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1 Introduction

In the recent paper [1] we (A.Ch.,V.M) have proposed a Higgs mechanism for gravity. In

our model the graviton becomes massive as a result of spontaneous symmetry breaking,

where four scalar fields acquire non-vanishing expectation values. As a result, three out

of four degrees of freedom of scalar fields are absorbed producing a massive graviton with

five degrees of freedom, while one degree of freedom remains strongly coupled. Our model

is explicitly diffeomorphism invariant and, in distinction from bigravity theories, it is sim-

ply given by General Relativity supplemented with the action of four extra scalar fields.

Therefore it is completely analogous to the standard Higgs mechanism used to give masses

to the gauge fields, where masses are acquired as a result of the interaction with external

classical scalar fields. For instance, in the standard electroweak theory one also uses four

(real) scalar fields to give masses to three vector bosons, and one remaining degree of free-

dom becomes a Higgs boson. However, in distinction from electroweak theory, in our case

the analogue of the Higgs boson remains strongly coupled and hence completely decouples

from gravity and other matter.

The theory with four scalar fields was exploited before by several authors (see [15–

17] and references therein). In our case we have found the Lagrangian which resolved

the problems that faced finding a consistent theory for massive gravitons. On one hand

the model produces a graviton mass term with explicitly invariant form even for finite

diffeomorphisms, and on the other hand, keeps the dangerous mode which could produce

a ghost, in the strong coupling regime where it is completely harmless. In the linear order

the mass term is of the Fierz-Pauli form [2], which is uniquely fixed by the requirements

of the absence of extra scalar degree of freedom. The analysis by Deser and Boulware [3]

however lead to the conclusion that in the massive theory the extra scalar degree of freedom

reappears at nonlinear level and does not decouple, thus making massive gravity to be an

ill-behaved theory. In distinction from [3], where diffeomorphism invariance is explicitly
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spoiled, our theory is diffeomorphism invariant and therefore the g0α components of the

metric remain always the Lagrange multipliers, while as we will show later, the scalar

fields are always in the strong coupling regime above so called Vainshtein energy scale.

This corresponds to extremely small energy and therefore the possible ghost is irrelevant.

There were many interesting attempts to extend massive gravity beyond the linear

approximation in a way where one can avoid the extra mode and ghost, also at the nonlinear

level (see, for instance, [13, 18, 19, 21, 23, 24] and references there). In particular, in the

recent interesting papers [23, 24] an extension of the Fierz-Pauli action was found for which

the ghosts are absent even at nonlinear level in the decoupling limit.

The main purpose of this paper is to investigate the existence of a smooth limit of our

model to Einstein gravity, when the mass of the graviton vanishes. It was noticed long

ago by van Dam, Veltman and Zakharov [4, 5] that in linearized massive gravity the extra

scalar mode of the graviton did not disappear and remained coupled to matter even in the

limit of a vanishing graviton mass. In turn, this spoils predictions of General Relativity

either for the perihelion precession or deflection of starlight. This effect is known as the

van Dam-Veltman-Zakharov (vDVZ) discontinuity and was first thought to be a no-go the-

orem for massive theories of gravity [4, 5]. However, it was pointed out by Vainshtein that

the discontinuity could be an artifact due to the breakdown of the perturbation theory of

massive gravity in the massless limit [6]. He has shown that in the case of gravitational

field produced by a source of mass M0 the nonlinear corrections become important at scales

r < RV ≡M
1/5
0 m

−4/5
g (in Planck units) and conjectured that in the strong coupling regime

General Relativity is restored. When the mass of the graviton mg vanishes the Vainshtein

radius RV grows and becomes infinite, thus providing a continuous limit to General Rel-

ativity in case the Vainshtein conjecture is correct. At distances r ≪ RV , around a static

spherically symmetric massive source of mass M0 the full non-linear strongly coupled mas-

sive gravity has to be considered in order to recover the Einstein theory, which makes the

proof of the Vainshtein conjecture non trivial. The question of continuous matching of the

solutions below and above the Vainshtein radius have been extensively addressed in recent

literature. The first model where such a transition was demonstrated is Dvali-Gabadadze-

Porrati (DGP) model which imitates many features of massive gravity [13, 20]. There was

a claim that in the bigravity version of massive graviton the corresponding solutions do

not match [7], but it was recently shown that this claim is not justified [8–10].

In this paper we will find the Vainshtein scale and will prove Vainshtein conjecture

in the Higgs model of massive gravity in the case when the gravitational field is produce

by a source of mass M0. Moreover, we will find how the concrete value of the Vainshtein

scale depends on the nonlinear extension of the Pauli Fierz term, or in other words on the

interactions of scalar fields used to produce massive gravity. As a result we will determine

possible Vainshtein scales for a wide class of Higgs gravity models. We will also derive in

our model the leading corrections to the gravitational potential within Vainshtein scale,

which are similar, but not identical to this type of correction obtained in the framework of

the DGP model in [20–22].

