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1 Introduction and results

The main motivation for our analysis comes from the following paradox. Similarly to

BPS states in asymptotically flat spacetimes, the authors of [1] provided a BPS bound in

asymptotically anti-de Sitter spacetime that in the static case reduces to:

M ≥
√
Q2

e +Q2
m . (1.1)

Supersymmetric configurations would have to saturate the bound withM2 = Q2
e+Q

2
m, for a

given mass M , electric charge Qe, and magnetic charge Qm in appropriate units. However,

in N = 2 minimal gauged supergravity, Romans [2] found two supersymmetric solutions,

one of which does not saturate the BPS bound, and therefore an apparent paradox arises.

The main aim of this paper is to resolve this conflict. The resolution of the paradox

will lie in understanding the BPS ground states of gauged supergravity, the associated

superalgebras, and in a proper definition of the mass in asymptotically AdS4 spacetimes,

as we will explain in the main body of the paper.
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Minimally gauged supergravity has only two bosonic fields, the metric and the gravipho-

ton field Aµ. The most general static and spherically symmetric solution of Einstein’s

equation with a negative cosmological constant and an electromagnetic field is given by (in

the conventions of [2]),

ds2 = U2(r) dt2 − U−2(r) dr2 − r2(dθ2 + sin2 θdφ2) , (1.2)

with

U2(r) = 1− 2M

r
+
Q2

e +Q2
m

r2
+ g2r2 , (1.3)

and with nonvanishing components of the graviphoton

At =
Qe

r
, Aφ = −Qm cos θ . (1.4)

In this class, there are two solutions that preserve some fraction of supersymmetry [2]. The

first one is the so-called AdS “electric Reissner-Nordström (RN)” solution, for which the

magnetic charge Qm is set to zero and M = Qe so that the factor U has the form:

U2 =

(
1− Qe

r

)2

+ g2r2 , Qm = 0 . (1.5)

This solution preserves one half of the supersymmetries (it is 1/2 BPS). Clearly, it saturates

the BPS bound (1.1). Notice that the function U(r) has no zeros. Therefore, there is no

horizon and the point r = 0 is a naked singularity.1 Asymptotically, for r → ∞, the solution

is that of pure AdS4, with cosmological constant Λ = −3g2 in standard conventions.

The second supersymmetric solution is the so-called “cosmic dyon”, having zero mass

M but nonzero fixed magnetic charge Qm = ±1/(2g). Such a solution will never satisfy

the BPS bound (1.1). Moreover, the electric charge Qe can take an arbitrary value:

M = 0 , Qm = ±1/(2g) , U2 =

(
gr +

1

2gr

)2

+
Q2

e

r2
. (1.6)

Again, there is a naked singularity at r = 0. However, asymptotically, when r → ∞, the

solution does not approach pure AdS4, due to the presence of the magnetic charge. Instead,

the solution defines another vacuum, sinceM = 0, but this vacuum is topologically distinct

from AdS4 in which M = Qm = 0. For this reason,2 we call this vacuum magnetic anti-de

Sitter, or mAdS4.

The cosmic dyon solution is 1/4 BPS, i.e. it preserves two out of eight supercharges.

For both the electric RN-AdS and the cosmic dyon, the Killing spinors were explicitly

1In AdS spacetimes, supersymmetry does not seem to provide a cosmic censorship, contrary to most

cases in asymptotically flat spacetimes [3]. Whether cosmic censorship in AdS4 can be violated is still

an open problem, see e.g. [4]. This issue however has nothing to do with the paradox or contradiction

mentioned above.
2One may argue that ground states should not have naked singularities. Clearly, this discussion is related

to cosmic censorship in AdS, which we mentioned in the previous footnote. It is important to disentangle this

discussion from the derivation of the BPS bounds. In fact, we expect that in matter coupled supergravity,

there is a magnetic ground state without naked singularities [5–7].
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constructed in [2]. The fact that the BPS bound (1.1) is not satisfied for the cosmic dyon

leads to an apparent contradiction since states that admit a Killing spinor should saturate

the BPS bound.

In this paper we show that the cosmic dyon in fact satisfies a different BPS bound

that follows from a superalgebra different from the usual AdS4 superalgebra. We will

determine the new BPS bound starting from the explicit calculation of the supercharges

and computing the anticommutator.3 In summary, to state the main result of this paper,

for stationary configurations, the new BPS bounds are:

• For asymptotically AdS4 solutions with vanishing magnetic charge, Qm = 0, the BPS

bound is

M ≥ |Qe|+ g| ~J | , (1.7)

where ~J is the angular momentum.

• For asymptotically magnetic AdS4 solutions with Qm = ±1/(2g), the BPS bound is

simply

M ≥ 0 , (1.8)

with unconstrained electric charge Qe and angular momentum ~J .

Other values for the magnetic charges are not considered. The quantization condition

requires it to be an integer multiple of the minimal unit, Qm = n/(2g);n ∈ Z, but it is not

known if any other supersymmetric vacua can exist with n 6= 0, 1.

The meaning of the BPS bound is not that all solutions to the equations of motion

must automatically satisfy (1.7) or (1.8). Rather, one constructs a physical configuration

space consisting of solutions that satisfy a BPS bound like (1.7) or (1.8).

Our procedure also provides a new way of defining asymptotic charges in AdS4 back-

grounds with automatically built-in holographic renormalization, somewhat different than

the procedure developed in [9, 10]. The same technique can also be applied to non-minimal

gauged supergravity (see [11] for a classification of all fully BPS vacua in N = 2 gauged

supergravities). In this case, there exist magnetically charged BPS black holes with spher-

ical horizons [5–7]. One can also extend this to include the black brane solutions in gauged

N = 2 supergravity that were recently constructed in [12].4

Additional motivation to study more closely the magnetic AdS4 case and its superal-

gebra is provided by the AdS/CFT correspondence. There are suggestions in the litera-

ture [14] that excitations of the dual theory are relevant for condensed matter physics in

the presence of external magnetic field, e.g. quantum Hall effect and Landau level splitting

at strong coupling. A better understanding of the mAdS superalgebra could then provide

us with more insights about the dual field theory.

