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1 Introduction

Maximally extended N = 8 supergravity [1, 2] is the most symmetric field theoretic exten-

sion of Einstein’s theory in four space-time dimensions. Although long thought to diverge

at three loops [3, 4], spectacular computational advances have recently shown that, con-

trary to many expectations, the theory is finite at least up to and including four loops [5, 6],

and thereby fuelled speculations that the theory may actually be finite to all orders in per-

turbation theory. It appears doubtful whether maximal supersymmetry alone could suffice

to explain such a far reaching result [7], if true. Rather, it seems plausible that the possi-

ble finiteness of N = 8 supergravity will hinge on known or unknown ‘hidden symmetries’

of the theory. Indeed, already the construction of the N = 8 Lagrangian itself was only
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possible thanks to the discovery of the non-linear duality symmetry E7(7) of its equations

of motion [1]. This symmetry is expected to be a symmetry of perturbation theory, and to

be broken to an arithmetic subgroup of E7(7) by non-perturbative effects when the theory

is embedded into string theory (see e.g. [8, 9] for a recent update, and also the comments

below). Nevertheless, the status of the non-linear duality symmetry at the level of quan-

tised perturbation theory has remained rather unclear, because E7(7) is not a symmetry of

the original N = 8 Lagrangian and the corresponding non-linear functional Ward identities

therefore have not been worked out so far.

Inspired by earlier work devoted to the definition of an action for self-dual form

fields [10], one of the authors recently was able to set up a formulation of N = 8 su-

pergravity in which the Lagrangian is manifestly E7(7)-invariant [11].1 The main peculiar-

ity of the formalism is to replace the 28 vector fields Amµ of the original formulation by

56 = 28+28 vector fields Am
i ≡ (Ami , A

m̄
i ) with spatial components only, whose conjugate

momenta are determined by second class constraints in the canonical formulation, in such

a way that they represent the same number of physical degrees of freedom as the original

28 vector fields in the conventional formulation of the theory. Although not manifestly

diffeomorphism invariant, the theory still admits diffeomorphism and local supersymme-

try gauge invariance [11]. By virtue of its manifest off-shell E7(7) invariance, the theory

possesses a bona fide E7(7) Noether current, unlike the covariant formulation [13], and this

is the feature which permits to write down functional Ward identities for the non-linear

duality symmetry.

In this paper we will consider the perturbative quantisation of N = 8 supergravity

in this duality invariant formulation. As our main result, we will prove that there exists

a renormalisation scheme which maintains the full non-linear (continuous) E7(7) duality

symmetry at all orders in a perturbative expansion of the theory in the gravitational

coupling κ. A key element in this proof is the demonstration of the absence of linear SU(8)

and non-linear E7(7) anomalies.

As is well known [14], the proper definition of any quantum field theory relies on

the quantum action principle, according to which the ultra-violet divergences of the 1PI

generating functional are always local functionals of the fields. Only thanks to this property

can one carry out the renormalisation program by consistently modifying the local bare

action order by order to eliminate both divergences and trivial anomalies. Because of the

non-conventional character of our reformulation of N = 8 supergravity, and its lack of

manifest Lorentz invariance in particular, the validity of the quantum action principle is

however not automatically guaranteed.

To deal with this problem, we will in a first step prove that the duality invariant

path integral of the theory is equivalent to the conventional formulation by means of a

1The formalism had been applied earlier to the definition of a manifestly SL(2,R) bosonic action for

N = 4 supergravity [12].
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Gaussian integration. In order to ensure the validity of the quantum action principle, we

will require the existence of a local regularisation scheme in the two formulations of the

theory, which are equivalent modulo a Gaussian integration (but note that the Gaussian

integration reduces the manifest E7(7) invariance to an on-shell symmetry). The validity of

the quantum action principle in the conventional formulation of the theory then ensures its

validity in the duality invariant formulation. We will define a Pauli-Villars regularisation

of the theory satisfying these criteria. Although this regularisation would break Lorentz

invariance in the covariant formulation as well, it is local and invariant with respect to

abelian gauge invariance in the two formulations. We will exhibit the consistency of this

regularisation in the explicit computation of the one-loop vector field contribution to the

su(8)-current anomaly.

With a consistent duality invariant formulation at hand, we can address and answer the

question of whether the e7(7) current Ward identities are anomalous or not in perturbation

theory. According to [15], the local su(8) gauge invariance in the version of N = 8 super-

gravity with linearly realised E7(7) is anomalous at one-loop. However, as shown in [16]

this anomaly can be cancelled by an SU(8) Wess-Zumino term which in turn breaks the

manifest E7(7) invariance, whereby the local SU(8) anomaly is converted into an anomaly

of the global E7(7) — unless there appear new contributions to the latter, as happens to

be the case for N = 8 supergravity. According to [16] one thus has the option of working

either with the locally SU(8) invariant version of N = 8 supergravity, or with its gauge-

fixed version where E7(7) is realised non-linearly. Here we prefer the second option, that is,

we will consider an explicit parametrisation of the scalar manifold E7(7)/SUc(8)
2 in terms

of 70 scalar fields Φ ∈ e7(7) ⊖ su(8) which coordinatise the coset manifold. A consistent

anomaly must then be a non-trivial solution to the Wess-Zumino consistency condition.

We will prove that the associated cohomology problem reduces to the cohomology problem

associated to the current su(8) Ward identities. It follows from this result that, although

the non-linear character of the e7(7) symmetry is such that the associated anomalies involve

infinitely many correlation functions with arbitrarily many scalar field insertions, the Wess-

Zumino consistency condition implies that the corresponding coefficients are all determined

in function of the linear su(8) anomaly coefficient — thereby saving us the labour of hav-

ing to determine an infinitude of anomalous diagrams! Now, thanks to a crucial insight

of [17], it is known that for N = 8 supergravity, the anomalous contributions to the current

(rigid) su(8) Ward identities from the fermions cancel against the contributions from the

vector fields because the latter are also chiral under SU(8). Therefore the non-linear e7(7)

Ward identities are likewise free of anomalies. Moreover, the cohomological arguments of

section 3 show that this results extends to all loop orders.

The fact that the consistent e7(7) anomalies are in one-to-one correspondence with the

2Where throughout the notation SUc(8) will be used as a shorthand for the quotient of SU(8) by the

Z2 kernel of the representations of even rank.
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set of consistent su(8) anomalies can also be understood more intuitively, and in a way

that makes the result almost look trivial. Namely, in differential geometric terms, this

correspondence is based on the homotopy equivalence

E7(7)
∼= SUc(8) × R

70 , (1.1)

which implies that the two group manifolds have the same De Rham cohomology. We will

show how to extend the algebraic proof of this property by means of equivariant cohomology

to the cohomology problem of classifying the e7(7) anomalies in N = 8 supergravity, and

in this way arrive at a very explicit derivation of the non-linear e7(7) anomaly from the

corresponding linear su(8) anomaly.

N = 8 supergravity is a gauge theory, and its first class constraints (associated to

diffeomorphisms, local supersymmetry, abelian gauge invariance, and Lorentz invariance)

must be taken care of by means of the BRST formalism. This likewise requires the explicit

parametrisation of the coset manifold E7(7)/SUc(8), such that there are no first class con-

straints associated to SU(8) gauge invariance in the formulation. For the validity of the

proof of the E7(7) invariance of the theory, one must therefore establish the compatibility

of the latter with the BRST invariance. We will demonstrate in the last section that the

theory can be quantised in its duality invariant formulation within the Batalin-Vilkovisky

formalism, as it does in the ordinary formulation. It is not difficult to see that one can

define a consistent E7(7)-invariant fermionic gauge fixing-functional (or ‘gauge fermion’).

We will explain how the E7(7) Noether current can be coupled consistently to the theory,

despite its lack of gauge invariance.

In summary, the proof of the duality invariance of the quantised perturbation theory

relies on establishing the following results:

1. Existence of a local action Σ depending on the physical fields and sources, well suited

for Feynman rules, and satisfying consistent functional identities associated to both

e7(7) current Ward identities and BRST invariance.

2. Existence of a regularisation prescription consistent with the quantum action princi-

ple; as dimensional regularisation appears unsuitable in the present formulation, we

will employ a Pauli-Villars regulator.

3. Existence of a unique non-trivial solution to the E7(7) Wess-Zumino consistency con-

dition associated to the one-loop anomaly.

4. Vanishing of the coefficient of the unique anomaly, which implies the absence of any

obstruction towards implementing the full nonlinear E7(7) symmetry at each order in

perturbation theory via an associated e7(7) master equation.

However, our exposition will not follow these steps in this order, i.e. as a successive

proof of each of these points. Instead, we chose to postpone the discussion of the first

– 4 –



J
H
E
P
1
2
(
2
0
1
0
)
0
5
2

point, i.e. the consistency with BRST invariance, to the end and to first discuss other

components of the proof that we consider to be more interesting (and perhaps also more

easily accessible). As one of our main results we separately derive the master equations

(or “Zinn-Justin equations”) for both N = 8 supersymmetry and non-linear E7(7). Using

standard textbook results (see e.g. [18, 19]) readers may then directly deduce from these

any (non-linear) Ward identity of interest if they wish.

Our results confirm the expectation that any divergent counterterm must respect the

full non-linear E7(7) symmetry. They may thus be taken as further evidence that diver-

gences of N = 8 supergravity, if any, will not make their appearance before seven loops.

The strongest evidence so far of the 6-loop finiteness was the absence of logarithm in the

string effective action threshold [20]. The chiral invariants associated to potential logarith-

mic divergences at three, five and six loops are only known in the linear approximation [21],

and if they are invariant with respect to the linearised duality transformations, there is no

reason to believe that their non-linear completion would be duality invariant. Indeed, it

has recently been exhibited through the study of on-shell tree amplitudes in type II string

theory that the 1/2 BPS invariant corresponding to the potential 3-loop divergence is not

E7(7) invariant [22, 23]. The same argument applies to the invariants associated to poten-

tial 5 and 6-loop divergences. The manifestly E7(7) invariant 7-loop counterterm is the full

superspace integral of the supervielbein determinant. This is known to vanish for lower

N supergravities, suggesting that the first E7(7) invariant counterterm may actually not

appear before eight loops. As a corollary of our results, we may also point out that N ≤ 4

supergravities whose R-symmetry group K possesses a U(1) factor, do exhibit anomalies,

and therefore possible divergences need not respect the non-linear duality invariance.

It is important to emphasise that the preservation of the continuous duality symme-

try in perturbation theory is not in contradiction with the string theory expectation that

only its arithmetic subgroup remains a symmetry at the quantum level. Within super-

gravity, we expect that only E7(7)(Z) will be preserved by non-perturbative corrections in

exp(−κ−2SInstanton). Although the status of instanton corrections in N = 8 supergravity is

not clear by any means, we will provide some evidence relying on the classical breaking of

the E7(7) current conservation in non-trivial gravitational backgrounds, see section 2.4. On

the other hand, considering N = 8 supergravity as a limit ℓs → 0 (decoupling the massive

string states) of type II string theory compactified on a product of circles of radii ri (to be

taken → 0 to decouple massive Kaluza-Klein states), one cannot avoid non-perturbative

string corrections in the four-dimensional effective string coupling constant

g 2
4 ≡ ℓ 6

s g
2

s∏6
i=1 ri

, (1.2)

while keeping the gravitational coupling constant κ2 = 8πg 2
4 ℓ

2
s fixed, since necessarily

g 2
4 → ∞ in this limit. It is therefore clear that the supergravity limit of string theory must

involve string theory non-perturbative states [24], and thus defines some non-perturbative
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completion of the supergravity field theory. If the supergravity limit of the string theory

effective action is the effective action in field theory, the latter must necessarily include non-

perturbative contributions associated to field theory instantons. The E7(7)(Z) ‘Eisenstein

series’ that multiplies the Bel-Robinson square R4 term in the string theory effective action

is defined in string theory as an expansion in exp(−1/g 2
4 ) [8, 9]. This expansion diverges

as g 6
4 in the supergravity limit g 2

4 → ∞ [9], see also [20] for an explicit resummation of the

eight-dimensional SL(2,Z) × SL(3,Z) invariant threshold in the supergravity limit. The

result of the present paper suggests that if this limit makes sense in field theory, it should

be defined as an expansion in e−1/κ2
, and that the perturbative contribution would vanish.

The paper is organised as follows. We will first recall the duality invariant formulation

of the classical theory defined in [11], and exhibit its equivalence with the conventional

formulation of the theory [1, 2] by means of a Gaussian integration. Then we will recall the

definition of the E7(7) Noether current. In order to deal with the non-linear realisation of

the E7(7) symmetry in the symmetric gauge, it will be convenient to define the non-linear

transformations in terms of formal power series in Φ in the adjoint representation. We

derive such formulas in section 2.5, and we exhibit the commutation relations between

local supersymmetry and the e7(7) symmetry. More generally, we show that the BRST

operator commutes with the non-linear e7(7) symmetry, cf. (2.91), hence is E7(7) invariant.

Section 3 exhibits the well definedness and consistency of the formalism (and particular

the validity of the quantum action principle), through the explicit computation of the one-

loop vector field contribution to the su(8) anomaly. It will therefore provide answers to

both 2 and 4. In this section we discuss the Feynman rules for the vector fields in detail,

exhibiting the equivalence with the conventional formulation in terms of free photons. It

has been shown in [25] that self-dual form fields contribute to (gravitational) anomalies,

just like chiral fermion fields, by means of a formal Fujikawa-like path integral derivation.

This result can be understood geometrically from the family’s index theorem [26], and it

has been used in [17] to establish the absence of anomalies for the su(8) current Ward

identities in N = 8 supergravity. Here we will exploit the duality invariant formulation to

provide a full fledged Feynman diagram computation of the vector field contribution which

confirms the expected result, and therefore the absence of anomalies in the theory. In this

section we also set up the Pauli-Villars regularisation for the vector fields, and exhibit its

(non-trivial) compatibility with the quantum action principle.

Section 4 is also very important: it will provide the definition of the non-linear e7(7)

Slavnov-Taylor identities for the current Ward identities, and define and solve the Wess-

Zumino consistency condition, incidentally answering 3.

The last section finally provides an answer to the first point of the above list. We

there discuss the solution of the Batalin-Vilkovisky master equation in the duality invariant

formulation, including the coupling to the E7(7) Noether current. Using the property that

the BRST operator commutes with the e7(7) symmetry and considering a duality invariant
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gauge-fixing, we are able to define consistent and mutually compatible master equations for

BRST invariance and e7(7) symmetry. In this section we also discuss the ‘energy Coulomb

divergences’ in the one-loop insertions of E7(7) currents, which constitute a special subtlety

of the formalism. We will exhibit that these divergences can be consistently removed within

the Pauli-Villars regularisation.

As this paper is rather heavy on formalism, we here briefly summarise our notational

conventions for the reader’s convenience. (Curved) space-time indices are µ, ν, ..., (curved)

spatial indices are i, j, k, ..., and space-time Lorentz indices are a, b, c, ..... Indices

in the fundamental representation 56 of E7(7) are m,n, ... = 1, ..., 56; when split into

28+28 they become m , n , .. and m̄ , n̄ , ... Rigid SU(8) indices are I, J, K, ... such that

the E7(7) adjoint representation 133 decomposes as 63 ⊕ 70 with generators XIJ
KL ≡

2δ
[I
[KX

J ]
L], X

IJKL ≡ 1
2X

[IJKL] + 1
48ε

IJKLPQMNXPQMN , etc. Local SU(8) indices are

i, j, k ... = 1, ..., 8, and raising or lowering them corresponds to complex conjugation.

Space-time indices are lowered with the metric gµν , and the tensor densities εijk and εµνρσ

are normalised as ε123 = ε0123 = 1. Finally, we will use the letters S for the classical action,

Σ for the classical action with sources, ghost and antifield terms included. While both S

and Σ are local, the full quantum effective action Γ is not, but obeys Γ = Σ + O(~).

2 N = 8 supergravity with off-shell E7(7) invariance

2.1 Manifestly duality invariant formulation

We start from the usual ADM decomposition of the 4-metric

gµνdx
µdxν = −N2dt2 + hij(dx

i +Nidt)(dxj +Njdt) , (2.1)

with the lapse N and the shift Ni; hij is the metric on the spatial slice. The vector

fields Am
i of the theory appear only with spatial indices, and are labeled by internal indices

m,n, ... which transform in a given representation of the internal symmetry group G with

maximal compact subgroup K (for N = 8 supergravity G ∼= E7(7) and K ∼= SUc(8), with

the vector fields transforming in the 56 of E7(7)). In comparison with the usual on-shell

formalism this implies a doubling of the vector fields, such that the multiplet Am
i comprises

both the (spatial components of the) electric and their dual magnetic vector potentials.

To formulate an action we also need the field dependent G-invariant metric Gmn on the

vector space on which the electromagnetic fields are defined (i.e. the E7(7) invariant metric

on R
56 for N = 8 supergravity; this metric is explicitly given in (2.30) below). In addition

we need the symplectic invariant Ωmn = −Ωnm = Ωmn,3 which is always present, because

the generalised duality symmetry is generally a subgroup of a symplectic group acting on

the electric and magnetic vector potentials [13] (the group Sp(56,R) ⊃ E7(7) for N = 8

3Hence, with our conventions ΩmpΩpn = −δn
m.
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supergravity). Duality invariance implies the following relation for the inverse metric Gmn

Gmn = ΩmpΩnqGpq , (GmpGpn = δm
n ) . (2.2)

For later purposes we also define the ‘complex structure’ tensor

Jm
n ≡ GmpΩpn ⇒ Jm

pJ
p
n = −δm

n . (2.3)

Note that Jm
n depends on the scalar fields via the metric Gmn. The maximal compact

subgroup K can be characterised as the maximal subgroup in G which commutes with

Jm
n(Φ̊) (for some background value Φ̊ of the scalar fields).

After these preparations we can write down the part of the action containing the

vector fields

Svec =
1

2

∫
d4x

(
1

2
Ωmnε

ijk
(
∂0A

m
i +NlFm

il

)
Fn
jk −

1

2
N
√
hGmnh

ikhjlFm
ijF

n
kl

−N
√
hhikhjlFm

ijWklm − 1

2
N
√
hGmnhikhjlWijmWkln

)
. (2.4)

Here Wijm is a bilinear function of the fermion fields, which will be discussed in more

detail shortly (see (2.36) below). We also consider the W 2 term which define the non-

manifestly diffeomorphism covariant quartic terms in the fermions. For quantisation, the

above action must be supplemented by further terms depending on the ghost fields as well

as the anti-fields; this will be discussed in more detail below.

As shown in [11], the main advantage of the above reformulation is that it incorpo-

rates both the electric and the dual magnetic vector potentials off-shell, at the expense

of manifest space-time diffeomorphism invariance. In particular, the equation of motion

of the 56 vector fields Am
i can be expressed as a twisted self-duality constraint [1] for the

supercovariant field strength F̂m
µν (see [11] for further details)

F̂m
µν = − 1

2
√

-g
εµν

σρJm
nF̂

n
σρ , (2.5)

where the tensor J takes the place of an imaginary unit. We briefly explain this proce-

dure and why the time-components Am
0 of the vector fields naturally enter this equation,

although they are absent in the original Lagrangian (2.4). The variation of the action func-

tional Svec (2.4) with respect to the 56 vector fields Am
i leads to the second order equation

of motion4

εijk∂jE
m
k = 0 , (2.6)

with the abbreviation

E
m
i ≡ ∂0A

m
i +NjFm

ij −
N

2
√
h
hijε

jkl
(
Jm

nF
n
kl

+ ΩmnWkln

)
. (2.7)

4Do not confuse the equation of motion function E
m
i with the electric potential Em

i introduced in [10, 11].
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This equation is equivalent to the statement that the one-form E
m
k dxk is closed. On any

contractible open set of the d = 4 space-time manifold, every closed form is exact by

Poincaré’s lemma, which implies the existence of a zero-form Am
0 satisfying

E
m
i = ∂iA

m
0 . (2.8)

It is straightforward to verify that this equation of motion is completely equivalent to the

twisted self-duality constraint of equation (2.5). Furthermore, only the identification of

the zero-form with the time-component Am
0 gives rise to an equation of motion that is

diffeomorphism covariant in the usual sense.

Before we prove that the action functional (2.4) and the usual second order form of

the action are equivalent, and related by functional integration, we briefly explain the

realisation of the diffeomorphism algebra on the vector fields. To this aim we recall that

the Lie derivative on the vector field in the covariant formulation can be rewritten as

δAm
µ = ∂µξ

νAm
ν + ξν∂νA

m
µ = ∂µ(ξνAm

ν ) + ξνFm
νµ . (2.9)

Considering the vector fields Am as abelian connections, the geometrical action of dif-

feomorphism is defined via the horizontal lift of the vector ξµ to the principle bundle,

and is modified by a gauge transformation. We will consider this covariant (or ‘horizon-

tal’) diffeomorphism

δAm
µ = ξνFm

νµ . (2.10)

Splitting indices into time and space indices, we get

δAm
i = ξ0Fm

0i + ξjFm
ji . (2.11)

The recipe for obtaining the correct formula in the present formulation then consists simply

in replacing

Fm
0i → ∂0A

m
i − E

m
i (2.12)

everywhere according to (2.7), such that (2.11) becomes

δξA
m
i ≡ ξµ∂µA

m
i − ξj∂iA

m
j − ξ0E m

i . (2.13)

We note that the recipe (2.12) also yields the correct formulas for all other transforma-

tions in the manifestly duality invariant formalism, including the modified supersymmetry

transformations and the BRST transformations of the ghosts.

