6 4 1

N = 4 sYM 6 4 1

N = 2 sYM 2 2 1

N = 1 sYM 1 1

N = 0 sYM 1

Table 1. State multiplicity as a function of helicity for relevant supersymmetric multiplets in pure

supergravities and super-Yang-Mills theories. By CPT invariance, the multiplicity for helicity −h

is the same as that shown for h.

table 1, we can see that at the level of counting states,

N = 6 supergravity : (N = 4 sYM)× (N = 2 sYM) ,

N = 5 supergravity : (N = 4 sYM)× (N = 1 sYM) ,

N = 4 supergravity : (N = 4 sYM)× (N = 0 sYM) , (4.1)

where N = 0 sYM refers to pure Yang-Mills theory with only gluons. Because the gauge

theories with N < 4 supersymmetry are consistent truncations of maximal N = 4 sYM,

and similarly on the gravity side, these equivalences also hold at the level of amplitudes,

through either the KLT relations (at tree level) or the double-copy relations (2.5).

In ref. [57], it was shown that one could write a color decomposition of any one-loop full-

color all-adjoint gauge-theory amplitude in terms of color factors called “ring diagrams”.

The diagrammatic representation of these color factors have all the external legs connected

directly to the loop. Other conceivable color factors, in which nontrivial trees are attached

to the loop, can be removed systematically by using Jacobi identities, in favor of ring graphs

with different cyclic orderings of the external legs. This decomposition is independent of

the (adjoint) particle content in the loop. In the same way, we can use the Jacobi identities

at two loops to rewrite any full-color four-gluon amplitude in a theory with only adjoint

particles, in terms of only the color factors c
(P)
1234 and c

(NP)
1234 of the diagrams of figure 1 (plus

permutations).

For super-Yang-Mills theory with N = NYM supersymmetries, we write

A(2)
NYM

(1, 2, 3, 4)

= −g6
(

c
(P)
1234A

(P)
1234,NYM

+ c
(P)
3421A

(P)
3421,NYM

+ c
(NP)
1234 A

(NP)
1234,NYM

+ c
(NP)
3421 A

(NP)
3421,NYM

+ c
(P)
1342A

(P)
1342,NYM

+ c
(P)
4231A

(P)
4231,NYM

+ c
(NP)
1342 A

(NP)
1342,NYM

+ c
(NP)
4231 A

(NP)
4231,NYM

+ c
(P)
1423A

(P)
1423,NYM

+ c
(P)
2341A

(P)
2341,NYM

+ c
(NP)
1423 A

(NP)
1423,NYM

+ c
(NP)
2341 A

(NP)
2341,NYM

)

, (4.2)

where A
(P)
1234 is the integrated color-ordered subamplitude associated with the color factor

– 7 –
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c
(P)
1234. For example, for the N = 4 sYM representation (3.1), we read off

A
(P)
1234,NYM=4 = stAtree

4 (1, 2, 3, 4)× s I(P)
4 (s, t) .

Normally, to implement the double-copy formula (2.5), we would need to have a repre-

sentation for the integrand of the gauge-theory amplitudes, in particular for the N = 0, 1, 2

sYM amplitudes we are combining with those for N = 4 sYM. However, at two loops the

numerator factors for N = 4 sYM have no dependence on the loop momenta. The same

feature holds for the one-loop four- and five-point amplitudes studied in ref. [43]. There-

fore, just as in those cases, we can remove the N = 4 sYM numerator factors from the loop

integrals in eq. (2.5). Using eq. (3.3) for the N = 4 sYM numerator factors, we obtain the

remarkably simple general formula,

M(2)
NYM+4(1, 2, 3, 4) =−i

(κ

2

)6
stAtree

4 (1, 2, 3, 4)

×
(

sA
(P)
1234,NYM

+ sA
(P)
3421,NYM

+ sA
(NP)
1234,NYM

+ sA
(NP)
3421,NYM

+uA
(P)
1342,NYM

+ uA
(P)
4231,NYM

+ uA
(NP)
1342,NYM

+ uA
(NP)
4231,NYM

+ t A
(P)
1423,NYM

+ t A
(P)
2341,NYM

+ t A
(NP)
1423,NYM

+ t A
(NP)
2341,NYM

)

. (4.3)

In summary, we obtain the N = 4, 5, 6 supergravity amplitudes by first expressing the

N = 0, 1, 2 sYM helicity amplitudes from ref. [48] in terms of the color basis (4.2).1 We

then replace g6 → i(κ/2)6 and perform the following additional replacements (plus their

relabelings):

c
(P)
1234 → stAtree

4 (1, 2, 3, 4)× s, c
(NP)
1234 → stAtree

4 (1, 2, 3, 4)× s. (4.4)

Because stAtree
4 (1, 2, 3, 4) is permutation-invariant, only the single factors of s, t, u persist

inside the parentheses in eq. (4.3).

In order to preserve supersymmetry, we use the four-dimensional helicity variant of

dimensional regularization [58, 59] for both copies of the gauge-theory amplitudes. The

results (4.3) can be expressed in terms of master integrals for the two-loop planar and non-

planar double-box topologies, plus various other integrals with fewer propagators present.

However, in this form the results are rather lengthy. Instead of presenting them here, we

expand the dimensionally-regulated results, for D = 4 − 2ǫ, around ǫ = 0, as discussed in

the next section.