3An alternative approach based on the Witten-Nester energy was proposed in [8], leading to similar

conclusions.
4Another possible extension is to spaces with different asymptotics, e.g. quotients of AdS where one

can have horizons of higher genus [13]. Here, however, we will concentrate only at spacetimes that strictly

asymptote to AdS4.
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2 Supercurrents and charges from the Noether theorem

In this section, we define and determine the Noether currents in minimally gauged super-

gravity. The currents define conserved supercharges, and the Poisson (or Dirac) brackets

between these charges produce a superalgebra. In the next section, we derive BPS bounds

from the superalgebra. We start this section by reviewing some (well-known) facts about

Noether currents for local gauge symmetries.

2.1 Generalities

Given a Lagrangian L(φ, ∂µφ), depending on fields collectively denoted by φ, we have that

under general field variations

δL =
∑

φ

Eφδφ+ ∂µN
µ , (2.1)

where Eφ vanishes upon using the equation of motion of φ and

Nµ =
δL

δ(∂µφ)
δφ . (2.2)

Under a symmetry variation, parametrized by ǫ, the Lagrangian must transform into a

total derivative, such that the action is invariant for appropriate boundary conditions,

δǫL = ∂µK
µ
ǫ . (2.3)

Combining this with (2.1) for symmetry variations, we obtain
∑

φ

Eφδǫφ = ∂µ(K
µ
ǫ −Nµ

ǫ ) . (2.4)

From the previous expression we see that the quantity

Jµ
ǫ ≡ Kµ

ǫ −Nµ
ǫ , (2.5)

is the (on-shell) conserved current associated with symmetry transformations. For the case

of supersymmetry, we call Jµ
ǫ the supercurrent. It depends on the (arbitrary) parameter

ǫ and is defined up to improvement terms of the form ∂νI
µν where I is an antisymmetric

tensor, as usual for conserved currents. The associated conserved supercharge is then

Q ≡
∫

d3xJ0
ǫ (x) . (2.6)

This supercharge should also generate the supersymmetry transformations of the fields,

δǫφ = {Q, φ}, (2.7)

via the classical Poisson (or Dirac in case of constraints) brackets. Since the supercurrent

and correspondingly the supercharge are defined up to improvement terms and surface

terms respectively, it is not directly obvious that the Noether procedure will lead to the

correct supersymmetry variations using (2.7). In practice one always has the information of

the supersymmetry variations together with the supergravity Lagrangian, so it is possible to

cross check the answers and thus derive uniquely the correct expression of the supercharge.

We now illustrate this in detail for the case of minimally gauged supergravity.
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2.2 Supercharges of minimal gauged supergravity

First we compute the supercurrent from the Lagrangian of minimal D = 4 N = 2 gauged

supergravity following the conventions of [15] (which is written in 1.5-formalism):

S =

∫
d4x e

[
R(e, ω) + 6g2 +

2

e
ǫµνρσψµγ5γν(D̂ρ + igAρσ

2)ψσ −F2

− 1

2e
ǫµνρσψργ5σ

2ψσ

(
iψµσ

2ψν −
1

2e
ǫµν

τλψτγ5σ
2ψλ

)]
,

(2.8)

where ψ = iψ†γ0, e =
√
detgµν ,

D̂ρ = ∂ρ −
1

4
ωab
ρ γab −

i

2
gγρ , (2.9)

and

Fµν = ∂µAν − ∂νAµ + iψµσ
2ψν −

1

2e
ǫµν

ρσψργ5σ
2ψσ =

= Fµν + iψµσ
2ψν −

1

2e
ǫµν

ρσψργ5σ
2ψσ .

(2.10)

The spin connection satisfies

dea − ωa
b ∧ eb = 0 (2.11)

for a given vielbein ea = eaµdx
µ. The g2-term in the Lagrangian is related to the presence

of a negative cosmological constant Λ = −3g2.

In most of our calculations, such as in the supercurrents and supercharges, we only

work to lowest order in fermions since higher order terms vanish in the expression of the (on

shell) supersymmetry algebra, where we set all fermion fields to zero. The supersymmetry

variations are:

δǫψµ = D̃µǫ =

(
∂µ − 1

4
ωab
µ γab −

i

2
gγµ + igAµσ

2 +
1

4
Fλτγ

λτγµσ
2

)
ǫ , (2.12)

δǫe
a
µ = −iǫγaψµ , (2.13)

δǫAµ = −iǫσ2ψµ . (2.14)

U(1) gauge transformations act on the gauge potential and on the spinors in this way:

A′
µ = Aµ + ∂µα , (2.15)

ψ′
µ = e−igασ2

ψµ . (2.16)

We use the conventions in which all the spinors are real Majorana ones,5 and the gamma

matrix conventions and identities of appendix A.

5In our conventions, the two real gravitini in the gravity multiplet are packaged together in the notation:

ψµ =

(

ψµ
1

ψµ
2

)

, (2.17)

where each gravitino is itself a 4-component Majorana spinor. Similar conventions are used for the super-

symmetry parameters. In other words, the SU(2)R indices are completely suppressed in our notation.
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The quantities Nµ and Kµ for this theory are:

Nµ =
∂L
∂µω

δω + 2ǫµνρσψνγ5γρD̃σǫ+ 4ieFµνǫσ2ψν . (2.18)

Kµ =
∂L
∂µω

δω − 2ǫµνρσψνγ5γρD̃σǫ+ 4ieFµνǫσ2ψν . (2.19)

Hence the supercurrent has the form:

Jµ = −4ǫµνρσψνγ5γρD̃σǫ . (2.20)

This expression is gauge invariant due to the cancelation between the variation of the

gravitino, the vector field and the supersymmetry parameter. Furthermore we can show

that the supercurrent is conserved

∂µJ
µ = ∂µ(−4ǫµνρσψνγ5γρD̃σǫ) = 0 (2.21)

if we enforce the equation of motion for ψν and use the antisymmetry of the Levi-Civita

symbol.

