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1 Introduction

Does a consistent theory of quantum gravity allow for topology change? During such
transitions, a universe with a given spatial geometry evolves in a non-diffeomorphic way
by some quantum mechanical process. The transition amplitude for such a process can in
principle be computed by using a saddle point expansion of the path integral of Euclidean
quantum gravity. However, quantum transitions between manifolds with different topology
appears to pose several paradoxes: they could break locality, lead to the loss of quantum
coherence with respect to a given observer, or alternatively, these processes might give rise
to intrinsic randomness of the coupling constants in nature [1–3]. That is why it has been
suggested that these effects should be absent in any consistent theory of quantum gravity
and indeed there are some indications that such topology-changing processes are absent in
string theory [4].

The aim of this work is to study axion wormholes in a universe with a positive
cosmological constant.1 The important details and corresponding interpretation of this
particular case have apparently been largely overlooked since the work of [11], where they
constructed the general background solution.

Our starting point is Einstein gravity with a positive cosmological constant in the
presence of axion fluxes, in 3 or more dimensions. We analyze the topology of the smooth
Euclidean background solutions, and conclude that the effect of the axion flux is to nucleate
a handle out of the Euclidean sphere, resulting in a ‘kettlebell’. In addition, the space of
allowed (real Euclidean) solutions reveals a bound on the maximal axion flux threading

1So we will not be able to say anything about the UV completion, which has been explored for flat and
AdS wormholes [5–8]. UV completion requires at least adding extra scalars, like saxions which are typically
massive in a phenomenological context [9, 10] and can be massive or massless in holographic contexts [6–8].
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the co-dimension 1 sphere, depending on the de Sitter length scale. In analogy with
Schwarzschild-de Sitter black hole solutions, we call the largest, critical, solutions “Nariai”
wormholes, for which the size of the fibered sphere is constant along the Euclidean time circle.

We then compute the on-shell Euclidean action of these axionic de Sitter wormholes.
Notably, the on-shell action is well-approximated in terms of a linear function of the axion
flux parameter, in arbitrary dimensions. A feature again analogous to the (approximate)
linear mass dependence of the on-shell action for Schwarzschild-de Sitter black holes [12].
Under closer scrutiny our results also reveal that a partitioning of the axion flux does not
lower the action, preventing fragmentation into multiple smaller axion wormholes. We also
confirm that, for fixed axion flux, these solutions are perturbatively stable, and consistently
reproduce the flat space axion wormhole results in the limit of a vanishing cosmological
constant [13].2

We then study Lorentzian continuations [16] of the wormhole solutions. A priori there
are several possibilities to cut and glue these Euclidean solutions to Lorentzian ones. In
the Lorentzian regime, the presence of axion flux effectively acts as a cosmological fluid
with an ultra-stiff equation of state w = 1. Therefore for large scale factors, the Lorentzian
cosmologies reduce to pure de Sitter. Notably, however, in the presence of axion flux a
new (singular) regime of solutions opens up for very small scale factors. This regime is
separated from the large scale factor solution by a barrier in the effective potential.3 Despite
these complications, we will advance an interpretation of these wormholes as saddles of
a variant of the Hartle-Hawking no-boundary wave function. In this interpretation, the
wormholes can be viewed as quantum bridges connecting two expanding branches of global
de Sitter-like universes, across which the arrow of time reverses.

2 de Sitter wormholes

We consider gravity coupled to an axion field χ in d > 2 dimensions governed by the
Euclidean action

I[g,Bd−2] =
∫ [

− 1
2κ2

d
⋆ (R− 2Λ) + 1

2 ⋆ Hd−1 ∧Hd−1

]
, (2.1)

where Hd−1 = dBd−2, κ2
d = 8πGN and the cosmological constant

Λ = (d−1)(d−2)
2ℓ2 > 0 . (2.2)

To Hodge dualize the gauge potential Bd−2 we regard the action as a functional of H instead
and add a Lagrange multiplier χ enforcing the closure of H via the extra term χdHd−1.
Then we find H = ⋆dχ. In terms of the axion dual χ, the action (2.1) reads

I[g, χ] =
∫ [

− 1
2κ2

d
⋆ (R− 2Λ)− 1

2 ⋆ dχ ∧ dχ− d(χ ⋆ dχ)
]
. (2.3)

2The literature on wormhole stability contains contradictory statements in the case of a non-positive
cosmological constant [14], mostly because a reliable gauge invariant analysis with proper boundary conditions
was lacking until the substantial improvement in [13, 15].