5 Infrared poles and finite remainders

At two loops, all pure supergravity amplitudes are ultraviolet finite [23–25]. Therefore all

of their divergences are infrared in nature, either soft or possibly collinear. As two massless

external particles become collinear, gravitational tree amplitudes have singularities only in

phase, not in magnitude. The same universal “splitting amplitude” that controls the phase

behavior governs loop amplitudes as well as tree amplitudes [9]. Correspondingly, there

1We thank Zvi Bern for providing us with the expressions in this format.
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are no virtual divergences from purely collinear regions of integration [60]. Soft divergences

were studied long ago and found to exponentiate [61]. More recent, explicit analyses can

be found in refs. [60, 62, 63]. At one loop, the IR pole behavior is [40, 41, 61, 64, 65],

M(1)
4 =

( κ

8π

)2 2

ǫ

(

s ln(−s) + t ln(−t) + u ln(−u)
)

Mtree
4 + O(ǫ0). (5.1)

At L loops, the leading divergence is at order 1/ǫL. We first checked that the leading

divergence of our two-loop N = 4, 5, 6 supergravity amplitudes is indeed at order 1/ǫ2.

Moreover, the exponentiation of soft divergences implies that the full two-loop IR

behavior can be expressed in terms of the one-loop amplitude as follows:

M(2)
4 (ǫ)

Mtree
4

=
1

2

[M(1)
4 (ǫ)

Mtree
4

]2

+
( κ

8π

)4
F

(2)
4 + O(ǫ) , (5.2)

where F
(2)
4 is the finite remainder in the limit ǫ → 0. This infrared behavior was checked

explicitly for the four-point N = 8 supergravity amplitude [64, 65], and was conjectured to

hold for all supersymmetric gravity amplitudes [63]. We have checked that our expressions

indeed satisfy eq. (5.2). We remark that the lack of any additional (ultraviolet) poles in ǫ

confirms the absence of UV divergences for N = 4, 5, 6 supergravity in four dimensions at

two loops [23–25].

In order to verify eq. (5.2) and extract F
(2)
4 , we need the O(ǫ0) and O(ǫ1) coefficients

in the expansion of the corresponding one-loop amplitude M(1)
4 . That is because M(1)

4

appears squared in eq. (5.2), and the 1/ǫ pole in eq. (5.1) can multiply the O(ǫ1) coefficient

to generate a finite term. We give the required one-loop expansions in appendix A.

Next we present the finite remainders F
(2)
4 for the different theories under considera-

tion. It is convenient to express the remainders for N < 8 supergravity in terms of the

N = 8 remainder plus an additional term. The result for N = 8 supergravity was first

presented in refs. [64, 65]. We always consider the helicity configuration (1−, 2−, 3+, 4+).

There are three separate physical kinematic regions: the s channel, with s > 0 and t, u < 0;

the t channel (t > 0 and s, u < 0); and the u channel (u > 0 and s, t < 0). The s channel

is singled out by the fact that it has identical-helicity incoming gravitons. For all the su-

pergravity theories, the (1−, 2−, 3+, 4+) helicity configuration chosen is symmetric under

3 ↔ 4. Therefore we do not have to present results separately for the u channel; they

can be obtained from the t-channel results by relabeling t ↔ u. In the case of N = 8

supergravity, an N = 8 supersymmetric Ward identity implies that the results in the t

channel (normalized by the tree amplitude) can be obtained simply by relabeling s ↔ t.

For N < 8, this property no longer holds, and we will have to quote the s- and t-channel

results separately.

The N = 8 finite remainder was expressed in refs. [64, 65] partly in terms of Nielsen

polylogarithms Sn,p(x). Here we give a representation similar to ref. [64], and a second

representation entirely in terms of classical polylogarithms Lin, for consistency with the
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forms we present below for N < 8. The finite remainder is

F
(2),N=8
4

∣

∣

∣

s−channel
= 8

{

t u

[

f1

(−t

s

)

+ f1

(−u

s

)

]

+ s u

[

f2

(−t

s

)

+ f3

(−t

s

)

]

+s t

[

f2

(−u

s

)

+ f3

(−u

s

)

]}

, (5.3)

where

f1(x) = S1,3(1− x) + ζ4 +
1

24
ln4 x+ iπ

[

− S1,2(1− x) + ζ3 +
1

6
ln3 x

]

= −Li4(x) + lnxLi3(x)−
1

2
ln2 xLi2(x) +

1

24
ln4 x− 1

6
ln3 x ln(1− x) + 2 ζ4

+iπ

[

Li3(x)− lnxLi2(x) +
1

6
ln3 x− 1

2
ln2 x ln(1− x)

]

, (5.4)

f2(x) = S1,3

(

1− 1

x

)

+ ζ4 +
1

24
ln4 x+ iπ

[

S1,2

(

1− 1

x

)

− ζ3 +
1

6
ln3 x

]

= Li4(x)− lnxLi3(x) +
1

2
ln2 xLi2(x) +

1

6
ln3 x ln(1− x)

−iπ

[

Li3(x)− lnxLi2(x)−
1

2
ln2 x ln(1− x)

]

, (5.5)

and

f3(x) = Li4(y)− ln(−y) Li3(y) +
1

2

[

ln2(−y) + π2
]

Li2(y)

+
1

6

[

ln3(−y) + 3π2 ln(−y)− 2 i π3
]

ln(1− y) , (5.6)

with y = −x/(1− x). The N = 8 supergravity remainder in the t channel is given simply

by relabeling the s-channel result, exchanging s and t:

F
(2),N=8
4 (s, t, u)

∣

∣

∣

t−channel
= F

(2),N=8
4 (t, s, u)

∣

∣

∣

s−channel
. (5.7)

It was noted previously [64, 65] that F
(2),N=8
4 has a uniform maximal transcendentality.