Finally, we will discuss the implications of our results obtained in classical theory when

extended to quantum theory. In particular we argue that in quantum theory there must be
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a cutoff scale at energies m
4/5
g , above which the scalar fields enter strong coupling regime

and completely decouple from gravity and other matter. Because this scale is extremely

small for the realistic mass of the graviton it makes the problem of ghost which could

appear only below this scale completely irrelevant. For the scalar and vector modes of the

massive graviton the cutoff scale is an analog of the Planckian scale for the tensor graviton

modes, which also become strongly coupled above Planck scale. The obtained cutoff scale

is in agreement with results of [11, 12, 20].

2 Higgs for graviton: basics

We employ four scalar fields φA, A = 0, 1, 2, 3 to play the role of Higgs fields. These will

acquire a vacuum expectation value proportional to the space-time coordinates, thus giving

mass to the graviton. Let us introduce the “composite metric”

HAB = gµν∂µφ
A∂νφ

B , (2.1)

which is scalar with respect to diffeomorphism transformations. The field indices A,B, · · · ,
are raised and lowered with the Minkowski metric ηAB . The diffeomorphism invariant

action which will be used as our model, is given by

S = −1

2

∫

d4x
√−gR+

M2

8

∫

d4x
√−g



3

(

(

1

4
H

)2

− v2

)2

− v2H̃A
BH̃

B
A



 , (2.2)

where

H̃A
B = HA

B − 1

4
δA
BH, (2.3)

is the traceless part of the “composite metric” and where we have set 8πG = 1. The

parameter v controls the symmetry breaking scale. As will be seen later, the induced mass

of the graviton is equal to mg = Mv2 and hence when v → 0 gravity becomes massless.

It is clear that in this limit the only surviving term in action (2.2) is Einstein gravity

and M2H4 for the four scalar fields, which are in the regime of strong coupling and do

not possess linear propagators. In the phase with restored symmetry the total number of

degrees of freedom is six: two of them describe massless graviton and four correspond to

scalar fields which are decoupled from gravity at linear level.

We show next that when the symmetry is broken, three out of four scalar fields are

“eaten” and produce the massive graviton with five degrees of freedom, while the “sur-

viving” degree of freedom will remain strongly coupled. In case when v 6= 0, the unique

Minkowski vacuum solution of the equations of motion, gµν = ηµν , corresponds to the

fields, which linearly grow with coordinates, that is, φA =
√
vδA

β x
β. Let us consider

perturbations around Minkowski background,

gµν = ηµν + hµν , φA =
√
v
(

xA + χA
)

(2.4)

and define

h̄A
B ≡ 1

v
HA

B − δA
B = hA

B + ∂AχB + ∂Bχ
A (2.5)

+ ∂Cχ
A∂CχB + hA

C∂
CχB + hC

B∂Cχ
A + hC

D∂
DχB∂Cχ

A,

– 3 –



J
H
E
P
1
2
(
2
0
1
0
)
0
2
3

where indices are moved with the Minkowski metric, in particular, χB = ηBCχ
C and

hA
B = ηBCδ

A
µ δ

C
ν h

µν . We point out that we have included a factor
√
v as coefficient of χA

to obtain simpler expressions. In reality in all our results that will subsequently follow we

have to make the replacement

χA → χA 1√
v

=

(

M

mg

)
1
4

χA.

This, however, will not effect most of our conclusions, and we will thus comment on it only

when necessary. With the help of the expressions

H = v
(

h̄+ 4
)

, H̃A
BH̃

B
A = v2

(

h̄A
Bh̄

B
A − 1

4
h̄2

)

,

we can rewrite the action for the scalar fields in the following form

Sφ =
M2v4

8

∫

d4x
√−g

[

h̄2 − h̄A
Bh̄

B
A +

3

42
h̄3 +

3

44
h̄4

]

. (2.6)

We would like to stress that we did not use any approximations to derive (2.6), and h̄A
B

are diffeomorphism invariant combinations of the scalar fields and metric up to an arbi-

trary order.

3 Physical degrees of freedom of the massive graviton

We consider now small perturbations of the metric and scalar fields and neglect higher

order terms. In this case

h̄A
B = hA

B + ∂AχB + ∂Bχ
A + O(h2, χ2), (3.1)

and in the leading order, action (2.6) describes Fierz-Pauli massive gravity, where the mass

of the graviton is equal to mg = Mv2. However, we have to stress that in distinction from

the Fierz-Pauli theory our model does not break diffeomorphism invariance and coincides

with this theory only in the unitary gauge where all χA = 0. In turn, imposing these gauge

conditions completely fixes the coordinate system making the interpretation of the results

rather obscure. If one would try to treat χA as Stückelberg “vector” field and consider

the diffeomorphism transformations for the vectors rather than some obscure “fictitious”

symmetries, then one unavoidably would conclude that the “vector components” must be

treated as the perturbations of four scalar fields with nonzero background values, thus

arriving at our model. As we will see in the next section the difference between the

noncovariant Fierz-Pauli approach and our model becomes even more dramatic at higher

orders. However, we first study the linearized theory using Lorentz-violating approach to

explicitly reveal the true physical degrees of freedom of the massive graviton. Namely, we

use the method usually applied in cosmological perturbation theory and classify the metric

perturbations according to the irreducible representations of the spatial rotation group [25].

