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1 Introduction and overview

Unraveling the pattern of soft and collinear divergences in scattering amplitudes is a critical

endeavor to advance our understanding of gauge theories in general and to assist in concrete

computations for collider phenomenology, e.g., in massless gauge theories such as Quantum

Chromodynamics (QCD). These studies have a long history (see e.g. the early review [1])

and have contributed to our knowledge of the universal infrared (IR) structure of gauge

theory amplitudes. Based on the concepts of soft and collinear factorization, non-abelian

exponentiation, and the study of collinear limits, significant information about scattering

amplitudes is available to all orders in perturbation theory. For precision predictions at

modern colliders, especially within QCD and including higher order quantum corrections,

these insights are of great practical importance [2, 3].

Quite generally, factorization implies the separation of scales in a given scattering re-

action, i.e. the process-dependent hard scale q2 from those governing the soft and collinear

limit, defined for instance by the masses mi of the scattering particles with q2 ≫ m2
i or

by the regions of soft momenta. Note that the soft and collinear singularities of massless

particles (gauge bosons) strictly require the definition of a regulator, which is conveniently
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performed in D = 4−2ǫ dimensions. As an immediate consequence of factorization, evolu-

tion equations emerge, which depend on the kinematics of the specific process and on the

chosen regulator. Their solution leads to non-abelian exponentiation, a result which also

arises from an effective field theory formulation based on the ultra-violet (UV) renormal-

ization properties of effective operators and their anomalous dimensions; see e.g. ref. [4].

Moreover, for scattering amplitudes in gauge theories, the underlying factorization im-

poses strong constraints on the anomalous dimensions and the all-order structure of the

IR singularities [5–8].

In the present paper we will specialize our investigations in a number of ways. First,

we choose to work in the N = 4 supersymmetric Yang-Mills (SYM) theory, which is the

simplest non-abelian gauge theory in four dimensions due to the vanishing of the four-

dimensional β function. In our study, we are concerned with form factors and scattering

amplitudes in this theory, which allows us to study their IR singularities without interfer-

ence from UV divergences. Second, we will be working in the so-called planar limit and, for

scattering amplitudes An of n external particles, we will assume color ordering. Our main

focus is on the study of different kinematical regimes, i.e. scattering amplitudes of massless

and massive particles and associated form factors, using different regulator schemes.

The general property of factorization prompts us to ask whether one can delineate a

well-defined finite part of An independent of the chosen IR regularization. While reasoning

along these lines has already been employed in the derivation of radiative corrections for

heavy-quark hadroproduction at two loops in QCD [9, 10] (see also refs. [11, 12]), this issue

is more generally related to the important question whether physical observables in theories

with massless particles are independent of the regulator;1 see e.g. the discussion in ref. [14].

To that end, in this paper we specifically compare dimensional and massive regularizations

schemes for n-particle scattering amplitudes An in N = 4 SYM theory, an ideal testing

ground for these questions due to the simplicity of its loop expansion.2 In-depth studies

of the latter may lead to new insights for gauge theories with massive particles which will

eventually also be of interest for applications in collider phenomenology.

Let us start thus, for simplicity, with maximally-helicity-violating (MHV) scattering

amplitudes. Factorization implies that the color-ordered amplitude An = Atree
n Mn of n

particles can be written as (see e.g. ref. [16])

Mn = Sn × Jn ×Hn . (1.1)

Here Sn and Jn are “soft” and “jet” functions, respectively, and Hn is an IR-finite “hard

function”. In general, Mn and Hn are vectors in a space of possible color structures, and

Sn is a matrix. In the planar limit, Sn is proportional to the identity matrix, and one can

combine Sn and Jn into a product of “wedge” functions W (si−1,i) that depend only on two

adjacent particles i− 1 and i of the color-ordered amplitude [17]

Mn = Hn ×
n
∏

i=1

W (si−1,i) , si−1,i = (pi−1 + pi)
2. (1.2)

1The well-known physical evolution kernels are of course independent of the factorization scale µ2 by

construction; see e.g. ref. [13].
2In the context of N = 4 SYM theory, IR-safe inclusive differential cross-sections were studied in ref. [15].
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As will be detailed below, the factorization (1.2) holds not only in dimensional regulariza-

tion, but also in cases where masses are used to partially or fully regulate the IR divergences.

The wedge functions W (q2) satisfy renormalization group equations which imply that they

exponentiate. The factorization (1.2) fixes the hard function Hn only up to finite pieces,

but with a suitable definition of the wedge function, we suggest that

logHn = logMn −
n
∑

i=1

logW (si−1,i) (1.3)

can be used to define a regulator-independent finite part of the amplitude.

For regulators that leave the external particles massless, such as dimensional regular-

ization inD = 4−2ǫ dimensions or the common-mass Higgs regulator described below, each

wedge has half the IR divergences of a Sudakov form factor Φ(q2) (see e.g. refs. [18, 19]),

so it is natural to define W (q2) =
√

Φ(q2) [3, 17]. We show in this paper that, with this

definition, logHn is identical for both of these regulators through two-loop order.

We also analyze a refined version of the Higgs regulator with differential masses, de-

scribed below. In this case, the external particles have distinct masses, and so the wedge

function cannot simply be defined in terms of a Sudakov form factor. Instead, we define

the one-loop wedge function in terms of a certain IR-divergent triangle diagram, and then

use extended dual conformal invariance to extend this to an all-loop expression for the sum

of wedge functions. With this choice for the IR-divergent wedge function, we establish that

the IR-finite hard function logHn takes precisely the same form for the differential-mass

Higgs regulator as for the common-mass regulator. We lack, however, an explicit operator

definition for the wedge function in this case.

For N = 4 SYM theory, the regulator-independent hard function logHn takes the

simple form

logHn =
γ(a)

4
H(1)

n (x2ij) + nD(a) + C(a) +Rn(x
2
ij , a) (1.4)

due to the conjectured duality between the finite part of the MHV scattering amplitudes

and the (UV renormalized) expectation value of certain cusped Wilson loops (see refs. [20,

21] for reviews). In eq. (1.4), γ(a) is the cusp anomalous dimension [22], for which a

prediction to all orders in the coupling constant a = g2N/(8π2) exists [23], and D(a) and

C(a) are kinematic-independent functions. The amplitude is expressed as a function of the

dual or region momenta xµi , which are defined by

pµi = xµi − xµi+1 (1.5)

with xµi+n ≡ xµi , and x2ij = (xi − xj)
2. The first three terms on the r.h.s. of eq. (1.4),

whose kinematical dependence is determined solely by the one-loop contribution H
(1)
n (x2ij),

constitute the ABDK/BDS ansatz [17, 24]. The a priori undetermined remainder func-

tion Rn(x
2
ij , a) contains the only non-trivial, i.e. loop-dependent, kinematical dependence.

Equation (1.4) follows from a conformal Ward identity for the dual Wilson loop [25, 26].

The first term on the r.h.s. of eq. (1.4) provides a particular solution to this Ward iden-

tity. The remainder function Rn is the general homogeneous solution to the Ward identity,
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and depends only on dual conformal cross-ratios, which take the form x2ijx
2
mn/(x

2
imx2jn).

Due to the absence of dual conformal cross-ratios for n = 4 and n = 5, the remainder

functions R4 and R5 vanish and therefore the corresponding hard functions logH4 and

logH5 are completely determined by their one-loop value and the kinematic-independent

functions γ(a), D(a), and C(a). For n ≥ 6, dual conformal cross-ratios can be built, and

the remainder function is known to be non-zero starting from two loops and n = 6 external

particles [27, 28]. Its higher-loop and higher-point form is under intense investigation; see

e.g. refs. [29–33].

The planar MHV n-point amplitude for N = 4 SYM theory has been studied using

dimensional regularization and also using an alternative massive IR regulator3 [38–42]. The

latter is motivated by the AdS/CFT correspondence and consists of computing scattering

amplitudes on the Coulomb branch of N = 4 SYM theory, i.e. giving a non-trivial vacuum

expectation value to some of the scalars. One can achieve a situation where the propagators

on the perimeter of any loop diagram are massive, thereby regulating the IR divergences.

The simplest case, the “common mass Higgs regulator” in which only one mass m is

introduced, corresponds to the breaking of the U(N +M) gauge group to U(N)× U(M),

with fields in the adjoint representation of U(M) remaining massless.

In the more general “differential-mass Higgs regulator”, one breaks the gauge group

further to U(N) × U(1)M , thereby introducing various masses mi, i = 1, . . . ,M . Fields

in the adjoint of the broken U(M), which appear as external states in the scattering

amplitudes, now have nonzero masses |mi−mi+1| 6= 0. We use a decomposition of the one-

loop MHV n-point amplitude into a sum of IR-divergent triangle diagrams and IR-finite

six-dimensional box integrals to define the sum of one-loop wedge functions as4

n
∑

i=1

W
(1)
i−1,i,i+1(x

2
i−1,i+1)

∣

∣

∣

∣

one-loop

=
n
∑

i=1

[

−
1

4
log2

(

x2i−1,i+1

m2
i

)

+
1

8
log2

(

m2
i+1

m2
i

)]

(1.6)

in the uniform small mass limit (i.e., mi = αim, with αi fixed and m → 0). The one-

loop hard function H
(1)
n (x2ij) is then expressed in terms of IR-finite quantities, and thus is

manifestly regulator-independent.