That is, all functions appearing are degree-four combinations of polylogarithms, logarithms,

and transcendental constants. A pure function is a function with a uniform degree of

transcendentality, having only constants (rational numbers) multiplying the combinations

of polylogarithms, etc. A pure function f has a well-defined symbol, S(f), which can be

obtained by an iterated differentiation procedure [66, 67]. In the representation (5.3), the

functions f1, f2 and f3 are pure functions with very simple, one-term symbols:

S(f1) = x⊗ x⊗ x⊗ x

1− x
, (5.8)

S(f2) = x⊗ x⊗ x⊗ (1− x) , (5.9)

S(f3) = − x

1− x
⊗ x

1− x
⊗ x

1− x
⊗ (1− x) . (5.10)

We have shuffled terms slightly with respect to refs. [64, 65] in order to make this property

manifest. For example, our function f1(x) is very similar to the function h(t, s, u) given in
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eq. (2.26) of ref. [64], after multiplying it by 1/8 and setting −s/t → x. However, eq. (5.4)

contains a term 1
24 ln

4 x in place of the term 1
24 ln

4(1 − x) in h/8. Because only the sum

f1(x) + f1(1 − x) appears in eq. (5.3), this swap of terms does not affect the total, but

it does ensure that the branch cut origins are in the same place for all terms in f1, and

correspondingly it simplifies the symbol S(f1). The functions f2 and f3 are related to

f1 by crossing: f2 by the map x → 1/x (s ↔ t), and f3 by the map x → −(1 − x)/x

(s → t → u → s).

Curiously, the symbol of f1 obeys a certain “final entry” condition recently observed

to appear in the context of the remainder function for planar N = 4 sYM amplitudes or

Wilson loops [68, 69]. Furthermore, f1(x) obeys the generalization of this condition to

functions, namely
df1
dx

=
p(x)

x(1− x)
, (5.11)

where p(x) is also a pure function, in this case

p(x) =
1

6
ln3 x+

iπ

2
ln2 x . (5.12)

When the finite remainder of the four-graviton amplitude in N = 8 supergravity becomes

available at three loops (for example by computing the integrals for one of the three avail-

able expressions for it [7, 8, 44]), it will be very interesting to see whether it can also

be expressed in terms of pure functions of degree six with simple symbols. Perhaps the

functions will even obey a relation like eq. (5.11).

We return now to two loops and N < 8 supergravity. We present the finite remainder

for N = 6 supergravity, first in the s channel:

F
(2),N=6
4

∣

∣

∣

s−channel
= F

(2),N=8
4

∣

∣

∣

s−channel
+ t u

[

f6,s

(−t

s

)

+ f6,s

(−u

s

)

]

, (5.13)

where

f6,s(x) = f6,s;4(x) + f6,s;3(x) (5.14)

gives the decomposition into a degree-four function,

f6,s;4(x) = 20Li4(x)− 4 (1− x) Li4

( −x

1− x

)

− 12 lnxLi3(x) + 4 ln2 xLi2(x)

−4 (1− x) ln

(

x

1− x

)

Li3(x)−
1

4
x (1− x)

[

ln4
(

x

1− x

)

+ π4

]

+
π2

2

[

x lnx+ (1− x) ln(1− x)
]2

+
2

3
x ln4 x

−2

3
lnx ln(1− x)

[

(1 + x) ln2 x− 9

4
lnx ln(1− x)

]

−4 ζ2

[

xLi2(x) + 2 lnx ln(1− x)
]

− 41

2
ζ4

+i π

[

−12Li3(x) + 8 lnx (Li2(x) + ζ2)−
2

3
(1− 2x) lnx (ln2 x+ π2)

+4 (1− x) ln2 x ln(1− x)

]

, (5.15)
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and a degree-three one,

f6,s;3(x) = −4

3
x lnx

[

ln2 x+ 3 ln2(1− x) + π2
]

+8

[

Li3(x)− lnxLi2(x)−
ζ3
2

+ iπ ζ2

]

. (5.16)

It has been observed [65] that at one loop the four-graviton amplitude in N = 6 super-

gravity has maximal transcendentality (degree two). This result extends to one-loop am-

plitudes with more gravitons, thanks to the absence of bubble integrals [42, 43]. However,

the degree-three nature of eq. (5.16) shows that this property is broken at two loops. The

breaking comes from both the two-loop amplitude M(2)
4 , but also from the square of the

one-loop amplitude M(1)
4 , which has to be subtracted in eq. (5.2). As can be seen from

eqs. (A.5) and (A.7), the one-loop N = 6 amplitude has degree-two terms as well as degree-

three terms at O(ǫ); the former terms multiply the 1/ǫ degree-one terms from the IR pole

shown in eq. (5.1) to generate degree-three contributions to eq. (5.16). On the other hand,

these contributions are purely logarithmic; the polylogarithmic terms in eq. (5.16) can be

traced to M(2)
4 . The complexity of the expressions (5.15) and (5.16), in terms of their

power-law dependence on x, makes it unprofitable to try to separate the N < 8 finite

remainders into pure functions and to compute their symbols.