The Dirac brackets defined for the given theory read (we only need those containing

gravitinos):

{ψµ(x), ψσ(x
′)}t=t′ = 0 , (2.22)

{ψµ(x), ψσ(x
′)}t=t′ = 0 , (2.23)

{ψµ(x), 2ǫ
0νρσψρ(x

′)γ5γσ}t=t′ = δµ
νδ3(~x− ~x′) . (2.24)

We can now check if (2.7) holds with the above form of the supercurrent. It turns out that,

up to overall normalization, we indeed have the right expression without any ambiguity

of improvement terms. We only need to rescale, since the factor of 4 in (2.20) does not

appear in the supersymmetry variations (2.12)–(2.14). The supercharge is then defined as

the volume integral6

Q ≡ 2

∫

V
dΣµǫ

µνρσψσγ5γρD̃νǫ
e.o.m.
= 2

∮

∂V
dΣµνǫ

µνρσψσγ5γρǫ , (2.26)

where the second equality follows from the Gauss theorem via the equations of motion (in

what follows we will always deal with classical solutions of the theory). The Dirac bracket

of two supersymmetry charges is then straightforwardly derived as the supersymmetry

variation of (2.26):

{Q,Q} = 2

∮

∂V
dΣµν(ǫ

µνρσǫγ5γρD̃σǫ) , (2.27)

which is again a boundary integral.

6For volume and surface integrals, we use the notation that

dΣµ =
1

6e2
ǫµνρσ dxν ∧ dxρ ∧ dxσ , dΣµν =

1

2e2
ǫµνρσ dxρ ∧ dxσ . (2.25)
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The above formula is reminiscent of the expression for the Witten-Nester

energy [16, 17], which has already been implicitly assumed to generalize for supergrav-

ity applications [8, 18, 19] (see also [20]). Thus the correspondence between BPS bounds

and positivity of Witten-Nester energy is confirmed also in the case of minimal gauged

N = 2 supergravity by our explicit calculation of the supercharge anticommutator.

3 Two different BPS bounds

In this section, we derive two BPS bounds based on the two BPS sectors that we consider.

What is relevant for the BPS bound are the properties of the asymptotic geometries and

corresponding Killing spinors. The Killing spinors of AdS4 and magnetic AdS4 (“cosmic

monopole”) are given in appendix B, see also [2, 8]. Since only the asymptotics are impor-

tant, we can set Qe = 0 in the cosmic dyon solution. The AdS4 solution is characterized by

M = Qe = Qm = 0, while mAdS4 by M = 0, Qe = 0, Qm = ±1/(2g). The corresponding

Killing spinors take a very different form:

ǫAdS = e
i
2
arcsinh(gr)γ1e

i
2
gtγ0e−

1

2
θγ12e−

1

2
ϕγ23ǫ0 , (3.1)

ǫmAdS =
1

4

√
gr +

1

2gr
(1 + iγ1)(1∓ iγ23σ

2)ǫ0 , (3.2)

where ǫ0 is a doublet of constant Majorana spinors, carrying 8 arbitrary parameters. From

here we can see that AdS4 is fully supersymmetric and its Killing spinors show dependence

on all the four coordinates. mAdS4 on the other hand is only 1/4 BPS: its Killing spinors

satisfiy a double projection that reduces the independent components to 1/4 and there is

no angular or time dependence. We will come back to this remarkable fact in section 4.

The form of the Killing spinors is important because the bracket of two supercharges

is a surface integral at infinity (2.27). Writing out the covariant derivative in (2.27),

one obtains

{Q,Q} = 2

∮

∂V
dΣµν

[
ǫµνρσǫγ5γρ(∂σ − 1

4
ωab
σ γab −

i

2
gγσ + igAσσ

2 +
1

4
Fλτγ

λτγσσ
2)ǫ

]
,

(3.3)

and it depends on the asymptotic value of the Killing spinors of the solution taken into

consideration. Therefore the superalgebra will be different in the two cases and there will

be two different BPS bounds.

The procedure to compute the BPS bound is the following. From (2.26) we have a

definition of the supercharges QAdS(ǫAdS) and QmAdS(ǫmAdS). We will then make use of

the following definition for the fermionic supercharges QAdS, QmAdS:

QAdS ≡ QT
AdSǫ0 = ǫT0QAdS , QmAdS ≡ QT

mAdSǫ0 = ǫT0QmAdS , (3.4)

i.e. any spacetime and gamma matrix dependence of the bosonic supercharges Q is left into

the corresponding fermionic Q. We are thus able to strip off the arbitrary constant ǫ0 in

any explicit calculations and convert the Dirac brackets for Q into an anticommutator for

the spinorial supercharges Q that is standardly used to define the superalgebra. Therefore

– 7 –
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now we compute the surface integrals (2.27) for the Killing spinors of AdS4 and mAdS4
respectively. After stripping off the ǫ0’s, we find the anticommutator of fermionic super-

charges given explicitly in terms of the other conserved charges in the respective vacua.

The BPS bound is then derived in the standard way by requiring the supersymmetry

anticommutator to be positive definite, see e.g. [21] for details.

3.1 Asymptotically AdS4 states

We now derive the resulting supersymmetry algebra from the asymptotic spinors of AdS4.