The non-standard representation of the diffeomorphism algebra (2.13) on the vector

fields is consistent, because it closes off-shell up to a gauge transformation with parameter

Λm, which cannot be separated from the diffeomorphism action:

[
δξ1 , δξ2

]
Am
i = δ[ξ2,ξ1]A

m
i + ∂iΛ

m

with Λm = ξi2ξ
j

1F
m
ij + (ξ02ξ

j

1 − ξ01ξ
j

2)(∂0A
m
j − E

m
j ) . (2.14)
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The gauge transformation Λm can be obtained from the one that would appear in the

covariant formulation by the substitution (2.12).

To sum up: although the equations of motion are covariant under the diffeomorphism

action in both formulations of maximal supergravity, the representations of the diffeomor-

phism algebra on the vector fields do not coincide off-shell. Agreement can a priori be

achieved only on-shell, if we impose the equations of motion in their first order form (2.8)

with the introduction of the time-component of the 56 vector fields. Nevertheless, the two

formulations are also formally equivalent at the quantum level, as we are going to see.

2.2 Equivalence with the covariant formalism

To establish the link with the manifestly diffeomorphism covariant formalism, we must in

a first step decompose the electromagnetic fields into Darboux components associated to

the symplectic form

Ωmn = Ωm̄n̄ = 0 Ωmn̄ = −Ωn̄m = δmn̄ (2.15)

where the indices m,n, ... are split into pairs (m , m̄) each running over half the range of

m,n. For the vector fields this entails the split

Am
i → (Ami , A

m̄
i ) (2.16)

into electric and magnetic vector potentials. With the above split, the manifest off-shell

E7(7) symmetry will be lost after the Gaussian integration to be performed below, and

is thus reduced to the on-shell symmetry of the standard version. Extending (2.4) by a

gauge-fixing term, the action functional becomes

Svec =
1

2

∫
d4x

(
1

2
Ωmnε

ijk
(
∂0A

m
i +NlFm

il

)
Fn
jk −

1

2
N
√
hGmnh

ikhjlFm
ijF

n
kl

(2.17)

−N
√
hhikhjlFm

ijWklm − 1

2
N
√
hGmnhikhjlWijmWkln + 2bm∂iA

m
i

)
.

Sums over repeated indices are understood even when they are both down, which only

reflects the property that the corresponding terms are not invariant with respect to diffeo-

morphisms. Performing the split, and up to an irrelevant boundary term, we arrive at the

following Lagrange density

Svec =
1

2

∫
d4x

((
δmn̄ε

ijk
(
∂0A

m
i +NlFm

il

)
−N

√
hGmn̄h

ikhjlFm
ij−N

√
hhikhjlWij n̄

)
F n̄
kl

− 1

2
N
√
hGm̄ n̄h

ikhjlF m̄
ijF

n̄
kl

− 1

2
N
√
hGmnh

ikhjlFm
ijF

n
kl

(2.18)

−N
√
hhikhjlFm

ijWklm − 1

2
N
√
hGmnhikhjlWijmWkln + 2bm∂iA

m
i + 2bm̄∂iA

m̄
i

)
.

Integrating out the auxiliary field bm̄ enforces the constraint ∂iA
m̄
i = 0, and the Lagrangian

only depends on Am̄i through F m̄
ij = ∂iA

m̄
j − ∂jA

m̄
i (note that this is the case even when
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considering the ghost field terms that we neglect in this discussion). One has then an

isomorphism between the square integrable fields Am̄i satisfying ∂iA
m̄
i = 0, and the square

integrable fields Πi m̄ satisfying the same constraint ∂iΠ
i m̄ = 0, through

Πi m̄ = εijk∂jA
m̄
k
, Am̄i = −[∂l∂l]

−1εijk∂jΠ
k m̄ , (2.19)

where repeated indices are summed (and appropriate boundary conditions assumed). This

change of variables leads to a non-trivial functional Jacobian, but the latter does not depend

on the fields and can therefore be disregarded.5 Introducing a Lagrange multiplier Am0 for

the constraint ∂iΠ
i m̄ = 0, one has the action

Svec =
1

2

∫
d4x

((
2δmn̄

(
∂0A

m
i −∂iAm0 +NlFm

il

)
−N

√
hεilhh

ljhhk
(
Gmn̄F

m
jk+Wjk n̄

))
Πin̄

− N√
h
Gm̄ n̄hijΠ

i m̄Πj n̄ − 1

2
N
√
hGmnh

ikhjlFm
ijF

n
kl

(2.20)

−N
√
hhikhjlFm

ijWklm − 1

2
N
√
hGmnhikhjlWijmWkln + 2bm∂iA

m
i

)
,

where we normalised Am0 such that it can be identified as the time component of the vector

field, and

Fm
0i = ∂0A

m
i − ∂iA

m
0 . (2.21)

Note that this is the form of the action that one would obtain by deriving the path integral

formulation from the Hamiltonian quantisation in the Coulomb gauge, such that Πm̄ i

define the momentum conjugate to the vector fields Ami . One then sees that (2.19) actually

corresponds to a second class constraint, as one would expect in a first order formalism. We

also emphasise that, when the equations of motion are satisfied, the Lagrange multiplier

field Am0 in the path integral can be identified with the corresponding component of Am
0

appearing in (2.8), which is the classical field resulting from rewriting a given expression

E
m
i as a curl.

One can now integrate the momentum variables Πim̄ through formal Gaussian inte-

5Note that this is only true in the specific metric independent Coulomb gauge we used, in which the

ghosts decouple. For a metric dependent gauge, the functional Jacobian would depend non-trivially on the

metric, but this field dependence would be exactly compensated by the functional determinant generated

by the Gaussian integration over the ghosts c̄m̄ and cm̄ , as is ensured by BRST invariance.
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gration, the remaining action is

Svec =
1

2

∫
d4x

(√
h

N
δmm̄δnn̄H

m̄ n̄hij
(
Fm
0i +NkFm

ik

) (
F n
0j +NlF n

jl

)
(2.22)

− 1

2
N
√
h
(
Gmn−Gmm̄H

m̄n̄Gn̄n

)
hikhjlFm

ijF
n
kl
−εijkδmm̄Hm̄n̄Gn̄n

(
Fm
0i+NlFm

il

)
F n
jk

− εijkδmm̄H
m̄ n̄ (Fm

0i+NlFm
il

)
Wkln̄+H n̄ m̄Gm̄mN

√
hhikhjlFm

ijWkln̄

−N
√
hhikhjlFm

ijWklm +
1

2
N
√
hHm̄ n̄hikhjlWij m̄Wkl n̄

−1

2
N
√
hGmnhikhjlWijmWkln + 2bm∂iA

m
i

)
,

where Hm̄ n̄ is the inverse of Gm̄ n̄ (not to be confused with the component Gm̄ n̄ of the

inverse metric Gmn). We will discuss the functional determinant afterward. First note

that, by (2.2), duality invariance implies

Gmn −Gmm̄H
m̄ n̄Gn̄n = δmm̄δnn̄H

m̄ n̄ , δmm̄H
m̄ n̄Gn̄n = δnm̄H

m̄n̄Gn̄m , (2.23)

and therefore the bosonic component is manifestly diffeomorphism invariant

Svec =
1

4

∫
d4x

(
−√−gδmm̄δnn̄Hm̄n̄gµσgνρFm

µνF
n
σρ −

1

2
εµνσρδmm̄H

m̄n̄Gn̄nF
m
µνF

n
σρ +O(W )

)
.

(2.24)

The formal Gaussian integration over the momentum variables Πi m̄ also produces a func-

tional determinant

Det−
1
2

[
N√
h
Gm̄ n̄hijδ

4(x− y)

]
=
∏

x

(
det−

3
2 [Gm̄ n̄ ]N−42h7

)
, (2.25)

which defines a one-loop local divergence quartic in the cutoff ∼ Λ4. This determinant

defines in particular the modification of the diffeomorphism invariant measure of the metric

field from the duality invariant formulation to the conventional one [27], and respectively

for the E7(7) invariant scalar field measure. This kind of volume divergence is in fact a

general property of (super)gravity theories [28].

2.3 N = 8 supergravity

The discussion was rather general so far, and we now turn to the specific case of maximal

N = 8 supergravity, where the formalism developed in the foregoing section leads to a

formulation of the theory with manifest and off-shell E7(7) invariance. Here we show that

the formalism reproduces the vector Lagrangian as well as the couplings of the vector fields

to the fermions and the scalar field dependent quartic fermionic terms in the form given

in [2] (the remaining quartic terms in the Lagrangian are manifestly E7(7) invariant). In

this case the choice of Darboux coordinates amounts to decomposing the 28 complex vector
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fields AIJ
i into imaginary and real (or ‘electric’ and ‘magnetic’) components6

Ami =̂ Im[Ai IJ ] , Am̄i =̂ Re[Ai IJ ] . (2.26)

For the coset representative E7(7)/SUc(8), this corresponds to the passage from the SU(8)

basis in which

V =̂



uij

IJ vijKL

vklIJ ukl
KL


 (2.27)

to an SL(8,R) basis in which7

Ṽ =




1√
2

1√
2

−i√
2

i√
2


V




1√
2

i√
2

1√
2

−i√
2


 , (2.28)

or, written out in components,

Ṽ =̂




Re
(
uij

IJ + vijIJ

)
Im
(
−uij

KL + vijKL

)

Im
(
ukl

IJ + vklIJ

)
Re
(
ukl

KL − vklKL

)


 . (2.29)

Then one computes that

G = ṼT Ṽ =̂




(
uij

IJ + vijIJ
) (
uij

KL + vijKL

)
2Im

[(
uij

IJ + vijIJ

)
uij

KL

]

2Im
[
uij

IJ

(
uij

KL + vijKL

)] (
uij

IJ − vijIJ
) (
uij

KL − vijKL

)




=




(
Re
[
2S − 1

])−1 (
Re
[
2S − 1

])−1
Im
[
2S
]

Im
[
2S
] (

Re
[
2S − 1

])−1 (
Re
[
2S − 1

])−1
+ Im

[
2S
] (

Re
[
2S − 1

])−1
Im
[
2S
]




(2.30)

where we used

Im
[(
uij

IJ + vijIJ
) (
uij

KL + vijKL

)]
= 0 , (2.31)

to compute the first matrix, and where the symmetric matrix S is defined such that

(
uij

IJ + vijIJ
)
SIJ,KL = uij

KL . (2.32)

To prove the equality of the two matrices in (2.30), one uses again (2.31) to show that

2 Im
[
uij

IJ

(
uij

KL + vijKL

)]
= Im [2S]IJ,PQ

(
uij

PQ + vijPQ
) (
uij

KL + vijKL

)
, (2.33)

6With our usual convention AIJ
i = (AiIJ)∗. Recall that the standard formulation of N = 8 supergravity

has 28 real vectors, for which there is no need to distinguish between upper and lower indices.
7This transformation is analogous to the Möbius transformation mapping the unit (Poincaré) disk to

the upper half plane, and relating SU(1, 1) to SL(2,R).
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and

Re
[
2S − 1

]IJ,PQ (
uij

PQ + vijPQ
) (
uij

KL + vijKL

)
=

= Re
[(
uij

IJ − vijIJ
) (
uij

KL + vijKL

)]
= δKL

IJ , (2.34)

which establishes the equality for the first column in (2.30). The equality in the second

column then follows by using the property that the matrix is symmetric and symplectic.

Identifying

Hm̄ n̄ =̂ Re
[
2S − 1]IJ,KL , Hm̄ n̄Gn̄m =̂ Im

[
2S]IJ,KL , (2.35)

one recovers the conventional form of the action (2.24) as given in [2].

To investigate the couplings of the vectors to the fermions, we recall from [11] that the

fermionic bilinears Wijm in (2.18) are determined by8

W IJ
ij = eaie

b
j

(
uij

IJO+

ab
ij + vijIJO−

ab ij

)
, (2.36)

via the identification (analogous to (2.26))

Wijm =̂ Im[W IJ
ij ] , Wij m̄ =̂ Re[W IJ

ij ] . (2.37)

Here, O+

ab
ij and its complex conjugate O−

ab ij are the fermionic bilinears defined in [2]

O+

ab
ij = ψ̄i

cγ
[cγabγ

d]ψj
d −

1

4
ψ̄kcγabγ

cχijk − 1

(4!)2
εijklmnpqχ̄klmγabχnpq . (2.38)

modulo normalisations (our coefficients here are chosen to agree with [11]). By complex

self-duality they satisfy

O+

ab
ij =

i

2
εab

cdO+

cd
ij , O−

ab ij = − i

2
εab

cdO−
cd ij . (2.39)

These relations allow us to express the ‘timelike’ components W IJ
0i in terms of the purely

spatial components W IJ
ij , and thereby to recover the full fermionic Lagrangian of the co-

variant formulation in terms of just the purely spatial components W IJ
ij .

After these preparations we return to the Lagrangian (2.22), from which we read off

the couplings of the vector fields to the fermions

εijkIm
[
F IJ
0i +NlF IJ

il

]
Re
[
2S − 1

]IJ,KL
Re
[
WKL

kl

]

+N
√
hhikhjl Im [F IJ

ij ]
(
Im
[
W IJ

kl

]
− Im

[
2S
]IJ,KL

Re
[
WKL

kl

])
. (2.40)

Using the properties of SIJ,KL one computes that

Re
[
2S − 1

]IJ,KL
Re
[
uij

KLO+

ab
ij + vijKLO−

ab ij

]

= Re
[
(2S − 1)IJ,KL

(
uij

KL + vijKL
)
O−

ab ij

]
+ Im[2S

]IJ,KL
Im
[(
uij

KL + vijKL

)
O+

ab
ij
]

= Re
[(
uij

IJ − vijIJ

)
O+

ab
ij
]
+ Im[2S

]IJ,KL
Im
[(
uij

KL + vijKL

)
O+

ab
ij
]
. (2.41)

8Readers should keep in mind the different meanings of the letters i, j, ... and i, j, ... in this and other

equations of this section (with apologies from the authors for the proliferation of different fonts!).
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Invoking the complex self-duality of O+

ab
ij one recovers the manifest diffeomorphism invari-

ant coupling

e ea µeb νIm[F IJ
µν ]
(
Im
[(
uij

IJ − vijIJ

)
O+

ab
ij
]
− Im

[
2S
]IJ,KL

Re
[(
uij

KL + vijKL

)
O+

ab
ij
])

= e ea µeb νIm[F IJ
µν ] Re

[
2S − 1

]IJ,KL
Im
[(
uij

KL + vijKL

)
O+

ab
ij
]

= e ea µeb ν Im [F IJ
µν ] Im

[
SIJ,KL(u−1)KL

ijO
+

ab
ij
]
. (2.42)

Next we consider the quartic terms in the fermions. They read

1

2
N
√
hHm̄ n̄hikhjlWij m̄Wkl n̄ (2.43)

=
1

2
ehikhjleaie

b
je

c
ke

d
lRe

[(
uij

IJ +vijIJ

)
O+

ab
ij
]
Re
[
2S−1

]IJ,KL
Re
[(
ukl

KL+vklKL

)
O+

cd
kl
]

and

− 1

2
N
√
hGmnhikhjlWijmWkln = −1

4
e hikhjleaie

b
je

c
k
ed
l
O−

ab ijO
+

cd
ij , (2.44)

where in the last equation the dependence of Wijm on scalar fields in (2.36) is eliminated

through the contraction with Gmn. Using (2.34) and

Re
[
2S − 1

]IJ,KL (
uij

IJ + vijIJ

) (
ukl

KL + vklKL

)

= (u−1)IJ
ij

(
SIJ,KL + upq

IJvpqIJ

)
(u−1)KL

kl , (2.45)

we obtain

1

2
N
√
hHm̄ n̄hikhjlWij m̄Wkl n̄ =

1

4
e hikhjleaie

b
je

c
ke

d
l

(
O−

ab ijO
+

cd
ij

+
1

2

[
O+

ab
ij(u−1)IJ

ij

(
SIJ,KL + upq

IJvpqKL

)
(u−1)KL

klO
+

cd
kl + c.c.

])
. (2.46)

The first term in parentheses cancels the (manifestly E7(7) invariant) expression (2.44) — as

must be the case because any Lorentz invariant extension of type O+ijO−
ij must necessarily

vanish because of the opposite duality phases. Altogether we have shown that the relevant

part of the Lagrangian agrees with the corresponding one from [2] which reads, in the

present notations and conventions9

LVF =
e

4

(
−
[
2S − 1

]IJ,KL
Im[F IJ

µν ]−Im[Fµν KL]− − ieaµebνO+

ab
ij(u−1)IJ

ijS
IJ,KLIm[FKL

µν ]

+
1

8
O+

ab
ij(u−1)IJ

ij

(
SIJ,KL + upq

IJvpqKL

)
(u−1)KL

klO
+ abkl + c.c.

)
. (2.47)

9The conventions of [2] are recovered with the identifications A[2] IJ
µ ≡

√
2 Im[AIJ

µ ], ψ[2] i
µ ≡ 1√

2
ψi

µ,

χ[2] ijk ≡ 1
4
χijk. The charge conjugation matrix of [2] is related to ours by, C[2] ≡ i C, such that, for

instance O+

ab
ij = −i2

√
2 O[2] +

ab
ij and the complex self-duality convention is reversed.
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Because the vector fields only appear through the field strength F IJ
ij in the BRST

transformations of the fields, the Gaussian integration can be carried out for the complete

Batalin-Vilkovisky action which will be discussed in the last section. The validity of the

BRST master equation all along the process of carrying out the Gaussian path integrals to

pass from one formalism to the other ensures the validity of the above formal argument,

by fixing all possible ambiguities associated to the regularisation scheme.

2.4 The classical E7(7) current

A main advantage of the present formulation is that the E7(7) current can be derived as a

bona fide Noether current [11]. It consists of two pieces

Jµ = J (1)µ + J (2)µ . (2.48)

Here the first piece J (1) does not depend on the vector fields and has the standard form as

in any σ-model with fermions (see also [29]). The more important piece for our discussion

here is the second term J (2), which depends on the 56 electric and magnetic vector fields

and is of Chern-Simons type; this part of the current does not exist off-shell in the usual

formulation [13], where it would be given by a non-local expression on-shell. The current

Jµ is an axial vector which defines the current three-form

J = J (1) + J (2) ≡ 1

3!
εµνρσJ

µ dxν
∧dx

ρ
∧dx

σ , (2.49)

in terms of which the classical current conservation simply reads dJ = 0.

Following the standard Noether procedure, the E7(7)-current Jµ was computed in [11]

by an infinitesimal displacement along Λ ∈ e7(7). Under the SUc(8) subgroup of E7(7), J
µ

decomposes into 63 components (Jµ)I K and 70 components (Jµ)IJKL:

Jµ(Λ) = (Jµ)I
KΛI

K + (Jµ)IJKL ΛIJKL . (2.50)

The easiest way to write the first piece J (1) is in terms of matrices:

J (1)µ(Λ) = − 1

24
tr
(
V−1RµVΛ

)
. (2.51)

Here, we are using the matrix form of the scalar coset V (2.27) and the matrices Λ and Rµ

in e7(7) that are defined as usual

Λ =̂

(
2δ

[M
[I ΛJ ]

N ] ΛIJOP

ΛKLMN −2δ
[K
[O ΛP ]

L]

)
, Rµ =̂

(
−2δ

[m
[i R

µ n]
j] Rµ

ijop

Rµ klmn 2δ
[k
[oR

µ l]
p]

)
. (2.52)

The components Rµ i
j and Rµ

ijkl = 1
4!εijklmnopR

µ mnop have the form

Rµ i
j ≡ 2iεµνσρ

(
ψ̄i

νγσψρj −
1

8
δi
j ψ̄

k
νγσψρk

)
+

√−g
8

(
χ̄iklγµχjkl −

1

8
δi
j χ̄

klmγµχklm

)

Rµ
ijkl ≡

√−gÂµ
ijkl −

i

2
εµνσρ

(
χ̄[ijkγσρψνl] −

1

4!
εijklmnopχ̄

mnoγσρψν
p
)
, (2.53)
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where Âijkl
µ is the supercovariant derivative of the scalar coset

Âijkl
µ ≡ uij

IJ∂µv
klIJ − vijIJ∂µu

kl
IJ − ψ̄[i

µχ
jkl] − 1

4!
εijklmnopψ̄µ mχnop . (2.54)

Since the second part J (2)µ of the current contains the 56 vector fields Am
i , it necessarily

lacks manifest covariance. With spatial indices i, j = 1, 2, 3, it has the form:10

J (2)k = −1

2
εijkAm

i

(
∂0A

n
j − 2NlFn

lj

)
ΩpmΛn

p +
√−ghjkhilAn

i

(
GpmF

m
jl +Wjl p

)
Λn

p

J (2)0 =
1

4
εijkAm

i F
n
jkΩpmΛn

p . (2.55)

Like for J (1) in eq. (2.51), the independent components of J (2) are provided by the 133

independent components of Λ within the 56 × 56-matrix Λn
p. For instance, the time-like

components in the su(8) basis are given by

J (2)0 I
J =

i

4
εijk

(
AIK
i Fjk JK +Ai JKF

JK
jk − 1

8
δI
J

(
AKL
i FjkKL +AiKLF

KL
jk

))

J (2)0 IJKL = − i

2
εijk

(
A

[IJ
i F

KL]
jk

− 1

4!
εIJKLMNOPAiMNFjkOP

)
(2.56)

The space-like components admit a similar form that can straightforwardly be obtained

from (2.55). However, the explicit expressions are rather complicated, and would not

provide any further insight in this discussion.