The h00 component of the metric behaves as a scalar under these rotations and hence

h00 = 2φ, (3.2)
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where φ is a 3-scalar. The space-time components h0i can be decomposed into a sum of

the spatial gradient of some 3-scalar B and a vector Si with zero divergence:

h0i = B,i + Si, (3.3)

where B,i = ∂B/∂xi = ∂iB and ∂iSi = 0.

In a similar way hij can be written as

hij = 2ψδij + 2E,ij + Fi,j + Fj,i + h̃ij , (3.4)

where ∂iFi = 0 and ∂ih̃ij = 0 = h̃i
i. The irreducible tensor perturbations h̃ij have two

independent components and describe the graviton with two degrees of freedom in a dif-

feomorphism invariant way. The scalar perturbations are characterized by the four scalar

functions φ,ψ,B, and E. In empty space they vanish and are induced entirely by matter,

which in our case are the scalar fields. The vector perturbations of the metric Si and Fi are

also due to the matter inhomogeneities The matter perturbations can also be decomposed

into scalar and vector parts:

χ0 = χ0, χi = χ̃i + π,i (3.5)

where ∂iχ̃
i = 0. In the linear approximation, scalar, vector and tensor perturbations are

decoupled and can be analyzed separately.

Scalar perturbations. Up to first order in perturbations we have hαβ = −ηανηβµhµν

and using the definition of h̄A
B in (2.5) we find that in the leading order approximation

(S)h̄0
0 = −2φ+ 2χ̇0, (S)h̄0

i = −B,i − π̇,i + χ0
,i,

(S)h̄i
k = 2ψδik + 2E,ik + 2π,ik. (3.6)

Substituting these expressions in (2.6), keeping only second order terms, and expanding

the Einstein action up to second order in metric perturbations we obtain the following

action for the scalar perturbations:

(S)δ2S =

∫

d4x

{

−3ψ̇2 + ψ,iψ,i + φ
[

2∆ψ −m2
g(3ψ + ∆(E + π))

]

+ 2ψ̇∆
(

B − Ė
)

+m2
g

[

3ψ
(

ψ + χ̇0
)

+
(

2ψ + χ̇0
)

∆(E + π)

+
1

4

(

χ0 −B − π̇
)

,i

(

χ0 −B − π̇
)

,i

]}

, (3.7)

where m2
g = M2v4 and the dot denotes derivative with respect to time. We see that φ is a

Lagrangian multiplier which implies the constraint

∆ψ =
m2

g

2
(3ψ + ∆(E + π)). (3.8)

Another constraint is obtained by variation with respect to B:

ψ̇ = −
m2

g

4

(

χ0 −B − π̇
)

. (3.9)
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To simplify further the calculations we select the longitudinal gauge B = E = 0, which

when used in conjunction with (3.8), simplifies the action (3.7) to

(S)δ2S =

∫

d4x

[

−3ψ̇2 + ψ,iψ,i

+m2
g

(

3ψ
(

ψ + χ̇0
)

+
(

2ψ + χ̇0
)

∆π +
1

4

(

χ0 − π̇
)

,i

(

χ0 − π̇
)

,i

)]

.

Using constraints (3.8) and (3.9) with B = E = 0, imply

m2
g∆π =

(

2∆ − 3m2
g

)

ψ (3.10)

m2
g∆χ

0 = −
(

2∆ + 3m2
g

)

ψ̇ (3.11)

which can be inverted to express π and χ0 in terms of ψ:

π =

(

2

m2
g

− 3

∆

)

ψ, (3.12)

χ0 = −
(

2

m2
g

+
3

∆

)

ψ̇ (3.13)

Substituting these relations in the action above we obtain

(S)δ2S =

∫

d4x

[

−3ψ̇2 + ψ,iψ,i +m2
g

(

6

m2
g

ψ̇2 − 4

m2
g

ψ,iψ,i − 3ψ2

)]

= −3

∫

d4x
[

ψ
(

∂2
t − ∆ +m2

g

)

ψ
]

. (3.14)

Note that the potential ψ is gauge invariant with respect to infinitesimal diffeomorphism

transformations: xα → x̃α = xα + ξα. Therefore the derived result does not depend on

the particular gauge we used to simplify the calculations of the action. First of all we see

that the scalar mode which was non-propagating in the absence of the scalar fields has

become dynamical. The variable u =
√

6ψ is the canonical quantization variable for the

scalar degree of freedom of metric perturbations. It is entirely induced by perturbation of

the scalar fields π and χ0. In the linear approximation we have to be careful in taking the

limit mg → 0 because of the inverse mass dependence in the relations (3.12) and (3.13). In

reality we have to consider instead equations (3.10) and (3.11) which implies that ψ = 0

as in the vacuum case. Thus the famous vDVZ discontinuity [4, 5] is not present. In

addition, as mentioned before, when taking the limit mg → 0 we have to replace the fields

π and χ0 with
(

M
mg

)
1
4
π and

(

M
mg

)
1
4
χ0 but this leads to the same result that ψ = 0.