For this we use the general expression (3.3) for the Dirac brackets of the supersymmetry

charges, together with the asymptotic form of the Killing spinors, (3.1). Inserting the

Killing spinors ǫAdS of (3.1) in (3.3), we recover something that can be written in the

following form:

{Q,Q} = −i ǫ0(A+Baγ
a + Cγ5 +Dijγ

ij + Eiγ
0i + Faγ

a5)ǫ0 , (3.5)

where the charges A,B, . . . can be written down explicitly from the surface integral (3.3).

They will define the electric charge (A), momentum (B), angular momentum (D, with

i, j = 1, 2, 3 spatial indices), and boost charges (E). The charge C would correspond to a

magnetic charge, which we assumed to vanish by construction. Without the charge Fa, the

above bracket will fit in the Osp(2|4) superalgebra (see more below). We will therefore take

as definition of asymptotically AdS solutions the ones for which Fa vanishes. This choice

of fall-off conditions is similar to the case of N = 1 supergravity, where the asymptotic

charges are required to generate the Osp(1|4) superalgebra [22]. Extensions of the N = 2

superalgebra where the charges C and Fa are non-zero have been discussed in [23].

From the previous expression we see that conserved charges like Qe, M et cetera

will arise as surface integrals of the five terms (or their combinations) appearing in the

supercovariant derivative. We are going to see how this works analyzing each term in the

supercovariant derivative, explicitly in terms of the ansatz of the metric (1.2) and vector

fields (1.4). This will provide us with a new definition of the asymptotic charges in AdS4
with no need to use the holographic renormalization procedure anywhere. As an explicit

example one can directly read off the definition of mass M ≡ B0/(8π) from the explicit

form of the asymptotic Killing spinors. In the stationary case,

M =
1

8π
lim
r→∞

∮
dΣtr{et[0er1eθ2] + sin θet[0e

r
1e

ϕ
3] (3.6)

+ g2ret[0e
r
1] −

√
g2r2 + 1(ωab

θ e
t
[0e

r
ae

θ
b] + ωab

ϕ e
t
[0e

r
ae

ϕ
b])} .

We are going to take into consideration both static and rotating solutions, but we

will carry out our procedure and explain the calculation in full detail only the case of the

electric RN-AdS black hole and comment more briefly on the rotating generalizations.

• Electric RN-AdS.

Here we take into consideration solutions of the form (1.2)–(1.4) with zero magnetic

charge, Qm = 0. We now evaluate the various terms in (3.3).

– 8 –
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To begin, it is easy to determine the piece concerning the field strength, namely

2

∮
dΣµν

[
ǫµνρσǫ(t, r, θ, ϕ)γ5γρ

1

4
Fλτγ

λτγσσ
2ǫ(t, r, θ, ϕ)

]
. (3.7)

Inserting the Killing spinors for AdS4 described in (3.1), and exploiting the Clifford

algebra relations we get

2

∮
dΣtr ǫAdS(t, r, θ, ϕ)e F

trσ2ǫAdS(t, r, θ, ϕ) =

2

∮
dΣtrǫ0

Te
1

2
ϕγ23e

1

2
θγ12e−igtγ0e

i
2
arcsinh(gr)γ1γ0eF

trσ2e
i
2
arcsinh(gr)γ1eigtγ0e−

1

2
θγ12e−

1

2
ϕγ23ǫ0=

= 8iπǫ0Qeσ
2ǫ0 , (3.8)

with the definition of the electric charge

Qe =
1

4π

∮

S2

F trr2 sin θ dθdφ . (3.9)

From here we can identify the term A = −8πQeσ
2 appearing in (3.5).

Next we consider the term containing the “bare” gauge field Aµ. This gives a possible

contribution to the charge Fa in (3.5). As we mentioned above, we assumed this

contribution to vanish for asymptotically AdS solutions. One can explicitly check

this for the class of electric RN-AdS solutions given in (1.2), since the only nonzero

component of the vector field is At (see (1.4)), hence
∮

dΣtr

[
ǫtrρσǫAdS(t, r, θ, ϕ)γ5γρigAσσ

2ǫAdS(t, r, θ, ϕ)
]
= 0 . (3.10)

The term with the partial derivative ∂σ in (3.3) in the supercovariant derivative gives

nonvanishing contributions for σ = θ, ϕ and it amounts to the integral:

2

∮
dΣtr

[
ǫtrρσǫAdS(t, r, θ, ϕ)γ5γρ∂σǫAdS(t, r, θ, ϕ)

]
= −2i

∮
rǫ0γ0ǫ0 sin θ dθdϕ .

(3.11)

Clearly, this term will contribute, together with other terms, to the mass.

The integral containing the spin connection is:

− 2

4

∮
dΣtrǫ

trρσǫAdS(t, r, θ, ϕ)γ5γρ ω
ab
σ γab ǫAdS(t, r, θ, ϕ) =

= 2i

∮
ǫ0γ

0r
√
1 + g2r2

√
1 + g2r2 − 2M

r
+
Q2

e

r2
ǫ0 sin θ dθdϕ , (3.12)

where we have used

ei arcsinh(gr)γ1 =
√
1 + g2r2 + igγ1r , (3.13)

and the value of the spin connection:

ω01
t = U∂rU, ω12

θ = −U, ω13
ϕ = −U sin θ, ω23

ϕ = − cos θ . (3.14)
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Also (3.12) will contribute to B0, and therefore to the mass.

The last contribution of the supercovariant derivative, the term proportional to

gγσ, yields

− 2

∮
dΣtrǫ

trρσǫAdS(t, r, θ, ϕ)
ig

2
γ5γργσ ǫAdS(t, r, θ, ϕ)=−2i

∮
ǫ0γ

0r3g2ǫ0 sin θ dθdϕ .

(3.15)

In deriving this we have used the formula γtrµγµ = 2γtr. Again, this term contributes

to the mass formula.