A key point is that the massive regulator is closely connected to dual conformal sym-

metry. The Higgs masses can be interpreted within the AdS/CFT duality as the radial

coordinates in a T -dual AdS5 space. While the isometries of this space yield the usual

dual conformal transformations for zero masses, they define a different realization of this

symmetry for finite masses, dubbed “extended dual conformal symmetry” [38]. Since no

further regulator is needed in the massive setup, the extended dual conformal symmetry is

expected to be an exact symmetry of the planar amplitudes. Recently, it was shown that

tree-level amplitudes on the Coulomb branch of N = 4 SYM and also all cuts of planar

loop amplitudes do indeed have this extended symmetry [43, 44]. Assuming that N = 4

SYM theory remains cut-constructible on the Coulomb branch, this can then be utilized

in proving the extended dual conformal symmetry property conjectured in ref. [38].

3For earlier applications of a massive IR regulator, see refs. [34–37].
4The subscripts on the wedge function refer to its dependence on mi−1, mi, and mi+1; see eq. (4.9).
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What we wish to emphasize is that, while planar amplitudes have extended dual con-

formal symmetry, the wedge functions and regulator-independent hard functions separately

do not. This is not surprising, since extended dual conformal transformations act on the

masses mi (as well as the dual variables xi), whereas the hard function is, by definition,

independent of the masses in the uniform small mass limit. Nevertheless, extended dual

conformal symmetry can be used to determine the all-loop structure of the IR divergences

of scattering amplitudes in the case of the differential-mass Higgs regulator. Assuming the

exponentiation of Higgs-regulated MHV scattering amplitudes, together with eq. (1.6), we

obtain the following expression for the IR-divergent pieces in the differential-mass setup

n
∑

i=1

logWi−1,i,i+1(x
2
i−1,i+1) (1.7)

=

n
∑

i=1

[

−
γ(a)

16
log2

(

x2i−1,i+1

m2
i

)

−
G̃0(a)

2
log

(

x2i−1,i+1

m2
i

)

+
γ(a)

32
log2

(

m2
i+1

m2
i

)

+ w̃(a)

]

valid for uniform small masses.

Having deduced the form of the IR divergences of the amplitude for the differential-

mass regulator, we turn the argument around and use eq. (1.7) together with extended dual

conformal symmetry to deduce the anomalous dual conformal Ward identity, from which

the all-loop result (1.4) follows. Hence, a derivation of eq. (1.7) from first principles would

constitute a proof of eq. (1.4) without having to rely on the scattering amplitude/Wilson

loop duality. It would be very interesting to understand the origin of eq. (1.7) from a

renormalization group approach. A first step could be to find a suitable operator definition

for the wedge function in the differential-mass regulator case. We leave these questions for

future work.

This paper is organized as follows. In section 2, we review the form of color-ordered

MHV scattering amplitudes in planar N = 4 SYM in dimensional regularization and in the

massive regularization of ref. [38]. In section 3 we discuss factorization and exponentiation

properties of scattering amplitudes and form factors. We propose a definition, involving

Sudakov form factors, for a regulator-independent hard function that can be computed

from the IR-divergent scattering amplitudes. We review the result for the form factors

up to two loops in dimensional regularization, and compute the analogous quantities to

two-loop order in the massive regularization. We then show that the (logarithm of the)

hard function defined earlier is the same in both cases. In section 4, we discuss a more

general differential-mass Higgs regularization, and compute the IR-divergent terms of the

one-loop amplitude in this regularization. We then use extended dual conformal symmetry

to derive the all-loop form of the IR-divergent terms, and discuss their relation to the dual

conformal Ward identity. Section 5 contains our conclusions, and two appendices contain

technical details used in the paper.

2 Review of MHV amplitudes in N = 4 SYM

In this section, we briefly review the form of color-ordered MHV amplitudes in planar

N = 4 SYM theory in different regularization schemes.
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The all-loop-order n-point amplitude is given by the tree-level amplitude times a

helicity-independent function Mn, which we expand in the ’t Hooft parameter

Mn = 1 +
∞
∑

ℓ=1

aℓM (ℓ)
n , a =

g2N

8π2
(4πe−γ)ǫ (2.1)

where ǫ = (4 −D)/2. Loop-level amplitudes are UV-finite but suffer from IR divergences

which can be regulated using either dimensional regularization in D dimensions, or a Higgs

regulator in four dimensions. We discuss each of these in turn.

2.1 Dimensional regularization of amplitudes

In dimensional regularization, the n-point amplitude takes the form [17]

logMn =
∞
∑

ℓ=1

aℓ
[

−
γ(ℓ)

8(ℓǫ)2
−

G
(ℓ)
0

4ℓǫ

] n
∑

i=1

(

µ2

x2i−1,i+1

)ℓǫ

+
γ(a)

4
F (1)
n (x2ij) + nf(a) + C(a) +Rn(x

2
ij , a) +O(ǫ) . (2.2)

The momentum dependence of the amplitude is expressed in terms of dual variables xi
defined via xi − xi+1 = pi, where pi are the momenta of the external states; we also define

x2ij ≡ (xi − xj)
2. The terms on the first line of eq. (2.2) are IR-divergent and are specified

in terms of the cusp and collinear anomalous dimensions [22]

γ(a) =

∞
∑

ℓ=1

γ(ℓ)aℓ =

∞
∑

ℓ=1

4f
(ℓ)
0 aℓ = 4a− 4ζ2a

2 + 22ζ4a
3 +O(a4) , (2.3)

G0(a) =
∞
∑

ℓ=1

G
(ℓ)
0 aℓ =

∞
∑

ℓ=1

2f
(ℓ)
1

ℓ
aℓ = −ζ3a

2 +

(

4ζ5 +
10

3
ζ2ζ3

)

a3 +O(a4) . (2.4)

The terms on the second line of eq. (2.2) are IR-finite and are determined by the finite part

of the one-loop amplitude

F (1)
n ≡ M (1)

n +
1

2ǫ2

n
∑

i=1

(

µ2

x2i−1,i+1

)ǫ

(2.5)

as well as the constants [17]

f(a) = −
∞
∑

ℓ=1

f
(ℓ)
2

2ℓ2
aℓ =

π4

720
a2 +

(

−
c1
18

ζ6 −
c2
18

ζ23

)

a3 +O(a4) , (2.6)

C(a) = −
π4

72
a2 +

[(

341

216
+

2c1
9

)

ζ6 +

(

−
17

9
+

2c2
9

)

ζ23

]

a3 +O(a4) , (2.7)

and a remainder function Rn(x
2
ij , a) potentially contributing beginning at two loops. The

original proposal by Bern, Dixon, and Smirnov [17] conjectured that eq. (2.2) holds with

Rn(x
2
ij , a) = 0. Explicit calculations bore this out for n = 4 (through four loops) [45] and

n = 5 (through two loops) [46], but the two-loop calculation for n = 6 [27, 28, 47] revealed

the necessity for a non-constant function R6(x
2
ij , a).
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Explicit expressions for eq. (2.5) are given in ref. [17]. For n = 4 and n = 5, they are

F
(1)
4 =

1

2
log2

(

x213
x224

)

+
2π2

3
, (2.8)

F
(1)
5 = −

1

4

5
∑

i=1

log

(

x2i,i+2

x2i+1,i+3

)

log

(

x2i−1,i+1

x2i+2,i+4

)

+
5π2

8
. (2.9)

2.2 Higgs regularization of amplitudes

The four-, five-, and six-point functions have also been computed [38–41] using the common-

mass Higgs regulator described in the introduction. These amplitudes exhibit an exponen-

tiation similar to eq. (2.2) which motivated the following analog for Higgs-regulated n-point

amplitudes [38, 40]

logMn =

n
∑

i=1

[

−
γ(a)

16
log2

(

x2i−1,i+1

m2

)

−
G̃0(a)

2
log

(

x2i−1,i+1

m2

)]

+
γ(a)

4
F̃ (1)
n (x2ij) + nf̃(a) + C̃(a) + R̃n(x

2
ij , a) +O(m2) . (2.10)

The terms on the first line of eq. (2.10) are IR-divergent. The cusp anomalous dimen-

sion (2.3) is independent of the regularization scheme, but the analog of the collinear

anomalous dimension is given by

G̃0(a) = −ζ3a
2 +

(

9

2
ζ5 − ζ2ζ3

)

a3 +O(a4) . (2.11)

The terms on the second line of eq. (2.10) are IR-finite and are determined by the finite

part of the one-loop amplitude

F̃ (1)
n ≡ M (1)

n +
1

4

n
∑

i=1

log2
(

x2i−1,i+1

m2

)

(2.12)

as well as the constants [40]

f̃(a) =
π4

180
a2 +O(a3) , (2.13)

C̃(a) = −
π4

72
a2 +O(a3) (2.14)

and a remainder function R̃n(x
2
ij , a). As in the case of dimensional regularization, the re-

mainder function vanishes for four- and five-point amplitudes. For n = 6, it was shown [41]

that the two-loop remainder function R̃
(2)
6 (x2ij) in the Higgs-regulated amplitude is pre-

cisely equal to its value R
(2)
6 (x2ij) in dimensional regularization, and this is expected to

hold generally.