Because of the helicity assignment (1−, 2−, 3+, 4+), the s-channel remainder is always

symmetric under t ↔ u. However, in the t channel there is no such symmetry. The N = 6

remainder in this channel is,

F
(2),N=6
4

∣

∣

∣

t−channel
= F

(2),N=8
4

∣

∣

∣

t−channel
+ t u

[

f6,t;4

(−u

t

)

+ f6,t;3

(−u

t

)

]

, (5.17)

where the degree-four part is

f6,t;4(x) =−20Li4(1− x)− 20Li4

(

1− x

−x

)

− 4
1 + x

1− x

(

Li4(x)− ζ4

)

+ 16 lnxLi3(1− x)

−12 ln(1− x)
(

Li3(x)− ζ3

)

+ 4
4− 3x

1− x
lnx

[

Li3(x)− ζ3 +
1

2
ln(1− x) ln2 x

]

+4 lnx
(

lnx− 2 ln(1− x)
)

Li2(1− x) + 4 ζ2
7− 5x

1− x
Li2(1− x)

−1

6

5− 8x

(1− x)2
ln4 x− 6 ln2(1− x) ln2 x− 2 ζ2

13− 19x+ 12x2

(1− x)2
ln2 x

+16 ζ2
1− 2x

1− x
lnx ln(1− x) + i π

[

16Li3(1− x) +
4

1− x

(

Li3(x)− ζ3

)

−8 ln(1− x) Li2(1− x) +
2

3

1− 2x+ 4x2

(1− x)2
ln3 x+ 2

2 + x

1− x
ln2 x ln(1− x)

−2 lnx ln2(1− x)− 4 ζ2
4− x

1− x
lnx

]

, (5.18)
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and the degree-three part is

f6,t;3(x) =
4

3

x

1− x
lnx

(

ln2 x− 2π2
)

− 8
(

Li3(x)− lnxLi2(x)
)

(5.19)

+4 ln(1− x)
(

ln2 x− 4 ζ2

)

+ 4 i π

[

x

1− x
ln2 x− 2

(

Li2(1− x) + ζ2

)

]

.

In the s channel, the finite remainder for N = 5 supergravity at two loops is given by,

F
(2),N=5
4

∣

∣

∣

s−channel
= F

(2),N=8
4

∣

∣

∣

s−channel
+ t u

[

f5,s

(−t

s

)

+ f5,s

(−u

s

)

]

, (5.20)

where

f5,s(x) = f5,s;4(x) + f5,s;3(x) + f5,s;2(x) (5.21)

gives the decomposition into a degree-four function,

f5,s;4(x) =−12

{

(1− x)

[

Li4

( −x

1− x

)

− ζ2 Li2(x)

]

− 2
(

1 + x (1− x)
)

Li4(x)

+
[

(2− x2) lnx− (1− x)2 ln(1− x)
]

Li3(x)−
1

2
ln2 xLi2(x)

}

− 1

16
x (1− x)

[

5 ln4
(

x

1− x

)

+ 34π2 ln2
(

x

1− x

)]

+
1

2
x ln4 x

−(1− x) ln3 x ln(1− x) +
3

4

(

3− 4x (1− x)
)

ln2 x ln2(1− x)

+
π2

2

[

−(1− x) (3− 2x) ln2 x+
3

2
ln2
(

x

1− x

)]

− 3

8
ζ4

(

72 + 323x (1− x)
)

+i π
{

− 12
[(

1 + 2x (1− x)
)

Li3(x)− lnxLi2(x)
]

−(1− 2x) (1− x) lnx
(

ln2 x+ π2
)

+ 3
(

2 (1− x)2 + x
)

ln2 x ln(1− x)

+2π2 lnx
}

, (5.22)

a degree-three function,

f5,s;3(x) = 12

{

(1 + x2)
[

Li3(x)− lnxLi2(x)
]

− 1

2

(

1− x (1− x)
)

ln2 x ln(1− x)

}

−2x (1− x) ln3 x− 4π2 x lnx− 12 ζ3 + 12π i

[

(1− x) Li2(x)

+
1

4

(

x lnx+ (1− x) ln(1− x)
)2

+
ζ2
2

(

2− 3x (1− x)
)

]

, (5.23)

and a degree-two function,

f5,s;2(x) = −3
[(

x lnx+ (1− x) ln(1− x)
)2

− π2 x (1− x) + 4π i x lnx
]

. (5.24)

The N = 5 remainder function in the t channel is,

F
(2),N=5
4

∣

∣

∣

t−channel
=F

(2),N=8
4

∣

∣

∣

t−channel
+t u

[

f5,t;4

(−u

t

)

+f5,t;3

(−u

t

)

+f5,t;2

(−u

t

)

]

, (5.25)
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where the degree-four part is

f5,t;4(x) = 12

{

−1 + x

1− x

(

Li4(x)− ζ4

)

− 2

(

1− x

(1− x)2

)[

Li4(1− x) + Li4

(

1− x

−x

)]

−
[(

1− 2x

(1− x)2

)

ln(1− x)−
(

2− x2

(1− x)2

)

lnx

]

(

Li3(x)− ζ3

)

+2 lnxLi3(1− x)− 1

2
lnx

(

lnx− 2 ln(1− x)
)

Li2(x)

+2 ζ2
2− x

1− x
Li2(1− x)− 8− 21x

96(1−x)2
ln4 x+

(1−2x)(5−x)

12 (1− x)2
ln3 x ln(1− x)