As a next step, we want to rewrite the vector field part (2.55) in a way that allows a

direct comparison with the current constructed in [13]. A simple computation reveals the

identity [11]

J (2)µ =

(
1

4
εµνρσFm

νρA
n
σ +

1

2
δµ
k
εijk∂i

(
Am
j A0

n
)
− δµ

k
εijkAn

i

(
E

m
j − ∂jA

m
0

))
Λn

pΩpm. (2.57)

where a spurious dependence in the component Am
0 has been introduced, such that all the

Am
0 dependent terms add up to zero. This form of the current decomposes into three terms:

1. The first term in J (2)µ is a Chern-Simons three-form. It is manifestly diffeomorphism

covariant in the usual sense.

2. The second term is a ‘curl’, and thus does not affect current conservation.11

3. The third term is proportional to the integrated equation of motion of the vector

field (2.8) with E
m
k

defined in (2.7).

10Note that the normalisation of the vector fields here differs from the one in [11] by a factor 2.
11Although the Noether procedure only determines the current J up to a ‘curl’, this term cannot be

avoided in (2.57), because Am
0 is not a fundamental field in the duality invariant formulation.
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Let us now recall the procedure of [13] for obtaining the conserved current associated to

the duality invariance of the equations of motion. The idea is to supplement the mani-

festly covariant part of the current J (1)µ(Λ) by a further term J
(2)µ
GZ in such a way that

the complete current (which we will henceforth refer to as the Gaillard-Zumino current)

is conserved

∂µ

(
J (1)µ(Λ) + J

(2)µ
GZ (Λ)

)
= 0 , (2.58)

if the equations of motion are enforced. Therefore, it is clear that J
(2)µ
GZ (Λ) is only defined

up to a curl, and modulo terms proportional to the equations of motion. From the complete

Noether current (2.57), we thus deduce

J
(2)µ
GZ (Λ) =

1

4
εµνρσAm

ν Fn
ρσ Λm

pΩpn . (2.59)

This Chern-Simons three-form exhibits manifest diffeomorphism covariance and it depends

only on the 56 vector fields, unlike the current (2.55). The explicit form of J
(2)µ
GZ (Λ) as

given in [29] is indeed equivalent to the decomposition of (2.59) in a Darboux basis for the

56 electromagnetic fields Am
µ into Amµ and Am̄µ (2.26). The usual covariant formulation of [1]

contains only the 28 vector fields Amµ off-shell, whereas the dual fields Am̄µ are non-local

functionals of all the other fields satisfying the equations of motion.

In a non-trivial background, the Chern-Simons like component (2.59) is not globally

defined in general. For a non-trivial connection, one must introduce a reference connection

Åm, such that the one-form Am − Åm is gauge invariant (and so globally defined), and

F̊m represents a non-trivial cohomology class in the given background. The background

dependent extension of (2.59) is given from the Cartan homotopy formula as

J
(2)
GZ (Λ) = −1

2

(
Am − Åm

)
∧
(
Fn + F̊n

)
Λm

pΩpn . (2.60)

By definition of the Cartan homotopy formula, it follows that the globally defined E7(7)

current then suffers from a classical anomaly

dJ(Λ) =
1

2
F̊m

∧F̊
n Λm

pΩpn . (2.61)

Even without a general classification of the instanton backgrounds that may occur in N = 8

supergravity, this result by itself already shows how the continuous E7(7) symmetry can be

broken in a non-trivial background. When the gravity background is such that there is a

non-trivial cohomology group

H2(Z) ∧H2(Z) → H4(Z) (2.62)

and both F̊m and F̊m
∧F̊

n define non-trivial cohomology classes in H2(Z) and H4(Z), re-

spectively,12 the e7(7) Ward identities will be broken in the background. In this case the

12This is not the case for dyonic solutions in an asymptotically Minkowskian space-time: even though

F̊m is non-trivial for such solutions of Maxwell’s equations, the product F̊m
∧F̊

n is trivial.
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1PI generating functional Γ evaluated on E7(7) transformed fields varies as (with appropri-

ate normalisation)

Γ[g] = Γ[1] + 2πΩmp g
p
n q

mqn , (2.63)

with integer charges qm = 1
2π

∫
F̊m. This ‘classical anomaly’ is not affected by the Legendre

transform, and the generating functional W of connected diagrams transforms as Γ with re-

spect to E7(7) transformations. As a consequence, the generating functional Z = exp[ iW ]

will no longer be invariant under continuous E7(7) transformations, but only with respect

to transformations g ∈ E7(7)(Z). Such backgrounds appear for example in the classifica-

tion of [30] as CP 2 and S2 × S2 type spaces. One might therefore anticipate that E7(7)

gets broken to a discrete subgroup when the path integral also includes a sum over such

instanton contributions.

However, we should caution readers that the status of ‘instanton solutions’ in N = 8

supergravity is not clear by any means. Unlike the usual self-duality constraint (which

requires a Euclidean metric) the twisted self-duality constraint (2.5) contains an additional

‘imaginary unit’ J , and any E7(7) invariant Euclidean theory must therefore involve scalar

fields parameterising a pseudo-Riemmanian symmetric space E7(7)/SU
∗(8)c or E7(7)/SL(8)c

such that the 28 representation is real.13 It is thus doubtful whether a ‘Wick rotation’

really makes sense, or whether one should instead look for real saddle points in a Lorentzian

path integral. The second approach would still require to define the action in a non-trivial

non-globally hyperbolic background. It is rather straightforward to modify the classical

action similarly as (2.61) such that the equations of motion are not modified, and such

that the Lagrangian density is gauge invariant and transforms covariantly with respect to

spatial diffeomorphisms. Nonetheless, this Lagrangian density transforms covariantly with

respect to D = 4 diffeomorphisms only up to terms linear in the equations of motion.

2.5 Transformations in the symmetric gauge

Under the combined action of local SU(8) and rigid E7(7) the 56-bein transforms as

V(x) → V ′(x) = h(x)V(x)g−1 , h(x) ∈ SU(8) , g ∈ E7(7) . (2.64)

For the classical theory, one has the option of either keeping the local SU(8) with lin-

early realised E7(7), or fixing a gauge for the local SU(8), retaining only the 70 physical

scalar fields, whereby the rigid E7(7) becomes realised non-linearly. However, we are here

concerned with the quantised theory, where the compatibility and mutual consistency of

these two descriptions is not immediately evident. Indeed, the SU(8) gauge-invariant for-

mulation of the theory may appear not to be well defined at the quantum level because

the gauge su(8) Ward identity is anomalous at one loop due to the contribution from the

13A positive definite ‘kinetic term’ could then be recovered by decomposing E7(7)/SU
∗(8)c ∼= R

∗
+ ×

E6(6)/Sp(4) × R
27 (respectively E7(7)/SL(8)c ∼= SL(8)/SO(8) × R

35), and dualising 27 axionic scalars

(respectively 35) into 2-forms, in analogy with the type IIB D-instantons [31].
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spin-1
2 and spin-3

2 fermions [15]. On the other hand, as shown by Marcus [17], the rigid

SU(8) ⊂ E7(7) left after gauge-fixing is non-anomalous, implying the absence of anomalies

for the rigid su(8) current Ward identities in the gauge-fixed formulation of the theory.

This is because the rigid su(8) symmetry acts linearly on the vector fields, whose chiral

nature under SU(8) implies that there is an extra contribution to the anomaly from the

vector fields which precisely compensates the contribution from the fermion fields. From

the path integral perspective, the main difference between those two kinds of su(8) Ward

identities can be viewed as resulting from a redefinition of the 56 vector fields as

AIJ
i → Ǎij

i ≡ uij
IJA

IJ
i + vij IJAi IJ (2.65)

that is, to the passage between objects transforming under rigid E7(7) and local SU(8),

respectively. According to the family’s index theorem this change of variables does not

leave the path integral measure for the vector fields invariant (because the action of E7(7)

on the vector fields is chiral), and thus generates an anomaly. The results of [15] and [17]

are therefore perfectly consistent with each other, because the associated sets of Ward iden-

tities cannot be both free of anomalies. In the following section we will present an explicit

Feynman diagram computation of the vector field contribution to the su(8) anomaly. This

explicit computation was not given in [17], which relied on the formulation of N = 8 su-

pergravity with only on-shell E7(7) and on arguments based on the family’s index theorem.

We emphasize that the su(8) anomaly for the local SU(8) gauge invariance is somewhat

artificial because it can be compensated by the addition of an appropriate Wess-Zumino

term for the SUc(8) components of the E7(7)/SUc(8) vielbein V(x) [16]. This procedure

replaces the gauge su(8) anomaly by a corresponding anomaly of the su(8) current Ward

identities (with the same coefficient). While restoring local SU(8), the latter by itself would

break the rigid E7(7) symmetry, but for N = 8 supergravity this anomaly is cancelled in turn

by the contribution from the vector fields! Consequently we anticipate that our results can

be re-obtained for the version of N = 8 supergravity with local SU(8) and linearly realised

E7(7) such that both descriptions of the quantised theory are consistent, but a detailed

verification of this claim remains to be done.

In order to set up the perturbative expansion of the quantised theory, we will never-

theless parameterise the symmetric space E7(7)/SUc(8) with explicit coordinates. We will

consider as coordinates the scalar fields φijkl in the 70 of SU(8), which parameterise a

representative V(x) in the symmetric gauge, viz.

V(x) ≡ exp Φ(x) =̂ exp

(
0 φijkl(x)

φijkl(x) 0

)
(2.66)

with Φ ∈ e7(7)⊖su(8) and the standard convention φijkl = (φijkl)
∗, (having fixed the SU(8)

gauge there is no need any more to distinguish between SU(8) and E7 indices). After this

gauge choice we are left with a rigid E7(7) symmetry, whose SU(8) subgroup is realised
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linearly. The remaining rigid E7 transformations require field dependent compensating

SU(8) rotation in order to maintain the chosen gauge (2.66), and are therefore realised non-

linearly on the 70 scalar fields. In this section, we work out these non-linear transformations

in more detail to set the stage for the implementation of the full nonlinear E7 symmetry

at the quantum level. For this purpose we adopt the following notational convention: for

any two Lie algebra elements X and Y and any function f(X) that is analytic at X = 0,

we abbreviate the adjoint action of f(X) on Y by

f(X) ∗ Y ≡ f(ad(X))(Y ) (2.67)

Here, the right hand side is to be evaluated term by term in the Taylor expansion, where

the n-th order term (ad)n(X)(Y ) is the n-fold commutator [X, [X, ...[X,Y ]...]]. It is easy

to check that f(X) ∗ g(X) ∗ Y = (fg)(X) ∗ Y . For the evaluation of the non-linear trans-

formations the main tool is the Baker-Campbell-Hausdorf formula

exp(X) exp(Y ) = exp
(
X + Td(X) ∗ Y + O(Y 2)

)

= exp
(
Y + Td(−Y ) ∗X + O(X2)

)
(2.68)

with

Td(x) ≡ x

1 − e−x
= 1 +

1

2
x+ O(x2) . (2.69)

Accordingly we now consider an E7 transformation with parameter Λ in the 70 of

SU(8), viz.

g ≡ exp Λ =̂

(
0 Λijkl(x)

Λijkl(x) 0

)
. (2.70)

Then, by use of (2.68),

exp Φ exp(−Λ) = exp

(
Φ − Φ/2

tanh(Φ/2)
∗ Λ − 1

2

[
Φ,Λ

]
+ O(Λ2)

)
(2.71)

where the odd piece is [Φ,Λ] ≡ Φ∗Λ ∈ su(8). Now we must choose the compensating SU(8)

transformation from the left so as to cancel the third term in the exponential. Using (2.71)

and the second line of (2.68), we obtain

exp
(
Φ + δΦ

)
= exp

(
tanh(Φ/2) ∗ Λ

)
exp Φ exp(−Λ)

= exp

(
Φ − Φ

tanh Φ
∗ Λ + O(Λ2)

)
(2.72)

or

δe7(7)Φ ≡ δe7(7)(Λ)Φ = − Φ

tanhΦ
∗ Λ . (2.73)

In the same way one computes the supersymmetry transformation of the scalar fields and

the non-linear modifications due to the compensating SU(8) rotations. Infinitesimally,
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local supersymmetry acts on the scalar fields by a shift along the non-compact directions

with parameter

X =




0 ǫ[iχjkl] +
1
24εijklmnpqǫ

mχnpq

ǫ[iχjkl] + 1
24ε

ijklmnpqǫmχnpq 0


 (2.74)

Observing that this shift acts on V from the left (unlike the E7 transformation in (2.64)

which acts from the right), one computes that, again using (2.68),

exp
(
X + tanh(Φ/2) ∗ X

)
exp Φ = exp

(
Φ +

Φ

sinhΦ
∗ X + O(X 2)

)
, (2.75)

whence the supersymmetry transformation of Φ is

δSusyΦ ≡ δSusy(X )Φ =
Φ

sinhΦ
∗ X . (2.76)

By elementary algebra, this can be re-written in terms of an E7(7) transformation with

parameter X ,

δSusy(X )Φ = −δe7(7)(X )Φ − Φ tanh(Φ/2) ∗ X . (2.77)

We can now check the commutation rules between supersymmetry and E7(7). The

expectation is that the commutator of two such transformations gives rise to a supersym-

metry transformation whose parameter ǫ′ is obtained from the original supersymmetry

parameter ǫ by acting on it with the compensating SU(8) transformations induced by the

action of e7(7) on the fermions, i.e.

[δe7(7)(Λ), δSusy (ǫ)] = δSusy(ǫ′) , ǫ′ ≡ δsu(8) (− tanh(Φ/2) ∗ Λ) ǫ . (2.78)

At this point it is convenient to modify the supersymmetry variation by requiring the spinor

parameter ǫ also to transform with respect to the induced SU(8) transformation as

δe7(7)ǫ = δsu(8)
(

tanh(Φ/2) ∗ Λ
)
ǫ (2.79)

so ǫ transforms in the same way as the gravitino field ψ under the compensating SU(8).

As a consequence, the parameter X in the adjoint representation simply transforms as

δe7(7)(Λ)X =
[
tanh(Φ/2) ∗ Λ , X

]
(2.80)

which correctly reproduces the corresponding su(8) action in the 70. As we will show

below, with this extra compensating transformation we obtain

[
δe7(7) , δSusy

]
Φ = 0 , (2.81)

If (2.81) holds on the scalar fields, this commutator will also vanish on functions of Φ as

well as on all other fields. Indeed, the only transformation that could still appear is a local
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Lorentz transformation which does not act on Φ. To check the absence of the latter we

simply evaluate the above commutator on the vierbein field. While δe7(7) does not act on

the vierbein, δSusy produces a term ǭiγaψµi + ǭiγ
aψi

µ. However, with the extra compen-

sating transformation (2.79), this expression becomes a singlet under the induced SU(8)

transformation, and therefore the commutator also vanishes on the vierbein. The main

advantage of defining the transformation such that (2.81) is satisfied will become apparent

when we discuss the quantum theory, because with (2.81) the BRST transformation will

commute with E7(7), and this enables us to directly formulate the Ward identities for the

full non-linear E7(7) symmetry.

In the remainder of this section we prove the key formula (2.81). It is more convenient

to evaluate the commutator on exp Φ rather than on Φ itself, because then all the non-linear

terms appear via the compensating SU(8) transformation

δe7(7)(Λ) exp Φ =
(
tanh(Φ/2) ∗ Λ

)
exp Φ −

(
exp Φ

)
Λ

δSusy(X ) exp Φ =
(
X + tanh(Φ/2) ∗ X

)
exp Φ (2.82)

from which we read off that

δSusy(X ) exp Φ = δe7(7)(X ) exp Φ + X exp Φ +
(
exp Φ

)
X , (2.83)

a relation that will be useful below. Using (2.80) we get

[
δe7(7)(Λ) , δSusy(X )

]
exp Φ =

=
((
δe7(7)(Λ) tanh(Φ/2)

)
∗ X

)
exp Φ −

((
δSusy(X ) tanh(Φ/2)

)
∗ Λ
)
exp Φ

+
[
tanh(Φ/2) ∗ X , tanh(Φ/2) ∗ Λ

]
exp Φ

+
(
tanh(Φ/2) ∗

[
tanh(Φ/2) ∗ Λ , X

])
exp Φ . (2.84)

To evaluate these terms further we need to make use of the closure property

[
δe7(7)(Λ1), δ

e7(7)(Λ2)
]
Φ =

[
Φ ,
[
Λ1,Λ2

]]
, (2.85)

that is, the fact that the commutator of two compensated E7(7) transformations must

close properly into su(8). This formula obviously extends to all functions f(Φ) which are

expandable in a power series. Observe that without the compensating su(8) transformation,

the commutator [Λ1,Λ2] in (2.85) would only act on Φ from the right (corresponding to

the uncompensated E7(7) action), while its action from the left is due to the compensating

su(8). Using (2.82) we now apply this formula to exp Φ to obtain

((
δe7(7)(Λ1) tanh(Φ/2)

)
∗ Λ2

)
exp Φ −

((
δe7(7)(Λ1) tanh(Φ/2)

)
∗ Λ2

)
exp Φ =

=
[
tanh(Φ/2) ∗ Λ1 , tanh(Φ/2) ∗ Λ2

]
exp Φ −

[
Λ1,Λ2

]
exp Φ . (2.86)
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Modulo the difference between δSusy(X ) and δe7(7)(X ), cf. (2.83), this formula allows us to

rewrite the right hand side of (2.84) as

[
X , Λ

]
exp Φ +

(
tanh(Φ/2) ∗

[
tanh(Φ/2) ∗ Λ , X

])
exp Φ . (2.87)

Now exploiting (2.83) in the form

δSusy(X ) exp(nΦ) = δe7(7)(X ) exp(nΦ) + X exp(nΦ) + exp(nΦ)X +

+ 2
∑

1≤m≤n−1

exp(mΦ)X exp((n −m)Φ) (2.88)

and expanding tanh(Φ/2) as a formal power series in exp Φ we get

δSusy(X ) tanh(Φ/2) = δe7(7)(X ) tanh(Φ/2) + X − tanh(Φ/2)X tanh(Φ/2) , (2.89)

(as can also be checked by expanding the formal power series around Φ = 0). Therefore

− δSusy(X ) tanh(Φ/2) ∗ Λ = −δe7(7)(X ) tanh(Φ/2) ∗ Λ +

−
[
X , Λ

]
+ tanh(Φ/2) ∗

[
X , tanh(Φ/2) ∗ Λ

]
. (2.90)

Acting with this expression on exp Φ we see that these terms cancel the ones in (2.87),

which proves the key formula (2.81).

Finally, it is straightforward to see that the remaining gauge symmetries trivially

commute with the non-linear action of δe7(7) . Combining all gauge symmetries into a

single BRST transformation with generator s in the usual way we therefore see that the

relation (2.81) extends to the more general statement14

[δe7(7) , s] = 0 . (2.91)

Consequently, at the classical level, the BRST (gauge) transformations can be completely

disentangled from the non-linear action of E7(7). In the remaining sections it will be our

task to elevate this statement to the full quantum theory.

3 The SU(8) anomaly at one loop

As a first application of the formalism developed in the foregoing sections, we now present a

Feynman diagram computation of the SU(8) anomaly considered long ago by very different

methods. In [17], N. Marcus pointed out the absence of rigid SU(8) anomalies for N = 8

supergravity at one loop; the cancellation is based on the following identity

3 × tr8X
3 − 2 × tr28X

3 + 1 × tr56X
3 = (3 × 1 − 2 × 4 + 1 × 5) tr8X

3 = 0 , (3.1)

14For anti-commuting e7(7) parameters, this relation becomes an anti-commutator: {δe7(7) , s} = 0.
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where X is any su(8) generator, and where the first and third contributions are due to

the eight gravitinos and the 56 spin-1
2 fermions of N = 8 supergravity, while the mid-

dle contribution is due to the 28 chiral vectors. In this section we will not consider the

fermionic triangle diagrams which can be obtained by standard methods, but concentrate

on the vector fields, that is, the middle term in (3.1). The formalism of this paper makes

possible (for the first time) a full fledged Feynman diagram calculation because it allows

for an off-shell realisation of the chiral properties of the vector fields and their interactions

under SU(8). At the end of this section and in the following sections we will extend these

considerations to the full E7(7) current, where we will encounter a non-linear variant of

the familiar linear anomaly, with three currents and (in principle) any number of scalar

field insertions. We will also present arguments showing that this results extends to all

loop orders.

Accordingly, our first aim will be to compute correlators with the insertion of three

SU(8) current operators obtained by restricting the E7(7) current to its SU(8) subgroup.

Now it is known (for linearly realised symmetries) that the anomaly involves a trace of the

form (with Lie algebra generators X1,X2 ,X3)

Tr {X1,X2}X3 . (3.2)

However, there is no invariant symmetric tensor of rank three in the 56 or the adjoint of

E7(7), and hence a priori also none for its SU(8) subgroup (in these representations) so

readers may wonder how one could get an anomaly at all. It is here that the distinction

between a linearly realised symmetry and a non-linearly realised one makes all the differ-

ence. Namely, as the explicit calculation below will show, the relevant trace involves the

complex structure tensor Jm
n as an extra factor, so (3.2) is replaced by

Tr J{X1,X2}X3 . (3.3)

This extra factor (which one might think of as being analogous to the insertion of a γ5)

breaks the manifest symmetry from E7(7) to SU(8), and at the same time allows for the

appearance of chirality, and hence a non-vanishing trace (effectively replacing the vector-

like 56 = 28 ⊕ 28 by the chiral 28 in the trace). Nevertheless, the E7(7) symmetry is still

present, but necessarily non-linear.