We note, however, that in the mg → 0 the Higgs action reduces to the M2H4 term, and

there are higher order non-linear contributions to ψ. In the next section we will show that

above a certain energy scale the scalar mode ceases to propagate and becomes confined due

to nonlinear corrections to the equations. As a result the vDVZ discontinuity is avoided

completely and we obtain a smooth limit to General Relativity when symmetry is restored

and the graviton becomes massless.
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Vector perturbations. For the vector perturbations

(V )h̄0
i = −Si − ˙̃χi, (V )h̄i

k = Fi,k + Fk,i + χ̃k
,i + χ̃i

,k. (3.15)

Up to second order in perturbations the action for the vector modes is

(V )δ2S =
1

4

∫

d4x

[

(

Ḟi − Si

)

,k

(

Ḟi − Si

)

,k

+m2
g

(

(

˙̃χi + Si

) (

˙̃χi + Si

)

−
(

Fi + χ̃i
)

,k

(

Fi + χ̃i
)

,k

)

]

. (3.16)

Variation of this action with respect to Si gives the constraint equation

∆
(

Ḟi − Si

)

= −m2
g

(

˙̃χi + Si

)

,

which allows us to express Si as

Si =
1

∆ −m2
g

(

∆Ḟi +m2
g

˙̃χi
)

. (3.17)

Substituting this expression into (3.16) we obtain

(V )δ2S = −1

2

∫

d4x
m2

g∆

2
(

∆ −m2
g

)

[(

Fi + χ̃i
) (

∂2
t − ∆ +m2

g

) (

Fi + χ̃i
)]

. (3.18)

In the limit mg → 0 the action for the vector modes vanishes even after replacing χ̃i →
(

M
mg

)
1
4
χ̃i. The canonical gauge invariant quantization variable in this case is the 3-vector

V i =

√

m2
g∆

2(∆ −m2
g)

(

Fi + χ̃i
)

, (3.19)

which describes two physical degrees of freedom as this vector satisfies an extra condition

∂iV
i = 0.

Tensor perturbations. For the tensor perturbations the result is straightforward

(T )δ2S = −1

8

∫

d4x
[

h̃ij

(

∂2
t − ∆ +m2

g

)

h̃ij

]

. (3.20)

This action describes the pure gravitational degrees of freedom which have become massive.

Because h̃ij satisfies four extra conditions ∂ih̃ij = 0 = h̃i
i the tensor perturbations have

two physical degrees of freedom.

Thus, we have decomposed the massive graviton with five degrees of freedom into

physical gauge invariant components: a scalar part ψ (with one degree of freedom), a

vector part V i (2 degrees of freedom) and a tensor part h̃ij (2 degrees of freedom). After

quantization they acquire their independent gauge invariant propagators.

The metric components are the subject of minimal vacuum quantum fluctuations. In

particular, the amplitude of the vacuum fluctuations of ψ and h̃ij at scales λ≪ 1/mg are

about

ψ ∼ h̃ij ∼
1

λ
,
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in Planck units. They become of the order of one at the Planck scale lPl ≃ 10−33 cm

where non perturbative quantum gravity becomes important. The amplitude of the vector

vacuum metric fluctuations is much smaller. In fact, for λ≪ 1/mg, their amplitude in the

gauge Si = 0 is scale independent and is equal to

(V )hij ∼ Fi,j ∼ m.

These results are valid only in linearized theory. While the result for the tensor fluctuations

remains the same, we will show in what follows that the scalar and vector modes reach the

strong coupling regime at the energy scale which is much below the Planck scale.

4 Vainshtein scale and continuous limit

Let us first consider how the static interaction between two massive bodies is modified

in the Higgs model with massive graviton. In quantum field theory this interaction is

interpreted as due to the exchange by gravitons with corresponding quantum propagators.

This interpretation is very obscure from the physical point of view because the Newtonian

force is not directly related to the propagation of gravitons. It is, however, the price to be

paid in order to preserve explicit Lorentz invariance of the theory. In our approach one

does not need to go to quantum theory to answer this question. The interaction is entirely

due to the static potentials φ and ψ which are present due to the massive body. Let us

take the Newtonian gauge [25], where B = E = 0 so that the metric takes the form

ds2 = (1 + 2φ) dt2 − (1 − 2ψ) δikdx
idxk (4.1)

First we have to derive the equations that this metric should satisfy in massive gravity. We

consider only static solutions so all time derivatives vanish and action (3.7) simplifies to

(S)δ2S =

∫

d4x

{

ψ,iψ,i + φ
[

2∆ψ −m2
g(3ψ + ∆π) − T 00

]