+
1

8

(

3 +
4x

(1− x)2

)

ln2 x ln2(1− x)− ζ2
4

10− 12x+ 11x2

(1− x)2
ln2 x

+ζ2
1− 5x+ 2x2

(1− x)2
lnx ln(1− x) + i π

[

Li3(x)− ζ3
(1− x)2

+ 2Li3(1− x)

− ln(1− x) Li2(1− x) +
3

8

x2

(1− x)2
ln3 x

+
1

24

2 + x

1− x
ln2 x

(

lnx+ 6 ln(1− x)
)

− 1

4
lnx ln2(1− x)

−ζ2
2

4− x

1− x
lnx

]

}

, (5.26)

the degree-three part is

f5,t;3(x) = 12

{

1 + x

1− x

[

Li3(1− x)− ln(1− x) Li2(1− x)− 1

2
lnx ln2(1− x)

]

−
(

1 +
x2

(1− x)2

)

(

Li3(x)− lnxLi2(x)
)

+
x ln3 x

6 (1− x)2
+

1

2
ln2 x ln(1− x)

−ζ2

[

x (1− 4x)

(1− x)2
lnx+ ln(1− x)

]

− ζ3
1− 2x

(1− x)2

+i π

[

−1 + (1− x)2

(1− x)2
Li2(1− x)− 1

(1− x)2
lnx ln(1− x)

+
1

2

x

1− x

(

ln2 x+ 2 ζ2

)

]

}

, (5.27)

and the degree-two part is

f5,t;2(x) = −6

[

(

ln(1− x) +
x

1− x
lnx
)2

− π2 x

1− x

+
2 i π

1− x

(

ln(1− x) +
x

1− x
lnx
)

]

. (5.28)

The results for N = 4 supergravity are the lengthiest of all. In the s channel, the finite

remainder for N = 4 supergravity at two loops is given by,

F
(2),N=4
4

∣

∣

∣

s−channel
= F

(2),N=8
4

∣

∣

∣

s−channel
+ t u

[

f4,s

(−t

s

)

+ f4,s

(−u

s

)

]

, (5.29)
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where

f4,s(x) = f4,s;4(x) + f4,s;3(x) + f4,s;2(x) + f4,s;1(x) + f4,s;0(x) (5.30)

gives the decomposition into a degree-four function,

f4,s;4(x) = 4
(

9− 4x (1− x)
)

Li4(x)− 4 (8− 2x− 9x2 + 8x3) lnxLi3(x)

−4 (1− x) (3 + 3x− 8x2)

[

Li4

( −x

1− x

)

+ ζ2 Li2

( −x

1− x

)

− ln(1− x) Li3(x)

]

+4
(

2− x (1− x)
)

lnx (lnx+ 2 i π) Li2(x)− 4 i π
(

5− 2x (1− x)
)

Li3(x)

+
1

6
x (4− 8x− 5x2 + 21x3 − 9x4 + 3x5)

×
(

ln4 x− 4 ln3 x ln(1− x) + 2π2 ln2 x+
π4

2

)

−2

3
(2− x (1− x)) (1− 3x)

(

ln2 x (lnx− 6iπ) ln(1− x) + iπ lnx (ln2 x− π2)
)

+
2

3
i π x lnx

[

(2− 13x+ 8x2) ln2 x+ 3 (4 + 10x− 5x2) lnx ln(1− x)

+(14 (1 + x2)− 19x)π2
]

+
1

2
(2− x (1− x)) (1− x (1− x))2 lnx ln(1− x)

(

3 lnx ln(1− x)− 2π2
)

−2 ζ2 x (8− 16x+ 11x2) ln2 x− 3

2
ζ4 (44− 17x (1− x)) , (5.31)

a degree-three function,

f4,s;3(x) =−
(

53

6
+ x2

)[

Li3

( −x

1− x

)

− ln

(

x

1− x

)

Li2

( −x

1− x

)]

− 1

18
(59− 12x2 + 8x3 + 54x4 + 36x (1− x)4)

× lnx
[

lnx
(

lnx− 3 ln(1− x)
)

+ π2
]

−
(

31

3
− 12x+ 10x2

)

ln2 x ln(1− x)

−i π

[

(1− 2x) ln2 x− 9x (1− x)

(

lnx ln

(

x

1− x

)

+
π2

2

)]

+
ζ2
3
(59− 156x+ 132x2) (lnx+ i π)− 33 ζ3 x (1− x) , (5.32)

a degree-two function,

f4,s;2(x) =−6− 7x+ 4x2

2 (1− x)
lnx (lnx+ 2 i π)

+

[

3
(

1 + x2 (1− x)2
)

− 13

3
x (1− x)

] [

lnx ln

(

x

1− x

)

+
π2

2

]

+
1

3
ζ2 x

2
(

6x2 − (1− x) (23− 24x)
)

, (5.33)
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a degree-one function,

f4,s;1(x) = −1

3
x
(

4 (1− x)2 − x (1− 2x)
)

(lnx+ i π) , (5.34)

and a rational part,

f4,s;0(x) = −1

4

(

2 + x (1− x)
)

. (5.35)

The N = 4 remainder function in the t channel is,

F
(2),N=4
4

∣

∣

∣

t−channel
= F

(2),N=8
4

∣

∣

∣

t−channel
+ t u

[

f4,t;4

(−u

t

)

+ f4,t;3

(−u

t

)

+ f4,t;2

(−u

t

)

+f4,t;1

(−u

t

)

+ f4,t;0

(−u

t

)

]