3.1 Feynman rules

With these remarks we can now proceed to the actual computation.15 We first work out

the propagators by starting from the gauge-fixed kinetic term for the vector fields

L0 =
1

2
Ωmnε

ijk∂0A
m
i ∂jA

n
k
− 1

2
Gmn(δikδjl − δilδjk)∂iA

m
j ∂kA

n
l

+ bm∂iA
m
i , (3.4)

15We shall occasionally point out similarities of the present computation with the familiar γ5 anomaly;

readers may therefore find it useful to consult the textbooks [18, 19, 32, 33] for further information on this

well known topic.
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which is obtained from (2.17) by retaining only the parts quadratic in the fields. Further-

more, in the linearised approximation, we set hij = δij in (3.4) and expand the scalar

fields about a given background Φ̊, so the metric Gmn = Gmn(Φ̊)16 also becomes constant

(with Φ̊ = 0 we have Gmn = δmn). Going to momentum space, the quadratic operator to

be inverted is

∆−1(p) =




Ωmnε
ijkp0pk +Gmn(δijp2 − pipj) ipiδn

m

−ipjδm
n 0


 , (3.5)

with p2 ≡ δijpipj. The vector propagator is therefore

∆(p) =
1

p2




Ωmnεijkp0pk−Gmn(δijp2−pipj)

p02−p2+iε
ipiδ

m
n

−ipjδn
m 0


 ; (3.6)

it is a (4× 56) by (4× 56) matrix, with three spatial directions and the fourth component

corresponding to the Lagrange multipliers bm which enforce the condition ∂iA
m
i = 0.

The propagating spin-1 degrees of freedom correspond to the residues of the poles of the

propagator at p0 = ±|p|. There is no pole in the off-diagonal components mixing bm and

Am
i , and the residue is given by

2|p| res (∆)
∣∣
p0=|p| = Ωmnεijkp̂

k −Gmn(δij − p̂ip̂j) , (3.7)

where p̂i ≡ pi/|p|. An important difference between (3.6) and the usual covariant propa-

gator in four dimensions is that (3.6) contains terms which are odd under parity (for which

pi → −pi and p0 → p0). It is these terms, together with the parity odd vertices to be given

below, which introduce the extra factor Jm
n into the traces, and hence can contribute to

chiral anomalies, even if only vector fields circulate in the loop.

We can rephrase these results in canonical language. Consider the free quantum field

Am
i (x) ≡

∫
d3p

(2π)
3
2

1√
2|p|

∑

σ

(
e−ix·pe∗m

i (σ, p)a(σ, p) + eix·pemi (σ, p)a†(σ, p)
)
, (3.8)

where a†(σ, p) and a(σ, p) are creation and annihilation operators of asymptotic free par-

ticles of momentum p and helicity h(σ) = ±1, and 56 SU(8) quantum numbers σ (we

anticipate in this notation that σ determines h by (3.14)),

[
a(σ, p), a†(σ′, q)

]
= δσσ′δ(3)(p− q) . (3.9)

16In this section we write Gmn instead of using the (perhaps more appropriate) notation G̊mn ≡ Gmn(Φ̊),

since Gmn(Φ) does not appear and the notation is therefore unambiguous. Except in (3.16) and (3.18), we

refrain from using boldface latters for the spatial components of four-vectors, as it should be clear from the

context which is meant.
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In order for the operator algebra to reproduce the propagator (3.6)

〈
0
∣∣∣T
{
Am
i (x)An

j (y)
}∣∣∣0
〉

= −i
∫

d4p

(2π)4
eip·(x−y)

p02 − p2 + iε

(
Ωmnεijk

p0
|p| p̂

k −Gmn
(
δij − p̂ip̂j

))
,

(3.10)

the polarisation vectors emi (σ, p) and their complex conjugates e∗m
i (σ, p) must satisfy

∑

σ

emi (σ, p)e∗n
j (σ, p) = −Ωmnεijkp̂

k +Gmn(δij − p̂ip̂j) . (3.11)

As usual, the polarisation vectors are transverse

p̂i emi (σ, p) = 0 . (3.12)

With the convention

εi
jkp̂k e

m
j (σ, p) = ih(σ)emi (σ, p) , (3.13)

it follows from (3.11) that the polarisation vectors must satisfy in addition

Jm
ne

n
i (σ, p) = ih(σ)emi (σ, p) , (3.14)

with the ‘complex structure’ tensor Jm
n ≡ Jm

n(Φ̊), see (2.3). With this extra constraint,

there are only 56 independent polarisations, so σ runs from 1 to 56. The linearised equations

of motion are then satisfied with a zero gradient ∂iA
m
0 = 0 in (2.8),

∂0A
m
i = εi

jkJm
n∂jA

n
k
, (3.15)

such that the action of the Lorentz group on Am
i is the same as in the standard formulation

of the free theory in the Coulomb gauge. It follows that the 56 creation operators a†(σ, p)

are the same as in the standard formulation of the free theory, and the 28 states of helicity

h = 1 transform in the 28 of SU(8), whereas the 28 states of helicity h = −1 transform in

the 28 of SU(8), as required by (3.14).

Note that because of (3.11), the free quantum field Am
i (x) does not commute with

itself at equal time, but satisfies instead

[
Am
i (x0 ,x), An

j (x0 ,y)
]

= iΩmnεijk
∂

∂xk
1

4π|x − y| . (3.16)

This equal time commutator could be derived alternatively from the Dirac quantisation of

the theory in the Coulomb gauge, with the second class constraints17

Πi
m − 1

2
Ωmnε

ijk∂jA
n
k
≈ 0 , ∂iAm

i ≈ 0 . (3.17)

17As in the conventional formulation, the Poisson bracket of the first class Coulomb constraint ∂iΠ
i
m ≈ 0

and the Coulomb gauge constraint ∂iAm
i ≈ 0 is non-degenerate, and they altogether define a set of second

class constraints.
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The decomposition of the canonical momentum Πi
m in the Darboux basis only coincides

with the definition (2.19) of the canonical momentum Πm̄ i in the conventional formulation

of the theory (2.20) up to a factor 2. Although the canonical Poisson brackets there-

fore differ by a factor 2 in the two formulations, the Dirac brackets are equivalent. The

commutation relation (3.16) is consistent with causality, because

[
Fm
ij(x

0 ,x), Fn
kl

(x0 ,y)
]

= 2iΩmnεij[k∂l]δ
(3)(x − y) , (3.18)

as follows directly from (3.16), and therefore gauge-invariant operators commute at space-

like separation (x0 − y0)2 < |x − y|2.
The cubic vertex defining the couplings of the E7(7) current to the vector fields can

be obtained from the quadratic action by adding to (3.4) terms with source fields Bm
µ n

coupling to the conserved E7(7) current, such that the latter is re-obtained by taking the

derivative with respect to the source fields and then setting them equal to zero. Here we

will restrict attention to the su(8) part of the full E7(7) current, for which the source Bm
µ n

leaves the background metric Gmn invariant:

B p
µ mGpn +B p

µ nGpm = 0 (3.19)

(for Gmn = δmn this just means that SU(8) is realised by anti-symmetric matrices in the

real basis of the 56 representation of E7(7)). As is well known, the introduction of such

sources corresponds to formally covariantising the action (3.4) with respect to local SU(8),

such that (3.4) is replaced by the density

L0[B] =
1

2
Ωmnε

ijk (∂0A
m
i +Bm

0 pA
p
i)
(
∂jA

n
k

+B n
j qA

q
k

)
(3.20)

−1

2
Gmn(δikδjl−δilδjk)

(
∂iA

m
j +Bm

i pA
p
j

) (
∂kA

n
l
+B n

k qA
q
l

)
+bm (∂iA

m
i +Bm

i nA
n
i )

(in fact, dropping the restriction (3.19) this action becomes covariant with respect to local

E7(7), as required for a study of the full E7(7) current, cf. section 5.2). For the fermion fields,

the SU(8) tensor structure factorises out, and the vertex associated to one SU(8) current

insertion just has the expected structure ∝ (1±iγ5)γ
µ. For vector fields, on the other hand,

the Lorentz and su(8) tensor structures are a priori entangled for the vertices computed

from (3.20).18 Nevertheless, for correlation functions of SU(8) currents only, the two tensor

structures can be disentangled by using the property that the only tensors appearing in

the trace are the SU(8) invariant tensors δm
n and Jm

n; these can be diagonalised according

to the decomposition of the E7(7) representation 56 ∼= 28 ⊕ 28 of SU(8). The calculation

shows that all the su(8) Lie algebra generators X’s can be moved to the left such that the

vertex for linking an su(8)-current Jµ and a chiral boson Am
i with incoming momenta p

and k respectively to a chiral boson An
j with outgoing momentum p+ k

18The momentum dependence of the 3-point vertex can be derived in the usual way [32] by writing the

corresponding terms from (3.20) in momentum space and symmetrising in the internal legs involving the

quantum fields Am
i (not forgetting the antisymmetry condition (3.19)).
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Jµ
p

Am
i

k

An
j

p+ k

is effectively given by

Υ0 (k + p, k) =




iΩmnε
ijk
(
kk + 1

2pk
)

0

0 0


 ,

Υk(k + p, k) = (3.21)


iΩmnε
ijk
(
k0 +

1
2p0
)
+iGmn

(
(2kk+pk)δij−δki(kj+pj)−δkjki

)
−δkiδn

m

δkjδm
n 0


 ,

where the bottom-left component gets a positive sign because of (3.19). The notation we

use here is formally very similar to the one used for the familiar fermionic vertices. The

vertices Υµ are analogous to the (1 ± iγ5)γ
µ matrices that appear in the corresponding

computation of the anomalous fermionic triangle diagram. This analogy is for instance

reflected in the identity

− ipµΥµ(k + p, k) = ∆−1(k + p) − ∆−1(k) , (3.22)

which is analogous to the (trivial) identity /p = (/k + /p) − /k, and will be similarly useful to

cancel propagators in the diagrams and thereby simplify them. However, in contradistinc-

tion to the case of fermion fields which are governed by a first order kinetic term, (3.20) is

quadratic in Bm
µ n and thus the insertion of more than one current requires the consideration

of contact terms absent in the fermionic triangle. The corresponding vertices Rµν

Jµ

p1

Jν

p2

Am
i

k − p1

An
j

k + p2

do not depend on the momenta:

R0k = Rk0 =




1
2Ωmnε

ijk 0

0 0


 , Rkl =



Gmn

(
δklδij − δkjδli

)
0

0 0


 .

(3.23)
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The vertices (3.21) and (3.23) satisfy

Υµ(k + p, k)T = −Υµ(−k,−k − p) , Rµν =
(
Rνµ

)T
, (3.24)

where transposition is defined in the matrix notation, and includes the interchange of the

index pairs (i,m) ↔ (j, n) of the top left component. Furthermore,

ipνRµν = Υµ(q, l + p) − Υµ(q, l) , (3.25)

for any choice of momenta lµ and qµ. The contribution to the vacuum expectation value of

three currents of the one-loop diagrams with vector fields circulating in the loop is encoded

in the triangle diagram

Jµ(X1) p1

Jν(X2)

p2

k

k + p2

k − p1

Jσ(X3)
p1 + p2

and in the one with the orientation of the loop momenta reversed as well as in the six

independent permutations of the bubble diagram

Jµ(X1, p1)

Jν(X2, p2)

k + p1

k − p2

Jσ(X3)
p1 + p2

Summing all these contributions, we obtain the following expression for the three-

point function:

〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(X3 ,−p1 − p2)

〉
vec

= i

∫
d4k

(2π)4
Tr X1X2X3

×
(

Υµ(k + p1, k)∆(k)Υν(k, k − p2)∆(k − p2)Υ
σ(k − p2, k + p1)∆(k + p1)

+Rµν∆(k − p2)Υ
σ(k − p2, k + p1)∆(k + p1) + Υµ(k + p1, k)∆(k)Rνσ∆(k + p1)

+∆(k)Υν(k, k − p2)∆(k − p2)Rσµ

)

+i

∫
d4k

(2π)4
Tr X2X1X3

×
(

Υν(k + p2, k)∆(k)Υµ(k, k − p1)∆(k − p1)Υ
σ(k − p1, k + p2)∆(k + p2)

+Rνµ∆(k − p1)Υ
σ(k − p1, k + p2)∆(k + p2) + Υν(k + p2, k)∆(k)Rµσ∆(k + p2)

+∆(k)Υµ(k, k − p1)∆(k − p1)Rσν

)
. (3.26)
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Here, X1, X2, X3 are su(8) matrices, valued in the 28 ⊕ 28 and the trace is to be taken

over (4 × 56)2 matrices corresponding to components of the vector propagator.

Let us compute the divergence of the third current in this expectation value. Using

the formulas (3.22), (3.25), one computes that

i(p1σ + p2 σ)
〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(X3 ,−p1 − p2)

〉

vec
(3.27)

= i

∫
d4k

(2π)4
Tr X1X2X3

(
Υµ(k + p1, k)∆(k)Υν(k, k + p1)∆(k + p1)

−Υµ(k − p2, k)∆(k)Υν(k, k − p2)∆(k − p2) + Rµν∆(k + p1) −Rµν∆(k − p2)

)

+i

∫
d4k

(2π)4
Tr X2X1X3

(
Υµ(k, k + p2)∆(k + p2)Υ

ν(k + p2, k)∆(k)

−Υµ(k, k − p1)∆(k − p1)Υ
ν(k − p1, k)∆(k) + Rνµ∆(k + p2) −Rνµ∆(k − p1)

)
.

The commutator component ∝ Tr [X1,X2 ]X3 of (3.27) gives rise to the vector field contri-

bution to the vacuum expectation value of the insertion of two currents, as required by the

current Ward identity

i(p1σ + p2 σ)
〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(X3 ,−p1 − p2)

〉

= i
〈
Jµ(X1, p1)J

ν([X2 ,X3 ],−p1)
〉

+ i
〈
Jµ([X1,X3 ],−p2)Jν(X2 , p2)

〉
. (3.28)

By contrast, the anticommutator component of (3.27) is proportional to Tr JX1X2X3 ,

and reduces to the difference of divergent integrals with respect to a constant shift of the

integration variable, as for the one-loop contribution of the fermion fields.19 The two first

lines in (3.27) give rise to the difference of linearly divergent integrals

1

2
Tr {X1,X2}X3

∫
d4k

(2π)4

(
Iµν(k, p1) − Iµν(k − p1, p1) − Iµν(k,−p1) + Iµν(k + p2,−p2)

)

=
1

2
Tr {X1,X2}X3

∫
d4k

(2π)4

(
p1σ

∂Iµν(k, p1)

∂kσ
+ p2 σ

∂Iµν(k,−p2)
∂kσ

)
,

with

Tr X3Iµν(k, p) = Tr X3 Υµ(k + p, k)∆(k)Υν(k, k + p)∆(k + p) , (3.29)

where X can be any SU(8) generator. Because there is no invariant symmetric tensor of

rank three in the adjoint of E7(7) by (3.2) the last anticommutator term of (3.27) reduces

to a double difference of quadratically divergent integrals

1

2
Tr {X1,X2}X3Rµν

∫
d4k

(2π)4

(
∆(k + p1) − ∆(k − p2) − ∆(k + p2) + ∆(k − p1)

)

=
1

2
Tr {X1,X2}X3Rµν(p1σ + p2 σ)(p1 ρ − p2 ρ)

∫
d4k

(2π)4
∂2∆(k)

∂kσ∂kρ
. (3.30)

19Because ghosts do not give rise to any term of type (3.3), they do not contribute to the anomaly.
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In the above derivation, we have made use of standard formulas [18, 33] to express the

integrals as surface integrals which leads to the final expressions with first and second

derivatives on the integrands.

Although finite, these integrals are not absolutely convergent, and they are subject to

ambiguities associated to the order of integration of the momentum components kµ. This

ambiguity can be fixed in the conventional case (with fermions in the loop) by requiring

Lorentz invariance. However, when photons run in the loop, the integrands are not Lorentz

invariant and this prescription cannot be consistently defined.20 This problem is in fact

general in the theory. Indeed, because the Feynman rules are not manifestly Lorentz

invariant, and because of the explicit appearance of the Levi-Cività tensor εijk, one cannot

regularise the theory with the dimensional regularisation. Nevertheless, we will now explain

how one can perform a consistent computation using Pauli-Villars regularisation.

3.2 Pauli-Villars regularisation

The formulation of the theory is defined such that it is formally equivalent to the manifestly

diffeomorphism covariant formulation, up to a Gaussian integration of the 28 vector fields

Am̄i as in (2.18), (2.19), (2.20). Therefore, we will require the massive Pauli-Villars vector

fields, to be defined through a local formulation after Gaussian integration. This is the

case only if the vectors Am̄i appear in the mass term through F m̄
ij up to a total derivative.

The only ‘sensible’ possibility is therefore to introduce a symmetric tensor Γmn which is

off-diagonal in the Darboux basis (i.e. Γmn = 0 = Γm̄ n̄)

L0(M) =
1

2
Ωmnε

ijk∂0A
m
i ∂jA

n
k

+
i

2
Γmnε

ijkMAm
i ∂jA

n
k

−1

2
Gmn(δikδjl − δilδjk)∂iA

m
j ∂kA

n
l

+ bm∂iA
m
i . (3.31)

We will show next that this Lagrangian gives rise to the standard equations of motion for

the 28 Pauli-Villars vector fields in the Coulomb gauge. Before doing so, note that there is

no necessity to modify the interaction terms in the Lagrangian (3.31), and that the tensor

Γmn necessarily breaks SU(8) to (at most) SO(8). In fact, a manifestly SU(8) regularisation

would be in contradiction with the possible existence of chiral anomalies. We define Γmn

such that it reads

Γmn̄ = Γn̄m = δmn̄ , (3.32)

in the Darboux basis. Following the procedure of section 2.2, the manifestly covariant

action for the Pauli-Villars vector fields is obtained after a Gaussian integration of the 28

(dual) Pauli-Villars vector fields Am̄i . This amounts to performing the replacement

Fm
0i → Fm

0i +MAmi , (3.33)

20We are aware that a consistent dimensional regularisation via an SO(3) invariant prescription has been

used successfully in other contexts, such as the post-Newtonian approximation in general relativity, where

there are no anomalies (T. Damour, private communication). However, this prescription appears to give

inconsistent results in the present case.
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in all expressions. In particular, the equations of motion read

∂i
(
Fm
0i +MAmi

)
= 0 , ∂µFiµ +M∂iA0 −M2Ami = 0 , (3.34)

and are manifestly gauge invariant with respect to the modified gauge transformations

δAm0 = ∂0c
m +Mcm , δAmi = ∂ic

m . (3.35)

In the Coulomb gauge ∂iAi = 0, they reduce to

Am0 = 0 , 2Ami +M2Ami = 0 . (3.36)

The substitution (3.33) breaks diffeomorphism invariance manifestly, which can therefore

be restored only after the regulator is removed (possibly with a non-Lorentz invariant local

counterterm, see below).

With these replacements, the propagator is manifestly massive in the duality invariant

formulation. Indeed, one has

∆−1(p,M) =




Ωmnε
ijkp0pk + Γmnε

ijkMpk +Gmn(δijp2 − pipj) ipiδn
m

−ipjδm
n 0


 , (3.37)

and the propagator is

∆(p,M) =
1

p2




Ωmnεijkp0pk+ΓmnεijkMpk−Gmn(δijp2−pipj)

p02−p2−M2+iε ipiδ
m
n

−ipjδn
m 0


 , (3.38)

where Γmn is the inverse of Γmn and satisfies

ΓmpΩ
pn = −ΩmpΓ

pn , ΓmpG
pn = GmpΓ

pn , ΓmpΓ
pn = δn

m . (3.39)

Therefore

(p0Ωmp +MΓmp)(p0Ω
pn +MΓpn) = (−p02 +M2)δn

m , (3.40)

which permits to check (3.38).

To define the associated SU(8)-current vertex one must distinguish the vector and

the axial components, respectively, corresponding to the decomposition 63 → 28 ⊕ 35 of

the su(8) adjoint under its so(8) subalgebra. One can thus consider a manifestly SO(8)

invariant regularisation by considering the coupling of the SO(8) current source Bm
µ n to

the mass term. So we consider the coupled Lagrangian

L0[B]=
1

2
Ωmnε

ijk (∂0A
m
i +Bm

0 pA
p
i)
(
∂jA

n
k+B n

j qA
q
k

)
+
i

2
Γmnε

ijkMAm
i

(
∂jA

n
k+B n

j pA
p
k

)

− 1

2
Gmn(δikδjl−δilδjk)

(
∂iA

m
j +Bm

i pA
p
j

) (
∂kA

n
l
+B n

k qA
q
l

)
+bm (∂iA

m
i +Bm

i nA
n
i ) .