+m2
g

[

3ψ2 + 2ψ∆π +
1

4
χ0

,iχ
0
,i

]}

. (4.2)

We have added a term which describes the interaction with an external source of matter for

which only the T 00 component of the energy momentum tensor does not vanish. Varying

this action with respect to φ,ψ, χ0 and π we arrive to the following equations:

∆ψ =
m2

g

2
(3ψ + ∆π) +

T 00

2
, ∆

(

ψ − φ−m2
gπ
)

= 0, (4.3)

∆χ0 = 0, ∆ (2ψ − φ) = 0. (4.4)

It immediately follows from (4.4) that χ0 = 0 and ψ = φ/2, while equations (4.3) simplify

to

∆ (φ+ ψ) = 3m2
gψ + T 00, (4.5)

or taking into account that ψ = φ/2 we obtain

(

∆ −m2
g

)

φ =
4

3

(

T 00

2

)

. (4.6)
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For the central source of mass M0 the solution of this equation is

φ = −4

3

M0

r
e−mgr =

4

3
φNe

−mgr, (4.7)

where φN = −M0/r is the Newtonian gravitational potential. At scales r ≪ 1/mg the

metric takes the form

ds2 =

(

1 +
4

3
(2φN )

)

dt2 −
(

1 − 4

3
φN

)

δikdx
idxk. (4.8)

The bending of light is determined by the φ+ψ combination of the metric components. In

General Relativity, where ψ = φN , this combination is equal to 2φN . In the case of massive

gravity

φ+ ψ =
4

3
φN +

2

3
φN = 2φN , (4.9)

i.e. we obtain the same prediction for the bending of light. However, the gravitational

potential φ which, for instance, determines the motion of planets has increased by factor

4/3 compared to the Newtonian potential, independently of the mass of the graviton.

This extra contribution survives even in the limit of zero mass. If one would redefine the

gravitational constant to get the correct Newtonian potential then obviously the bending

of light would be wrong. This is a manifestation of vDVZ discontinuity, which in quantum

field theory is interpreted as due to the propagation of the extra scalar mode in addition to

the two tensor degrees of freedom. Because this scalar mode is coupled to the trace of the

matter the result remains unchanged for photons, but changes by the corresponding factor

for non-relativistic matter. Note that we have re-derived this result in a purely classical

theory without any reference to the tensor degrees of freedom or the “true” graviton.

The paradox with vDVZ discontinuity, which implies that the graviton must be strictly

massless was resolved when Vainshtein found a new scale RV in massive gravity and sug-

gested that for r < RV the scalar mode decouples and General Relativity is restored.

We will now show how this happens in our theory, and prove that General Relativity is

smoothly restored below the Vainshtein scale. For that we will need to consider the higher

order corrections to the action (4.2). First of all we notice that because the gravitational

potentials with which we are dealing are always much smaller than unity, we can safely

ignore the terms of order φ3, φψ2 etc. compared to φ2, . . . because they cannot change the

solutions of the equations drastically. We will also ignore the terms φ2 (∆π) compared to

φ (∆π) etc. because they are subdominant. Therefore, the only contribution to the higher

order corrections which we will take into account will come purely from the matter scalar

fields. In addition we will skip all terms with χ0 since they vanish in the leading order.

Hence, the only relevant terms of the third order, which should be added to the action (4.2)

are:

(S)δ3S = m2
g

∫

d4x

[

1

2
(∆ππ,ikπ,ik − π,kiπ,ijπ,jk) +

3

16
(∆π)3 − 1

2
(φ+ 2ψ) π,ikπ,ik

+2ψ (∆π)2 +
9

16
(3ψ − φ) (∆π)2 +O

(

ψ3, ψ2φ,ψ2∆π, φψ∆π . . .
)

]

. (4.10)
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These third order corrections modify the equations obtained by variation with respect to

ψ and π in the following way:

∆
(

ψ − φ−m2
gπ
)

+m2
g

[

3

2
(φ− 2ψ) +

1

2
π,ikπ,ik −

59

64
(∆π)2

]

= 0, (4.11)

and

∆ (2ψ − φ) + (∆ππ,ik),ik +
1

2
∆ (π,ikπ,ik) −

3

2
(π,ijπ,jk),ik

+
9

16
∆ (∆π)2 +O (φ,ikπ,ik,∆ψ∆π, . . .) = 0. (4.12)

Equation (4.12) is the main equation where non-linearities begin to play an important role

allowing us to avoid the condition ∆ (2ψ − φ) = 0, and thus resolve the problem of vDVZ

discontinuity. In fact, this condition means that the scalar perturbations of the curvature

must vanish, δR = 0, and this was the main obstacle leading to the troubles with restoring

General Relativity in the limit of vanishing graviton mass in the paper [3]. Assuming that

π,ik, ∆π ≪ 1 (this assumption will be checked a posteriori), and keeping only the leading

terms in equations (4.11) and (4.12) we obtain

∆
(

ψ − φ−m2
gπ
)