, (5.36)

where the degree-four part is

f4,t;4(x) =−4

(

9 +
4x

(1− x)2

)[

Li4(1− x) + Li4

(

1− x

−x

)

+

(

ln(1− x) +
iπ

2

)

(

Li3(x)− ζ3

)

+ ζ2 Li2(1− x)

]

−4
1 + x

1− x

(

3− 8x

(1− x)2

)[

Li4(x)− ζ4 −
iπ

2

(

Li3(x)− ζ3

)

]

+4
8− 22x+ 11x2 − 5x3

(1− x)3

×
[

lnx
(

Li3(x)− ζ3

)

+ ζ2

(

2Li2(1− x) + lnx ln(1− x)
)

]

+4

(

2 +
x

(1− x)2

){

(

2 ln(1− x) + 3 i π
)

(Li3(x)− ζ3) (5.37)

+
(

ln2 x+ 4 ζ2

)

Li2(1− x)

+2 (lnx+ i π)
(

2Li3(1− x)− ln(1− x) Li2(1− x)
)

+i π

[(

1

6
+

x (1− x2 + x3)

2 (1− x)4

)

ln3 x+
2 + x

2 (1− x)
ln2 x ln(1− x)

−1

2
lnx ln2(1− x)− ζ2

4− x

1− x
lnx

]}

−9− 48x+ 104x2 − 129x3 + 87x4 − 26x5

6 (1− x)6
ln2 x(ln2 x− 4π2)

+
2

3

23− 52x+ 49x2 − 17x3

(1− x)3
ln3 x ln(1− x)−

(

11 +
5x

(1− x)2

)

ln2 x ln2(1− x)

−4 ζ2
x (14− 9x (1− x))

(1− x)3
lnx ln(1− x)− 2 ζ2

43− 71x+ 100x2 − 25x3

(1− x)3
ln2 x ,
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the degree-three part is

f4,t;3(x) = −
(

56

3
+

2x

(1− x)2

)[

Li3(x)− (lnx+ i π) Li2(x)−
2

3
i π3 − 5

3
π2 ln(1− x)

]

+
x (24− 15x+ 13x2 − 32x3 + 28x4)

9 (1− x)5
lnx (lnx+ i π) (lnx+ 2 i π)

+

(

1

3
+ 2

5− 4x (1− x)

(1− x)2

)[

ln(1− x)
(

(lnx+ i π)2 − 3π2
)

− 2 i π3

]

−2 + 10x− x2

(1− x)2

[

π2 (lnx− 2 ln(1− x))− i π (ln2 x+ π2)
]

−1 + x

1− x

[

(lnx+ i π) ln(1− x) (ln(1− x) + 2 i π) +
iπ

1− x
ln2 x

]

+66 ζ3
x

(1− x)2
, (5.38)

the degree-two part is

f4,t;2(x) = −6− 5x+ 3x2

2 (1− x)

(

ln2 x− 2 ln(1− x) (lnx+ i π) + π2
)

+

(

3 +
x (13 (1− x)2 + 9x)

3 (1− x)4

)

(

(lnx+ i π)2 + 2 ζ2

)

+
3 (1 + x2)− 8x

2x
ln(1− x) (ln(1− x) + 2 i π)

+ζ2
14 (1 + x2)− 3x

(1− x)2
, (5.39)

the degree-one part is

f4,t;1(x) = −1

3

[

ln

(

x

1− x

)

− 1 + x+ 4x2

(1− x)3
(lnx+ i π)

]

, (5.40)

and the rational part is

f4,t;0(x) = −(2− x)(1− 2x)

2 (1− x)2
. (5.41)

6 Forward-scattering limit of the amplitudes

We now inspect the behavior of the two-loop supergravity amplitudes in the limit of small-

angle, forward scattering, i.e. small momentum transfer at fixed center-of-mass energy.

In particular, we want to verify the contributions from matter exchange, versus graviton

exchange, in the forward-scattering limit. The results are sensitive to the helicity configu-

ration, or for fixed helicity configuration, to which invariant is time-like and which of the

two space-like invariants is becoming small.

We first consider configurations, or channels, for which the associated tree-level am-

plitudes have a pole at small momentum transfer. These configurations are dominated by

the exchange of soft gravitons, and require helicity conservation along the forward-going

graviton line. (They also require helicity conservation along the backward-going line, but
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this second condition follows automatically from the first one, for the MHV amplitudes

that we study.) To see the helicity conservation explicitly, we rewrite the tree amplitude

as,

M tree
4 (1−, 2−, 3+, 4+) = −is2

(

1

t
+

1

u

)[

〈1 2〉
[12]

[34]

〈3 4〉

]2

, (6.1)

where the quantity in brackets is a pure phase. Expanding eq. (6.1) for small t at fixed s

in the physical s channel (s > 0 kinematics), one gets a leading term of O(s2/t) as t → 0.

Because the s-channel amplitude is symmetric under t ↔ u, one could also have taken the

small u limit and gotten a pole-dominated behavior. However, in the physical t channel,

one has to take u small in order to conserve helicity at both vertices. Then the leading

tree-level behavior is O(t2/u) as u → 0. In contrast, the limit of small s in the t channel

violates helicity conservation, and the tree amplitude is heavily power-law suppressed with

respect to the dominant pole behavior, having a leading term of O(s3/t2) as s → 0.