(3.41)
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Note however that the mass term does only couple to the 35 axial component of the source

B n
j p, because an axial generators Xm

p satisfies

Xm
pΓpn −Xn

pΓmp = 0 . (3.42)

For simplicity, we will focus on the contribution of the massive Pauli-Villars vector

fields to the vacuum expectation value of three axial currents (the three of them in the

35) for which the vertices Υµ are still defined by (3.21). Using (3.42), one obtains that the

latter is given by

〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(X3 ,−p1 − p2)

〉
PV

= i

∫
d4k

(2π)4
Tr X1X2X3 (3.43)

(
∆(k + p1,M)Υµ(k + p1, k)∆(k,−M)Υν(k, k − p2)∆(k − p2 ,M)Υσ(k − p2, k + p1)

+∆(k + p1,M)Rµν∆(k − p2,M)Υσ(k − p2, k + p1)

+∆(k + p1,M)Υµ(k + p1, k)∆(k,−M)Rνσ +Rσµ∆(k,−M)Υν(k, k − p2)∆(k − p2,M)

)

+i

∫
d4k

(2π)4
Tr X2X1X3

(
∆(k + p2,M)Υν(k + p2, k)∆(k,−M)Υµ(k, k − p1)∆(k − p1,M)Υσ(k − p1, k + p2)

+∆(k + p2,M)Rνµ∆(k − p1,M)Υσ(k − p1, k + p2)

+∆(k + p2,M)Υν(k + p2, k)∆(k,−M)Rµσ +Rσν∆(k,−M)Υµ(k, k − p1)∆(k − p1,M)

)

where the propagator ∆(k,−M) gets an opposite mass through the commutation with

the axial generators (similarly as in the standard fermion triangle). (3.43) is therefore the

analogue of (3.26) for M 6= 0. In addition to the traces (3.2) and (3.3) there are two more

types of traces, both of which give vanishing contribution because

Tr (ΩΓ)X1X2X3 = 0 = Tr (GΓ)X1X2X3 , (3.44)

Therefore the resulting integral is an even function of M . The massive generalisation

of (3.22) is

− ipµΥµ(k + p, k) = ∆−1(k + p,M) − ∆−1(k,−M) −MΥ5(2k + p) , (3.45)

where

Υ5(p) =




Γmnε
ijkpk 0

0 0


 , (3.46)
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again indicating the formal similarity of our computation with the usual fermionic triangle

diagram. Using the latter identity, one computes that

i(p1σ + p2 σ)
〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(X3 ,−p1 − p2)

〉
PV

= i

∫
d4k

(2π)4
Tr X1X2X3

(
∆(k + p1,M)Υµ(k+p1, k)∆(k,−M)Υν(k, k+p1)

−Υµ(k−p2, k)∆(k,−M)Υν(k, k−p2)∆(k−p2,M)+Rµν∆(k+p1)−Rµν∆(k−p2)
)

+i

∫
d4k

(2π)4
Tr X2X1X3

(
Υµ(k, k + p2)∆(k + p2,−M)Υν(k + p2, k)∆(k,M)

−∆(k,M)Υµ(k, k−p1)∆(k−p1,−M)Υν(k−p1, k)+Rνµ∆(k+p2)−Rνµ∆(k − p1)

)

−iM
∫

d4k

(2π)4
Tr X1X2X3

(
∆(k+p1,M)Υµ(k+p1, k)∆(k,−M)Υν(k, k+p1)∆(k+p1,M)

×Υ5(2k + p1 − p2) + ∆(k + p1,M)Rµν∆(k − p2,M)Υ5(2k + p1 − p2)

)

−iM
∫

d4k

(2π)4
Tr X2X1X3

(
∆(k+p2,M)Υν(k+p2 , k)∆(k,−M)Υµ(k, k−p1)∆(k−p1,M)

×Υ5(2k − p1 + p2) + ∆(k + p2,M)Rνµ∆(k − p1,M)Υ5(2k − p1 + p2)

)
(3.47)

3.3 Computation of the anomaly coefficient

To compute the anomaly we now follow the standard procedure by subtracting (3.47)

(indicated by the subscript “PV”) from (3.27) (indicated by the subscript “vec”), and

then taking the limit M → ∞. The first two integrals in (3.47) are very similar to the

massless case (3.27), and their contribution to the anomaly reduces to a difference of linearly

divergent integrals as well. Because such integrals only depend on the leading power in

the momentum k, they do not depend on the mass and hence these contributions cancel

precisely between (3.27) and (3.47). It follows that the overall contribution of the vector

fields to the anomaly is obtained by (minus) the sum of the two last integrals of (3.47) in

the limit M → ∞ — just like for the fermionic triangle in the standard computation with

Pauli-Villars regulators, see e.g. [33].

For the computation, it is straightforward to see that for the massive propagators and

vertices, the relations (3.24) remain unchanged, and that we have in addition,

∆(k,M)T = ∆(−k,M) , Υ5(p)
T = Υ5(−p) . (3.48)

These relations permit to prove that the two last integrands in (3.47) are invariant under

the substitution

k ↔ −k , p1 ↔ p2 , µ↔ ν . (3.49)
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It follows that they are equal, and the anomaly being defined as

Aµν
vec(p1, p2)Tr JX1X2X3 ≡ i(p1σ + p2 σ)

〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(X3 ,−p1 − p2)

〉
vec+PV

− i
〈
Jµ(X1, p1)J

ν([X2 ,X3 ],−p1)
〉

vec+PV
− i
〈
Jµ([X1,X3 ],−p2)Jν(X2 , p2)

〉
vec+PV

(3.50)

is given by

Aµν
vec(p1, p2) = 2i lim

M→+∞

[
M

∫
d4k

(2π)4
Sµν(p1, p2 , k)

]
, (3.51)

where the integrand Sµν(p1, p2, k) is

Sµν(p1, p2, k) = − 1

56
Tr J

(
∆(k+p1,M)Υµ(k+p1, k)∆(k,−M)Υν(k, k+p1)∆(k+p1,M)

× Υ5(2k + p1 − p2) + ∆(k + p1,M)Rµν∆(k − p2,M)Υ5(2k + p1 − p2)

)
. (3.52)

Sµν includes three propagators, and takes the form

Sµν(p1, p2 , k)=
MPµν(p1, p2, k)

(k+p1)2((k0+p1 0 )2−(k+p1)2−M2+iε)k2(k0
2−k2−M2+iε)(k−p2)2((k0−p2 0 )2−(k−p2)2−M2+iε)

(3.53)

where Pµν is a sum of monomials of order eight in p1, p2, k and M . One can neglect all

terms of order three and higher in p1 and p2, because they will not contribute to (3.51).

Moreover, for the terms of order two in p1 and p2, the denominator can be approximated

as well by k6(k0
2 − k2 −M2 + iε)3 and one can use the usual simplifications

k2nk0
2mkikj ∼

1

3
δijk

2n+2k2m
0 , k2nk0

2m+1ki ∼ 0 , (3.54)

according to the standard integration rules. After a rather tedious computation, we obtain

P 0i ∼ −k4(k0
2−k2−M2)εijkkj(2p1 k+6p2 k)+

1

3
k4
(
4k2−19(k0

2−k2 −M2)
)
εijkp1 jp2 k

P ij ∼ k4εijk
(

6(p1 0+p2 0 )(k0
2−k2 −M2)kk−

8

3
(k0

2−k2 −M2)k0 (p1 k+p2 k)

+
1

3
(k0

2 − k2 −M2) (11(p1 0 + p2 0 )(p1 k − p2 k) − 4(p1 0p2 k − p2 0p1k))

−8

3
k0

2(p1 0p1k − p2 0p2 k)

)
(3.55)

and P i0 = −P 0i using the symmetries (3.48), (3.49). Using the formula21

∫
d4k

(2π)4
k2n(−k0 2)m

(k2−k2
0 +M2−iε)l

= −iΓ(1
2 +m)Γ(3

2 + n)Γ(l −m− n− 2)

(2π)3Γ(l)M2(l−m−n−2)
, (3.56)

21Which itself follows from the standard formula [18]

Z ∞

0

xa−1 dx

(x2 + s2)b
= sa−2b Γ( a

2
)Γ(b− a

2
)

2Γ(b)
.
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this leads to the integrals

A0i
vec = 2M2iεijkp1 jp2 k

∫
d4k

(2π)4

(
4

(
k2 − k2

0 +M2 − iε
)3 − k−2

(
k2 − k2

0 +M2 − iε
)2

)

= 0 (3.57)

and

Aij
vec = 2M2iεijk(p1 0p2 k − p2 0p1k)

∫
d4k

(2π)4

(
8k0

2k−2

(k0
2−k2−M2+iε)3

−
4
3k

−2

(k2−k2
0 +M2−iε)2

)

+2M2iεijk(p1 0 + p2 0 )(p1 k − p2 k)

∫
d4k

(2π)4

(
8
3k0

2k−2

(k0
2−k2−M2+iε)3

− 4

(k2−k2
0 +M2−iε)3

−
1
3k

−2

(k2−k2
0 +M2−iε)2

)

=
1

6π2
εijk(p1 0p2 k − p2 0p1 k) −

1

6π2
εijk(p1 0 + p2 0 )(p1 k − p2 k) . (3.58)

The resulting anomaly is not Lorentz invariant, but this is not so surprising since we

used a regulator that breaks Lorentz invariance. In order to restore Lorentz invariance,

one must renormalise the theory with a finite non-Lorentz invariant counterterm with the

appropriate su(8) tensor structure. The only such SO(3) invariant density is

δL ∝ εijkJm
nB

n
0 pB

p
i q∂jB

q
k m . (3.59)

It follows that the vacuum expectation value of three current insertions is only defined up

to a shift

δ
〈
Ji(X1, p1)J

j(X2 , p2)J
0 (X3 ,−p1 − p2)

〉
= −ia εijk(p1 k − p2 k)Tr JX1X2X3 , (3.60)

and permutations. This shift affects the anomaly factor as

δA0i
vec = −δAi0

vec = a εijkp1 jp2 k , δAij
vec = a εijk(p1 0 + p2 0 )(p1 k − p2 k) , (3.61)

and so, choosing a = 1
6π2 , one recovers the Lorentz invariant anomaly

Aµν
vec(p1, p2) =

1

6π2
εµνσρp1σp2 ρ . (3.62)

We have thus verified that the anomaly coefficient associated to the vector fields is, as

predicted from the family’s index theorem, (−2) times the one associated to the Dirac

fermion fields. Taking into account the fermionic contributions it follows that the total

coefficient of the anomaly vanishes for N = 8 supergravity, in agreement with (3.1).

Within the path-integral formulation of the theory, the variation of the formal integra-

tion measure with respect to an infinitesimal su(8) local transformation gives rise to a local

functional of the fields linear in the su(8) parameter Ck which defines a 1-cocycle over the
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space of su(8) gauge transformations. This factor can be compensated by a redefinition of

the local action if this cocycle is trivial in local cohomology. The triviality of this cohomol-

ogy class is equivalent, via a transgression operation, to the triviality of a 2-cocycle over

the moduli space of framed su(8)-connections B identified modulo su(8)-gauge transfor-

mations in local cohomology. The latter can be computed by means of the family’s index

theorem [26], as the Chern class of the vector bundle defined over an S2 two parameters

family of su(8)-gauge orbits of su(8) framed connections with fibre the index of the chiral

differential operators

(1 + iγ5) /D , (1 + J⋆)dB , (1 + iγ5) ⋆ e
a
∧γadB , (3.63)

acting on the fields of spin 1/2, 1, and 3/2, respectively. A similar construction applies

to gravitational and mixed anomalies. According to the family’s index theorem, the con-

tribution of the fermion fields and the vectors has been computed in [26], and applied to

various supergravity theories in [17], giving for instance the cancelation (3.1) of the su(8)

anomaly in N = 8 supergravity.

Let us now turn to the generalisation of these results to E7(7). Unlike the linear SU(8)

anomaly, the full E7(7) current and the non-linearly realised E7(7) symmetry give rise to an

infinite number of potentially anomalous diagrams. Namely, for the complete e7(7) current

Ward identities, one must also take into account the potential anomalies associated to

the 70 component of the current, as well as diagrams with any number of scalar field

insertions. We will write X1, X2 for su(8) generators, and Y1, Y2 for generators in the 70.

Because there is no 63 in the symmetric tensor product (70 ⊗ 70)sym,22 the Ward identity

associated to 〈
Jµ(Y1, p1)J

ν(Y2, p2)J
σ(X1,−p1 − p2)

〉
(3.64)

cannot be anomalous (we are here using the same notation as in (2.50), with Jµ(X) denoting

the projection of the current Jµ along the Lie algebra element X). However, further

anomalies can appear if one includes scalar field insertions, as e.g.

Jµ(Y1)

Jν(Y2)

Jσ(X1)Φ

Φ

Φ

Φ

22The antisymmetric product just gives the usual contribution to the non-anomalous Ward identity.
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This is because the insertion of one scalar field into the diagram does not only add one prop-

agator, but also two derivatives, whence the degree of divergence of the diagram remains

the same with any number of external scalar fields (the same is true for fermionic loops,

where the insertion of an extra fermionic propagator is accompanied by one derivative, as

well as for the current vertex including scalar fields legs, which do not carry derivatives,

but do not add propagators either). As a first non-trivial example, consider the vacuum

expectation value
〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(Y1, p3)Φ(Y2,−p1 − p2 − p3)

〉
. (3.65)

It satisfies the su(8) Ward identity

−ip2 σ

〈
Jµ(X1, p1)J

σ(X2 , p2)J
ν(Y1, p3)Φ(Y2,−p1 − p2 − p3)

〉

= i
〈
Jµ([X1,X2 ], p1 + p2)J

σ(Y1, p3)Φ(Y2,−p1 − p2 − p3)
〉

+i
〈
Jµ(X1, p1)J

σ([Y1,X2 ], p2 + p3)Φ(Y2 ,−p1 − p2 − p3)
〉

+i
〈
Jµ(X1, p1)J

σ(Y1, p3)Φ([Y2,X2 ],−p1 − p3)
〉
. (3.66)

By contrast, the e7(7) Slavnov-Taylor identity takes a more complicated form because the

transformation is non-linear (see (4.17) below for the derivation)

−ip3 σ

〈
Jµ(X1, p1)J

ν(X2 , p2)J
σ(Y1, p3)Φ(Y2,−p1 − p2 − p3)

〉
(3.67)

= i
〈
Jµ([X1, Y1], p1 + p3)J

ν(X2 , p2)Φ(Y2 ,−p1 − p2 − p3)
〉

+i
〈
Jµ(X1, p1)J

ν([X2 , Y1], p2 + p3)Φ(Y2 ,−p1 − p2 − p3)
〉

+
〈
Jµ(X1, p1)J

ν(X2 , p2)Φ
A(p3)Φ(Y2 ,−p1 − p2 − p3)

〉〈[ Φ

tanh(Φ)
∗ Y1

]
A

〉

+i
〈
Jµ(X1, p1)J

ν(X2 , p2)
[ Φ

tanh(Φ)
(−p1−p2) ∗ Y1

]
A

〉〈
ΦA(p1+p2+p3)Φ(Y2 ,−p1−p2−p3)

〉

+i
〈
Jµ(X1, p1)

[ Φ

tanh(Φ)
(−p1) ∗ Y1

]
A

〉〈
Jν(X2 , p2)Φ

A(p1 + p3)Φ(Y2 ,−p1 − p2 − p3)
〉

+i
〈
Jν(X2 , p2)

[ Φ

tanh(Φ)
(−p2) ∗ Y1

]
A

〉〈
Jµ(X1, p1)Φ

A(p2 + p3)Φ(Y2 ,−p1 − p2 − p3)
〉
.

where the index A = 1 to 70 labels an orthonormal basis of the coset component of the

E7(7) Lie algebra.

At one loop, there is a potential anomaly to these Ward identities of the form

∝ εµνσρp1σp2 ρTr JX1X2 [Y1, Y2 ]

for the su(8) Ward identity (3.66), and an anomalous contribution to the Slavnon-Taylor

identity (3.67)

∝ εµνσρ (3p1σp2 ρ + (p1σ − p2 σ)p3 ρ)Tr JX1X2 [Y1, Y2 ] . (3.68)
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Similarly, the Ward identities associated to the vacuum expectations values

〈
Jµ

(
X1,−

2N+3∑

m=1

pm

)
Jν(X2 , p2N+3)J

σ(Y1, p1)

2+2N∏

n=2

Φ(Yn, pn)
〉
,

〈
Jµ

(
X1,−

2N+4∑

m=1

pm

)
Jν(Y1, p1)J

σ(Y2 , p2)
4+2N∏

n=3

Φ(Yn, pn)
〉
,

〈
Jµ

(
Y2N+6,−

2N+5∑

m=1

pm

)
Jν(Y1, p1)J

σ(Y2 , p2)

5+2N∏

n=3

Φ(Yn, pn)
〉
, (3.69)

are potentially anomalous for all N ≥ 0. Computing these anomalies explicitly would

involve an infinite number of Feynman diagrams of increasing complexity. Fortunately, as

we are going to see in the following section, the coefficients associated to these anomalies

are determined by the Wess-Zumino consistency conditions in terms of the su(8) anomaly

coefficient. It thus follows from the computation of this section that they all vanish.

What about higher loops? Remarkably, for strictly non-renormalisable23 theories the

Adler-Bardeen Theorem is almost trivial in the following sense. By non-renormalisability

and power counting higher loop anomalies would have a different form and dimension

(involving more derivatives) from the one-loop anomaly studied above. However, such

anomalies can be ruled out by the cohomology arguments given in the next section. In

conclusion, with the cancellations exhibited above there are no su(8) or e7(7) anomalies in

N = 8 supergravity at any order in perturbation theory.

4 Wess-Zumino consistency condition

The purpose of this section is to show that ‘non-linear’ e7(7) anomaly is completely deter-

mined by the ‘linear’ su(8) anomaly. In this way the determination of an infinite number

of potentially anomalous diagrams involving three currents and an arbitrary number of

scalar field insertions can be reduced to the single diagram computed in section 3. As

already mentioned in the introduction, this result has its differential geometric roots in the

homotopy equivalence (1.1).

4.1 The e7(7) master equation

The ‘non-linear’ e7(7) Ward identities are Slavnov-Taylor identities, which can be sum-

marised in a master equation for the 1PI generating functional Γ. To simplify the discus-

sion, we will postpone the discussion of the ghost sector and the compatibility with the

BRST master equation to the next section.

Because the discussion of this section does not rely on particular properties of E7(7) and

applies equally to other supergravity theories coupled to abelian vector fields and scalar

23‘Strictly’ in the sense that there are no coupling constant of dimension ≥ 0.

– 40 –



J
H
E
P
1
2
(
2
0
1
0
)
0
5
2

fields parametrising a symmetric space, we keep it general by considering a Lie algebra g

with decomposition

g ∼= k ⊕ p , (4.1)

with maximal ‘compact subalgebra’ k and the ‘non-compact’ part p, and the usual com-

mutation relations

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k . (4.2)

As explained in section 2.5, the transformation δg in the non-linear realisation acts on the

scalar fields as

δgΦ ≡ δkΦ + δpΦ = −[Ck,Φ] +
Φ

tanh Φ
∗ Cp , (4.3)

where the compact subalgebra k acts linearly with parameter Ck, while the remaining trans-

formations δp with parameter Cp are realised non-linearly. With regard to our previous

discussion of these transformations in section 2.5, we note two important differences:

1. As we wish to treat the theory within the ‘BRST formalism’, we will from now on

take the transformation parameters Ck and Cp as anti-commuting (which is the reason

why we use the letter C rather than Λ for the transformation parameters).

2. Although the g symmetry acts rigidly, we will nevertheless take C to be a local

parameter, i.e. to depend on x. The corresponding source fields B ≡ Bk+Bp coupling

to the conserved G Noether current consequently transform as (non-abelian) gauge

fields with these parameters.

With regard to the second point we emphasise that the introduction of an artificial local

G invariance here is merely a formal device (well known to specialists) which will enable

us to derive current Ward identities for g. The sources B are external fields, which are not

part of any supermultiplet and are not integrated over in the path integral. Hence, the

symmetries of the physical degrees of freedom of N = 8 supergravity and their interactions

are still the same as before. Similarly, Ck and Cp, though x-dependent, are not quantum

fields. Readers might nevertheless find it convenient to consider them as ghosts for the

fictitious local G symmetry, when the G current is coupled to the sources Bp and Bk. For

instance, we will shortly consider a grading that corresponds to the order of the functional

in these parameters, and that can be thought of as a ghost number (although it must not be

confused with the true ghost number associated to the BRST operator which implements

the gauge symmetries of the theory).

With these comments, the action of the transformations (4.3) on the other fields is

straightforward to describe. On the fermionic fields (as well as on the supersymmetry ghost

or superghosts) the transformations act via an induced k transformation with parameter

Ck + tanh(Φ/2) ∗ Cp (4.4)
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while on the vector fields and their ghosts the variations act linearly with parameter C in

the corresponding representation (the 56 of E7(7) for N = 8 supergravity). Finally, writing

C ≡ Ck + Cp, we have

δgB = −dC − {B,C} , δgC = −C2 (4.5)

on the current source B ≡ Bk + Bp and on the parameter itself, both of which transform

in the adjoint of g (that is, the 133 of E7(7) for N = 8 supergravity). The anticommutator

in this formula appears because δg anticommutes with forms of odd degree.

In summary, on all the fields (but Ck) the differential δg decomposes into a k transfor-

mation of parameter Ck, which we will denote δk, and the remaining (coset) transformation

δp with parameter Cp

δg = δk + δp , δk ≡ δk(Ck) , δ
p ≡ δp(Cp) (4.6)

For instance, and as a consequence, (4.5) splits as follows

δkBk = −dCk − {Bk, Ck}, δkBp = −{Bp, Ck},
δpBk = −{Bp, Cp}, δpBp = −dCp − {Bk, Ck},
δkCp = −{Ck, Cp}, δpCp = 0, (4.7)

δk is a nilpotent differential defined on all the fields, including Ck with

δkCk = −Ck
2 . (4.8)

By contrast, δp makes sense only on expressions which do not depend on Ck. If such expres-

sions are moreover k-invariant, the operator δp is nilpotent as a consequence of (4.2), i.e.