Collecting all the terms that contribute to the mass (the derivative term (3.11), the

sum of the spin connection term (3.12), and the gamma term (3.15)) gives rise to:

2i

∮
ǫ0γ

0

[
r
√
1 + g2r2

√
1 + g2r2 − 2M

r
+
Q2

e

r2
− r3g2 − r

]
ǫ0 sin θ dθdϕ . (3.16)

The integral has to be performed on a sphere with r → ∞. Taking this limit one

can see that in this expression all the positive powers of r are canceled. Hence all

possible divergences cancel out, and we are left with a finite contribution. In this

sense, our method provides a holographic renormalization of the mass. In the cases

we can compare, our method agrees with previously known results.

Performing the integral on the remaining finite part we find:

− 8iπǫ0Mγ0ǫ0 = −iǫ0γ0B0 ǫ0 . (3.17)

To sum up, for the electric RN-AdS solution, the brackets between supercharges read:

{Q,Q} = −8πiǫ0(Mγ0 −Qeσ
2)ǫ0

⇒ {ǫT0Q,QT ǫ0} = 8πǫT0 (M −Qeγ
0σ2) ǫ0 .

(3.18)

Now we can strip off the constant linearly independent doublet of spinors ǫ0 on both

sides of the above formula to restore the original SO(2) and spinor indices:

{QAα, QBβ} = 8π
(
MδABδαβ − iQeǫ

AB(γ0)αβ
)
. (3.19)

This expression coincides with the one expected from the algebra Osp(2|4) (see (4.1)
in the next section) if we identify M−10 = 8πM and T 12 = 8πQe.

The BPS bound for the electric RN-AdS solution is then:7

M ≥ |Qe| . (3.20)

The state that saturates this bound, for which M = |Qe|, preserves half of the

supersymmetries, i.e. it is half-BPS. It is the ground state allowed by (3.20) and

represents a naked singularity. All the excited states have higher mass and are either

naked singularities or genuine black holes.

7See e.g. [21] for details on the general procedure of deriving of BPS bounds from the superalgebra.
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It is interesting to look at the case of extremal black holes, in which inner and outer

horizon coincide. This yields a relation between the mass and charge, which can

be derived from the solution given in (1.2) and (1.3). Explicit calculation gives the

following result [13]:

Mextr =
1

3
√
6g

(
√
1 + 12g2Q2

e + 2)(
√

1 + 12g2Q2
e − 1)1/2 . (3.21)

This lies above the BPS bound unless Qe = 0, in which case we recover the fully

supersymmetric AdS4 space. Thus,

Mextr > MBPS . (3.22)

• Kerr-AdS.

The Kerr-AdS black hole is an example of a stationary spacetime without charges

but with non-vanishing angular momentum. It is most standardly written in Boyer-

Lindquist-type coordinates and we refer to [13] for more details. More details on how

to calculate the angular momenta from the anticommutator of the supercharges can

be found in appendix C. The BPS bound is straightforward to find also in this case,

leading to

M ≥ g| ~J | , (3.23)

where the BPS state satisfies M = g| ~J | and in fact corresponds to a singular limit

of the Kerr-AdS black hole because the AdS boundary needs to rotate as fast as the

speed of light [24]. Note that in general for the Kerr black hole we have | ~J | = aM ,

where a is the rotation parameter appearing in the Kerr solution in standard notation.

Thus M = g| ~J | implies a = 1/g, which is exactly the singular case. All the excited

states given by a < 1/g are however proper physical states, corresponding to all the

regular Kerr-AdS black holes, including the extremal one. Thus the BPS bound is

always satisfied but never saturated by any physical solution of the Kerr-AdS type,

Mextr > MBPS , (3.24)

as is well-known.

• KN-AdS.

The BPS bound for Kerr-Newman-AdS (KN-AdS) black holes8 is a bit more involved

due to the presence of both electric charge and angular momentum. We will not

elaborate on the details of the calculation which is straightforward. The resulting

BPS bound is

M ≥ |Qe|+ g| ~J | = |Qe|+ agM , (3.25)

and the ground (BPS) state is in fact quarter-supersymmetric. This BPS bound is

also well-known and is described in [21]. The BPS bound does in general not coincide

8See again [13] for more detailed description of the KN-AdS black holes.
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with the extremality bound, which in the case of the KN-AdS black holes is a rather

complicated expression that can be found in [13, 24]. Interestingly, the BPS bound

and the extremality bound coincide at a finite non-zero value for the mass and charge

(with ag < 1),

|Qe,crit| ≡
√
a

g

1

1− ag
. (3.26)

Now we have two distinct possibilities for the relation between the BPS state and the

extremal KN-AdS black hole depending on the actual value for the electric charge

(there is exactly one BPS state and exactly one extremal black hole for any value of

charge Qe):

Mextr > MBPS , |Qe| 6= |Qe,crit| ,

Mextr =MBPS , |Qe| = |Qe,crit| .
(3.27)

So for small or large enough electric charge the BPS solution will be a naked singu-

larity and the extremal black hole will satisfy but not saturate the BPS bound, while

for the critical value of the charge the extremal black hole is supersymmetric and all

non-extremal solutions with regular horizon will satisfy the BPS bound.

3.2 Magnetic AdS4

Unlike the standard AdS4 case above, the Killing spinors of magnetic AdS4 already break

3/4 of the supersymmetry, cf. (B.9). The projection that they obey is,

ǫmAdS = PǫmAdS , P ≡ 1

4
(1 + iγ1)(1∓ iγ23σ

2) , (3.28)

for either the upper or lower sign, depending on the sign of the magnetic charge. Further-

more, one has the following properties of the projection operators,

P †P = P †iγ1P = ±P †iγ23σ
2P = ±P †(−iγ0γ5σ2)P = P , (3.29)

and all remaining quantities of the form P †ΓP vanish, where Γ stands for any of the other

twelve basis matrices generated by the Clifford algebra.