Interestingly, in the helicity-conserving channels described above, the two-loop remain-

ders, F
(2)
4 , for N = 4, 5, 6, 8 supergravity amplitudes are all power-law suppressed. The

forward-scattering leading behavior is thus fully determined by the square of the one-loop

amplitude. Moreover, the dominant one-loop behavior is the same for all 4 ≤ N ≤ 8

supergravity amplitudes. Namely, at one loop as t → 0 in the s channel, we have

M(1)
4 (ǫ)

M tree
4

=
( κ

8π

)2
(−2πi) s

[

1

ǫ
+ ln

(

s

−t

)

+
ǫ

2
ln2
(

s

−t

)]

+ O(ǫ2, t) , (6.2)

and at two loops we have

M(2)
4 (ǫ)

M tree
4

=
1

2

[

M(2)
4 (ǫ)

M tree
4

]2

+ O(ǫ, t) . (6.3)

Both equations hold for any number of supersymmetries. We also verified the analogous

equations in the limit u → 0 in the physical t channel (t > 0 kinematics).

As discussed in refs. [70–73], in the physical s channel only the s-channel ladder and

crossed-ladder diagrams (shown in figure 1 with s flowing horizontally) contribute to the

eikonal limit t → 0. The limit is dominated by graviton exchanges because the coupling of a

particle of spin J exchanged in the channel with small momentum transfer is proportional

to EJ , where E is the center-of-mass energy. The s-channel ladder and crossed-ladder

diagrams allow for the maximum number of attachments of gravitons to a hard line (one

with energy of order E). This property explains why eqs. (6.2) and (6.3) are independent

of the number of supersymmetries at high energy. The possible Reggeization of gravity,

discussed in refs. [74, 75], remains an open question. However, this issue cannot be re-

solved by studying forward-scattering or eikonal limits. The t-channel ladder diagrams

(obtained from figure 1 by rotating by 90◦ or permuting 1 → 2 → 3 → 4 → 1), which

should contribute to Reggeization, are subleading by powers of t/s because they have

fewer attachments to the high-energy lines.
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It is also interesting to consider the helicity-violating limit in which s → 0 for t > 0

kinematics (u ≃ −t). As mentioned before, the associated tree-level amplitude is power-

suppressed in this limit with respect to the dominant pole behavior; its leading behavior

is O(s3/t2). In this limit, many of the finite-remainder expressions naively appear to blow

up (see for instance eq. (5.18) as x → 1). However, one can check in all cases that these

spurious singularities cancel, and the leading behavior of the ratio of the one- and two-

loop amplitudes to the tree amplitude is of O(tL), L = 1, 2. Thus the one- and two-loop

amplitudes never have a power (1/s) enhancement over the tree amplitude in the helicity-

violating limit, but are of the same order in s. (There is a ln(s) enhancement, but only in

the pure N = 8 supergravity terms, not in any of the matter contributions.)

7 Conclusions

In this paper, we have computed the full four-graviton two-loop amplitudes in N = 4, 5, 6

supergravity. As expected, their IR divergences can be expressed in terms of the square of

the corresponding one-loop amplitudes. The finite remainders were presented in a simple

form. We also noted that the finite remainder in N = 8 supergravity can be expressed in

terms of permutations of a pure function f1(x) possessing a simple, one-term symbol.

The N = 4, 5, 6 supergravity results were obtained using the double-copy property

of gravity, which is a consequence of the recently-conjectured BCJ duality. The former

property allowed us to combine the BCJ-satisfying N = 4 sYM representation with known

N = 0, 1, 2 sYM gauge-theory amplitudes, in order to obtain the corresponding supergrav-

ity amplitudes, including all loop integrations.

Our task was vastly simplified by the fact that both sets of Yang-Mills amplitudes

entering the double-copy formula were known, as well as by the lack of loop-momentum

dependence for the N = 4 sYM amplitudes in this case. As mentioned in the introduction,

generic N < 8 supergravity theories are expected to diverge at three loops (but not N = 5

or 6 [38, 39]), because the counterterm R4 is allowed by supersymmetry. It would thus be

very interesting to compute explicit three-loop non-maximal supergravity amplitudes. If

one computes in N ≥ 4 supergravity, then one can use the double-copy formula, because

a BCJ-satisfying form exists for one of the two copies, namely the three-loop N = 4 sYM

amplitude [44].

However, for the other gauge-theory copy, N < 4 sYM, the three-loop amplitudes

are not known. Full-color amplitudes (including nonplanar terms) are required, and they

should be known at the level of the integrand, because the BCJ form for the three-loop

N = 4 sYM amplitude contains loop-momentum dependence in its numerator factors. BCJ

duality for N < 4 sYM could help simplify these gauge-theory calculations. For instance,

for the three-loop four-point N = 4 sYM amplitude, the duality reduced the computation

of the full amplitude to the evaluation of the maximal cut [76] of a single diagram [44]. Non-

maximal amplitude calculations are not expected to be as simple, however. More powers

of loop momentum will appear in the numerator factors, and graphs containing triangle

and bubble subgraphs will also arise. It would be interesting nonetheless to investigate the

simplifications that may be provided by BCJ duality in these cases.
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A One-loop expressions

In this appendix we give the O(ǫ0) and O(ǫ1) coefficients in the expansion of the one-loop

four-graviton amplitude M(1)
4 in the various supergravity theories, because they enter the

extraction of the two-loop finite remainder F
(2)
4 according to eq. (5.2). These amplitudes

were first computed through O(ǫ0) in refs. [40, 41] for N = 4 and N = 6 supergravity (and

the N = 5 case is trivially related to N = 6 at one loop). Expressions valid to all orders

in ǫ, in terms of box, triangle and bubble integrals, can be found in ref. [43].