δp(Cp) ◦ δp(Cp) = δk(C2
p) ≈ 0 . (4.9)

We will refer to such k-invariant expressions which do not depend of Ck as ‘k-basic’; and

the cohomology of the nonlinear operator δp on the complex of k-basic expressions, as the

equivariant cohomology H•
K(δp) (see for example [34] for a mathematical definition).

We will write S[ϕ,B] for the classical action coupled to G-current sources B, where by

ϕa we designate all the fields of the theory including ghosts. For each field ϕa we introduce

a source ϕg
a for the non-linear g transformation δp(Cp) of the field ϕa of anti-commuting

parameter Cp. We define the action coupled to sources by

Σ
[
ϕ,ϕg, B,C

]
≡ 1

κ2
S[ϕ,B] −

∫
d4x

∑

a

(−1)aϕg
a δ

p(Cp)ϕ
a , (4.10)

where (−1)a is ±1 depending of the Grassmann parity of the field ϕa , and the letter a

labels all the fields of the theory. Of course, the parity of the antifields is the reverse
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of the corresponding fields, such that the action Σ is bosonic and of zero ghost number.

Σ[ϕ,ϕg, B,C] satisfies the linear functional identity

δkΣ =

∫
d4x

(
∑

a

δk(Ck)ϕ
a δ

LΣ

δϕa
+
∑

a

δk(Ck)ϕ
g
a

δLΣ

δϕg
a

− (dCk + {Bk, Ck}) ·
δLΣ

δBk

− {Ck, Bp} ·
δLΣ

δBp

− {Ck, Cp} ·
δLΣ

δCp

)
= 0 , (4.11)

associated to the k-current Ward identities, and the bilinear functional identity

∫
d4x

(
∑

a

δRΣ

δϕg
a

δLΣ

δϕa
− (dCp + {Bk, Cp}) ·

δLΣ

δBp

−{Cp, Bp} ·
δLΣ

δBk

−
∑

a

ϕg
aδ

k(Cp
2)ϕa

)
= 0 , (4.12)

associated to the p-current Slavnov-Taylor identities, where the dots stand for the appro-

priately normalised K-invariant scalar products.

Here we disentangled the linear and the non-linear Ward identities, however, in order

to discuss possible anomalies it will be more convenient to combine both of them into a

single bilinear G master equation (
Σ,Σ

)
g

= 0 , (4.13)

which can be obtained by introducing sources for the sources B and the parameter C [14].

In the absence of anomalies, the above master equation can be elevated to a G master

equation for the full effective action, i.e. the 1PI generating functional Γ

(
Γ,Γ

)
g

= 0 . (4.14)

This, then, is the equation which encapsulates the g invariance of the theory up to any

given order in perturbation theory.

Before discussing the anomalies, let us give an example of Slavnov-Taylor identities

that can be obtained from the (to be proved to be) non-anomalous master equation (4.14).

For example, one can consider correlation functions involving scalar fields only, with
(
∏

n∈I

Xn · δ

δΦ(xn)
X · δ

δC(x)

(
Γ,Γ

)
g

)∣∣∣∣∣
0

= 0 , (4.15)

where the notation |0 means that we set all the classical field ϕa and sources to zero after

differentiation. This gives the Ward identity

∂

∂xµ

〈
Jµ(X,x)

∏

n∈I

Φ(Xn, xn)
〉

=
∑

J⊂I

〈
ΦA(x)

∏

m∈J

Φ(Xm, xm)
〉〈[ Φ

tanh(Φ)
(x) ∗X

]

A

∏

n∈I\J
Φ(Xn, xn)

〉
, (4.16)
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where the sum over J ⊂ I is the sum over all odd subsets of indices J inside the odd set

of indices I. In the same way (3.67) is the Fourier transform of

(
X1 ·

δ

δBkµ(x1)

)(
X2 ·

δ

δBkν(x2)

)(
Y1 ·

δ

δC(y1)

)(
Y2 ·

δ

δΦ(y2)

) (
Γ,Γ

)
g

∣∣∣∣∣
0

= 0 . (4.17)

Let us first briefly recall why the existence of anomalies is equivalent to a cohomology

problem. It is well known that the master equation (4.14) can in principle be broken by

the renormalisation process at each order n in perturbation theory, such that

(
Γn,Γn

)
g

= ~
nAn + O(~n+1) , (4.18)

where Γn ≡ ∑
p≤n ~

p Γ(p) is the n-loop renormalised 1PI generating functional, and An

is a local functional of the fields and antifields linear in C. Because of the ‘anti-Jacobi’

functional identity (
Γ,
(
Γ,Γ

)
g

)
g

= 0 (4.19)

the anomaly nevertheless satisfies the Wess-Zumino consistency condition

(
Γn,An

)
g

= O(~) (4.20)

and therefore (
Σ,An

)
g

= 0 , (4.21)

where Σ is the classical action. If An satisfies

An =
(
Σ,Σ(♭ n)

)
g
, (4.22)

for a local functional of the fields Σ(♭ n), the anomaly is trivial, because one can simply add

it to the bare action in order to define a 1PI generating functional which is not anomalous

at this order (as we did for example in the last section with the counterterm (3.59) in

order to restore Lorentz invariance). The existence of an anomaly therefore requires that

the cohomology of the linearised Slavnov-Taylor operator F → (Σ,F) on the set of local

functionals {F} of the fields is non-trivial. This cohomology is equivalent to the cohomology

H1(δg) of the differential operator δg which generates the non-linear e7(7) action on the set

of local functionals of the fields identified modulo the equations of motion [35].

As we already pointed out, the property that A is a local functional is known as the

quantum action principle [14]. This principle holds true generally for any well defined reg-

ularisation scheme. Because of the rather non-standard character of the duality invariant

formulation of the theory we are using, it is important to show that such consistent regu-

larisation scheme exists for the theory. Although a fully rigorous proof of the validity of

the quantum action principle within the Pauli-Villars regularisation scheme defined in the

preceding section is beyond the scope of the present paper, the one-loop computation of

the preceding section provides a strong indication for its validity.
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4.2 The SU(8)-equivariant cohomology of e7(7)

To investigate the general structure of anomalies, we need a basis of local functionals.

For this purpose it is convenient to consider functions of the fields and their covariant

derivatives, defined as

dBΦ ≡ dΦ + [Bk,Φ ] − Φ

tanh Φ
∗Bp (4.23)

for the scalars, and similarly for the other fields. Keeping in mind that δg and the exterior

derivative anti-commute, we then have

δg (dBΦ) = −{Ck, dBΦ } − dB

(
Φ

tanh Φ

)
∗ Cp . (4.24)

In deriving this formula, we make use of the closure property (2.85) in the form

δp(Cp)

(
Φ

tanh Φ

)
∗Bp + δp(Bp)

(
Φ

tanh Φ

)
∗ Cp = −

{
Bp, Cp

}
∗ Φ , (4.25)

which allows us to trade one expression (the variation of Φ/ tanh Φ) which we cannot write

in closed-form in terms of another (the Bp covariantisation of the last term in (4.24)) which

we also cannot write in closed-form.

Given a basis of local functionals, a potential anomaly A decomposes into a term linear

in Ck and a term linear in Cp

A =

∫
(F · Ck + G · Cp) , (4.26)

with two local functionals F and G of the fields, the current sources and their derivatives.

F and G take values in k and p, respectively. Accordingly, the Wess-Zumino consistency

condition δgA = 0 decomposes into three components

∫
δk (F · Ck) = 0 ,

∫ (
δpF · Ck + δk (G · Cp)

)
= 0 ,

∫ (
−F · Cp

2 + δpG · Cp

)
= 0 , (4.27)

corresponding to the coefficients of C2
k , CkCp and C2

p, respectively. The first equation is

the condition that
∫
F · Ck defines a consistent anomaly for the k current Ward identity.

A priori, there are therefore two kinds of anomalies, the ones associated to the linearly

realised subgroup K and determined by
∫
F · Ck in H1(δk),24 which would have to be

extended to the non-linear representation by an appropriate
∫
G · Cp; and ‘genuinely non-

linear anomalies’, with
∫
F ·Ck = 0, associated to the non-linear transformations only and

given by
∫
G · Cp. The latter expression is then a k-invariant functional of the fields and

24The superscript on H here refers to the ‘ghost number’.
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the current sources which is δp closed by (4.27). If it can be written as the δg variation

of a functional of the fields, the latter must be K invariant, and the action of δg and

δp on it are identical. Such a functional
∫
G · Cp, if non-trivial, defines by definition a

cocycle representative of the equivariant cohomology H1
K(δp) of δg with respect to K. This

property can be summarised in the following exact sequence

0 →֒ H1
K(δp)

ι−→ H1(δg)
π−→ H1(δk) , (4.28)

which states that to each element of H1
K(δp) there corresponds one element of H1(δg), and

that all the other elements of H1(δg) correspond to elements of H1(δk) (although π is not

necessarily surjective a priori).

Let us first consider the non-trivial anomalies associated to k current anomalies. The

anomalies associated to a linearly realised group are well known, and are classified by

symmetric Casimirs. A nice way to derive such anomalies is by means of the ‘Russian

formula’ [36–39]

(d+ δk) (Bk +Ck) + (Bk + Ck)
2 = F (0)

k ≡ dBk +Bk
2 , (4.29)

to derive a (d + δk)-cocycle from any symmetric Casimirs by use of the Cartan homotopy

formula. In four dimensions, the relevant Casimir is the symmetric tensor of rank three,

and the Cartan homotopy formula gives

(d+ δk)Tr

(
B̃kF

(0)

k
2 − 1

2
B̃k

3F (0)

k +
1

10
B̃k

5

)
= Tr F (0)

k
3 = 0 , (4.30)

where we define the extended connection (always indicated by a tilde) as

B̃k ≡ Bk + Ck , (4.31)

and the trace is taken in the complex representation of k. Picking the component of the

Chern-Simons function of form degree four, one obtains from this equation the conventional

non-abelian Adler-Bardeen anomaly

Ak =

∫
Tr dCk

(
BkF

(0)

k
− 1

2
Bk

3

)
, (4.32)

which satisfies

δkAk = 0 . (4.33)

Here we are specifically interested in the case when the rigid symmetry group G does

not admit an invariant tensor of rank three, as for G = E7(7). In this case the trace must

be taken in a complex representation of the subgroup K, and (4.30) cannot be defined from

the straightforward extension of the ‘linear’ Russian formula (4.29) to the linear formula

(d+ δg) (B + C) + (B + C)2 = Fg = dB +B2 , (4.34)
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for the full Lie algebra g, because this formula would only make sense in a linear represen-

tation of E7(7). Instead we must now look for a non-linear variant of the Russian formula.

To this aim, we first observe that the closure of the non-linear representation of g on the

fermion fields implies

δg (Ck + tanh(Φ/2) ∗ Cp) + (Ck + tanh(Φ/2) ∗ Cp)
2 = 0 . (4.35)

in the given complex representation of k. This formula (which is a non-linear analogue

of the usual BRST variation, cf. second formula in (4.5)) suggests that one can define a

non-linear Russian formula for the g symmetry in the fundamental representation of k. The

most natural guess for the (extended) ‘non-linear g connection’ is

B̃ ≡ Bk +Ck + tanh(Φ/2) ∗ (Bp + Cp) , (4.36)

which is indeed valued in the Lie subalgebra k. In turn, this motivates the following

definition of the (extended) g field strength, viz.

F̃g ≡ (d+ δg)B̃ + B̃2 , (4.37)

which one then computes (using the extended version of (4.35) to B + C) to be

F̃g = Fk + tanh(Φ/2) ∗ Fp + dB (tanh(Φ/2)) ∗ (Bp + Cp) , (4.38)

with

Fk ≡ dBk +Bk
2 +Bp

2 , Fp ≡ dBp + {Bk, Bp} , (4.39)

and dB tanh(Φ/2) defined in terms of the covariant derivative (4.23) similarly as in (4.24).

In contradistinction to the conventional Russian formula, the extended field-strength (4.38)

is not only the ‘horizontal’ two-form curvature, but has an extra component linear in the

parameter Cp. Nevertheless, it does not depend on Ck, and transforms covariantly with

respect to k in the adjoint representation k,

δkF̃g = −
[
Ck , F̃g

]
. (4.40)

With these definitions, the Cartan homotopy formula

(d+ δg)Tr

(
B̃gF̃g

2 − 1

2
B̃g

3F̃g +
1

10
B̃g

5

)
= Tr F̃g

3 (4.41)

therefore admits a non-vanishing right-hand-side (whereas for a linear representation of

E7(7), the right hand side of (4.41) would simply vanish). But because it is independent

of Ck and k-invariant, and hence k-basic, it defines a cocycle of the equivariant cohomology

H2
K(δp). Note that it is a cocycle of ‘ghost number’ 2, because the associated 4-form

component is of ‘ghost number’ 2. We here tacitly use the corollary of the algebraic Poincaré

lemma, i.e. all d-closed functions of the fields and their derivatives of form-degree p ≤ 3
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are d-exact, whence the cohomology of a differential δp in the complex of local functionals

of ‘ghost number’ n is isomorphic to the cohomology of the extended differential d+ δp in

the complex of functions of the fields of form-degree plus ‘ghost number’ 4 + n [40].

If this cocycle is trivial in H2
K(δp), i.e. if there exists a k-basic function M̃ such that

(d+ δp)M̃ = Tr F̃g
3 , (4.42)

one can extend the k Adler-Bardeen anomaly to a g anomaly by considering the integral

of the 4-form component

A =

∫ (
Tr

(
B̃gF̃g

2 − 1

2
B̃g

3F̃g +
1

10
B̃g

5

) ∣∣∣
(4,1)

−M(4,1)

)
(4.43)

It follows that the only possible obstruction to extend a k anomaly in H1(δk) to a full g

anomaly in H1(δg) are defined by cohomology classes of the second equivariant cohomology

group H2
K(δp).

One can summarise these properties into the exact sequence

0 →֒ H1
K(δp)

ι−→ H1(δg)
π−→ H1(δk) −→ H2

K(δp) (4.44)

which states that the H1(δg) and H1(δk) only differ by cocycles associated to equivariant

cohomology classes. The last arrow is the map which associates to any K consistent

anomaly, the corresponding invariant polynomial in F̃g.

Now that we have motivated our interest in the equivariant cohomology, we are going

to prove that it is trivial. The intuitive idea is the following, the equivariant cohomology

on the set of local functional of the fields is closely related to the equivariant cohomology

on the set of functions of the scalars only, and the latter is homomorphic to the De Rham

cohomology of the coset space G/K ∼= R
n which is trivial [34].

In order to carry out this program, it will turn out to be useful to introduce a filtra-

tion in terms of the order of the functional in naked scalar fields Φ, (considering dBΦ as

independent). The expansion of the variation of Φ and its covariant derivative are

δpΦ = Cp +
1

3
[Φ, [Φ, Cp]] −

1

45
[Φ, [Φ, [Φ, [Φ, Cp]]]] + O(Φ6) ,

dBΦ = −Bp + dBk
Φ − 1

3
[Φ, [Φ, Bp]] +

1

45
[Φ, [Φ, [Φ, [Φ, Bp]]]] + O(Φ6) ,

δg
Ck

(dBk
Φ) = −dBk

Cp + [Φ, {Bp, Cp}] −
1

3
dBk

[Φ, [Φ, Cp]] + O(Φ4) . (4.45)

The first order in Φ of the equivariant differential only acts on Φ itself as δg(−1)

Ck
Φ = Cp.

Any SU(8)-invariant local function of the fields admits an expansion

X =
∑

k∈N

X(n+k) (4.46)

and

δpX = 0 ⇒ δp(−1)X(n) = 0 . (4.47)
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If X(n) depends non-trivially on Cp or Φ, then there exist a function Y (n+1) such that

X(n) = δp(−1)Y (n+1) [40]. To see this, let us define the trivialising homotopy σ, which acts

trivially on all fields, but Cp

σCp = Φ , {σ, δp (−1)}X = NX ≡
∫
d4x

(
Cp

δ

δCp

+ Φ
δ

δΦ

)
X , (4.48)

and

[N, δp(−1)] = [N,σ] = 0 . (4.49)

If X(n) depends non-trivially on Cp or Φ, N−1X(n) exists and

X(n) = {σ, δp (−1)}N−1X(n) = δp(−1) σN−1X(n) (4.50)

Now with Y (n+1) = σN−1X(n),25

X − δpY (n+1) = X(n+1) − δp(0)Y (n+1) + O(Φn+2) . (4.51)

Using the trivialising homotopy, one proves in the same way that Y (n+2) exists such that

X − δp
(
Y (n+1) + Y (n+2)

)
= X(n+2) − δp(1)Y (n+1) − δp (0)Y (n+2) + O(Φn+3) . (4.52)

Iteratively one proves that there exist a formal power series

Y =
∑

k∈N

Y (n+1+k) (4.53)

in Φ that trivialises X,

X = δpY . (4.54)

This proof extends trivially to functionals [40], and therefore

Hn
K(δp) ∼= 0 for n ≥ 1 . (4.55)

As a direct consequence, the exact sequence (4.44) implies the isomorphism

H1(δg) ∼= H1(δk) . (4.56)

The equivalence of these two cohomology groups is a main result of this paper: it states that

the e7(7) consistent anomalies are in one-to-one correspondence with the su(8) consistent

anomalies. In particular, it follows that their coefficients are the same, establishing as a

corollary that the absence of anomalies for the su(8) current Ward identities implies the

absence of anomalies for the non-linear e7(7) Ward identities. This statement completes

our proof that the rigid E7(7) symmetry of d = 4 N = 8 supergravity is not anomalous in

perturbation theory.

25Note that although δp (0) vanishes on Φ and the fermion fields, it acts non-trivially on the electromagnetic

fields and their ghost, and so δp (0)Y (n+1) does not vanish in general.
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In the remaining part of this section, we want to illustrate in some more detail how a

potential su(8) Adler-Bardeen anomaly would generalise to an e7(7) anomaly. The three-

form component Tr F̃k
3|(3,3) is cubic in Cp, and being δp-closed by construction, there exists

an SU(8)-invariant function M(3,2) of the fields quadratic in Cp such that

Tr F̃k
3|(3,3) = δgM(Fk, Fp, Bp, dBΦ,Φ, Cp)(3,2) . (4.57)

Then Tr F̃k
3|(4,2) − dM(3,2) is itself δp-closed because of the Bianchi identity,

δp
(
Tr F̃k

3|(4,2) − dM(3,2)

)
= −dTr F̃k

3|(3,3) + d δpM(3,2) = 0 , (4.58)

and being quadratic in Cp, there exists a K-invariant function M(4,1) of the fields linear in

Cp such that

Tr F̃k
3|(4,2) = δgM(Fk, Fp, Bp, dBΦ,Φ, Cp)(4,1) + dM(Fk, Fp, Bp, dBΦ,Φ, Cp)(3,2) . (4.59)

The consistent E7(7) anomaly is defined as

∫ (
Tr

(
B̃kF̃k

2 − 1

2
B̃k

3F̃k +
1

10
B̃k

5

) ∣∣∣
(4,1)

−M(Fk, Fp, Bp, dBΦ,Φ, Cp)(4,1)

)
(4.60)

where

Tr

(
B̃kF̃k

2 − 1

2
B̃k

3F̃k +
1

10
B̃k

5

) ∣∣∣
(4,1)

(4.61)

= Tr (Ck + tanh(Φ/2) ∗ Cp) d

(
(Bk + tanh(Φ/2) ∗Bp) d (Bk + tanh(Φ/2) ∗Bp)

+
1

2
(Bk + tanh(Φ/2) ∗Bp)

3

)

+Tr dB (tanh(Φ/2)) ∗ Cp

(
(Bk + tanh(Φ/2) ∗Bp) d (Bk + tanh(Φ/2) ∗Bp)

+d (Bk + tanh(Φ/2) ∗Bp) (Bk + tanh(Φ/2) ∗Bp) +
3

2
(Bk + tanh(Φ/2) ∗Bp)

3

)
.

One computes perturbatively that

M(3,2) =
1

8
Tr

(
−[Φ, Bp]{Cp, Bp}2 +

1

2
(3{Cp, dBk

Φ} − [Φ, dBk
Cp])

{
[Φ, Bp], {Cp, Bp}

})

+ O(Φ3) , (4.62)

and

M(4,1) =
3

8
Tr
{
{Cp, Bp} − 2{Cp, dBk

Φ} + [Φ, dBk
Cp], [Φ, Bp]

} (
Fk −Bp

2
)

+
1

4
Tr
{

[Φ, Bp], {Cp, Bp}
}

([Φ, Fp] + {Bp, dBk
Φ}) + O(Φ3) . (4.63)
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There is no difficulty in computing higher order terms in Φ, but the complete solution is

not obvious. Anyway, the important property is that it exists, at least as a formal power

series in Φ (the issue of convergence being irrelevant in perturbative theory).

The results of this section extend straightforwardly to any consistent K anomaly for

any supergravity theory in arbitrary dimensions. For example, the solution for Tr F̃k is

rather trivial when K admits a U(1) factor, as for lower N -extended supergravity theories.

In that case, Tr F̃g ∧Rab
∧Rab = 0 and one has the anomaly

Au(1) =

∫
Tr (Ck + tanh(Φ/2) ∗ Cp)R

ab
∧Rab . (4.64)

In particular, this anomaly does not vanish when Cp is constant, and the current sources

are set to zero. It follows that the rigid Ward identities are anomalous at one-loop if the

coefficient does not vanish, as is the case for minimal N = 4 supergravity with duality

group SL(2,R), and more generally for N ≤ 4 supergravities.