These identities allow us to derive, from (3.3), the bracket

{Q,Q} = Pǫ0γ0(−i 8π)MPǫ0 ⇒ {ǫT0 PQ, (PQ)T ǫ0} = ǫT0 (8πM)Pǫ0 . (3.30)

provided that the mass is given by

M =
1

8π
lim
r→∞

∮
dΣtr

(
gr +

1

2gr

)(
2g(Aθe

t
[0e

r
2e

θ
3] +Aϕe

t
[0e

r
2e

ϕ
3]) (3.31)

+
sin θ

g
et[0e

r
1e

θ
2e

ϕ
3] + get[0e

r
1] − (ωab

θ e
t
[0e

r
ae

θ
b] + ωab

ϕ e
t
[0e

r
ae

ϕ
b])

)
.
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This expression simplifies further if we choose to put the vielbein matrix in an up-

per triangular form, such that we have nonvanishing e0,1,2,3t , e1,2,3r , e2,3θ , e3ϕ, and the inverse

vielbein has only components et,r,θ,ϕ0 , er,θ,ϕ1 , eθ,ϕ2 , eϕ3 . The mass is then

M =
1

8π
lim
r→∞

∮
dΣtr

(
gr +

1

2gr

)(
sin θ

g
et0e

r
1e

θ
2e

ϕ
3 + get0e

r
1 − (ω12

θ e
t
0e

r
1e

θ
2 + ω13

ϕ e
t
0e

r
1e

ϕ
2 )

)
.

(3.32)

Notice that this mass formula is different from the one for asymptotically AdS4 spacetimes.

Stripping off the parameters ǫ0 in (3.30), leaves us with a matrix equation in spinor

space. Due to the projection operators, one is effectively reducing the number of super-

charges to two instead of eight. These two supercharges are scalars, since the Killing spinors

are invariant under rotation as they don’t depend on the angular coordinates (see also in

the next section). Denoting them by Q1 and Q2, the anticommutator then becomes

{QI , QJ} = 8πMδIJ , I, J = 1, 2 . (3.33)

Hence the BPS bound is just

M ≥ 0 . (3.34)

Saturating the bound leads to a quarter-BPS solution. None of the other conserved charges,

i.e. the electric charge and (angular) momentum, influences the BPS bound due to the

projection relation (3.29). Thus Qe and ~J can be completely arbitrary.

In particular, for the case of of the Reissner-Nordström solution (1.2) with fixed mag-

netic charge Qm = ±1/(2g) and Qe arbitrary, the mass integral (3.31) yields

1

8π
lim
r→∞

∮ (
gr +

1

2gr

)(
r

√
1 + g2r2 − 2M

r
+
Q2

e + 1/(4g2)

r2
− g r2 − 1

2g

)
sin θ dθdϕ =

=
1

8π

∮ (
−g2r3 − r

2
+M − r

2
+ g2r3 + r

)
sin θ dθdϕ =M . (3.35)

This is exactly the mass parameter M appearing in (1.3). The supersymmetric solutions

found by Romans (the so-called cosmic monopole/dyons) have vanishing mass parameter

hence indeed saturate the BPS bound (3.34).

Of course in the context of a rotating black hole vanishing mass results in vanishing

angular momentum due to the proportionality between the two, i.e. an asymptotically

mAdS Kerr-Newman with non-zero angular momentum spacetime can never saturate the

BPS bound (3.34). Nevertheless, excitations over the magnetic AdS4 include all Reissner-

Nordström and Kerr-Newman AdS black holes that have fixed magnetic charge 2gQm = ±1

and arbitrary (positive) mass, angular momentum and electric charge. All these solutions

satisfy the magnetic AdS4 BPS bound.
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4 Superalgebras

4.1 AdS4

The procedure we used to find the BPS bound determines also the superalgebras of AdS4
and mAdS4, which are found to be different. In fact, given the Killing spinors and

Killing vectors, there is a general algorithm to determine the superalgebra, see [25] and

chapter 13 in [26].

For what concerns the pure AdS4, in N = 2 gauged supergravity the superalgebra

is Osp(2|4), which contains as bosonic subgroup SO(2, 3) × SO(2): the first group is the

isometry group of AdS4 and the second one corresponds to the gauged R-symmetry group

that acts by rotating the two gravitinos. The algebra contains the generators of the SO(2, 3)

group MMN (M,N = −1, 0, 1, 2, 3), and TAB = −TBA = TǫAB, A,B = 1, 2, the generator

of SO(2). Furthermore we have supercharges QAα with A = 1, 2 that are Majorana spinors.

The non-vanishing (anti-)commutators of the Osp(2|4) superalgebra are:

[QAα, T ] = ǫABQBα

[MMN ,MPQ] = −ηMPMNQ − ηNQMMP + ηMQMNP + ηNPMMQ

[QAα,MMN ] =
1

2
(γ̂MN )αβQ

Aβ

{QAα, QBβ} = δAB(γ̂MNC−1)αβMMN − (C−1)αβTǫAB ,

(4.1)

where ηMN = diag(1, 1,−1,−1,−1), the gamma matrices are γ̂M ≡ {γ5, iγµγ5}, and

γ̂MN = 1
2 [γ̂M , γ̂N ]. Further details can be found in [26]. T does not have the role of a

central charge, as it doesn’t commute with the supercharges. Nevertheless it is associated

to the electric charge.9 The isometry group of AdS4 is SO(2, 3), isomorphic to the confor-

mal group in three dimensions, whose generators are 3 translations, 3 rotations, 3 special

conformal transformations (conformal boosts) and the dilatation.