The one-loop amplitudes may be evaluated to show [40]

F̃
(1)
4 =

1

2
log2

(

x213
x224

)

+
π2

2
= F

(1)
4 −

π2

6
, (2.15)

F̃
(1)
5 = −

1

4

5
∑

i=1

log

(

x2i,i+2

x2i+1,i+3

)

log

(

x2i−1,i+1

x2i+2,i+4

)

+
5π2

12
= F

(1)
5 −

5π2

24
, (2.16)
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and more generally [41]

F̃ (1)
n = F (1)

n −
nπ2

24
. (2.17)

3 Defining a regulator-independent IR-finite amplitude

Comparing the known expressions for Higgs-regulated amplitudes (2.10) with those for

dimensionally-regulated ones (2.2), one observes that the IR-finite parts of the amplitudes

are equal in both regularizations, up to constants. In this section, we make the connection

more precise by introducing a regulator-independent expression for the finite part of the

amplitude.

In a planar theory, the factorization (see e.g. ref. [16]) of color-ordered amplitudes

takes the specific form [17]

Mn =

[ n
∏

i=1

W (x2i−1,i+1)

]

Hn(x
2
ij) (3.1)

where W (x2i−1,i+1) is an IR-divergent “wedge function” depending only on (pi−1 + pi)
2

and resulting from the exchange of soft gluons in the wedge between the (i− 1)th and ith

external particles, and Hn(x
2
ij) is an IR-finite hard function. With a suitable definition for

W (x2i−1,i+1), we can use

logHn = logMn −
n
∑

i=1

logW (x2i−1,i+1) (3.2)

to define the IR-finite part of the amplitude. The forms of both Mn and W will depend

on the specific regulator, but we will find that logHn is regulator-independent.

3.1 Dimensional regularization of the form factor

In dimensional regularization, the wedge function can be defined as the square root of

the gluon form factor [3, 17]. Form factors in N = 4 SYM have been studied at strong

coupling [48, 49], at one loop [50] and at two loops [51, 52], while three-loop results can

be inferred from the respective QCD computations [53–58] using the principle of maximal

transcendentality; see e.g. ref. [59].

In N = 4 SYM we can equivalently use the form factor

Φ(q2) = 〈J, pi|OIJ(q)|I, pi−1〉 (3.3)

for scalars φI coupling to the operator

OIJ = Tr

[

φIφJ −
1

6
δIJ

6
∑

K=1

φKφK

]

(3.4)

with q2 = (pi−1 + pi)
2. The operator OIJ belongs to the stress-energy multiplet of N = 4

SYM and is not UV renormalized. This form factor has been computed to two loops in

dimensional regularization [51]

Φ(q2) = 1 + aq2[−Ib] + a2(q2)2
[

Ic +
1

4
Id

]

+ · · · (3.5)

– 8 –



J
H
E
P
1
2
(
2
0
1
1
)
0
2
4

b c d
Figure 1. One- and two-loop form factor diagrams in dimensional regularization. All lines represent

massless adjoint fields. The dot represents the insertion of OIJ .

where Ii represent the scalar integrals shown in figure 1. (Despite its apparent non-

planarity, integral Id is actually leading order in the 1/N expansion as is clear from the

corresponding double-line diagram in figure 3.) The explicit expressions for these integrals

given in appendix A reveal that the form factor exponentiates to two-loop order

log Φ(q2) = a

(

µ2

q2

)ǫ[

−
1

ǫ2
+

π2

12
+O(ǫ)

]

+ a2
(

µ2

q2

)2ǫ[
π2

24ǫ2
+

ζ3
4ǫ

+O(ǫ)

]

+O(a3) . (3.6)

Equation (3.6) can be promoted to all orders in perturbation theory since the momen-

tum dependence of Φ is governed by an evolution equation (see e.g. refs. [18, 19, 53, 60]).

In D = 4− 2ǫ dimensions, the following factorization ansatz holds:

q2
∂

∂q2
log Φ(q2) =

1

2
K(a, ǫ) +

1

2
G(q2/µ2, a, ǫ) . (3.7)

All dependence of Φ on the hard momentum q2, which is taken to be Euclidean (q2 > 0

in our mostly-plus metric convention) here and in the sequel, rests inside the function

G(q2/µ2, a, ǫ). The latter is finite in four dimensions and can be considered as a suitable

continuation of the collinear anomalous dimension (2.4) to D = 4− 2ǫ dimensions. K(a, ǫ)

on the other hand serves as a pure counterterm. Renormalization group invariance of Φ

yields

− µ
d

dµ
K(a, ǫ) = µ

d

dµ
G(q2/µ2, a, ǫ) = γ(a) (3.8)

i.e., G and K are both governed by the cusp anomalous dimension γ(a) of eq. (2.3).

The solutions of eqs. (3.7) and (3.8) can be conveniently given with the help of the D-

dimensional continuation ā of the ’t Hooft parameter defined in eq. (2.1)

ā(q2, ǫ) = a

(

µ2

q2

)ǫ

(3.9)

which exhibits scale dependence on dimensional grounds and vanishes in the IR for D =

4− 2ǫ with ǫ < 0. Using eq. (3.9) and exploiting the fact that K has no explicit scale de-

pendence, which allows one to express it entirely through γ(a), one arrives at the following
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all-order expression for Φ

log Φ(q2) =
1

2

q2
∫

0

dξ

ξ

{

K(a, ǫ) +G
(

1, ā(ξ, ǫ), ǫ
)

−
1

2

ξ
∫

µ2

dλ

λ
γ
(

ā(λ, ǫ)
)

}

=
1

2

q2
∫

0

dξ

ξ

{

G
(

1, ā(ξ, ǫ), ǫ
)

−
1

2

ξ
∫

0

dλ

λ
γ
(

ā(λ, ǫ)
)

}

(3.10)

where the explicit solution of eq. (3.8) for the counterterm function K has been used

K(a, ǫ) = −
1

2

µ2
∫

0

dλ

λ
γ
(

ā(λ, ǫ)
)

. (3.11)

The double poles 1/ǫ2 at each loop order are generated by the two λ- and ξ-integrations

over γ, while the single poles in ǫ arise from the outer ξ-integration over G. Explicit

computation, e.g. along the lines of refs. [17, 53], yields

log Φ(q2) =
∞
∑

ℓ=1

aℓ
[

−
γ(ℓ)

4(ℓǫ)2
−

G
(ℓ)
0

2ℓǫ
−

φ(ℓ)

2ℓ
+O(ǫ)

](

µ2

q2

)ℓǫ

(3.12)

where the boundary condition for G has been chosen as

G(1, a, ǫ) = G0(a) + ǫφ(a) +O(ǫ2) (3.13)

which is consistent with eq. (3.6). G0(a) is given in eq. (2.4) and φ(a) can be read off from

eq. (3.6) as

φ(a) = −
π2

6
a+O(a3) . (3.14)

The exponentiation of eq. (3.10) proceeds trivially with the help of the boundary condition

for Φ in D dimensions, i.e., Φ(q2 = 0) = 1, which is implicit also in our choice for G(1, a, ǫ)

in eq. (3.13). Note also that the all-order result for the form factor in eq. (3.10) applies

literally to theories with less supersymmetry, e.g., to QCD. There, the coupling constant

ā has to be read as the strong coupling αs continued to D-dimensions and the respective

QCD expressions for the anomalous dimensions γ(a) and G0(a) are related to eqs. (2.3)

and (2.4) by the principle of maximal transcendentality. Moreover, G(1, a, ǫ) admits a fur-

ther decomposition [19] into three terms: a universal (spin-independent) eikonal anomalous

dimension, (twice) the coefficient of the δ(1−x)-term in the collinear evolution kernel, and

a process-dependent term accounting for the running coupling in the coefficient function

of the hard scattering. The latter is proportional to the QCD β-function and is, of course,

absent in N = 4 SYM.

We now introduce the wedge function as announced above. Defining W (q2) =
√

Φ(q2),

we see from eq. (3.12) that

logW (q2) =
∞
∑

ℓ=1

aℓ
[

−
γ(ℓ)

8(ℓǫ)2
−

G
(ℓ)
0

4ℓǫ
+ w(ℓ) +O(ǫ)

](

µ2

q2

)ℓǫ

, (3.15)
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where

w(a) =
π2

24
a+O(a3) (3.16)

and γ(a) and G0(a) are given in eqs. (2.3) and (2.4). With eq. (3.15) at our disposal, and

using exponentiation of the n-point amplitude Mn in eq. (2.2), we can now define the finite

remainder Hn via eq. (3.2)

logHn =
γ(a)

4
F (1)
n (x2ij) + n[f(a)− w(a)] + C(a) +Rn(x

2
ij , a) +O(ǫ) (3.17)

thus the IR-divergent pieces of the wedge function remove all the IR divergences of the

n-point amplitude. At one loop, eq. (3.17) gives

H(1)
n = F (1)

n −
nπ2

24
(3.18)

allowing us to rewrite it in its final form as

logHn =
γ(a)

4
H(1)

n (x2ij) + nD(a) + C(a) +Rn(x
2
ij , a) +O(ǫ) (3.19)

where

D(a) = f(a)− w(a) +
π2

96
γ(a) = −

π2

180
a2 +O(a3) (3.20)

with C(a) given by eq. (2.7).

Using renormalization group arguments similar to the derivation of eq. (3.10) for the

form factor Φ, it is obvious that logW , logMn, and therefore also logHn in eq. (3.19) can

be expressed to all orders via (double-)integrals over the respective anomalous dimensions;

see e.g. refs. [3, 16].