More specifically, for G = SL(2,R), we can spell out the above formulas in explicit

detail. In this case, the second relation in (4.5) becomes

δsl2α = iWW̄ , δsl2W = −2iαW , (4.65)

where α ≡ Ck and W ≡ Cp are real and complex anticommuting numbers, respectively. If

we denote by φ the complex scalar parametrising the coset SL(2,R)/SO(2) (the analogue

of Φ) the formula (4.3) can be worked out as

δsl2φ =

(
1

2
+

|φ|
tanh 2|φ|

)
W − 2iαφ+

(
1

2|φ|2 − 1

|φ| tanh 2|φ|

)
W̄φ2 (4.66)

and the anomaly (4.64) reads

Au(1) =

∫ (
α− i tanh |φ|

2|φ|
(
φ̄W − φW̄

))
Rab

∧Rab (4.67)

Equivalently, within the triangular gauge parametrisation of SL(2,R)/SO(2) by the com-

plex modulus τ = τ1 + iτ2, and the (hopefully self explanatory) notation

C =




Ch Ce

Cf −Ch


 , (4.68)

the algebra reads

δsl2Ch = −CeCf , δsl2Ce = −2ChCe , δsl2Cf = 2ChCf ,

δsl2τ = −Ce − 2Chτ + Cfτ
2 . (4.69)

The consistent anomaly (4.64) then becomes (Cf τ2 being the parameter of the compensat-

ing u(1) transformation in the triangular gauge)

Au(1) =

∫
Cfτ2 R

ab
∧Rab . (4.70)
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Indeed, explicit computation shows that

δsl2
(
Cfτ2

)
= 0 , (4.71)

but Cfτ2 itself cannot be written as δsl2F(τ): indeed, the vanishing of the Ce component

of δsl2F(τ) implies that F is a function of τ2 only, and the vanishing of the Ch component

then entails that F must be constant.

In the conventional formulation of N = 4 supergravity, and similarly in N = 2 super-

gravity with a semi-simple duality group SL(2,R) × SO(2, n), we see that the non-linearly

realised generator f of sl2 is anomalous at one-loop. More generally, in N = 2 supergrav-

ity theories with vector multiplets scalar fields parametrising a symmetric special Kähler

manifold, the duality group will be anomalous at one-loop. Indeed, one computes simi-

larly as in [17] that the addition of matter multiplets does not permit to cancel the U(1)

gravitational anomaly, the anomaly coefficient of (4.64) being proportional to 24+12nV in

N = 4 supergravity coupled to nV vector multiplets, and to 102 + 10nV + 3nH in N = 2

supergravity coupled to nV vector multiplets and nH hypermultiplets.

5 Compatibility of E7(7) with gauge invariance

Up to this point we have discussed the properties of the E7(7) symmetry and its possible

anomalies, irrespectively of its compatibility with gauge invariance. We now extend this

discussion to the full quantum theory, with the aim of deriving the Ward identities asso-

ciated to the conservation of the E7(7) Noether current, thereby corroborating our main

claim that the non-linear E7(7) symmetry is compatible with all gauge symmetries of the

theory, in the sense that it can be implemented order by order in a loop expansion of the full

effective action. To this aim, we have to make use of the BRST formalism (see e.g. [19, 40]).

Because the algebra of gauge transformations is ‘open’,26 we have to go one step further by

including higher order ghost interactions [41], and ultimately bring in the full machinery

of the Batalin-Vilkovisky formalism [42]. In addition to the usual ghosts and antighosts

(anti-commuting for the bosonic transformations, and commuting for the supersymmetry

transformations) this requires introducing ‘antifields’ for all fields and ghost fields of the

theory. The compatibility of the of E7(7) with the BRST symmetry is then encoded into

two corresponding mutually compatible ‘master equations’.

Now, a complete treatment of our E7(7) invariant formulation of maximal supergravity

along these lines would be very involved and cumbersome, and certainly unsuitable for

practical computations of the type performed in [5, 6]. Instead, we here focus on the

specific features of the duality invariant formulation in comparison with the conventional

formulation of the theory, and the fact that the cancellation of E7(7) anomalies, together

with the well admitted absence of diffeomorphism and supersymmetry anomalies in four

26That is, the gauge algebra closes only modulo the equations of motion.
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space-time dimensions, eliminates any obstruction towards implementing the BRST and

E7(7) master equations at any order in perturbation theory. We emphasise again that

these results do not preclude the appearance of divergent counterterms, but they ensure

that potential divergences must respect the full E7(7) symmetry of the theory.

5.1 Batalin-Vilkovisky formalism

Following [19] we will designate by e‡µ
a , A‡ i

m , ψ‡µ
i and χ‡

ijk the antifields associated to the

vierbein, the vector fields, the gravitino and the Dirac fields, respectively, and by ξµ, Ωa
b

and cm the anticommuting ghost fields associated to diffeomorphism invariance, Lorentz in-

variance, and abelian gauge invariance, respectively; the commuting supersymmetry ghost

is ǫi. In addition we also need antifields ξ‡,Ω‡ ab, c‡m and ǫ‡ i for these ghost fields.

Regarding gauge-fixing, the e7(7) Ward identities can be implemented without further

ado as long as the gauge-fixing manifestly preserves E7(7) invariance. Of course, this is

trivially the case for any sensible gauge choice for diffeomorphism and Lorentz invariance,

and it is also true for the Coulomb gauge we are using. An E7(7)-invariant gauge choice

for local supersymmetry can be achieved in terms of the SU(8)-covariant derivative

Dµψ
i
ν = ∂µψ

i − 1

3

(
ujk

IJ∂µu
ik

IJ − vjkIJ∂µv
ikIJ

)
ψj

ν . (5.1)

(for instance by setting Dµψi
µ = 0), with the extra proviso that the supersymmetry

antighost and the Nielsen-Kallosh field transform in the non-linear representation of E7(7)

conjugate to the one of ψi and ǫi.

In the conventional formulation of the theory, the supersymmetry algebra closes on the

fermionic fields only modulo terms linear in the fermionic equations of motion. Within the

Batalin-Vilkovisky approach, this problem is cured by introducing terms quadratic in the

fermion antifields in the action. The functional form of the BRST operator then includes

these terms in the BRST transformation of the fermions. Let us briefly recall how this

works. Collectively designating the fields and ghosts as ϕa , and their Grassmann parity as

(−1)a , we have

s2ϕa =
∑

b

K(ϕ)ab
δLΣ

δϕb
. (5.2)

This equation simply expresses the fact that algebra closes (that is, s2 ≈ 0) only if the

equations of motion are imposed. Introducing antifields ϕ‡
a , the action Σ[ϕ,ϕ‡] reads

Σ(ϕa , ϕ‡
a) =

1

κ2
S[ϕ] −

∫
d4x

(
∑

a

(−1)aϕ‡
asϕ

a +
κ2

2

∑

ab

ϕ‡
aK

ab(ϕ)ϕ‡
b

)
, (5.3)

The symmetry of the action and the closure of the algebra can then be combined into a

single BRST master equation27 (indexed by a ‡ to distinguish it from the E7(7) master

27See e.g. [40] for further information.
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equation to be introduced below)

(
Σ,Σ

)
‡ ≡

∑

a

∫
d4x

δRΣ

δϕ‡
a

δLΣ

δϕa
= 0 . (5.4)

This equation requires in addition that

sKab +
1

2

∑

c

(
Kac ∂

Lsϕb

∂ϕc
+ (−1)(a+1)(b+1)Kbc ∂

Lsϕa

∂ϕc

)
= 0 , (5.5)

∑

d

(
K cd ∂

LKab

∂ϕd
+ (−1)c(a+b)Kad ∂

LKbc

∂ϕd
+ (−1)b(c+a)Kbd ∂

LK ca

∂ϕd

)
= 0 . (5.6)

These identities are automatically satisfied modulo the equations of motion by integrability

of definition (5.2). For N = 8 supergravity in the conventional formulation, the term

quadratic in the antifields in (5.3) only involves the fermionic antifields ψ∗ i
µ and χ∗ ijk in a

first approximation (i.e. neglecting the antifield dependent terms in (5.2)). In supergravity,

such Kab components associated to the fermions are bilinear in the superghosts ǫi (and

depend as well on the vierbeine and the scalar fields), and the validity of the identity (5.5)

is ensured by certain cubic Fierz identities in ǫi. (5.6) is trivially satisfied because Kab only

depends on fields on which the algebra is satisfied off-shell. Nevertheless, this modification

of the BRST transformation of the fermions also affects the closure of the algebra on

the bosons, such that the BRST transformation of the Lorentz ghost Ωa
b must include

terms linear in the fermion antifields as well. This entails terms quadratic in the antifields

involving the Lorentz ghost antifield Ω‡
ab as well. Considering these terms in the nilpotency

of the linearised Slavnov-Taylor operator (Σ, · ) on the vierbeine, i.e.

(
Σ,
(
Σ, eaµ

)
‡
)
‡ = κ2

∑

a

(
ǭiγ

aKi a
µ (ϕ) + ǭiγaKµi

a(ϕ) +Ka
b
a(ϕ)ebµ

)
ϕ‡
a , (5.7)

where Ki a
µ , Kµi

a and Ka
b
a are the components of Kab to be contracted with ψ̄‡µ

i , ψ̄‡µi

and Ω‡
a
b, respectively, one observes that Ka

b
a is determined in function of Ki a

µ , Kνi
a , such

that the modification of the action to be carried out amounts to replacing the gravitino

antifields appearing in the term quadratic in the fermion antifields by

ψ‡µ
i → ψ‡µ

i − eµaγbΩ
‡ abǫi . (5.8)

In our manifestly E7(7)-invariant formulation, the situation is the same with regard to

the fermion fields, but now the vector fields are also governed by a first order Lagrangian

(first order in the time derivative), and hence the algebra of gauge transformations on the

vectors likewise involves the equations of motion. It is important that the equation of

motion of the vector fields here appears as (2.6), and not in its integrated form (2.8), as

required for the consistency of the Batalin-Vilkovisky formalism. We have checked that the

diffeomorphism transformations do close among themselves, and that local supersymmetry
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closes on the vector fields. However, their commutator on the vector fields close modulo

the equations of motion of the fermion fields, viz.

s2AIJ
i =

Nξ0√
h
e0aebi

[
uij

IJ

(
ǭiγµγab

δLS

δψ̄µ j
+ 12ǭkγab

δLS

δχ̄ijk

)

− vijIJ

(
ǭiγµγab

δLS

δψ̄j
µ

+ 12ǭkγab
δLS

δχ̄ijk

)]
. (5.9)

To remain consistent with the basic symmetry property Kab = −(−1)abKba , the closure

of diffeomorphisms with local supersymmetry on the fermion fields then requires corre-

spondingly the equations of motion of the vector fields. We checked that this is indeed

the case, and that the fermion equations of motion are not involved (as follows trivially

from Lorentz invariance). The quadratic terms in the fermion antifields are also modified

by non-manifestly diffeomorphism invariant terms, such that they are manifestly duality

invariant (and so do not depend on the scalar fields).

The quadratic terms in the antifields of the gauge fields are responsible for the quartic

terms in the ghosts that appear in supergravity [42, 43]. It follows that in the duality

invariant formulation, we will also have quartic terms depending on the diffeomorphism

ghost ξ0 , the supersymmetry ghost ǫi, the abelian antighost c̄m and the supersymmetry

antighost ηi, which in a flat Landau-type gauge for local supersymmetry like Dµψi
µ ≈ 0,

would for example be of the form

Nξ0√
h
e0aebi∂ic̄IJ

(
uij

IJ ǭiγµγabDµη
j − vijIJ ǭiγ

µγabDµηj

)
+ c.c. . (5.10)

In general, such vertices do not contribute to amplitudes of physical fields. However, the

renormalisation of the theory in the absence of regularisation preserving all gauge symme-

tries requires the renormalisation of the composite BRST transformations. In consequence,

the correlation functions involving the insertion of the BRST transformation of the vector

fields do involve such vertices.

Note that one can obtain the solution Σ of the master equation in the covariant for-

mulation form the duality invariant one, by carrying out the Gaussian integration of the

momentum variable Πm i for the complete action Σ with antifields, similarly as in the

second section. Considering for example the terms

Sghost
vec =

∫
d4x

(
A∗ i

m

(
−
(
ξj +Njξ0

)
Fm
ij +

N

2
√
h
ξ0hijε

jklJm
nF

n
kl

)

− c∗m

(
1

2
ξiξjFm

ij + ξ0ξi
(
−NjFm

ij +
N

2
√
h
hijε

jklJm
nF

n
kl

))
+ · · ·

)
(5.11)

and the Fm
ij dependent terms that appear in the supersymmetry transformations of the

fermions, as well as the gauge-fixing terms, one sees that the vector fields only appear

through their field strength Fm
ij . It is therefore important (and true!) that the whole
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quantum action can be treated in the way described in the second section. The Re[F IJ
ij ]

dependent terms in the supersymmetry variation of the fermions and of the sl2(C) ghost

Ωa
b, as well as the ones in the diffeomorphism variation of the vector fields and their

ghost cIJ , are replaced upon Gaussian integration of the momentum variables ΠIJ i by

the solution of ΠIJ i according to their equation of motion. This step will restore manifest

diffeomorphism invariance. All these terms will also produce quadratic terms in the sources,

which define the required equations of motion in order to close the gauge algebra in the E7(7)

invariant formulation of the theory. This way one obtains that the only terms quadratic

in Im[A∗ i
IJ ] involve the diffeomorphism ghost ξµ, and that they vanish once one puts the

source Re[A∗ i
IJ ] equal to zero, in agreement with the explicit computation in the formalism.

5.2 BRST extended current

Having set up the BRST transformations and the Batalin-Vilkovisky framework, the next

task is to define the e7(7) current Ward identities in such a way that their mutual consistency

is preserved also in perturbative quantisation. To this aim, one must in principle couple the

whole chain of operators associated to the current via the BRST descent equations, that

is, extend the current constructed in section 2.4 by appropriate ghost and antifeld terms.

Because the classical current defines a physical Noether charge which is BRST invariant,

one has

sJ(3,0)(Λ) = −dJ(2,1)(Λ) , (5.12)

where we now write J(3,0) ≡ J , indicating the form degree and ghost number. Considering

the functional BRST operator s acting on both fields and antifields, the conservation of

the current reads

dJ(3,0)(Λ) = −sJ(4,−1)(Λ) , (5.13)

where J(4,−1) is the composite operator linear in the antifields

J(4,−1)(Λ) ≡
∑

a

ϕ‡
aδ

e7(7)(Λ)ϕa . (5.14)

Then

dJ(3,0)(Λ) =
∑

a

(
δe7(7)(Λ)ϕa δ

LΣ

δϕa
+ δe7(7)(Λ)ϕ‡

a

δLΣ

δϕ‡
a

)
, (5.15)

as defined by the Noether procedure on the complete gauge fixed action Σ[ϕ,ϕ‡], and where

ϕ‡
a transforms with respect to E7(7) in the representation conjugate to ϕa .

The whole chain of operators appearing in the descent equations defines an extended

form J̃ which is a cocycle of the extended differential d+ s [35],

(d+ s) (J(4,−1) + J(3,0) + J(2,1) + J(1,2) + J(0,3)) = 0 . (5.16)

The complete form of the extended current J̃ which now also depends on the ghosts and

antifields is again very complicated, and its explicit form would not be very illuminating.

– 56 –



J
H
E
P
1
2
(
2
0
1
0
)
0
5
2

Let us nevertheless discuss some salient features of this extended current, neglecting terms

depending on the antifields and terms linear in the equations of motion. With these assump-

tions we can take J(4,−1) to vanish, and J(3,0) can be identified with the Gaillard-Zumino

current constructed in section 2.4, where we also disregard the ‘curl component’ leading to

a trivial cocycle. Let us first rewrite the components of J(3,0) in terms of differential forms,

cf. (2.51), (2.53)

Ri
j = −2iea∧

(
ψ̄i

∧γaψj −
1

8
δi
jψ̄

k
∧γaψk

)
− 1

48
εabcde

b
∧e

c
∧e

d

(
χ̄iklγaχjkl −

1

8
δi
jχ̄

klpγaχklp

)
,

Rijkl = − ⋆ Âijkl +
i

2
ea∧e

b
∧

(
χ̄[ijkγabψl] +

1

4!
εijklpmnpqχ̄

mnpγabψ
q

)
, (5.17)

and

J
(2)
GZ (Λ) = −1

2
Am

∧F
n Λm

pΩpn . (5.18)

Conveniently, the extended current J̃ takes a form similar to the current constructed in

section 2.4

J̃(Λ) = − 1

24
eiξtr

(
V−1R̃VΛ

)
+ J̃

(2)
GZ (Λ) . (5.19)

so we only need to explain how to obtain the ‘tilded’ version of the above currents. The

operator iξ is the (commuting) Cartan contraction with respect to the anti-commuting

vector ξµ; its exponentiated action takes care automatically of all modifications involving

the diffeomorphism ghost fields ξµ [44]. In order to understand how to extend the remaining

piece J
(2)
GZ (Λ) to J̃

(2)
GZ (Λ), it is again convenient to write a Russian formula

(d+ s) (Am + cm) = eiξ F̃m , (5.20)

where the extended curvature F̃ is defined as

F̃ IJ ≡ F IJ + uij
IJ

(
1

4
ǭke

aγaχ
ijk + 2ǭiψj + ǭiǫj

)
− vijIJ

(
1

4
ǭkeaγaχijk + 2ǭiψj + ǭiǫj

)

= F̂ IJ + uij
IJ

(
1

4
[ψ + ǫ]ke

aγaχ
ijk + [ψ + ǫ]

i
[ψ + ǫ]j

)

−vijIJ

(
1

4
[ψ + ǫ]

k
eaγaχijk + [ψ + ǫ]i[ψ + ǫ]j

)
. (5.21)

The gravitinos here appear only in the supercovariantisation of F IJ or through the combi-

nation ψi + ǫi. In addition we need the nilpotent extended differential [44]

d̃ ≡ e−iξ(d+ s)eiξ = d+ s− Lξ + i(ǭγǫ) , (5.22)

where i(ǭγǫ) is the Cartan contraction with respect to the vector ǭiγ
µǫi. Defining

Ãm ≡ Am + cm − iξA
m , (5.23)

it is obvious that

(d+ s) eiξ
(
Ãm

∧F̃
n Λm

pΩpn

)
= eiξ

(
F̃m

∧ F̃
n Λm

pΩpn

)
. (5.24)
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The right-hand-side being gauge-invariant, the extended form R̃ can be obtained from

the equation

d̃

(
1

24
tr
(
V−1R̃VΛ

))
=

1

4
F̃m

∧ F̃
n Λm

pΩpn . (5.25)

which is an extended version of the Gaillard-Zumino construction. For any gauge invariant

extended form, such as R̃ or F̃m, supersymmetry covariance implies that the gravitino field

ψi only appears in supercovariant forms, or ‘naked’, through the wedge product of ψi + ǫi

with supercovariant forms. It follows that R̃ is simply obtained from R by performing the

replacement ψi → ψi + ǫi everywhere inside (5.17).

The (4, 0) component of (5.25) is simply the current conservation. To see that (5.25)

is indeed satisfied for the other components, let us consider the (0, 4) component of this

equation. From (5.21) we see that the right hand side is the e7(7) component of the square

of uij
IJ ǭiǫj − vijIJ ǭiǫj. By E7(7) covariance, the scalar fields dependence then reduces to a

similarity transformation with respect to V (as the left hand side), and one can concentrate

on the e7(7) element quadratic in ǭiǫj . Because (for commuting spinors)

ǭ[iǫj ǭkǫl] = 0 , (5.26)

this term only contributes in the su(8) component i(ǭiǫk)(ǭjǫk) − i
8δ

i
j(ǭ

kǫl)(ǭkǫl). Because

R̃ has a vanishing (0, 3) component, the left hand side is the Cartan contraction of its (1, 2)

component −2iea
(
ǭiγaǫj − 1

8δ
i
j ǭ

lγaǫl

)
with the vector ǫiγ

µǫi. Using the Fierz identity

(ǭiǫk)(ǭjǫk) −
1

8
δi
j(ǭ

kǫl)(ǭkǫl) = −1

2
(ǭkγ

aǫk)

(
ǭiγaǫj −

1

8
δi
j ǭ

lγaǫl

)
, (5.27)

one obtains the validity of the (0, 4) component of (5.17).

Considering the complete antifield dependent extended current J̃ ,28 one can couple

the E7(7) current to the action in a way fully consistent with BRST invariance. Indeed,

considering sources B(p,1−p) for each component of the current J̃ , one obtains that

Σ[B] = Σ +

∫
B̃∧J̃ , (5.28)

where we use the Berezin notation
∫

Tr B̃∧J̃=

∫
Tr (B(0,1)J(4,−1)+B(1,0)∧J(3,0)+B(2,−1)∧J(2,1)+B(3,−2)∧J(1,2)+B(4,−3)J(0,3)) ,

(5.29)

satisfies the master equation

(Σ,Σ)‡ −
∫
dB̃∧

δΣ

δB̃
= 0 . (5.30)

28We have computed the complete ξµ dependent part of J̃ including the antifields to check that the

non-manifest Lorentz invariance does not give rise to extra difficulties. Nevertheless, its exhibition would

not shed much light in this discussion. However we have not computed explicitly the ǫi dependent terms

that would involve the quadratic terms in the antifields of the solution Σ of the master equation.
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This formal notation means that

(d+ s)B̃ = 0 . (5.31)

This would be enough for insertions of one single current in a BRST invariant way, but

consistency with E7(7) will require the consideration of higher order terms in B̃ in Σ, such

that these equations are then only valid up to quadratic terms in the sources B(p,1−p).