3This was also noticed in [17, 18] where a link with wormholes was suggested.
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Despite appearances the actions (2.1) and (2.3) are equivalent on-shell. This is because
even though (2.1) has a manifestly positive kinetic energy for Hd−1 whereas (2.3) contains
a negative kinetic energy term for χ, the action (2.3) also contains a total derivative term.
For a given background manifold that supports axion flux, the latter acquires a monodromy
upon integration. This yields the positive contribution of Hd−1 to the Euclidean energy in
the formalism using the axion scalar χ.

2.1 Euclidean geometry

The metric of Euclidean, spherically symmetric axion wormholes in d dimensions can be
written in the following form [11],

ds2 = N(τ)2dτ2 + a(τ)2dΩ2
d−1 , (2.4)

where the Euclidean time τ lives in a finite interval τ ∈ [τmin, τmax], the endpoints of which
are identified. Axion flux consistent with the symmetry comes in the form

Hd−1 = QVol(Sd−1) , (2.5)

where the constant Q denotes the flux density and Vol(Sd−1) is the (d− 1)−form volume
element of the sphere ds2

(d−1) = dΩ2
d−1.

The Einstein equations imply that the Euclidean scale factor a(τ) obeys the following
constraint,

1
N

da
dτ = ±

√
1− a2

ℓ2
−
κ2

dQ
2 a−2(d−2)

(d− 1)(d− 2) , (2.6)

which, for a given gauge choice, yields an explicit expression for the metric.
For Q = 0, the solution is simply the d-sphere, viz. Euclidean de Sitter space. For

Q > 0, the above constraint implies that the scale factor oscillates between a positive
minimum and maximum value. Upon identification of the endpoints of the interval, this
generates a ‘kettlebell’ geometry that is topologically S1 ×Sd−1, viz. a Euclidean wormhole.
The minimum value amin of the scale factor sets the size of what we will call the wormhole
throat, while the maximum value amax corresponds to the equator of the parent Euclidean
de Sitter space. For increasing Q the size of the wormhole throat approaches that of the
dS equator. For the maximally allowed axion charge the scale factor in (2.4) becomes
everywhere constant and the solution reduces to,

ds2 = dτ2 + d− 2
d− 1ℓ

2dΩ2
d−1 . (2.7)

In a way that is reminiscent of the Einstein static universe, the axion density and the
constant value of the scale factor are both determined by the value of the cosmological
constant:

Q2
max = ℓ2(d−2)

κ2
d

(d− 2)
(
d− 2
d− 1

)d−2
, (2.8)

amax(Qmax) = amin(Qmax) =

√
d− 2
d− 1ℓ . (2.9)
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(a)

(b)

Figure 1. (a) The Euclidean wormhole has an S1×Sd−1 topology, and is known as a kettlebell
geometry. (b) Euclidean beads joined by multiple wormhole throats.

We will refer to this limiting solution as the ‘Nariai’ wormhole because it is somewhat
analogous to the largest, Nariai black hole that fits in de Sitter space.

Finally, we note that the wormhole metric can be obtained explicitly in d = 3 dimensions.
It is given by

ds2 = dτ2 + ℓ2

2

1 + sin
(
2τ
ℓ

)√
1− 2κ2

3Q
2

ℓ2

dΩ2
2 . (2.10)

Hence

a2
max,min = ℓ2

2

1±
√
1− 2κ2

3Q
2

ℓ2

, (2.11)

with

2τ/ℓ ∈
[
−π2 ,

3π
2

]
, (2.12)