= 0, ∆ (2ψ − φ) + ∂6π2 = 0, (4.13)

where by ∂6π2 we denoted all quadratic π terms in (4.12). Using the first equation in (4.13)

to solve for ∆φ, the second one simplifies to

∆
(

ψ +m2
gπ
)

+ ∂6π2 = 0. (4.14)

Taking into account that ∆ ∼ ∂2 and estimating ∂6π2 in spherically symmetric field as

O (1) π2/r6, this equation becomes

ψ +m2
gπ +O (1) r−4π2 ≃ 0, (4.15)

The behavior of π as a function of r crucially depends on whether the second or third term

in this equation is dominating. To estimate the scale when both terms are comparable,

which is called the Vainshtein scale RV , we set

m2
gπ ∼ O (1) r−4π2 ∼ ψ,

and from here find that

− ψ|r=RV
= m4

gR
4
V . (4.16)

In the case of a gravitational field produced by the mass M0 in the vacuum ψ ≃ − M0/r,

the Vainshtein scale is equal to

RV ≃
(

M0

m4
g

)1/5

. (4.17)
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For r ≫ RV the last term in (4.15) is small compared to the second one and we obtain

π =
ψ

m2
g

[

−1 + O
(

(

RV

r

)5
)]

. (4.18)

In this limit the quadratic terms in the second equation in (4.13) are negligible and from

the first equation in (4.13) we find that

ψ − φ = −ψ
[

1 −O
(

(

RV

r

)5
)]

. (4.19)

This implies that in the leading order ψ = φ/2 in complete agreement with the result which

we have obtained above in linearized massive gravity. It is easy to check that the condition

∂2π ≪ 1 which we have used to simplify equations (4.11) and (4.12) is also satisfied. In

fact,

∂2π ∼ − ψ

r2m2
g

∼ M0

r5m4
g

r2m2
g ∼

(

RV

r

)5( r

1/mg

)2

, (4.20)

and hence ∂2π ≪ 1 for all r > RV if RV ≪ 1/mg.

At scales smaller than Vainshtein radius, that is for r ≪ RV the third term in (4.15)

is larger than the second one and hence

π ≃ O (1) r2
√

−ψ
[

1 +O (1)
m2

gr
2

√−ψ + . . .

]

≃ O (1)
ψ

m2
g

(

r

RV

)5/2
[

1 +O (1)

(

r

RV

)5/2

+ . . .

]

. (4.21)

Using this expression in the first equation of (4.13) we then find that in the leading order

ψ − φ = O (1)ψ

(

r

RV

)5/2

+ . . . (4.22)

For r ≪ RV we find that ψ = φ up to corrections of order ψ (r/RV )5/2 . Because of ∂2π ∼√−ψ the condition ∂2π ≪ 1 is always satisfied. The dominating quadratic corrections to

equation (4.5) is of order m2
gψ ∼ m2

g

(

∂2π
)2

so they change only the mass term which is

irrelevant within the Vainshtein scale. Taking into account that ψ = φ for r ≪ RV and

neglecting the mass term, equation (4.5) in the leading order is reduced to

∆φ =
T 00

2
, (4.23)

and thus General Relativity is restored within Vainshtein scales up to the corrections

δφ

φ
∼
(

r

RV

)5/2

, (4.24)

which are much smaller than the corresponding corrections in DGP model [22]. One could

ask whether any higher order corrections would be able to spoil the obtained results? The

– 11 –



J
H
E
P
1
2
(
2
0
1
0
)
0
2
3

most dangerous of these corrections in every next order will come as the corrections to the

previous order multiplied by ∂2π ≪ 1. Therefore they are completely negligible.

We now consider the implementation of our results derived classically in quantum field

theory. In the explicitly Lorentz invariant approach the change of the interaction strength

at scales exceeding the Vainshtein scale is interpreted as due to exchange by the scalar mode

ψ of the massive graviton in addition to the two tensor modes of the massless graviton. As

we will argue, this scalar mode becomes strongly coupled below Vainshtein scale and as a

result completely decouples from the gravity and matter entering the confinement regime.

This is similar to QCD, where the “soft” modes do not participate in the interactions of

highly energetic quarks below the confinement scale. Although for quantum fluctuations

one cannot neglect the time derivatives as in the static case, we can, however, estimate

the time derivatives to be of the same order of magnitude as spatial derivatives and use

the formulae derived for the static case. Keeping in mind that the amplitude of the scalar

quantum fluctuations at the length scale λ is about ψ ≃ 1/λ from (4.16) we obtain that at

scales smaller than

Λs ≃ m−4/5
g ,

these scalar modes should be in the strong coupling regime, where nonlinear corrections

cannot be neglected. Note that the metric fluctuations which are of order ψ ∼ m
4/5
g still

remain small at this scale. In distinction from the case when gravitational field is produced

by an external source the estimate ∂2π ∼ √−ψ is not justified for quantum fluctuations

for λ ≪ Λs. However, assuming that at the scales which are just a bit smaller than Λs

one can still use this estimate to find that the last term in action (3.7), which is of order