4.2 mAdS4

In the case of mAdS4, the symmetry group is reduced due to the presence of the magnetic

charge. Spatial translations and boosts are broken, because of the presence of a magnetic

monopole. There are 4 Killing vectors related to the invariance under time translations

and rotations. The isometry group of this spacetime is then R × SO(3). Furthermore,

we have also gauge invariance. The projector (3.28) reduces the independent components

of the Killing spinors to 1/4, consequently the number of fermionic symmetries of the

theory is reduced, as we explained in section 3.2. We have denoted the remaining two real

supercharges with QI (I = 1, 2). To sum up, the symmetry generators of mAdS4 are:

• the angular momentum Ji, i = 1, 2, 3,

• the Hamiltonian H,

9If we perform a Wigner-Inönü contraction of the algebra, TAB gives rise to a central charge in the

Poincaré superalgebra. See [26] for further details.
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• the gauge transformation generator T ,

• the two supercharges QI where I = 1, 2.

From (3.33) the anticommutator between two supercharges is

{QI , QJ} = HδIJ . (4.2)

Since mAdS4 is static and spherically symmetric, we have the commutation relations

[H, Ji] = 0 , [Ji, Jj ] = ǫijk Jk . (4.3)

The following commutators are then determined by imposing the Jacobi identities:

[QI , Ji] = [QI , H] = 0 . (4.4)

Next, we add the gauge generator T to the algebra. Because of gauge invariance, we have

the commutators

[T, Ji] = [T,H] = 0 . (4.5)

From the Jacobi identities one now derives that

[QI , T ] = ǫIJQJ , (4.6)

with a fixed normalization of T . This commutator also follows from the observation

that gauge transformations act on the supersymmetry parameters in gauged supergrav-

ity, together with the fact that T commutes with the projection operator P defined in the

previous section.

The first commutator in (4.4) implies that the supercharges QI are singlet under ro-

tations. This is a consequence of the fact that the mAdS4 Killing spinors have no angular

dependence [2]. Group theoretically, this follows from the fact that the group of rotations

entangles with the SU(2)R symmetry, as explained in [27].

5 Outlook

The procedure outlined in this paper to compute the BPS bound is completely general.

It can be used also in other settings, for example for gauged supergravity with matter

couplings. This would give new insights about the BPS ground states of the gauged su-

pergravities. For instance, it would be interesting to investigate the BPS bounds in the

presence of scalar fields that belong to vector- or hypermultiplets.

One disadvantage of our approach is that our renormalized mass formulas (3.6)

and (3.31) are written in specific coordinates and therefore not manifestly diffeomor-

phism invariant. It would be an improvement if a coordinate independent formulation

can be given, and comparison can be made to other proposals in the literature, such

as [9, 10, 22, 28, 29].

Furthermore, it would beworth understanding the implications related to the AdS/CFT

correspondence, especially in the presence of a magnetic charge. For instance, the fact that

the supercharges carry no spin might have important consequences for the dual field theory.

We leave this for further study.
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A Gamma matrix conventions

The Dirac gamma-matrices in four dimensions satisfy

{γa, γb} = 2ηab , (A.1)

and we define

[γa, γb] ≡ 2γab , γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 . (A.2)

In addition, they can be chosen such that

γ†0 = γ0, γ0γ
†
i γ0 = γi, γ†5 = γ5, γ∗a = −γa . (A.3)

An explicit realization of such gamma matrices is the Majorana basis, given by

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0

0 iσ3

)
, γ2 =

(
0 −σ2
σ2 0

)
,

γ3 =

(
−iσ1 0

0 −iσ1

)
, γ5 =

(
σ2 0

0 −σ2

)
, (A.4)

where the σi (i = 1, 2, 3) are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.5)

For the charge conjugation matrix, we choose

C = iγ0 , (A.6)

hence Majorana spinors have real components.

We also make use of the following identities, with curved indices:

ǫµνρσγ5γρ = ieγµνσ , (A.7)

γµγρσ = −γρgµσ + γσgµρ +
i

e
ǫµνρσγ5γ

ν , (A.8)

γµγνργσ − γσγνργµ = 2gµνgρσ − 2gµρgνσ + 2
i

e
ǫµνρσγ5 . (A.9)
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Antisymmetrizations are taken with weight one half, and the totally antisymmetric Levi

Civita symbol is defined by

ǫ0123 = 1 = −ǫ0123 . (A.10)

With curved indices,

ǫµνρσ ≡ e eµae
ν
b e

ρ
ce

σ
d ǫ

abcd , (A.11)

is a tensor-density.

Another important property that ensures the super-Jacobi identities of Osp(2|4) hold is

(γ̂MNC−1)αβ(γ̂MNC
−1)γδ = (C−1)αγ(C−1)βδ + (C−1)αδ(C−1)βγ , (A.12)

where γ̂MN are defined in section 4.1.

B Asymptotic Killing spinors

B.1 AdS4

Here we give details about the Killing spinors for AdS4. We consider the metric in spherical

coordinates

ds2 = (1 + g2r2) dt2 − (1 + g2r2)−1 dr2 − r2 (dθ2 + sin2 θdϕ2) , (B.1)

and corresponding vielbein

eaµ = diag
(√

1 + g2r2,
√
1 + g2r2

−1
, r, r sin θ

)
. (B.2)

The non-vanishing components of the spin connection turn out to be:

ω01
t = g2r, ω12

θ = −
√
1 + g2r2, ω13

ϕ = −
√
1 + g2r2 sin θ, ω23

ϕ = − cos θ . (B.3)

For the AdS4 solution, the field strength vanishes,

Fµν = 0 . (B.4)

To find the Killing spinors corresponding to this spacetime we need to solve D̃µǫ = 0. This

equation has already been solved in [8] and we have explicitly checked that the resulting

Killing spinors are given by

ǫAdS = e
i
2
arcsinh(gr)γ1e

i
2
gtγ0e−

1

2
θγ12e−

1

2
ϕγ23ǫ0 , (B.5)

where ǫ0 is a doublet of arbitrary constant Majorana spinors, representing the eight pre-

served supersymmetries of the configuration.