and with the endpoints of this interval identified. For Q = 0 we have amin = 0, so
the endpoints turn into the poles of the three-sphere. Note also that for Q > 0 it is
straightforward to construct a necklace of wormholes by extending the range of τ to cover
more than one complete oscillation of the scale factor. We depict an example in figure 1.
Such necklaces of wormholes are of course possible in arbitrary dimensions d.
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Figure 2. (a) The on-shell action of generic Euclidean dS wormholes in d = 4, normalized by
the absolute value of the Gibbons-Hawking action (2.18) of the four-sphere. The action is shown
here in terms of the parameter µ ≡ Q/Qmax. The blue curve is the exact numerical integration
of (2.14); the orange curve employs the linear approximation (2.16). We see that the action of the
Nariai wormhole vanishes exactly. (b) The scale factor in conformal gauge N(τ) = a(τ) in (2.4), for
different values of the axion charge ratio, viz. µ = 1 (purple), 0.9 (blue), 0.6 (orange), 0.3 (green),
and finally µ = 0 (black), corresponding to the four-sphere. We refer to the location of the minimum
of the scale factor as the wormhole throat, chosen here at τ = τmin, and τ = τmax = −τmin.

2.2 On-shell action

The on-shell Euclidean action IE of wormholes of the form (2.4) is given by

IE[Q] = Ωd−1

∫
dτ N(τ)a(τ)d−1

(
1− d

κ2
dℓ

2 + Q2

2a(τ)2(d−1)

)
. (2.13)

Substituting (2.6) in (2.13) yields

IE[Q] = 2Ωd−1

∫ amax

amin
da ad−1

(
1−d
κ2

d
ℓ2 + Q2

2a2(d−1)

)
√
1− a2

ℓ2 − κ2
d
Q2

(d−1)(d−2) a2(d−2)

. (2.14)

Evaluating this integral in d = 3, using the explicit solution (2.10), gives the following
closed-form expression,

IE[Q]
∣∣∣∣
d=3

= −4π2ℓ

κ2
3

(
1−

√
2κ3Q

ℓ

)
. (2.15)

We see that the on-shell Euclidean action is always negative and that it increases linearly
in Q. Viewed as saddle points, therefore, the wormholes are suppressed relative to the
three-sphere. Further, the action of the limiting ‘Nariai wormhole’ vanishes. Also, the flat
limit of (2.14) can be evaluated and reproduces the Giddings-Strominger expression [19].

Next, we evaluate the integral (2.14) numerically in d = 4. Figure 2 shows the result
as a function of the flux parameter Q. One sees that IE[Q]d=4 too behaves almost exactly

– 5 –



J
H
E
P
1
1
(
2
0
2
3
)
2
2
5

linearly, and that the action of the four-dimensional Nariai wormhole vanishes. It turns out
these are properties of the on-shell action of wormholes in general dimensions. In effect, an
accurate approximate expression of IE[Q]d in any number of dimensions d is given by

IE[µ] ≈ IGH(1− µ), (2.16)

where µ ≡ Q/Qmax, with

Q2
max = ℓ2(d−2)

κ2
d

(d− 2)
(
d− 2
d− 1

)d−2
, (2.17)

IGH = −4π(d+1)/2ℓd−2

κ2
d Γ
(

d−1
2

) . (2.18)

Finally we note that d2IE(Q)
dQ2 > 0 in d = 4, as illustrated in figure 2. This implies that the

single wormholes are non-perturbatively stable against fragmentation into a necklace of n
wormholes with n q = Q. Generalizing the results of [13, 15], we verified in appendix A that
the wormhole solutions, for fixed Q, are also perturbatively stable. As a consequence, it is,
therefore, reasonable to assume they represent physical saddles. We consider this in the
next section.

3 Axionic quantum bounces

Euclidean axion wormholes are so-called real tunneling geometries. That is, they possess a
hypersurface of vanishing extrinsic curvature on which they can be glued onto a Lorentzian
solution. In effect, axion-de Sitter wormholes have two such hypersurfaces, as indicated in
figure 1, namely the wormhole throat and the equator of the parent sphere. The Lorentzian
evolution(s) that emerge from the initial conditions specified by the Euclidean geometry are
governed by the Wick-rotated Friedmann-Lemaître equation (2.6). Working in conformal
gauge (i.e. N(t) = a(t)) this can be written as(da

dt

)2
+ Veff(a) = 0, (3.1)

where the effective potential

Veff(a) = a2 − a4

ℓ2
− κ2

dQ
2a−2(d−3)

(d− 1)(d− 2) (3.2)