3.2 Higgs regularization of the form factor

Now we turn to the study of the Higgs-regulated N = 4 SYM form factor Φ(q2). We will

assume that it is given by the same scalar integrals as in figure 1 except that some of the

internal legs are now massive

Φ(q2) = 1 + aq2
[

− Ĩb
]

+ a2(q2)2
[

1

2
Ĩc1 +

1

2
Ĩc2 +

1

4
Ĩd

]

+ · · · (3.21)

There are several different mass assignments for the two-loop integrals (see figure 2), as can

be seen from the double-line representation in figure 3. We have computed these integrals

(see appendix A) and they reveal that the Higgs-regulated form factor exponentiates to

two-loop order

logΦ(q2) = (3.22)

a

[

−
1

2
log2

(

q2

m2

)

+O(m2)

]

+a2
[

π2

12
log2

(

q2

m2

)

+ζ3 log

(

q2

m2

)

+
π2

45
+O(m2)

]

+O(a3) .
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b c1 c2 d
Figure 2. One- and two-loop form factor diagrams for the common-mass Higgs regulator. The

solid/dashed lines represent massive/massless adjoint fields.

c1 c2 d
Figure 3. Double-line version of the two-loop diagrams for the common-mass Higgs regulator. The

solid/dotted lines represent fundamental fields of U(M)/U(N).

The all-loop-order generalization of eq. (3.22) relies on the same factorization ansatz

discussed before and the separation of scales, i.e. q2 ≫ m2, so that the momentum depen-

dence of Φ is described by the evolution equation [1, 61]

q2
∂

∂q2
log Φ(q2) =

1

2
K̃(m2/µ2, a) +

1

2
G̃(q2/µ2, a) (3.23)

and, consistent with eq. (3.8), the renormalization group equation for K̃ now reads

lim
m→0

µ
d

dµ
K̃(m2/µ2, a) = −γ(a) (3.24)

where the limiting procedure m → 0 indicates that we neglect any power suppressed terms

of O(m2). It is subject to the following solution

K̃(m2/µ2, a) = K̃(1, a)−
1

2

µ2
∫

m2

dλ

λ
γ(a) (3.25)

with a non-vanishing boundary condition K̃(1, a), since the IR sector has been altered in

contrast to eq. (3.11). The solution to the Higgs-regularized form factor Φ then becomes

log Φ(q2) =
1

2

q2
∫

m2

dξ

ξ

{

K̃(1, a) + G̃(1, a)−
1

2

ξ
∫

m2

dλ

λ
γ(a)

}

+ φ̃(a) (3.26)
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where the integration range is naturally cut off in the IR at m2, i.e. at the mass scale set

by the Higgs regulator, and the function

φ̃(a) =
π2

45
a2 +O(a3) (3.27)

has been introduced to match the fixed-order computation in eq. (3.22). Note that the

evolution equation for the Higgs-regulated form factor in N = 4 SYM depends only on the

sum of K̃(1, a) and G̃(1, a). To agree with the fixed-order computation in eq. (3.22), we

choose (cf. eq. (2.11))

K̃(1, a) + G̃(1, a) = −2G̃0(a) (3.28)

leading to the solution of eq. (3.26)

log Φ(q2) = −
γ(a)

8
log2

(

q2

m2

)

− G̃0(a) log

(

q2

m2

)

+ φ̃(a) +O(m2) . (3.29)

The exponentiation of eq. (3.26) requires further matching conditions for Φ to be obtained

from explicit ℓ-loop computations.

A few comments are in order here. First, matching to fixed-order computations could,

in principle, also impose the condition G̃ = G, i.e. demand that the collinear anomalous

dimensions coincide. This would proceed at the expense of a non-zero result for K̃(1, a).

Next, the Higgs-regulated form factor is finite, so that eq. (3.26) can be evaluated in

four dimensions. In theories with broken supersymmetry, e.g. QCD with massive quarks,

collinear singularities are regulated by the heavy quark masses, whereas all soft gluon

divergences require dimensional regularization. In such a case, the analogous functions K

and G have a clear physical interpretation and are independent (see e.g. ref. [61]). For

example, the (electric) form factor of a massive quark-anti-quark pair in QCD is known to

two loops [62, 63], and the analogs of collinear anomalous dimensions naturally coincide in

this case, i.e. G̃ = G.

In the case of the common-mass Higgs regulator (so that the external states are mass-

less), the wedge function can again be defined as the square root of the form factor (3.29)

so that

logW (q2) = −
γ(a)

16
log2

(

q2

m2

)

−
G̃0(a)

2
log

(

q2

m2

)

+ w̃(a) +O(m2) (3.30)

where

w̃(a) =
π2

90
a2 +O(a3) (3.31)

and γ(a) and G̃0(a) were given in eqs. (2.3) and (2.11). We now use eqs. (2.10) and (3.30)

in eq. (3.2) to define the finite part of the n-point amplitude

log H̃n = logMn −
n
∑

i=1

logW (x2i−1,i+1)

=
γ(a)

4
F̃ (1)
n + n

[

f̃(a)− w̃(a)
]

+ C̃(a) + R̃n +O(m2) (3.32)
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again finding that the IR-divergent pieces of the wedge function precisely remove the IR

divergences of the n-point amplitude. At one loop, eq. (3.32) gives

H̃(1)
n = F̃ (1)

n (3.33)

so that we can rewrite the finite part of the amplitude in its final form

log H̃n =
γ(a)

4
H̃(1)

n + nD̃(a) + C̃(a) + R̃n(x
2
ij) +O(ǫ) (3.34)

where

D̃(a) = f̃(a)− w̃(a) = −
π2

180
a2 +O(a3) (3.35)

with C̃(a) given by eq. (2.14).

In complete analogy to the previous discussion, it is evidently possible to exploit renor-

malization group properties to provide expressions for logW , logMn, and hence log H̃n in

eq. (3.34) in terms of (double-)integrals over the anomalous dimensions similar to eq. (3.26).

3.3 Comparison of regulators

By comparing the results of the last two subsections, we can see that logHn(x
2
ij) as we have

defined it in eq. (3.2) is a good candidate for a regularization-independent IR-finite quan-

tity characterizing the planar MHV n-point amplitude. The one-loop hard functions are

identical in both dimensional and Higgs regularization (cf. eqs. (2.17), (3.18), and (3.33))

H(1)
n (x2ij) = H̃(1)

n (x2ij) . (3.36)

Moreover, calculations through two loops show the equality of the kinematic-independent

functions appearing in the n-point amplitude (3.19) and (3.34)

C(a) = C̃(a) , D(a) = D̃(a) (3.37)

(cf. eqs. (2.7) and (2.14) and eqs. (3.20) and (3.35)). The regulator independence of C(a)

was previously observed in ref. [40]. If eq. (3.37) holds to all loops, then the regulator

independence of the four- and five-point hard functions necessarily follows. For n = 6 at

two loops, agreement between the remainder function in dimensional regularization and

massive regularization was observed in ref. [41], and this agreement is expected for all n.

We thus expect the hard function logHn to be regularization-independent for all n-point

functions, that is

log H̃n(x
2
ij) = logHn(x

2
ij) (3.38)

for dimensional and Higgs regularizations.

4 Differential-mass Higgs regulator

In section 3, we defined an IR-finite hard function logHn for the n-point amplitude, and

showed (through two loops) that it has the same form (including constants) for dimensional

regularization and for a common-mass Higgs regulator. In this section, we generalize our
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discussion to a more general class of regulators, viz., the Higgs regulator with arbitrary

distinct masses. This is also interesting from the point of view of collider phenomenology.

In QCD, amplitudes with different masses have been considered to two loops for the heavy-

to-light transitions, i.e., the (axial)-vector form factor with one massive and one massless

quark [64–67]. Also, electroweak logarithms in four-fermion processes at high energy arising

from loop corrections with massive W - and Z-gauge bosons have been considered to two

loops (see e.g. ref. [68]).

Recall that breaking the U(N+M) symmetry of N = 4 SYM theory to U(N)×U(1)M

by assigning distinct vacuum expectation values to one of the scalar fields results in non-

zero masses |mi − mj | for the off-diagonal adjoint fields and distinct masses mi for the

internal propagators of the scalar integrals that characterize loop amplitudes. (In fact,

extended dual conformal invariance requires the freedom to vary the masses.) One can

then define a differential-mass Higgs regulator by taking all the masses mi to zero. More

precisely, if mi = αim, the “uniform small mass limit” is defined as the limit m → 0

with αi held fixed. Regulator independence means that the result does not depend on the

choice of αi.

Because the external legs of the n-point amplitude now have distinct masses |mi −

mi+1|, it is no longer possible to define the wedge function W (x2i−1,i+1) as the square root

of a form factor as we did in section 3. In fact, it is not obvious what the operational

definition of W (x2i−1,i+1) for the differential-mass Higgs regulator should be, and we leave

this question to the future.

For now, we adopt a different approach by decomposing the one-loop n-point ampli-

tude into an IR-divergent and a manifestly regulator-independent IR-finite piece, and then

defining the one-loop wedge function in terms of the former. The extended dual conformal

invariance of the BDS ansatz then allows us to generalize this to an all-loop wedge function.

4.1 One-loop amplitude with differential-mass Higgs regulator

As is well known, the one-loop MHV n-point amplitude in dimensional regularization can

be written as a sum of two-mass-easy (and one-mass5) scalar box integrals [69, 70]

M (1)
n = −

1

8

n
∑

i=1

i+n−2
∑

j=i+2

I2me
ij . (4.1)

We will assume that the amplitude on the Coulomb branch is given, at least up toO(m2), by

the same set of integrals, with the mass configuration dictated by dual conformal symmetry.