∂4π2 ∼ ψ, becomes dominant compared to the terms of order ψ3/2 and ψ2. As a result

the scalar mode ψ loses its linear propagator and decouples, entering the strong coupling

regime where nonlinear corrections will prevent its unbounded growth for every λ < Λs

as mg → 0. As a result the terms proportional to m2
g in the action (3.7) will vanish and

General Relativity is smoothly restored in this limit. A similar thing happens with the

vector modes. Therefore in the limit mg → 0 only the tensor modes h̃ik with two degrees

of freedom survive. They enter the strong coupling regime at the Planckian scale. The

energy scale Λ−1
s should be taken as a cutoff scale for the scalar mode ψ of graviton in

all diagrams where this scalar mode participates. Above this scale our scalar fields π and

χ0 which were producing the extra degrees of freedom for the massive graviton are also

in the confined regime and the symmetry is restored. These strongly coupled fields are

completely decoupled from gravity and the rest of the matter. In the case when the mass

of the graviton is of the order of present Hubble scale the cutoff scale is extremely small of

order 10−18 eV. At higher energies the ghost, even if it would exist, completely decouples.

Therefore the question about ghosts at the nonlinear level becomes irrelevant.

5 How universal is the Vainshtein scale?

The expression (4.17) for the Vainshtein scale was derived first in the case of Fierz-Pauli

mass term which is unique in four dimensions, because only in this case there are no ghosts

propagating at the linear level. We have obtained the same result in our Higgs model with
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the action (2.2). It is natural to ask whether it is the unique universal scale for all models

with Fierz-Pauli mass term or it depends on a particular nonlinear extension of this term.

Let us show that in our theory the Vainshtein scale, in fact, depends on the nonlinear

completion of the theory and determine all possible extensions of the model which lead to

different Vainshtein scales. With this purpose we first consider instead of (2.2) the following

action for the scalar fields

Sφ =
M2

8

∫

d4x
√−g

[

12

(

H

4
− 1

)2

+ 43β

(

H

4
− 1

)3

− H̃A
BH̃

B
A +O

(

(H − 4)4
)

]

(5.1)

where without loss of generality we have set the parameter of the symmetry breaking to

unity. The terms O
(

(H − 4)4
)

must be taken in such a way as to avoid the appearance of

other vacua, besides H = 4. One can easily verify that there are infinitely many extensions

of the required type. This action, when rewritten in terms of h̄A
B variables defined in (2.5),

with v = 1, takes the form

Sφ =
m2

g

8

∫

d4x
√−g

[

h̄2 − h̄A
Bh̄

B
A + βh̄3 +O

(

h̄4
)]

, (5.2)

where m2
g = M2. For β ≫ 1, the main contribution to the cubic action (4.10) is of order

β (∆π)3 and the second equation in (4.13) is modified to

∆ (2ψ − φ) + 3β∆ (∆π)2 = 0. (5.3)

Then using the first equation in (4.13) and considering the spherically symmetric case we

find

ψ +m2
gπ +O (1) βr−4π2 ≃ 0, (5.4)

and correspondingly the Vainshtein scale in this case is

RV ≃
(

βM0

m4
g

)1/5

. (5.5)

Thus, we see that taking large enough β in action (5.1) we can obtain an arbitrarily large

Vainshtein scale for given masses of the source M0 and the graviton mg.

Next we would like to address the question whether one can obtain a smaller Vainshtein

scale compared to (4.17). For that let us first consider the action

Sφ =
M2

8

∫

d4x
√−g

[

−6

(

H

4
− 1

)2(H

4
− 3

)

− 1

2
H̃A

BH̃
B
A +

+
1

2
H̃A

BH̃
B
C H̃

C
A − 1

8
HH̃A

BH̃
B
A +O

(

(H − 4)4
)

,

]

(5.6)

where the terms O
(

(H − 4)4
)

are taken in such a way as to avoid the vacuum at H = 12.

Rewritten in terms of h̄A
B , action (5.6) becomes

Sφ =
m2

g

8

∫

d4x
√−g

[

h̄2 − h̄A
Bh̄

B
A +

1

2

(

h̄A
Bh̄

B
C h̄

C
A − h̄A

Bh̄
B
A h̄
)

+O
(

h̄4
)

]

, (5.7)
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where m2
g = M2. It is clear that in the lowest order it reproduces the Fierz-Pauli term, but

in higher orders it is quite different from (2.6). The action (5.7) concides with the action

first derived in [23, 24] from the requirement of the absense of ghost in decoupling regime

up to the third order. If we consider the case of the static gravitational field we find that

in the third order the action does not contain terms of the form ∂6π3. Hence, by keeping

only the leading terms we find that the second equation in (4.13) will be modified to

∆ (2ψ − φ) + ∂8π3 = 0. (5.8)