This Lorentzian system (3.2) effectively consists of gravity coupled to a positive cos-
mological constant and an ultra-stiff fluid with an equation of state parameter w = 1 that
arises from the Q units of axion flux through the (d− 1)-sphere. The effective potential
is shown in figure 3. We can read off the two homogeneous and isotropic cosmologies that
the theory admits for a given value of Q and where they can be patched onto the Euclidean
geometry that captures the quantum regime under the potential barrier. One solution
bounces at a minimum radius and is approximately de Sitter space. However, the axion flux
introduces a second classical turning point, at a value of the scale factor where it equals the
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Figure 3. Effective potential for the scale factor in conformal gauge. For subcritical values of Q
(solid line), Euclidean wormholes correspond to solutions in the region under the barrier as indicated.
The turning points correspond to the wormhole throat at a = amin (red) and to the equator of the
parent sphere at a = amax (blue), as in figure 1. The Nariai wormhole arises for a critical value of Q
(dashed line) and describes an Einstein static universe in the Lorentzian. Lorentzian cosmologies
traverse scale factor values outside the barrier region. To the right, there is a history that bounces
at a minimum radius, whereas to the left there is one bouncing at a maximum size.

size of the wormhole throat. This gives rise to a Lorentzian cosmology with an over-critical
axion density, which bounces when it reaches a maximum radius before collapsing into a big
crunch singularity. In the special case of maximum axion flux, both turning points coincide
and hence the region under the barrier vanishes. This corresponds to the Nariai wormhole
in the Euclidean, which, as we have seen, has vanishing on-shell action. The corresponding
Lorentzian solution at the maximum of the effective potential is an (unstable) static universe.

The Euclidean wormhole can be thought of as preparing the state of these Lorentzian
cosmologies. More precisely, the wormholes provide a saddle point approximation to a
quantum state of the universe that includes these cosmological histories. Since the Euclidean
geometries are regular and compact, without boundary, it is natural to regard the wormholes
as valid saddle points of the Hartle-Hawking no-boundary wave function in a two-dimensional
minisuperspace consisting of two (d − 1)-spheres of size a1, a2 with Q1 and Q2 units of
axion flux going through respectively. In this interpretation, a given wormhole specifies the
amplitude of a pair of expanding axion-de Sitter universes.

In the familiar context of scalar field inflation, no-boundary saddles come in complex
conjugate pairs. Both members of every pair specify the amplitude of the expanding branch
of the same inflationary universe. Even though classically such inflationary universes are
connected across a de Sitter-like bounce at a minimum radius, the complex conjugate
saddles that provide the amplitude of each expanding branch are separate geometries.
From an Euclidean viewpoint, this is because turning on the inflaton field deforms the
sphere, but it obviously doesn’t create a handle. The wormhole saddle points differ in this
respect in that they provide a quantum mechanical bridge that connects both expanding
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branches of the approximate de Sitter histories that feature in this model. In the limit of
zero flux parameter Q, this instanton should reduce to (two copies of) the Hartle-Hawking
no-boundary solution.

This being said, from a physical point of view the saddle point histories with axion flux
bear a strong resemblance to the inflationary histories. A key property of the inflationary
cosmologies predicted by the no-boundary wave function is that the arrow of time defined
by the growth in fluctuations is bidirectional, pointing away from the bounce in both
directions [20]. This feature ultimately stems from the regularity condition at the South
Pole of the saddles that implies fluctuation must vanish there. In appendix B we show that,
likewise, the fluctuation arrow of time in the axion-de Sitter universes that we consider
here, points away from the wormhole in both directions.

Further evidence for the interpretation of these wormholes as saddles of the no-boundary
wave function in an axionic minisuperspace model comes from the behavior of the wave
function in the regime under the barrier, for values a of the scale factor in the range
amin < a < amax. In this range, the wormhole throat is retained, but the Euclidean
geometry is cut off when the scale factor reaches its boundary value. Consequently, one
expects the wave function to decrease for decreasing values of a towards amin. This behavior
in the Euclidean is the hallmark of the Hartle-Hawking wave function [16]. The main
difference with the Hartle-Hawking behavior in the context of gravity coupled to a scalar
field is that the zero scale factor is replaced with a positive minimum value amin, below which
a new Lorentzian regime opens up. A WKB analysis of this system with such boundary
condition was in fact performed earlier in [21], in a different context. The saddle point
wave function in this new small scale factor regime remains suppressed and involves purely
Lorentzian saddles that bounce at a maximum radius a = amin, as figure 4 illustrates. In
some sense, one could say that the axion flux shifts the Hartle-Hawking condition at zero
scale factor to a finite value a = amin, without significantly altering the behavior of the
wave function in this regime of small scale factor.