We write

M(1)
4 =

( κ

8π

)2
(

4π e−γ µ2

|s|

)ǫ

Mtree
4

[

2

ǫ

(

s ln(−s) + t ln(−t) + u ln(−u)
)

+ F
(1)
4

]

, (A.1)

where ln(−s) → ln |s| − iπ in the s channel, ln(−t) → ln |t| − iπ in the t channel. We will

give the O(ǫ0) and O(ǫ1) coefficients for F
(1)
4 for each theory in these two channels.

For N = 8 supergravity in the s channel we have,

F
(1),N=8
4

∣

∣

∣

s−channel
= s

[

gs

(−t

s

)

+ gs

(−u

s

)

]

, (A.2)

where

gs(x) = 2x (lnx+ iπ) ln(1− x)

+ǫ

{

−2 (2− x)

[

Li3(x)−
ζ3
3

+ (lnx+ iπ) Li2(1− x) +
1

2
ln(1− x) (ln2 x− 4 ζ2)

]

+
1

3
x ln3 x− iπ (1− x) (ln2 x− 4 ζ2)− lnx (lnx+ iπ) ln(1− x)

}

. (A.3)

The t-channel result for the N = 8 supergravity amplitude, divided by the tree, is obtained

by exchanging s and t in the corresponding s-channel result. (This is not quite the case

for F
(1),N=8
4 , due to the explicit factor of |s|−ǫ extracted in eq. (A.1).)

We express the finite remainders for N < 8 supergravities in terms of the one for

N = 8 supergravity. For N = 6 supergravity we find, in the s channel,

F
(1),N=6
4

∣

∣

∣

s−channel
= F

(1),N=8
4

∣

∣

∣

s−channel
+ s

[

g6,s

(−t

s

)

+ g6,s

(−u

s

)

]

, (A.4)
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where

g6,s(x) =
1

2
x (1− x)

[

ln2
(

x

1− x

)

+ π2

]

(A.5)

+ǫ

{

2x (1− x)

[

Li3(x)− lnxLi2(x)−
1

3
ln3 x− π2

2
lnx

]

−1

2

[

x (lnx+ iπ) + (1− x) (ln(1− x) + iπ)
]2

− π2

2
(1− x (1− x))

}

.

The t-channel result is

F
(1),N=6
4

∣

∣

∣

t−channel
= F

(1),N=8
4

∣

∣

∣

t−channel
+ s g6,t

(−u

t

)

, (A.6)

where

g6,t(x) = − x

(1− x)2
lnx (lnx+ 2 iπ) + ǫ

{

2x

(1− x)2

[

Li3(x)− ζ3 − (lnx+ iπ) (Li2(x)− ζ2)

+
1

3
ln3 x+ 2 ζ2 lnx+

iπ

2
ln2 x− lnx (lnx+ 2 iπ) ln(1− x)

]

−
[

(ln(1− x) + iπ) +
x

1− x
(lnx+ iπ)

]2

− 1− x (1− x)

(1− x)2
π2

}

. (A.7)

The corresponding one-loop results forN = 5 supergravity are trivially related to those

for N = 6, because the difference in field content from N = 8 is due to the same matter

multiplet, just three copies instead of two. Therefore we have,

F
(1),N=5
4

∣

∣

∣

s−channel
= F

(1),N=8
4

∣

∣

∣

s−channel
+

3

2
s

[

g6,s

(−t

s

)

+ g6,s

(−u

s

)

]

, (A.8)

F
(1),N=5
4

∣

∣

∣

t−channel
= F

(1),N=8
4

∣

∣

∣

t−channel
+

3

2
s g6,t

(−u

t

)

. (A.9)

The s-channel one-loop finite remainder for N = 4 supergravity is given by

F
(1),N=4
4

∣

∣

∣

s−channel
= F

(1),N=8
4

∣

∣

∣

s−channel
+ s

[

g4,s

(−t

s

)

+ g4,s

(−u

s

)

]

, (A.10)

where

g4,s(x) =
[

2− x (1− x)
]

g6,s(x) + x (1− x)

[

(1− 2x) lnx+
1

2

]

− ǫ

6

{

x
(

3− x2 (12− 15x+ 5x2)
)

1− x
ln2 x− 5x2 (1− x)2

[

lnx ln(1− x)− π2

2

]

+ iπ

[

2
x2

1− x
(7− 12x+ 6x2) lnx+ 1

]

− 2x (6− 24x+ 17x2) lnx− 10x (1− x)

}

. (A.11)

The t-channel expression is

F
(1),N=4
4

∣

∣

∣

t−channel
= F

(1),N=8
4

∣

∣

∣

t−channel
+ s g4,t

(−u

t

)

, (A.12)
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where

g4,t(x) =

[

2 +
x

(1− x)2

]

g6,t(x)−
x

(1− x)2

[

1 + x

1− x
(lnx+ iπ) + 1

]

+
ǫ

6

x

(1− x)2

{

(3− x (1− x))

[

ln2
(

x

1− x

)

+ π2

]

− 5x

(1− x)2
lnx (lnx+ 2iπ)

+
1− x+ 3x2

x2
ln(1− x) (ln(1− x) + 2iπ) + 2

1− 12x− 6x2

x (1− x)
(lnx+ iπ)

−2
1− 5x+ x2

x
ln

(

x

1− x

)

− 20

}

. (A.13)
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