Considering the spherically symmetric case and using the first equation in (4.13), which is

still valid up to the leading order, we find that equation (4.15) has to be replaced by

ψ +m2
gπ +O (1) r−6π3 ≃ 0. (5.9)

The Vainshtein scale will be determined by the condition that all three terms in this

equation become comparable, that is,

ψ ∼ m2
gπ ∼ r−6π3 (5.10)

and hence the expression determining this scale is

− ψ|r=RV
= m3

gR
3
V . (5.11)

In particular, in the case of static field produced by mass M0, we have

RV ≃
(

M0

m3
g

)1/4

. (5.12)

To obtain the correction to the Newtonian potential at r ≪ RV we note that at these scales

π ∼ r2ψ1/3 and use of the first equation in (4.13) leads to

δφ

φ
∼
(

r

RV

)8/3

. (5.13)

If we set the mass of the source in (5.12) to be equal to the Planck mass, the corre-

sponding cutoff scale in quantum theory for the decoupling of the scalar mode is obtained:

Λs = m
−3/4
g .

In principle, there are enough different combinations of h̄A
B which can be added to the

action (5.7) to remove all the terms of the form
(

∂2π
)k

for all k < n, so that the first

survived terms of this structure are
(

∂2π
)n.

. Notice that such action is unique up to the

order h̄n. In this case, the Vainshtein scale is determined by the condition

− ψ|r=RV
= (mgRV )

2(n−1)
n−2 . (5.14)

In the case of static gravitational field due to a massive source M0 this yields

RV =
(

Mn−2
0 m2(1−n)

g

)
1

3n−4
(5.15)
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and the correction to the gravitational potential for r ≪ RV is of order

δφ

φ
∼
(

r

RV

)
3n−4
n−1

(5.16)

in agreement with [26]. In the limit when n→ ∞ the Vainshtein scale is RV = M
1/3
0 m

−2/3
g .

It coincides with the corresponding scale in the DGP model. However, the corrections to

the gravitational potential which decay as (r/RV )3 seem different. In this limit the theory

is unambiguous, but one could write it only as an infinite series. In turn this indicates that

such theory is most probably nonlocal. Moreover, because ∂2π → 1 we completely lose

control of higher order corrections and hence the results become completely unreliable.

6 Conclusions

We have addressed the most fundamental question of all theories of massive gravity -

can massive gravity be a consistent theory not contradicting to current experimental and

theoretical knowledge? In this paper we have treated gravity mostly as a classical field

theory and have explicitly investigated the issue of a smooth limit of massive gravity to

General Relativity. With this purpose we first determined the physical degrees of freedom

of the massive graviton generated via Higgs mechanism. This was done in the framework of

irreducible representations of the three dimensional rotation group, where the five degrees

of freedom of the graviton are described in terms of a tensor mode with two degrees of

freedom and vector and scalar perturbations due to the scalar fields. The propagator for

each of these five constituents of massive gravity was derived separately. In the linear

approximation the origin of the well-known vDVZ discontinuity at the zero mass limit was

traced to the constraint equations and it was shown how the scalar and vector modes of

metric perturbations become non-dynamical in this limit.

It has been suggested long ago that the linear perturbation theory of massive gravity

fails at length scales below the Vainshtein scale and one has to consider the full nonlinear

theory to recover General Relativity below this scale. We have determined the Vainshtein

scale in Higgs gravity, with Fierz-Pauli mass term, and found the explicit solution for

the spherically symmetric gravitational field. We have shown that the massive gravity

solution outside the Vainshtein scale smoothly goes to the General Relativity solution in

the region deep inside the Vainshtein scale. Thus the classical results and predictions of

General Relativity are recovered inside the Vainshtein scale and at distances exceeding the

Vainshtein radius, massive gravity strongly differs from Einstein theory. This means that

the scalar mode of massive graviton decouples at Vainshtein scale and enters the strong

coupling regime. In the limit of vanishing mass, when Vainshtein radius becomes infinite,

the symmetry is restored and our theory is reduced to General Relativity with four scalar

fields which are confined and thus decoupled from gravity and other matter. Based on

these results we have argued that in quantum theory there is a cutoff energy scale above

which the scalar fields responsible for the scalar and vector modes of the massive graviton

are strongly coupled and confined and hence harmless. For the realistic graviton mass
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this scale is extremely low. Therefore, the question about extra scalar mode and ghost

instability seems to be irrelevant in our model.

We have found how the Vainshtein scale depends on the particular Higgs model or,

in other words, on the nonlinear extension of the Fierz-Pauli mass term. In particular,

we have shown that for given masses of the graviton and source, the Vainshtein length

scale depends on the Lagrangian of the scalar fields and can be made arbitrary large.

On the other hand, we have also constructed Lagrangians, which produce smaller scales

compared to the standard one. However, the smallest possible scale seems to be larger

than M
1/3
0 m

−2/3
g .

Finally, we have calculated the corrections to General Relativity within the Vainshtein

scale which could, in principle, be interesting from experimental point of view.
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