4 Discussion

We have studied Euclidean axion wormholes in d dimensions in the presence of a positive
cosmological constant. In the presence of a zero or negative cosmological constant, wormholes
describe a smooth bridge that connects two distinct asymptotically flat or AdS spaces.
Axion-de Sitter wormholes are qualitatively different. They rather describe a single spherical
body with a handle known as a kettlebell geometry.

The axion flux Q determines the size of the handle — the wormhole throat — relative
to the scale set by the cosmological constant. For Q = 0 the wormhole bridge disappears
and the solution reduces to a sphere. Regularity of the geometry also implies an upper
bound on Q for which the size of the wormhole throat equals the diameter of the sphere, a
limit which we have dubbed the “Nariai” wormhole.

We found that axion-de Sitter wormholes are perturbatively stable against fluctuations
that preserve the axion flux. This is in line with the results of the stability analysis of
wormholes in flat and AdS spaces [13, 15]. Our expression for the on-shell action furthermore
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Figure 4. The homogeneous and isotropic minisuperspace, for fixed axion charge and in the
presence of a positive cosmological constant, encompasses two qualitatively different cosmological
histories. Panel (a) shows an asymptotically de Sitter universe associated with a wormhole saddle
that mediates a quantum bounce. Panel (b) shows a history that emerges from a big bang and
recollapses into a big crunch, bouncing when its size reaches that of the wormhole throat. The
no-boundary state favors the former over the latter in this model, i.e. the wave function decays
towards small values of the scale factor. Note that the scale factor in panel (b) is rescaled relative
to the one in (a).

suggests that the wormholes are stable with respect to fluctuations that can alter the local
flux, say by fragmenting the wormholes into several smaller ones. We verified for instance
that in d > 3 such necklaces of wormholes have a higher action for the same amount of
total axion flux.

Unlike axion wormholes in flat and AdS space, their dS counterparts admit a rather
straightforward interpretation as saddles of a variation of the no-boundary wave function.
Consider a two-dimensional minisuperspace parameterized by the sizes a1 and a2 of two
(d− 1)-spheres with Q1 and Q2 units of axion flux going through. In this model, the dS
wormholes are saddles specifying the amplitude of a pair of identical, asymptotically de
Sitter universes with a certain amount of (diluting) axion flux piercing the spatial dimensions.
The wormholes essentially provide a quantum bridge that connects the two expanding
branches of these dS-like universes. The key difference with the familiar no-boundary wave
function in the context of inflation, besides the bridge, is that there is a tail at very small
scale factor values where the wave function seemingly predicts Lorentzian behavior in the
form of an over-critical, recollapsing universe. That regime is possibly spurious. It is as if
the axion flux blows up the zero scale factor that appears in the original wave function to a
small but finite value where the no-boundary condition is then imposed.

– 9 –
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With regard to the well-known paradoxes associated with axion wormholes, reviewed
in [3], the wormholes appear to pose a dS version of the “factorisation paradox”4,5 As
mentioned, the wormholes may specify the saddle point approximation of a generalization
of the Hartle-Hawking no-boundary wave function defined on two (d− 1)-spheres. In this
context, they describe two Lorentzian de Sitter universes with axion charges Q and −Q
and connected by a quantum bridge. In the limit of vanishing axion charge, the bridge
disappears and the semiclassical wave function factorizes. In this limit, the theory describes
two disconnected expanding branches of de Sitter space with a genuine no-boundary origin,
and one can essentially ignore the second copy. This is borne out by the holographic form
of the usual Hartle-Hawking no-boundary wave function, which involves a single dual field
theory living on a single future boundary [23].