The two-mass-easy diagram in figure 4 corresponds to the integral

I2me
ij =

∫

d4x0
iπ2

x̂2ij x̂
2
i+1,j+1 − x̂2i+1,j x̂

2
i,j+1

x̂20ix̂
2
0,i+1x̂

2
0j x̂

2
0,j+1

(4.2)

where x̂2ij = x2ij + (mi − mj)
2 with m0 = 0. Later, we will take the uniform small mass

limit, so henceforth we drop all mass dependence from the numerators, as those terms

would only contribute at O(m2).

5The one-mass integrals are just the special cases I2me
i,i+2.
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i

i+1

j

j+1

Figure 4. Two-mass-easy diagram corresponding to the integral I2me

ij .

It is known that one can decompose eq. (4.2) into a sum of IR-divergent triangle

integrals and an IR-finite six-dimensional integral (see e.g. ref. [71])

I2me
ij = I2me

ij

∣

∣

tri
+ I2me,6D

ij +O(m2) (4.3)

where

I2me
ij

∣

∣

tri
=

∫

d4x0
iπ2

[

x2i+1,j+1 − x2i+1,j

x̂20,i+1x̂
2
0,j x̂

2
0,j+1

+
x2i,j − x2i,j+1

x̂20,ix̂
2
0,j x̂

2
0,j+1

+
x2i+1,j+1 − x2i,j+1

x̂20,ix̂
2
0,i+1x̂

2
0,j+1

+
x2i,j − x2i+1,j

x̂20,ix̂
2
0,i+1x̂

2
0,j

]

(4.4)

and

I2me,6D
ij =

2

x2ab

∫

d6x0
iπ3

x2ijx
2
i+1,j+1 − x2i+1,jx

2
i,j+1

x20ix
2
0,i+1x

2
0jx

2
0,j+1

(4.5)

with xa and xb the two solutions of the equations x20i = x20,i+1 = x20j = x20,j+1 = 0. In

appendix B of this paper, we review the derivation of this decomposition using twistor

methods. Since the six-dimensional integral (4.5) is IR-finite, it is independent of which

IR-regulator we employ to regulate the n-point amplitude. Therefore in the decomposition

of the differential-mass Higgs-regulated amplitude

M (1)
n =

n
∑

i=1

W
(1)
i−1,i,i+1(x

2
i−1,i+1) +H(1)

n (x2ij) +O(m2) (4.6)

a natural candidate for the regulator-independent hard function is

H(1)
n = −

1

8

n
∑

i=1

i+n−2
∑

j=i+2

I2me,6D
ij . (4.7)

Moreover, the sum of the one-loop wedge functions in eq. (4.6) will then be given by the

sum of triangle diagrams (4.4) that contribute to the n-point amplitude. Most of the

triangle diagrams in this sum cancel, leaving

n
∑

i=1

W
(1)
i−1,i,i+1(x

2
i−1,i+1) = −

1

2

n
∑

i=1

∫

d4x0
iπ2

x2i−1,i+1

x̂20,i−1x̂
2
0ix̂

2
0,i+1

. (4.8)

This suggests the following one-loop expression for the wedge function6

W
(1)
i−1,i,i+1(x

2
i−1,i+1) = −

1

2

∫

d4x0
iπ2

x2i−1,i+1

x̂20,i−1x̂
2
0ix̂

2
0,i+1

(4.9)

6The subscripts on the wedge function refer to its dependence on mi−1, mi, and mi+1.
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although we could in principle add a contribution that vanishes upon summing over i.

Equation (4.9) reduces to our previous definition W (q2) =
√

Φ(q2) when mi−1 = mi =

mi+1. Evaluating eq. (4.9) in the uniform small mass limit, we obtain

W
(1)
i−1,i,i+1(x

2
i−1,i+1) = −

1

4
log2

(

x2i−1,i+1

m2
i

)

− Li2

(

1−
mi−1

mi

)

− Li2

(

1−
mi+1

mi

)

+O(m2) .

(4.10)

Substituting eq. (4.10) into eq. (4.6) and using the identity Li2(1 − z) + Li2(1 − z−1) +
1
2 log

2 z = 0, we finally obtain the differential-mass Higgs-regulated n-point amplitude

M (1)
n = −

1

4

n
∑

i=1

log2
(

x2i−1,i+1

m2
i

)

+
1

8

n
∑

i=1

log2
(

m2
i+1

m2
i

)

+H(1)
n (x2ij) +O(m2) (4.11)

where, as discussed above, H
(1)
n (x2ij) is IR-finite and regulator-independent; in particular,

it does not depend on αi in the uniform small mass limit m → 0, where mi = αim with αi

fixed.

Note that although M
(1)
n has extended dual conformal invariance, the decomposition

into H
(1)
n and the specific IR-divergent pieces in eq. (4.11) breaks this symmetry. This is

not surprising, as triangle integrals manifestly violate dual conformal symmetry.

4.2 Higher loops

In the previous subsection, we derived an expression (4.10) for the one-loop wedge function

valid for the differential-mass Higgs regulator. We now use the extended dual conformal

invariance of the amplitude and the BDS ansatz to derive the explicit form of the wedge

function at higher loops.

Recall that extended dual conformal invariance implies [38] that the amplitude can

only be a function of

uij =
mimj

x2ij + (mi −mj)2
. (4.12)

For the common-mass Higgs regulator, this reduces to uij = m2/x2ij . Hence, assuming the

validity of the all-loop expression (2.10) for the common-mass Higgs-regulated amplitude,

its unique generalization is obtained by replacing x2ij with m2/uij everywhere to obtain

logMn =
n
∑

i=1

[

−
γ(a)

16
log2

(

1

ui−1,i+1

)

−
G̃0(a)

2
log

(

1

ui−1,i+1

)]

(4.13)

+
γ(a)

4
H(1)

n (m2/uij) + nf̃(a) + C̃(a) + R̃n(m
2/uij , a) +O(m2)

where we have also used eqs. (3.33) and (3.36). In the uniform small mass limit, we can

neglect (mi −mj)
2 relative to x2ij in eq. (4.12) so that uij becomes mimj/x

2
ij yielding

logMn =
n
∑

i=1

[

−
γ(a)

16
log2

(

x2i−1,i+1

mi−1mi+1

)

−
G̃0(a)

2
log

(

x2i−1,i+1

mi−1mi+1

)]

(4.14)

+
γ(a)

4
H(1)

n

(

m2x2ij
mimj

)

+ nf̃(a) + C̃(a) + R̃n

(

m2x2ij
mimj

, a

)

+O(m2) .
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The apparent dependence of R̃n on mi is illusory since the mass dependence cancels out in

the dual conformal cross ratios on which R̃n only depends, so that R̃n(m
2x2ij/mimj , a) =

R̃n(x
2
ij , a). There does, however, remain some dependence on mi in H

(1)
n .

Applying the same reasoning as above to the one-loop amplitude, we obtain

M (1)
n = −

1

4

n
∑

i=1

log2
(

x2i−1,i+1

mi−1mi+1

)

+H(1)
n

(

m2x2ij
mimj

)

+O(m2) . (4.15)

Now since eqs. (4.11) and (4.15) are both valid expressions for the differentially-regulated

one-loop amplitude, we deduce that

H(1)
n

(

m2x2ij
mimj

)

= H(1)
n (x2ij) +

1

4

n
∑

i=1

[

log2
(

x2i−1,i+1

mi−1mi+1

)

− log2
(

x2i−1,i+1

m2
i

)]

+
1

8

n
∑

i=1

log2
(

m2
i+1

m2
i

)

+O(m2) . (4.16)

Substituting eq. (4.16) into eq. (4.14) and using eq. (3.35), we obtain7

logMn =

n
∑

i=1

[

−
γ(a)

16
log2

(

x2i−1,i+1

m2
i

)

−
G̃0(a)

2
log

(

x2i−1,i+1

m2
i

)

+
γ(a)

32
log2

(

m2
i+1

m2
i

)

+w̃(a)

]

+
γ(a)

4
H(1)

n (x2ij) + nD̃(a) + C̃(a) + R̃n(x
2
ij , a) +O(m2) (4.17)

where now only the terms in the sum on the first line depend on the regulator, while the

pieces on the second line are all regulator-independent. Recalling that

logMn =
n
∑

i=1

logWi−1,i,i+1(x
2
i−1,i+1) + logHn (4.18)

we deduce from eq. (4.17) that the all-order expression for the sum of wedge functions in

differential-mass Higgs regularization is8

n
∑

i=1

logWi−1,i,i+1(x
2
i−1,i+1) (4.19)

=

n
∑

i=1

[

−
γ(a)

16
log2

(

x2i−1,i+1

m2
i

)

−
G̃0(a)

2
log

(

x2i−1,i+1

m2
i

)

+
γ(a)

32
log2

(

m2
i+1

m2
i

)

+ w̃(a)

]

and the regulator-independent IR-finite piece is, as before

logHn =
γ(a)

4
H(1)

n (x2ij) + nD(a) + C(a) +Rn(x
2
ij , a) (4.20)

where we have dropped all the tildes.

We observe again that, although the amplitude logMn has extended dual conformal

invariance, the separate terms in the decomposition (4.18) do not.