It is important to note that the asymptotic solution of the Killing spinor equations as

r → ∞ (given the same asymptotic metric) cannot change unless Aϕ 6= 0. This is easy

to see from the form of the supercovariant derivative (2.9) since any other term would

necessarily vanish in the asymptotic limit. More precisely, any gauge field carrying an

electric charge that appears in the derivative vanishes asymptotically, the only constant

contribution can come when a magnetic charge is present. In other words, any spacetime

with vanishing magnetic charge and asymptotic metric (B.1) has asymptotic Killing spinors

given by (B.5).
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B.2 Magnetic AdS4

Now we will show that the asymptotic Killing spinors take a very different form when

magnetic charge is present. In this case the metric is

ds2 =

(
1 + g2r2 +

Q2
m

r2

)
dt2 −

(
1 + g2r2 +

Q2
m

r2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (B.6)

with corresponding vielbein:

eaµ = diag

(√
1 + g2r2 +

Q2
m

r2
,

√
1 + g2r2 +

Q2
m

r2

−1

, r, r sin θ

)
. (B.7)

The non-vanishing components of the spin connection turn out to be:

ω01
t = g2r − Q2

m

r3
, ω12

θ = −
√
1 + g2r2 +

Q2
m

r2
,

ω13
ϕ = −

√
1 + g2r2 +

Q2
m

r2
sin θ , ω23

ϕ = − cos θ . (B.8)

As opposed to the previous section, now we have a non-vanishing gauge field component

Aϕ = −Qm cos θ, resulting in Fθϕ = Qm sin θ. If we require D̃µǫ = 0 and insist that

Qm 6= 0, we get a solution described by Romans in [2] as a “cosmic monopole” (which

we call magnetic AdS4). The magnetic charge satisfies 2gQm = ±1, such that the metric

function is an exact square (gr+ 1
2gr )

2. The Killing spinors corresponding to solutions with

Qm = ±1/(2g) in our conventions are given by

ǫmAdS =
1

4

√
gr +

1

2gr
(1 + iγ1)(1∓ iγ23σ

2) ǫ0 , (B.9)

preserving two of the original eight supersymmetries. Note that in the limit r → ∞ the

Killing spinor projections continue to hold. Furthermore, the functional dependence is

manifestly different in the expressions (B.5) and (B.9) for the Killing spinors of ordinary

AdS4 and its magnetic version. This leads to the conclusion that these two vacua and

their corresponding excited states belong to two separate classes, i.e. they lead to two

independent superalgebras and BPS bounds. Note that one can also add an arbitrary

electric charge Qe to the above solution, preserving the same amount of supersymmetry

(the “cosmic dyon” of [2]). The corresponding Killing spinors [2] have the asymptotic form

of (B.9), i.e. the cosmic dyons are asymptotically magnetic AdS4.

C Rotations in AdS4

Here we focus on stationary spacetimes with rotations. From thesupersymmetry Dirac

brackets in asymptotic AdS4 spaces,

{Q,Q} = −8πiǫ0
(
. . .+ gJijγ

ij + . . .
)
ǫ0 , (C.1)

we can derive a definition of the conserved angular momenta. The explicit expressions are

somewhat lengthy and assume a much simpler form once we choose the vielbein matrix
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eaµ in an upper triangular form, such that its inverse eµa is also upper triangular. More

explicitly, in spherical coordinates we choose nonvanishing e0,1,2,3t , e1,2,3r , e2,3θ , e3ϕ, such that

the inverse vielbein has only non-vanishing components et,r,θ,ϕ0 , er,θ,ϕ1 , eθ,ϕ2 , eϕ3 . The resulting

expressions for the angular momenta in this case become:

J12 =
1

8π
lim
r→∞

2π∫

0

dϕ

π∫

0

dθ
(
(et0e

r
1e

3
ϕω

01
θ +et0e

r
1e

2
θe

3
ϕe

ϕ
2ω

01
ϕ )r cosϕ+(et0e

r
1e

2
θω

01
ϕ )r cos θ sinϕ

)
,

J13 =
1

8π
lim
r→∞

2π∫

0

dϕ

π∫

0

dθ
(
(et0e

r
1e

3
ϕω

01
θ +et0e

r
1e

2
θe

3
ϕe

ϕ
2ω

01
ϕ )r sinϕ+(et0e

r
1e

2
θω

01
ϕ )r cos θ cosϕ

)
,

J23 =
1

8π
lim
r→∞

2π∫

0

dϕ

π∫

0

dθ
(
et0e

r
1e

2
θω

01
ϕ r sin θ

)
. (C.2)

It is easy to see that in case of axisymmetric solutions around ϕ, such as the Kerr and

Kerr-Newman metrics in AdS, the angular momenta J12 and J13 automatically vanish due

to
∫ 2π
0 dϕ sinϕ =

∫ 2π
0 dϕ cosϕ = 0.

One can then use the formula for J23 to derive the value of the angular momentum

for the Kerr black hole. This is still somewhat non-trivial because one needs to change

the coordinates from Boyer-Lindquist-type to spherical. The leading terms at large r were

found in appendix B of [22] and are enough for the calculation of the angular momentum

since subleading terms vanish when the limit is taken in (C.2). The calculation of the

relevant component of the spin connection leads to

ω01
ϕ = −3am sin2 θ(1− g2a2 sin2 θ)−5/2

r2
+O(r−3) (C.3)

and gives the exact same result as in (B.8) of [22],

J23 =
am

(1− g2a2)2
. (C.4)

This expression has also been derived from different considerations in [30], thus confirming

the consistency of our results.

One can also verify the result for the asymptotic mass of the Kerr and Kerr-Newman

spacetimes using (3.6) and the metric in appendix B of [22]. After a somewhat lengthy but

straightforward calculation one finds

M =
m

(1− g2a2)2
, (C.5)

as expected from previous studies (see, e.g., [13, 30]).
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