For a finite axion charge, however, the wave function does not factorize. The wormholes
prevent the reduction to a single (d− 1)-sphere and, in striking analogy with the eternal
AdS black hole, the two expanding universes would seem to be entangled. Hence a putative
dS/CFT description of the no-boundary wave function in this setting would seem to require
two duals, one on each future de Sitter boundary, that are somehow entangled. It would
certainly be of great interest to study the consequences of this axionic non-factorisation of
the Hartle-Hawking wave function in this context in more detail.

Finally, we point out that the axion wormholes that we have considered may also
be used to describe axion flux transitions in an existing de Sitter space. In this context,
the transition rate involves the difference between the wormhole action and that of the
parent background, which yields the expected exponential suppression for larger axion
flux. However, a proper discussion of this process, in which axion flux is allowed to vary
quantum mechanically, should presumably be based on the interpretation of these solutions
as constrained instantons. Another possibly interesting application of these wormholes could
be in the search for a derivation of the so-called axionic Festina-Lente Swampland bound [24],
which, it was suggested, might be rooted in the physics of axion-de Sitter wormholes.
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A Perturbative stability

In this appendix, we verify the perturbative stability of the axion-de Sitter wormholes
in four dimensions, by computing the quadratic action of linear fluctuations around the
Euclidean background configurations. We follow closely the steps in [13] and we will
implement the perturbative stability code in [15] which makes use of the Mathematica
packages xPand [25], xTensor, xPert [26], and xAct. The main difference with [13] is the
presence of a cosmological constant term in the action (2.1).

Working in the Euclidean, the perturbed geometry and axion field read

ds2 = a(τ)2
[
(1 + 2A)dτ2 + 2∇iB dxidτ + [(1− 2ψ)γij + 2∇i∇jE]dxidxj

]
, (A.1)

H3 = 1
6 (Q+ f) εijkdxi ∧ dxj ∧ dxk + 1

2εijk∇kw dτ ∧ dxi ∧ dxj , (A.2)

where γij is the metric on S3, ∇ the corresponding covariant derivative and ε the corre-
sponding Levi-Civita tensor. Also, the closure of H3 entails ḟ = △w, with △ = γij∇i∇j

the Laplacian on S3.
The quadratic action of perturbations involves the field fluctuations, which under a

scalar gauge transformation xµ → xµ − ξµ with ξµ = (ξτ ,∇iξ) transform as

A→ A+ ξ̇τ +Hξτ , B → B + ξτ + ξ̇, ψ → ψ −Hξτ (A.3)
E → E + ξ, f → f +Q△ξ, w → w +Qξ̇. (A.4)

Let χ = {A, B, ψ ,E, f, w} denote any of the field fluctuations. We will now expand them
in S3 harmonics as

χ(τ, xi) =
∑
nlm

χ(n)(τ)Qn
lm(xi), (A.5)

where (n) denotes n, l, m collectively, Qn
lm(xi) are SO(4) spherical harmonics. For notational

simplicity, we will use 1− n2 with n ∈ N to indicate the eigenvalue of △ for the mode χ(n),
and we will suppress the other quantum numbers.

Notice also that not all the fluctuations are dynamic degrees of freedom. A subset acts
as Lagrange multipliers, the constraints of which are best implemented in the Hamiltonian
framework. Following the approach of [13], we introduce the gauge invariant quantity F(n)
and its associated momentum ΠF(n) (when Q ̸= Qmax),

F(n) = f(n) −Q(1− n2)E(n) ,

ΠF(n) =
1

(1− n2)a2

(
Q(1− n2)B(n) − ḟ(n)

)
+ Q

Ha2ψ(n) .
(A.6)

We also impose the constraints enforced by the Lagrange multipliers A and B. The resulting
action is manifestly gauge invariant:

δ2IE =
∫

dτ
[
ΠF(n)Ḟ(n) +AΠ2

F(n)
− BΠF(n)F(n) + CF2

(n)

]
, (A.7)
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where
A = (1− n2)a2

2 − 3κ2
4Q

2(1− n2)
4a2((1− n2) + 3k) ,

B = κ2
4Q

2(1− n2)
2a4((1− n2) + 3k)H ,

C = (1− n2)
2a2((1− n2) + 3k) +

k(3k − Λa2)
2a2H2((1− n2) + 3k) ,

(A.8)

where k = 1 is the curvature of the sphere. The momentum ΠF(n) appears as a Lagrange
multiplier; after integrating ΠF(n) out, the action can be written in the second-order form:

δ2IE =
∫

dτ
[
KḞ2

(n) + V F2
(n)

]
+B F2

(n)

∣∣∣∣τ=τmax

τ=τmin

, (A.9)

where we integrated by parts to produce the boundary term. The functions K,V , and B

are background-dependent and given by

K = − 1
4A , V = C − B2

4A − d
dτ

( B
4A

)
, B = B

4A . (A.10)

The periodicity of the boundary conditions means

F(n)(τmin) = F(n)(τmax). (A.11)

Hence the boundary term in (A.9) vanishes. Since we do not have a closed-form expression
for the scale factor a(τ), we proceed numerically. Figure 5 shows the functions K(τ) and
V (τ) for the n = 3 mode, for a range of different values Q/Qmax. (The functions K
and V for n > 3 modes are qualitatively the same). It is clear that both functions are
always positive across the entire wormhole. Consequently, the quadratic action (A.9) is
non-negative and we can conclude that the wormholes are perturbatively stable.

B The arrow of time

The universe exhibits a number of arrows of time, but these are all contingent on the
fluctuation arrow. The latter is defined by the increase in deviations from homogeneity
including, possibly, the formation of cosmic structures [20]. A key property of the inflationary
cosmologies predicted by the no-boundary wave function is that the fluctuation arrow of
time is bidirectional, pointing away from the bounce in both directions [20]. The reason
is that on the one hand, the no-boundary condition of regularity puts fluctuations in
their ground state near the bounce. On the other hand, the inflationary expansion causes
perturbations to grow in both directions away from the bounce. In this appendix, we show
that fluctuations around the bouncing axion-de Sitter universes that we have considered
behave in a similar fashion.

The growth of the fluctuations F(n) is governed by the action (A.9) and its continuation
into the Lorentzian regime. We consider separately the cases of generic wormholes with
0 < Q < Qmax, and the Nairai limit with Q = Qmax.
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Figure 5. The behavior of perturbations around axion-de Sitter wormholes is governed by the
functions: (a) K(τ) and (b) V (τ), shown here for the n = 3 mode, for different Q/Qmax ratios
(purple: 1, blue: 0.9, orange: 0.6, green: 0.3, black: 0). We see that both functions are everywhere
positive, hence the wormholes are perturbatively stable.

For a slice with vanishing Hubble factor, we perform the Wick rotation τ → it in the
equations of motion resulting from (A.9) to obtain the Lorentzian evolution of the axion
inhomogeneities:

K(t)F ′′
(n)(t) +K ′(t)F(n)

′(t) + V (t)F(n)(t) = 0 , (B.1)

where the initial value of F(t) will be fixed by the argument of the wave function on the
slice where we make the continuation.

To give intuition about the analytic structure of axion inhomogeneities F(n), we consider
a background where κ4Q

2/ℓ4 ≪ 1. We have confirmed numerically that the solutions with
higher-order contributions in the axion charge have a very similar structure. Requiring that
the solution to (B.1) is regular at the slice where the continuation is performed, we find

F(n)(t) = sec
(
t

ℓ

)[
c(1)

n sin
(
n t

ℓ

)
+ c(2)

n cos
(
n t

ℓ

)]
+O(κ2Q2/ℓ4) , (B.2)

with c
(1)
n and c

(2)
n as constants and t/ℓ ≤ π

2 .
In the inflationary context, the fluctuations basically oscillate until the amplitude

freezes when the fluctuation mode leaves the horizon. That transition lies at the basis of
the arrow of time [27]. We find fluctuations around axionic de Sitter wormholes behave in
a similar fashion. The fluctuation histories are plotted in 6. We see that in all cases, the
oscillations cease to exist and instead, the axionic inhomogeneities keep increasing, leading
to an emergent fluctuation arrow of time.

In contrast, the Einstein static universe, i.e. Q = Qmax, shows no arrow of time. The
axionic inhomogeneities are always oscillatory given that the scale factor, as well as the
coefficients K and V in (B.1) remain constant.
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Figure 6. Lorentzian evolution of axionic inhomogeneities for the cosmological constant dominated
universe (blue n = 3, orange n = 5, green n = 10).
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