Introducing a source for the E7(7) current, the rigid e7(7) Ward identity is promoted to

a local e7(7) Ward identity expressing the conservation of the E7(7) current, such that

δe7(7)B̃ = −dC − {B̃, C} . (5.32)

All the components of B̃ thus transform in the adjoint representation, and B(1,0) transforms

as an e7(7) gauge field. In order for the current Ward identity to be satisfied, each derivative

in the action must be replaced by an e7(7) covariant derivative with respect to the gauge field

B(1,0). It follows that the linear component is defined as
∫

Tr B(1,0)∧J(3,0), by definition of

the Noether current. The kinetic terms of the scalar fields, the Maxwell fields, their ghosts,

and the supersymmetry ghost being quadratic in derivatives, they give rise to bilinear terms

in B(1,0) in the action. The compatibility with BRST invariance therefore requires to also

add quadratic terms in the other sources defining B̃.

In order to ensure that δg anticommutes with s, one must then define the BRST

transformation of B̃ such that

(d+ s)B̃ + B̃2 = 0 . (5.33)

In this way one has the consistent ‘very extended’ Russian formula

(d+ s+ δg)
(
B̃ + C

)
+
(
B̃ + C

)2
= 0 , (5.34)

and

sB(0,1) = −B(0,1)
2 sB(1,0) = −dB(0,1) − [B(1,0), B(0,1)] . (5.35)

The master equation for the completed Σ[B̃] (including quadratic couplings in B̃ is therefore

(Σ,Σ)‡ −
∫

(dB̃ + B̃2)∧ · δΣ
δB̃

= 0 , (5.36)

It is straightforward to compute the solution Σ[B̃] for a non-linear sigma model coupled

to gravity, but the derivation of the complete solution in the case of N = 8 supergravity

is beyond the scope of this paper. Nevertheless, one can say that this solution can be

written as

Σ[B̃] =
1

κ2
S[ϕ, B̃] −

∫
d4x

(
∑

a

(−1)aϕ‡
asB̃ϕ

a +
κ2

2

∑

ab

ϕ‡
aK

ab(ϕ)ϕ‡
b

)
, (5.37)

such that sB̃ defines a differential operator which is nilpotent modulo the equations of

motion of S[ϕ, B̃] satisfying

sB̃S[ϕ, B̃] = 0 , (5.38)
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and which anti-commutes with δg(C) for a x dependent parameter C.29 We emphasise that

this is not equivalent to gauging the theory with respect to a local E7(7) symmetry, because

the components of B̃ are classical sources and do not constitute part of a supermultiplet

in the conventional sense.

In order to arrive at a consistent definition of the BRST master equation (5.4) and the

e7(7) master equation (4.14), one has to introduce sources ϕg
a for the non-linear symmetry,

sources (or antifields) for the BRST transformations, as well as sources ϕ‡g
a for the non-

linear transformations of the BRST transformations [45], which all transform with respect

to E7(7) in the representation conjugate to the one of the corresponding fields. Given

the E7(7) invariant solution (5.37) to the BRST master equation, one computes that the

complete action30

Σ =
1

κ2
S[ϕ, B̃] −

∫
d4x

∑

a

(−1)a
(
ϕ‡
asB̃ϕ

a + ϕg
aδ

p(Cp)ϕ
a + ϕ‡g

a δ
p(Cp)sB̃ϕ

a
)

− κ2

2

∫
d4x

∑

ab

(
ϕ‡
a − (−1)aδp(Cp)ϕ

∗g
a

)
Kab(ϕ)

(
ϕ‡
a − (−1)bδp(Cp)ϕ

‡g
b

)
, (5.39)

yields a consistent solution of the BRST master equation

∫
d4x

∑

a

(
δRΣ

δϕ‡
a

δLΣ

δϕa
− (−1)aϕg

a

δLΣ

δϕ‡g
a

)
−
∫

(dB̃ + B̃2)∧ · δΣ
δB̃

= 0 , (5.40)

the linear su(8) Ward identity

∫
d4x

∑

a

(
δk(Ck)ϕ

a δ
LΣ

δϕa
+ δk(Ck)ϕ

g
a

δLΣ

δϕg
a

+ δk(Ck)ϕ
‡
a

δLΣ

δϕ‡
a

+ δk(Ck)ϕ
‡g
a

δLΣ

δϕ∗g
a

)

−
∫ ((

dCk + {B̃k, Ck}
)

∧ · δ
LΣ

δB̃k

+ {Ck, B̃p}∧ · δ
LΣ

δB̃p

+ {Ck, Cp} ·
δLΣ

δCp

)
= 0 , (5.41)

and the E7(7) master equation

∫
d4x

∑

a

(
δRΣ

δϕg
a

δLΣ

δϕa
+ (−1)aϕ‡

a

δLΣ

δϕ‡g
a

+ (−1)aδk(Cp
2)ϕ‡g

a

δLΣ

δϕ‡
a

− ϕg
aδ

k(Cp
2)ϕa

)

−
∫ ((

dCp + {B̃k, Cp}
)

∧ · δ
LΣ

δB̃p

+ {Cp, B̃p}∧ · δ
LΣ

δB̃k

)
= 0 . (5.42)

According to the quantum action principle [14], these functional identities are satisfied

by the n-loop 1PI generating functional Γn, modulo possible anomalies defined by local

functionals Ag
n and A‡

n. We have established in this paper that there is no non-trivial

29Whereas the BRST operator s anti-commutes with δg(C) only for constant parameter C.
30The only sources ϕ‡g

a that are involved quadratically in the action are ψ‡g µ
i , χ‡g

ijk, A‡g i
m , and −δp(Cp) is

defined as a linear e7(7) transformation on A‡g i
m , and as an su(8) transformation of parameter tanh(Φ/2)∗Cp

on ψ‡g µ
i and χ‡g

ijk.
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anomaly for the non-linear E7(7) master equation. It is commonly admitted (although no

general proof exists to our knowledge) that there is no non-trivial anomaly to the BRST

master equation in four dimensions (that is, diffeomorphisms and local supersymmetry are

non-anomalous in four space-time dimensions). Once one has enforced the E7(7) master

equation, the cohomology of the BRST operator of ghost number one associated to the

possible anomalies to the BRST symmetry must be defined on the complex of E7(7) invari-

ant functionals. Nevertheless, it rather obvious that the a BRST antecedent of an E7(7)

invariant solution to the BRST Wess-Zumino consistency condition can always be chosen

to be E7(7) invariant. We therefore conclude that there exists a renormalisation scheme

such that these three functional identities are satisfied by the 1PI generating functional Γ

to all orders in perturbation theory.

The Pauli-Villars regularisation employed in this paper breaks all these Ward iden-

tities, and so the determination of the non-invariant finite counterterms would require

checking their validity in each order of perturbation theory. In principle, preserving E7(7)

invariance requires testing the e7(7) Ward identities separately, and local supersymmetry

will not be enough. As an example, the three-loop supersymmetry invariant starting as the

square of the Bel-Robinson tensor does not preserve E7(7) invariance [22, 23]. Therefore,

the supersymmetry master equation does not determine its coefficient in the bare action,

independently of the property that there is no logarithmic divergence at this order, and one

must use the E7(7) master equation to determine its value. L = 3 is therefore the first loop

order at which a renormalisation prescription may fail to preserve E7(7) invariance. One

would expect that the prescription used in [5, 6] to compute N = 8 on-shell amplitudes

should satisfy the e7(7) Slavnov-Taylor identities, but this needs to be checked.

The BRST master equation and the E7(7) master equation are more constraining than

the requirement of local supersymmetry and rigid E7(7) invariance. For this reason it would

be interesting to see if the prospective divergent counterterms at 7 and 8 loop could possibly

be ruled out by these master equations.

5.3 Energy Coulomb divergences

There is still one subtlety concerning the Coulomb gauge which we have not yet addressed.

It is well known that the Coulomb gauge in non-abelian gauge theories gives rise to energy

divergences which are not easily dealt with in the renormalisation program [46, 47]. Because

the ghost ‘kinetic’ term does not involve a time derivative, any ghost loop contribution is

the energy integral of a function independent of the energy k0 , which diverges linearly.

However, in the flat Coulomb gauge we use the ghost field cm only appear in its free

‘kinetic’ term

− c̄m∂i∂ic
m . (5.43)

Therefore, although the antighost c̄m couples to the other fields via the diffeomorphism

ghosts ξµ and the supersymmetry ghosts ǫi, and so ‘ghost particles’ can decay, they cannot
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be created, and there is no closed loops involving the ghost cm. It follows that the Coulomb

energy divergences do not appear in the loop corrections to amplitudes. It is in fact very

important that the Coulomb gauge we use is field independent for this property to be

true. For instance, a metric dependent gauge such as ∂i(
√
hhijAj) would give rise to the

ghost Lagrangian

− c̄m∂i

(√
hhij∂jc

m
)
, (5.44)

whence perturbation theory would involve energy divergences through the couplings to the

metric. Although BRST invariance in principle guarantees that these energy divergences

should cancel with the energy divergences involving vector fields, the compensating process

might be difficult to exhibit.

Even within the ‘free Coulomb gauge’, the energy divergences do not disappear when

one considers insertions of non-gauge-invariant composite operators, and in particular when

one considers insertions of the E7(7) current, since the latter couples to the ghosts in a way

very similar as in non-abelian gauge theory, in such a way that (5.43) is replaced by

− c̄mDiDic
m (5.45)

with the E7(7) covariant derivative Dic
m ≡ ∂ic

m + Bm
i nc

n. For all (and only for) the

correlation functions of N E7(7) currents, there is one one-loop diagram associated to a

‘ghost particle’ interacting with each of the currents for each ordering of the currents,

which gives an integral of the form

〈 N∏

a=1

Jia(Xa, pa)
〉

ghost

= −2
∑

ς

Tr




N∏

ς(a)=1

Xς(a)


×

∫
d4k

(2π)4

(
2kiN −∑N−1

c=1 piN
c

)∏N−1
a=1

(
2
(
kia +

∑a−1
b=1 p

ia

b

)
+ pia

a

)

∏N
a=1

(
k +

∑a−1
b=1 pb

)2 + C.T. , (5.46)

where the sum over ς is the sum over non-cyclic permutations, (i.e. the permutations iden-

tified modulo cyclic ones), and C.T. correspond to the diagrams involving contact terms.

The contributions of the vector fields to such insertion is given at one-loop by

〈 N∏

a=1

Jia(Xa, pa)
〉

vec

= (−i)N
∑

ς

Tr
N∏

a=1

Xς(a)

∫
d4k

(2π)4

N∏

b=1

(
∆(kς,b)Υ

iς(b)(kς,b, kς,b+pς(b))
)

+C.T., (5.47)

where kς,a = k+
∑ς(a)−1

ς(b)=1 pς(b) and the sum over ς is the sum over non-cyclic permutations.

The leading order in k0 in the limit k0
2 → +∞ of the product

∆(k)Υk(k, k + p) =

1

k2




iδm
n

(
δ
j

ik
k − δkik

j + kiδ
kj
)

+ O(k0
−1) Ωmnεkilk

lk0
−1 + O(k0

−2)

Ωmnε
jklklk0 + O(1) ikkδm

n


(5.48)
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is such that

〈 N∏

a=1

Jia(Xa, pa)
〉

vec

=
∑

ς

tr

N∏

a=1

Xς(a)

∫
d4k

(2π)4
tr

(
N∏

b=1

Kiς(b)(kς,b) + O(k0
−1)

)
, (5.49)

with

Kk(k) =
1

k2




δ
j

ik
k − δkik

j + kiδ
kj εkilk

l

εjklkl kk


 , (5.50)

where we used the property that the trace is invariant with respect to inverse rescalings of

the two off-diagonal components,31 and the property that the contact terms are subleading

in k0 because

∆(k)Rij =




O(k0
−1) 0

O(1) 0


 . (5.51)

We observe that this matrix can be written

Kk(k) =
kiσ

i

k2
σk , (5.52)

where the σi are the 4 × 4 pure imaginary Pauli matrices,

σk ≡ i




εi
jk δki

−δkj 0


 , (5.53)

satisfying

σiσj = δij − iεijkσk . (5.54)

Rewriting the ‘leading’ vector field contribution to the N su(8) currents insertion in this

way,

〈 N∏

a=1

Jia(Xa, pa)
〉

vec

=

∫
dk0
2π

∑

ς

tr
N∏

a=1

Xς(a)

∫
d3k

(2π)3
tr

(
N∏

b=1

1

/kς,b
σiς(b) + O(k0

−1)

)
,

(5.55)

one recognises that the integrand

∑

ς

tr

N∏

a=1

Xς(a)

∫
d3k

(2π)3
tr

N∏

b=1

1

/kς,b
σiς(b) , (5.56)

is the one-loop N su(8)-currents insertion in a three-dimensional theory of free bosonic

spinor fields.

31This can easily be proved using a similarity transformation of the form K → S−1KS with

S =

0

@

δ
j
ik0

1
2 0

0 k0
− 1

2

1

A
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It follows that the contribution to the N su(8)-current insertions responsible for energy

divergences can be computed in an Euclidean three-dimensional effective theory, with 56

doublets of anti-commuting scalar fields c̄m, c
m and 56 Dirac spinor fields λm, understood

as SU(2) 2 ⊕ 2̄ real spinors with

λ̄m = λn TGnm , (5.57)

coupled to an external su(8)-current as

S3D =

∫
d3x

(
1

2
λ̄m /Dλm − c̄mDiD

icm
)
. (5.58)

The corresponding contributions to the N su(8)-currents insertions are

exp(−Γ[B]) =
Det[DiD

i]

Det[ /D]
1
2

. (5.59)

and therefore do not vanish. Nevertheless, they can be compensated by the contribution of

a trivial free-theory. Consider the fermionic fields θm
i , θ̄m and the bosonic fields Lm, L̄m,

with BRST transformations

sθm
i = ∂iL

m , sLm = 0 , sL̄m = θ̄m , sθ̄m = 0 . (5.60)

The BRST invariant Lagrangian

1

2
Ωmnε

ijkθm
i ∂jθ

n
k

+ s
(
L̄m∂iθ

m
i

)
=

1

2
Ωmnε

ijkθm
i ∂jθ

n
k

+ θ̄m∂iθ
m
i + L̄m∂i∂iL

m , (5.61)

is a fermionic equivalent of the abelian Chern-Simons Lagrangian. The coupling of this

theory to the current gives rise to a contribution to the N su(8)-current insertions which

cancels the ratio of determinants (5.59). One can therefore disregard the energy divergences

without affecting the BRST symmetry, although the extended current (5.19) is modified

by a non-trivial BRST cocycle

J̃(Λ)C ≈ 1

2
dt∧

(
dxiθm

i + Lm
)
∧
(
dxjθn

j + Ln
)
ΩnpΛm

p . (5.62)

Nevertheless, this term vanishes when the equations of motion are imposed with the ap-

propriate boundary conditions,

∂[iθ
m
j] = 0 , ∂iθ

m
i = 0 ⇒ θm

i = 0 . (5.63)

This contribution to the energy divergences is reproduced by the Pauli-Villars fields,

within the prescription for the vector fields defined in section 3.2, and the prescription for

the ghosts that their Pauli-Villars Lagrangian is mass-independent. For the ghosts, this

implies that their contribution is entirely eliminated by their Pauli-Villars ‘partners’, and

one simply omits them at one-loop. This prescription is rather natural, since it preserves the

BRST symmetry associated to the abelian gauge invariance of the Pauli-Villars vector fields
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(the mass term in (3.31) being MΓmnε
ijkAm

i F
n
jk). The leading k0 independent integrand

in (5.47) is mass-independent for the Pauli-Villars vector field Feynman rules as well, and

that is why their contribution cancel precisely the vector fields energy Coulomb divergences.

By property of the Pauli-Villars regularisation, the regularised divergences in M can be

computed by expending the integrant in powers of the external momenta (since p2 ≪ M2

and p 2
0 ≪M2), and no non-local divergent contribution can be produced. The energy di-

vergences are therefore consistently eliminated within the Pauli-Villars regularisation. One

computes indeed that the divergent contribution to the regularised two-points function is

〈
Ji(X1, p)J

j(X2 ,−p)
〉

vec+PV

∼ i

48π2
Tr (X1X2)

(
aM2 −

(
δij
(
p2 − p 2

0

)
− pipj

)
lnM

)
,

(5.64)

similarly as for the Dirac fermion contribution. In particular, we see that the Coulomb

energy divergence

〈
Ji(X1, p)J

j(X2 ,−p)
〉

ghost+λλ̄

=

∫
dk0
4π

Tr (X1X2)
1

|p|
(
δijp2 − pipj

)
, (5.65)

does not require a ‘catastrophic’ non-local renormalisation

∝
∫

d4p

(2π)4
M

|p|
(
δijp2 − pipj

)
Tr Bi(p)Bj(−p) , (5.66)

within the prescription. The coefficient a depends on the axial / vector character of the

elements X1 and X2, and is not unambiguously determined within the prescription, because

it diverges logarithmically in the UV (i.e. at α→ 0)

aA =

∫ ∞

0
dα

(
5

3
M−2α−2

(
e−αM2 − 1

)
+
(
3α−1 + 2M2

)
e−αM2

)

aV =

∫ ∞

0
dα

(
5

3
M−2α−2

(
e−αM2 − 1

)
+

1

3
α−1e−αM2

)
. (5.67)

This difficulty is not associated to the Coulomb divergences, but to the general property

that the Pauli-Villars regularisation does not permit to regularise divergences behaving like

∼ M2 lnM . For example, the same problem appears in the Dirac fermion contribution to

the two-point function when X1 and X2 are axial. These divergences are irrelevant anyway,

since they do not affect the renormalised correlation functions at higher orders.

6 Conclusions

We have exhibited in this paper the consistency of the duality invariant formulation of

N = 8 supergravity in perturbation theory. The non-standard non-manifestly Lorentz

invariant Feynman rules turn out to satisfy the quantum action principle, and diffeo-

morphism invariance can therefore be maintained through appropriate renormalisations.

The theory can be gauge-fixed within the Batalin-Vilkovisky formalism, and although the
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abelian ghosts exhibit Coulomb energy divergences in insertions of the E7(7) current, these

divergences are consistently removed within the Pauli-Villars regularisation.

Furthermore, we have solved the Wess-Zumino consistency conditions for the anomaly

associated to the non-linear e7(7)-current Ward idendities, and shown that these solutions

are uniquely determined in terms of the corresponding solutions to the Wess-Zumino con-

sistency condition associated to the linear su(8)-current Ward identity. It follows that any

non-linear E7(7) anomaly in perturbation theory is entirely determined by the one-loop

coefficient of the linear su(8) anomaly. In particular, we have explicitly computed the

one-loop contribution of the vector fields to the anomaly, establishing the validity of the

family’s index prediction, and therefore the vanishing of the anomaly at one-loop.

The main result of the paper is that the non-linear Slavnov-Taylor identities associated

to the e7(7) Ward identities are maintained at all orders in perturbation theory, if one renor-

malises the theory appropriately. Although we proved this theorem within the symmetric

gauge, it remains in principle valid within the SU(8) gauge invariant formulation [16].

What are the implications of the non-linear E7(7) symmetry for possible logarithmic di-

vergences of the theory? Regarding the definition of BPS supersymmetric invariants which

cannot be written as full superspace integrals (but as integrals over subspaces of superspace

classified by their BPS degree), the linear approximation suggests that they cannot be du-

ality invariant. Indeed, the BPS invariants are defined in the linearised approximation as

partial superspace integrals of functions of the scalar superfield Wijkl(x, θ) = φijkl +O(θ),

but there is no E7(7) invariant function that can be built out of these scalar fields in any

SU(8) representation. It is therefore hard to see how such supersymmetric invariants (i.e.

the supersymmetrisations of the Bel-Robinson square R4, ∂4R4 and ∂6R4) could be made

invariant under the full non-linear duality symmetry. Nevertheless, this argument may

not be entirely ‘watertight’, as a similar argument appears to fail in higher dimensions,

where, however, the duality groups are non-exceptional. For instance, the logarithmic di-

vergences found in dimensions ≥ 6 imply that there must exist an SO(5, 5) invariant 1/8

BPS counterterm in six dimensions, an SL(5,R) invariant 1/4 BPS counterterm in seven

dimensions, and an SL(2,R)×SL(3,R) invariant 1/2 BPS counterterm in eight dimensions.

Nevertheless, [22, 23] exhibited that the 1/2 BPS invariant is not E7(7) invariant, which

implies that the absence of logarithmic divergence at 3-loop is a consequence of the e7(7)

Ward identities.

The duality invariance may therefore entail various non-renormalisation theorems,

which might explain the absence of logarithmic divergences in maximal supergravity in

five dimensions at four loops [6], and in maximal supergravity in four dimensions at three,

five and six loops. A similar argument would lead to the conclusion that N = 6 super-

gravity admits its first logarithmic divergence at five loops, and N = 5 supergravity at

four loops. However, establishing such non-renormalisation theorems will require further

investigation of BPS invariants in supergravity.

As another application, the e7(7) Slavnov-Taylor identities such as (4.16) may imply
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special identities among the on-shell amplitudes in the ‘multi-soft-momenta limit’, gener-

alising the ones derived in [48] at all orders in perturbation theory.

As shown by several examples (see e.g. [7]), the study of supersymmetric counterterms

is not enough to reach definite conclusions regarding the appearance of certain logarithmic

divergences in supersymmetric theories. The non-linear e7(7) Ward identities may there-

fore imply more stringent restrictions than one would deduce from the existence of E7(7)

invariant supersymmetric counterterms.
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