7The apparent difference between the G̃0(a) terms disappears on performing the sum over i.
8Equation (4.19) does not allow us, however, to identify the individual terms of the sum over i.
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4.3 Relation to anomalous dual conformal Ward identity

In the previous section, we obtained the all-loop expression (4.19) for the sum of wedge

functions by assuming eq. (2.10). In this section, we show inversely that eq. (2.10) follows

from eq. (4.19). Therefore, it would be interesting to have a first-principles derivation of

eq. (4.19).

The n-point amplitude has exact extended dual conformal symmetry, and so is anni-

hilated by the generator of dual special conformal transformations

K̂µ logMn ≡
n
∑

i=1

[

2xi
µ

(

xνi
∂

∂xνi
+mi

∂

∂mi

)

− (x2i +m2
i )

∂

∂xiµ

]

logMn = 0 . (4.21)

In ref. [38], it was suggested that the IR-divergent properties of the Higgs-regulated am-

plitude provides a relation between this exact Ward identity and the anomalous dual con-

formal Ward identity for the IR-finite part of the n-point amplitude that was originally

derived in a Wilson loop context [25, 26]. We will see that this is indeed the case.

As we have seen, the n-point amplitude can be written as

logMn =
n
∑

i=1

logWi−1,i,i+1(x
2
i−1,i+1) + logHn . (4.22)

Using the expression (4.19) for the sum of the wedge functions, one can easily show that

K̂µ
n
∑

i=1

logWi−1,i,i+1(x
2
i−1,i+1) = −

γ(a)

4

n
∑

i=1

[

xµi−1 − 2xµi + xµi+1

]

log(x2i−1,i+1) (4.23)

which by virtue of eq. (4.21) implies that

K̂µ logHn =
γ(a)

4

n
∑

i=1

[

xµi−1 − 2xµi + xµi+1

]

log(x2i−1,i+1) . (4.24)

But logHn is regulator-independent, i.e., has no dependence on mi in the uniform small

mass limit, so the m-dependent pieces in K̂µ drop out when acting on logHn and we have

Kµ logHn ≡
n
∑

i=1

[

2xi
µxνi

∂

∂xνi
− x2i

∂

∂xiµ

]

logHn =
γ(a)

4

n
∑

i=1

[

xµi,i+1 log
x2i,i+2

x2i−1,i+1

]

(4.25)

which is precisely the anomalous dual conformal Ward identity [25, 26]. This in turn implies

eq. (2.10).

We thus see that the decomposition of the amplitude into contributions which sep-

arately do not possess extended dual conformal invariance was necessary to obtain the

anomalous dual conformal Ward identity for the finite (regulator-independent) part of the

amplitude.
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5 Discussion

In this paper, we have given a prescription for defining an unambiguous, regulator-indepen-

dent IR-finite part of the MHV n-point scattering amplitude in planar N = 4 SYM theory.

This prescription involves the definition of an IR-divergent wedge function associated with

a pair of adjacent external legs of the amplitude. The IR-finite part of the amplitude is

then defined as the quotient of the n−point amplitude by the product of wedge functions,

cf. eq. (1.3).

For regulators that leave the external legs massless (e.g., dimensional regularization or

the common-mass Higgs regulator), the wedge function can be naturally defined in terms

of a form factor Φ which has the same IR-divergences. Computation of this form factor

in dimensional regularization and in the common-mass Higgs regularization through two

loops shows that the IR-finite part of the amplitude is identical for these two regularizations.

For the more general differential-mass Higgs regulator, which gives (small) masses to the

external legs, a wedge function that results in a regulator-independent hard function can

still be calculated, but an operator definition in this case is still lacking.

We remark that the idea of defining a regulator-independent finite hard function can

also be applied to other objects, e.g. Wilson loops. This is particularly interesting in

the context of the Wilson loop/scattering amplitudes duality, since the two objects have

different types of divergences, viz., UV and IR divergences respectively. Although these

divergences are related, defining hard functions for both objects could be useful for stating

the duality in a regulator-independent way.

There exist in the literature other procedures for removing the IR divergences of scat-

tering amplitudes. For example, for non-MHV amplitudes, one can define an IR-finite

ratio function [72] by factoring out the entire MHV amplitude, using the universality of IR

divergences, i.e. that they do not depend on the helicity configuration. Another example

involves MHV amplitudes with n ≥ 6 external legs. Since the four- and five-point ampli-

tudes (or, equivalently, Wilson loops) are known up to kinematic-independent functions,

they can be used to remove the divergences of higher-point amplitudes by defining suitable

ratios [73]. This latter procedure preserves dual conformal symmetry.

The hard functions defined in this paper are not dual conformal invariant; they have

the advantage, however, of allowing us to study the n = 4 and n = 5 cases as well. In

particular, it would be interesting to understand better the systematics of how the BES

equation [23] for γ(a) arises from the loop expansion of the four-point amplitude.

The breaking of dual conformal invariance by the hard function also implies an intimate

connection between the anomalous dual conformal Ward identity it satisfies and the IR

divergences (wedge functions) of differential-mass regulated amplitudes. A first-principles

derivation of the latter would therefore be most interesting.

Finally, we believe that, although our investigation has been specialized to N = 4

SYM theory, the insight into the interplay between regulator, kinematics, and soft and

collinear momentum configurations applies to many gauge field theories, including those

with broken supersymmetry, such as QCD, and also to electroweak radiative corrections in

the Standard Model.
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A Results for one- and two-loop integrals

In this appendix, we list the results for various massless and massive three-point integrals

that contribute to the form factors computed in this paper. We use the mostly-plus metric,

the propagators are of the form k2+m2, and the measure of each internal loop momentum

is multiplied by a factor of (µ2 e−γ)ǫ/(iπd/2). The massless integrals shown in figure 1 are

dimensionally-regulated, giving rise to the following Laurent expansions [74–76]

Ib = (µ2 e−γ)ǫ
∫

ddx0

iπd/2

1

x201x
2
02x

2
03

=
1

q2

(

µ2

q2

)ǫ[
1

ǫ2
−

π2

12
−

7ζ3
3

ǫ−
47π4

1440
ǫ2 +O(ǫ3)

]

, (A.1)

Ic =
1

(q2)2

(

µ2

q2

)2ǫ[
1

4ǫ4
+

5π2

24ǫ2
+

29ζ3
6ǫ

+
3π4

32
+O(ǫ)

]

, (A.2)

Id =
1

(q2)2

(

µ2

q2

)2ǫ[
1

ǫ4
−

π2

ǫ2
−

83ζ3
3ǫ

−
59π4

120
+O(ǫ)

]

, (A.3)

where q2 = x213. The integrals shown in figure 2 use a common-mass Higgs regulator, and

can be evaluated to give

Ĩb =

∫

d4x0
iπ2

1

(x201 +m2)(x202 +m2)(x203 +m2)
=

1

q2

[

1

2
log2

(

q2

m2

)

+O(m2)

]

, (A.4)

Ĩc1 =
1

(q2)2

[

1

24
log4

(

q2

m2

)

+
π2

3
log2

(

q2

m2

)

− 8ζ3 log

(

q2

m2

)

+
π4

10
+O(m2)

]

, (A.5)

Ĩc2 =
1

(q2)2

[

1

24
log4

(

q2

m2

)

+
π2

3
log2

(

q2

m2

)

− 10ζ3 log

(

q2

m2

)

+
13π4

60
+O(m2)

]

, (A.6)

Ĩd =
1

(q2)2

[

1

3
log4

(

q2

m2

)

− π2 log2
(

q2

m2

)

+ 40ζ3 log

(

q2

m2

)

−
49π4

90
+O(m2)

]

. (A.7)

B Decomposition of the 2me box integral

In this appendix, we derive the decomposition of the 2me box integral into triangle integrals

and an IR-finite six-dimensional integral that was used in section 4.1.

We begin by rewriting the dual conformal invariant integral of equation (4.2) in terms

of momentum twistors [77]; see ref. [78] for a pedagogical introduction to this topic. A point
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xi in dual space corresponds to a (projective) line ZA
i−1Z

B
i in momentum twistor space.

The invariant x2ij can be expressed as

x2ij =
〈i− 1, i, j − 1, j〉

〈i− 1, i〉〈j − 1, j〉
(B.1)

where the twistor four-bracket is

〈α, β, γ, δ〉 = ǫABCDZ
A
αZ

B
β ZC

γ ZD
δ . (B.2)

We introduce the infinity bitwistor IAB, which when contracted with ZC
α ZD

β gives the

two-bracket

〈α, β〉 = ǫABCDI
ABZC

α ZD
β . (B.3)

Finally, we introduce a modified mass-regulated four-bracket

〈α, β, γ, δ〉i ≡ 〈α, β, γ, δ〉+m2
i 〈α, β〉〈γ, δ〉 . (B.4)

Rewriting eq. (4.2) using eqs. (B.1) and (B.4), we obtain

I2me
ij =

∫

d4Zαβ

iπ2

Nij

〈α, β, i− 1, i〉i〈α, β, i, i− 1〉i+1〈α, β, j − 1, j〉j〈α, β, j, j − 1〉j+1
+O(m2)

(B.5)

where

Nij ≡ 〈i− 1, i, j − 1, j〉〈i, i+ 1, j, j + 1〉 − 〈i, i+ 1, j − 1, j〉〈i− 1, i, j, j + 1〉 (B.6)

and where d4x0 → d4Zαβ/〈α, β〉
4.

We now decompose the two-mass-easy integral into a sum of IR-divergent and IR-finite

contributions using a twistor identity. To derive this identity, consider the infinity bitwistor

IAB and expand it in the basis spanned by the six simple bitwistors

IAB= ci−1,iZ
A
i−1Z

B
i + ci,i+1Z

A
i Z

B
i+1 + cj−1,jZ

A
j−1Z

B
j + cj,j+1Z

A
j Z

B
j+1 + ci,jZ

A
i Z

B
j + cı̄,̄Z

A
ı̄ Z

B
̄

(B.7)

where ZA
ı̄ Z

B
̄ denotes the line in momentum twistor space formed by the intersection of

(i−1, i, i+1) and (j−1, j, j+1). Contracting eq. (B.7) with ZC
α ZD

β , we obtain the identity

〈αβ〉 = ci−1,i〈α, β, i− 1, i〉+ ci,i+1〈α, β, i, i+ 1〉+ cj−1,j〈α, β, j − 1, j〉

+cj,j+1〈α, β, j, j + 1〉+ ci,j〈α, β, ij〉+ cı̄,̄〈α, β, ı̄̄〉 . (B.8)

We multiply and divide the integrand of eq. (B.5) by 〈α, β〉, using eq. (B.8) to rewrite the

numerator. The first four terms will each cancel one of the propagators9 resulting in four

triangle integrals, whereas the last two terms remain box integrals

I2me
ij = I2me

ij

∣

∣

tri
+ I2me

ij

∣

∣

box
+O(m2) . (B.9)

9We rewrite the numerator term 〈α, β, i− 1, i〉 as 〈α, β, i− 1, i〉i − m2
i 〈αβ〉〈i− 1, i〉 and then drop the

O(m2) piece.
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The coefficients ci−1,i, etc. may be determined by contracting eq. (B.7) with each of the

basis elements in turn, e.g.,

〈i− 1, i〉 = cj−1,j〈i− 1, i, j − 1, j〉+ cj,j+1〈i− 1, i, j, j + 1〉 (B.10)

and five other equations. Thus we find

I2me
ij

∣

∣

tri
=

∫

d4Zαβ

iπ2

1

〈α, β〉

[

〈j − 1, j〉〈i, i+ 1, j, j + 1〉 − 〈j, j + 1〉〈i, i+ 1, j − 1, j〉

〈α, β, i, i+ 1〉i+1〈α, β, j − 1, j〉j〈α, β, j, j + 1〉j+1

+
〈j, j + 1〉〈i− 1, i, j − 1, j〉 − 〈j − 1, j〉〈i− 1, i, j, j + 1〉

〈α, β, i− 1, i〉i〈α, β, j − 1, j〉j〈α, β, j, j + 1〉j+1

+
〈i− 1, i〉〈i, i+ 1, j, j + 1〉 − 〈i, i+ 1〉〈i− 1, i, j, j + 1〉

〈α, β, i− 1, i〉i〈α, β, i, i+ 1〉i+1〈α, β, j, j + 1〉j+1
(B.11)

+
〈i, i+ 1〉〈i− 1, i, j − 1, j〉 − 〈i− 1, i〉〈i, i+ 1, j − 1, j〉

〈α, β, i− 1, i〉i〈α, β, i, i+ 1〉i+1〈α, β, j − 1, j〉j

]

=

∫

d4x0
iπ2

[

x2i+1,j+1 − x2i+1,j

x̂20,i+1x̂
2
0,j x̂

2
0,j+1

+
x2i,j − x2i,j+1

x̂20,ix̂
2
0,j x̂

2
0,j+1

+
x2i+1,j+1 − x2i,j+1

x̂20,ix̂
2
0,i+1x̂

2
0,j+1

+
x2i,j − x2i+1,j

x̂20,ix̂
2
0,i+1x̂

2
0,j

]

and

I2me
ij

∣

∣

box
=

∫

d4Zαβ

iπ2

〈i, j〉〈α, β, ı̄, ̄〉+ 〈̄ı, ̄〉〈α, β, i, j〉

〈α, β〉〈α, β, i− 1, i〉〈α, β, i, i+ 1〉〈α, β, j − 1, j〉〈α, β, j, j + 1〉

=
〈i, j〉〈̄ı, ̄〉

〈i− 1, i〉〈i, i+ 1〉〈j − 1, j〉〈j, j + 1〉

∫

d4x0
iπ2

x20a + x20b
x20ix

2
0,i+1x

2
0jx

2
0,j+1

(B.12)

where xa and xb are the two solutions of the equations x20i = x20,i+1 = x20j = x20,j+1 = 0,

and where in eq. (B.12) we have used the identities

Nij = 〈i− 1, i, i+ 1, j〉〈i, j − 1, j, j + 1〉 = 〈i, j, ı̄, ̄〉 . (B.13)

The presence of two-brackets in I2me
ij

∣

∣

tri
and I2me

ij

∣

∣

box
indicate that these expressions are not

individually dual conformal invariant. This is not surprising, as scalar triangle diagrams

violate dual conformal invariance.

We observe that the integrands in eq. (B.12) contain “magic” numerators, which render

the resulting integrals IR-finite. Hence we have dropped the mass dependence in the

denominator. One can show that this integral is in fact equivalent to the scalar two-mass

easy integral in six dimensions [71]

I2me
ij

∣

∣

box
= I2me,6D

ij ≡
2

x2ab

∫

d6x0
iπ3

x2ijx
2
i+1,j+1 − x2i+1,jx

2
i,j+1

x20ix
2
0,i+1x

2
0jx

2
0,j+1

. (B.14)

Since this integral is IR-finite, it is manifestly independent of which IR regulator is used

to regulate the amplitude. In particular, it has no dependence on αi in the uniform small

mass limit of the differential-mass Higgs regulator introduced in section 4.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

– 23 –



J
H
E
P
1
2
(
2
0
1
1
)
0
2
4

References

[1] J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573

[hep-ph/0312336] [INSPIRE].

[2] S. Catani, The singular behavior of QCD amplitudes at two loop order,

Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

[3] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation,

Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

[4] J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD,

Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [INSPIRE].

[5] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

[6] L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond,

JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

[7] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative

QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

[8] T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory

amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

[9] M. Czakon, A. Mitov and S. Moch, Heavy-quark production in massless quark scattering at

two loops in QCD, Phys. Lett. B 651 (2007) 147 [arXiv:0705.1975] [INSPIRE].

[10] M. Czakon, A. Mitov and S. Moch, Heavy-quark production in gluon fusion at two loops in

QCD, Nucl. Phys. B 798 (2008) 210 [arXiv:0707.4139] [INSPIRE].

[11] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering

amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791]

[INSPIRE].

[12] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive

scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676]

[INSPIRE].

[13] G. Soar, S. Moch, J. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution

kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152

[arXiv:0912.0369] [INSPIRE].

[14] H. Contopanagos and M.B. Einhorn, Theory of the asymptotic S matrix for massless

particles, Phys. Rev. D 45 (1992) 1291 [INSPIRE].

[15] L.V. Bork, D.I. Kazakov, G.S. Vartanov and A.V. Zhiboedov, Infrared safe observables in

N = 4 super Yang-Mills theory, Phys. Lett. B 681 (2009) 296 [arXiv:0908.0387] [INSPIRE].

[16] S. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and

resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309] [INSPIRE].

[17] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001

[hep-th/0505205] [INSPIRE].

– 24 –

http://arxiv.org/abs/hep-ph/0312336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312336
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9802439
http://dx.doi.org/10.1016/S0370-2693(02)03100-3
http://arxiv.org/abs/hep-ph/0210130
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0210130
http://arxiv.org/abs/hep-ph/0409313
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409313
http://dx.doi.org/10.1088/1126-6708/2009/03/079
http://arxiv.org/abs/0901.1091
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1091
http://dx.doi.org/10.1007/JHEP02(2010)081
http://arxiv.org/abs/0910.3653
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3653
http://dx.doi.org/10.1103/PhysRevLett.102.162001
http://arxiv.org/abs/0901.0722
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0722
http://dx.doi.org/10.1088/1126-6708/2009/06/081
http://arxiv.org/abs/0903.1126
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
http://dx.doi.org/10.1016/j.physletb.2007.06.020
http://arxiv.org/abs/0705.1975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1975
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.001
http://arxiv.org/abs/0707.4139
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.4139
http://dx.doi.org/10.1103/PhysRevLett.103.201601
http://arxiv.org/abs/0907.4791
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4791
http://dx.doi.org/10.1088/1126-6708/2009/11/062
http://arxiv.org/abs/0908.3676
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3676
http://dx.doi.org/10.1016/j.nuclphysb.2010.02.003
http://arxiv.org/abs/0912.0369
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0369
http://dx.doi.org/10.1103/PhysRevD.45.1291
http://inspirehep.net/search?p=find+J+Phys.Rev.,D45,1291
http://dx.doi.org/10.1016/j.physletb.2009.10.013
http://arxiv.org/abs/0908.0387
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0387
http://dx.doi.org/10.1103/PhysRevD.74.074004
http://arxiv.org/abs/hep-ph/0607309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607309
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://arxiv.org/abs/hep-th/0505205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505205


J
H
E
P
1
2
(
2
0
1
1
)
0
2
4

[18] G.P. Korchemsky and A.V. Radyushkin, Loop space formalism and renormalization group

for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

[19] L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in

gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

[20] L.F. Alday and R. Roiban, Scattering amplitudes, Wilson loops and the string/gauge theory

correspondence, Phys. Rept. 468 (2008) 153 [arXiv:0807.1889] [INSPIRE].

[21] J.M. Henn, Duality between Wilson loops and gluon amplitudes,

Fortschr. Phys. 57 (2009) 729 [arXiv:0903.0522] [INSPIRE].

[22] I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops,

Phys. Lett. B 287 (1992) 169 [INSPIRE].

[23] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing,

J. Stat. Mech. (2007) P01021 [hep-th/0610251] [INSPIRE].

[24] C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally

supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040]

[INSPIRE].

[25] J.M. Drummond, J.M. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

[26] J.M. Drummond, J.M. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward

identities for Wilson loops and a test of the duality with gluon amplitudes,

Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

[27] Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric

Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].

[28] J.M. Drummond, J.M. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop =

six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].

[29] J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop

integrals, JHEP 04 (2011) 083 [arXiv:1010.3679] [INSPIRE].

[30] D. Gaiotto, J.M. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons,

arXiv:1102.0062 [INSPIRE].

[31] J. Bartels, L. Lipatov and A. Prygarin, Integrable spin chains and scattering amplitudes,

J. Phys. A 44 (2011) 454013 [arXiv:1104.0816] [INSPIRE].

[32] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super

Yang-Mills, arXiv:1105.5606 [INSPIRE].

[33] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon,

JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

[34] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling,

JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

[35] H. Kawai and T. Suyama, Some implications of perturbative approach to AdS/CFT

correspondence, Nucl. Phys. B 794 (2008) 1 [arXiv:0708.2463] [INSPIRE].

[36] R.M. Schabinger, Scattering on the moduli space of N = 4 super Yang-Mills,

arXiv:0801.1542 [INSPIRE].

– 25 –

http://dx.doi.org/10.1016/0370-2693(86)91439-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B171,459
http://dx.doi.org/10.1088/1126-6708/2008/08/022
http://arxiv.org/abs/0805.3515
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3515
http://dx.doi.org/10.1016/j.physrep.2008.08.002
http://arxiv.org/abs/0807.1889
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1889
http://dx.doi.org/10.1002/prop.200900048
http://arxiv.org/abs/0903.0522
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0522
http://dx.doi.org/10.1016/0370-2693(92)91895-G
http://inspirehep.net/search?p=find+J+Phys.Lett.,B287,169
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1103/PhysRevLett.91.251602
http://arxiv.org/abs/hep-th/0309040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309040
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.007
http://arxiv.org/abs/0709.2368
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2368
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.013
http://arxiv.org/abs/0712.1223
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1223
http://dx.doi.org/10.1103/PhysRevD.78.045007
http://arxiv.org/abs/0803.1465
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1465
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.015
http://arxiv.org/abs/0803.1466
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1466
http://dx.doi.org/10.1007/JHEP04(2011)083
http://arxiv.org/abs/1010.3679
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3679
http://arxiv.org/abs/1102.0062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0062
http://dx.doi.org/10.1088/1751-8113/44/45/454013
http://arxiv.org/abs/1104.0816
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0816
http://arxiv.org/abs/1105.5606
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5606
http://dx.doi.org/10.1007/JHEP11(2011)023
http://arxiv.org/abs/1108.4461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4461
http://dx.doi.org/10.1088/1126-6708/2007/06/064
http://arxiv.org/abs/0705.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0303
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.016
http://arxiv.org/abs/0708.2463
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2463
http://arxiv.org/abs/0801.1542
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1542


J
H
E
P
1
2
(
2
0
1
1
)
0
2
4

[37] J. McGreevy and A. Sever, Planar scattering amplitudes from Wilson loops,

JHEP 08 (2008) 078 [arXiv:0806.0668] [INSPIRE].

[38] L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of

N = 4 super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].

[39] J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop

four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits, JHEP 04 (2010) 038

[arXiv:1001.1358] [INSPIRE].

[40] J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in

Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

[41] J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM,

JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].

[42] N. Craig, H. Elvang, M. Kiermaier and T. Slatyer, Massive amplitudes on the Coulomb

branch of N = 4 SYM, arXiv:1104.2050 [INSPIRE].

[43] T. Dennen and Y.-t. Huang, Dual conformal properties of six-dimensional maximal super

Yang-Mills amplitudes, JHEP 01 (2011) 140 [arXiv:1010.5874] [INSPIRE].

[44] S. Caron-Huot and D. O’Connell, Spinor helicity and dual conformal symmetry in ten

dimensions, JHEP 08 (2011) 014 [arXiv:1010.5487] [INSPIRE].

[45] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar

amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory,

Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

[46] F. Cachazo, M. Spradlin and A. Volovich, Iterative structure within the five-particle two-loop

amplitude, Phys. Rev. D 74 (2006) 045020 [hep-th/0602228] [INSPIRE].

[47] J.M. Drummond, J.M. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop

and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456

[arXiv:0712.4138] [INSPIRE].

[48] L.F. Alday and J.M. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT,

JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

[49] J.M. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system,

JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].

[50] A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super

Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].

[51] W.L. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric

Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [INSPIRE]

[52] L. Bork, D. Kazakov and G. Vartanov, On form factors in N = 4 SYM,

JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].

[53] S. Moch, J. Vermaseren and A. Vogt, The quark form-factor at higher orders,

JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].

[54] S. Moch, J. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors,

Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

[55] P. Baikov, K. Chetyrkin, A. Smirnov, V. Smirnov and M. Steinhauser, Quark and gluon form

factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

– 26 –

http://dx.doi.org/10.1088/1126-6708/2008/08/078
http://arxiv.org/abs/0806.0668
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0668
http://dx.doi.org/10.1007/JHEP01(2010)077
http://arxiv.org/abs/0908.0684
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0684
http://dx.doi.org/10.1007/JHEP04(2010)038
http://arxiv.org/abs/1001.1358
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.1358
http://dx.doi.org/10.1007/JHEP08(2010)002
http://arxiv.org/abs/1004.5381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.5381
http://dx.doi.org/10.1007/JHEP05(2011)105
http://arxiv.org/abs/1008.2965
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2965
http://arxiv.org/abs/1104.2050
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2050
http://dx.doi.org/10.1007/JHEP01(2011)140
http://arxiv.org/abs/1010.5874
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5874
http://dx.doi.org/10.1007/JHEP08(2011)014
http://arxiv.org/abs/1010.5487
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5487
http://dx.doi.org/10.1103/PhysRevD.75.085010
http://arxiv.org/abs/hep-th/0610248
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610248
http://dx.doi.org/10.1103/PhysRevD.74.045020
http://arxiv.org/abs/hep-th/0602228
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602228
http://dx.doi.org/10.1016/j.physletb.2008.03.032
http://arxiv.org/abs/0712.4138
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.4138
http://dx.doi.org/10.1088/1126-6708/2007/11/068
http://arxiv.org/abs/0710.1060
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1060
http://dx.doi.org/10.1007/JHEP11(2010)104
http://arxiv.org/abs/1009.1139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1139
http://dx.doi.org/10.1007/JHEP01(2011)134
http://arxiv.org/abs/1011.1899
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1899
http://dx.doi.org/10.1007/BF01571808
http://inspirehep.net/search?p=find+J+Z.Phys.,C30,595
http://dx.doi.org/10.1007/JHEP02(2011)063
http://arxiv.org/abs/1011.2440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2440
http://dx.doi.org/10.1088/1126-6708/2005/08/049
http://arxiv.org/abs/hep-ph/0507039
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507039
http://dx.doi.org/10.1016/j.physletb.2005.08.067
http://arxiv.org/abs/hep-ph/0508055
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508055
http://dx.doi.org/10.1103/PhysRevLett.102.212002
http://arxiv.org/abs/0902.3519
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3519


J
H
E
P
1
2
(
2
0
1
1
)
0
2
4

[56] R. Lee, A. Smirnov and V. Smirnov, Analytic results for massless three-loop form factors,

JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].

[57] T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark

and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653]

[INSPIRE].

[58] T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form

factors to three loops in QCD through to O(ǫ2), JHEP 11 (2010) 102 [arXiv:1010.4478]

[INSPIRE].

[59] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal

anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model,

Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].

[60] G.P. Korchemsky, Sudakov form-factor in QCD, Phys. Lett. B 220 (1989) 629 [INSPIRE].

[61] A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes,

JHEP 05 (2007) 001 [hep-ph/0612149] [INSPIRE].

[62] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: the vector

contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].

[63] J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at

NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].

[64] R. Bonciani and A. Ferroglia, Two-loop QCD corrections to the heavy-to-light quark decay,

JHEP 11 (2008) 065 [arXiv:0809.4687] [INSPIRE].

[65] H. Asatrian, C. Greub and B. Pecjak, NNLO corrections to B̄ → Xulν̄ in the shape-function

region, Phys. Rev. D 78 (2008) 114028 [arXiv:0810.0987] [INSPIRE].

[66] M. Beneke, T. Huber and X.-Q. Li, Two-loop QCD correction to differential semi-leptonic

b → u decays in the shape-function region, Nucl. Phys. B 811 (2009) 77 [arXiv:0810.1230]

[INSPIRE].

[67] G. Bell, NNLO corrections to inclusive semileptonic B decays in the shape-function region,

Nucl. Phys. B 812 (2009) 264 [arXiv:0810.5695] [INSPIRE].
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