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1 Introduction

A confining duality allows for a dual description of a gauge theory as a non-gauge theory
in terms of gauge invariant composites and their interactions. It can be used to construct a
sequence of dual theories and to figure out an essential or basic part of dualities. For super-
symmetric non-Abelian gauge theories the confining dualities have been found for various
theories e.g. for 4d N = 1 supersymmetric gauge theories [1–14], 3d N = 2 supersym-
metric gauge theories [11, 14–23] and 2d N = (0, 2) supersymmetric gauge theories [24].
Recently in [23] we found boundary confining dualities of 3d N = 2 supersymmetric gauge
theories, whose vector multiplets of gauge groups SU(N), USp(2n) and SO(N) obey the
half-BPS N = (0, 2) Neumann boundary conditions due to the presence of a boundary
(See e.g. [23, 25–38] for the study of the half-BPS N = (0, 2) boundary conditions in
3d N = 2 supersymmetric gauge theories). Similarly to the theories in the bulk, the
dual boundary descriptions are given by non-gauge theories obeying certain N = (0, 2)
boundary conditions. The boundary confining dualities result in the equivalences of the
half-indices [25, 27–29] which count the BPS local operators living at the boundary with
appropriate boundary conditions. They are identified with the Askey-Wilson type q-beta
integrals [39–44] associated with the root systems corresponding to the gauge groups so
that the boundary confining dualities can be rigorously confirmed as identities of the ma-
trix integrals. Moreover, one can find new integral formulas from the boundary confining
dualities for 3d N = 2 gauge theories and vice versa.

In this paper, we describe 3d N = 2 boundary confining dualities where the gauge
group is an exceptional group. While supersymmetric gauge theories with exceptional
gauge groups are examined in the literature, e.g. [45–50] for 4d N = 1 theories, in [19, 51, 52]
for 3d N = 2 theories and in [53] for 2d N = (2, 2) theories, the dualities are less well
understood. With the tool of half-indices and boundary ’t Hooft anomalies we find strong
evidence of boundary confining dualities for exceptional gauge theories. In one type the
theory consists of the vector multiplet and an adjoint chiral, both with Neumann boundary
conditions. Such theories provide examples of boundary confining theories for any gauge
group. The matching of half-indices corresponds to identities known as the orthogonality
measures for the Macdonald polynomials [54, 55]. The other examples we consider have
fundamental chirals (or both fundamental and antifundamental for gauge group E6), again
with Neumann boundary conditions for all chirals. In the case of gauge group G2 or F4 the
matching half-indices beautifully reproduces known identities. For E6 or E7 the integral
formula is unknown in the literature. So we obtain new conjectured identities from the
boundary confining dualities. We can also exchange all Neumann and Dirichlet boundary
conditions. The theory A half-indices then correspond to Macdonald type sums [54, 56].
The theory B half-indices then give the evaluation of these sums, corresponding to Mac-
donald type identities. See e.g. [44] with proofs in [57–59] for a summary of known cases
which relate to boundary confining dualities. Our examples of E6 or E7 gauge group with
fundamentals provide new conjectured identities for generalized Macdonald type sums.
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1.1 Open problems

We list several open problems which we leave for future works.

• Unlike the case with unitary, orthogonal and symplectic gauge groups, the dualities
of gauge theories with exceptional gauge theories are less understood. It would be
intriguing to explore such dualities including the Chern-Simons coupling.1

• While we have provided several numerical and physical checks for the conjectural
identities of the half-indices as the unknown evaluations of E6 and E7 Askey-Wilson
type q-beta integrals, it would be nice to give an analytic proof with some extra work
as discussed for other root systems [39–44].

• The half-index can be generaliezd by line defect operators ending on the boundary.
When the Wilson line operator transforming in the representation R is introduced,
the integrand of the Askey-Wilson type q-beta integral is decorated by the charac-
ters of R. It would be interesting to explore dualities with such line operators as
well as understand the mathematical relation of such half-indices to Askey-Wilson
polynomial orthogonality relations.

• The Neumann half-index for the vector multiplet can be enriched by introducing 2d
degrees of freedom at the boundary. The generalized confinement/duality of the 3d-
2d coupled system will be addressed by gauging the Dirichlet half-indices as employed
in [61].

1.2 Structure

The structure of the paper is straightforward. In section 2 we review the N = (0, 2)
half-indices of 3d N = 2 theories and introduce the “reduced half-indices”, which are
obtained by taking a limit of fugacities. In section 3 we discuss the basic features which
are required to calculate the boundary ’t Hooft anomalies and the half-indices of the gauge
theories with an adjoint chiral. In section 4 we find the N = (0, 2) boundary confining
dualities for G2 gauge theory with 4 fundamental chirals and that with an adjoint chiral. In
section 5 we present the N = (0, 2) boundary confining dualities for F4 gauge theories with
3 fundamental chirals and that with an adjoint chiral. In section 6 we find the N = (0, 2)
boundary confining dualities for E6 gauge theories with (Nf , Na) = (4, 0), (3, 1) and (2, 2)
where Nf (resp. Na) is the number of the fundamental (resp. antifundamental) chirals
as well as that with an adjoint chiral. In section 7 the N = (0, 2) boundary confining
dualities for E7 gauge theories with 3 fundamental chirals and that with an ajoint chiral
are presented. In section 8 we propose the N = (0, 2) boundary confining duality for E8
gauge theory with an adjoint chiral.

2 Half-indices and reduced half-indices

Analogously to the definition of 3d superconformal indices, the supersymmetric “half-
index” of a 3d N = 2 supersymmetric theory T obeying the N = (0, 2) half-BPS boundary

1See [60] for dualities of exceptional Chern-Simons theories.
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condition B is defined as a trace over the states that correspond to half-BPS local operators
on the boundary [25, 27–29]

IITB = TrOp(−1)F qJ+ R
2 aqaxf (2.1)

where F is the Fermion number operator, J is the generator of the Spin(2) ∼= U(1)J

rotational symmetry of the two-dimensional plane where the boundary local operators are
supported, R is the U(1)R R-charge, qa is the U(1)a axial charge (or we may have more
than one axial charge) and f the Cartan generators of the remaining global symmetry
group which will be a (product of) special unitary group(s) in our examples.

The half-index can be computed as a partition function on HS2 × S1 which encodes
the N = (0, 2) half-BPS boundary conditions on ∂(HS2 × S1) = S1 × S1 where HS2 is a
hemisphere. The UV formula for the half-index of the Neumann boundary condition for
the gauge multiplet was derived in [25, 27, 28] and the formula for the Dirichlet boundary
conditions for the gauge multiplet was proposed in [29].

We will give explicit details of the half-index expressions for the cases relevant to the
theories discussed in this article. However, a common feature is that the half-indices can
be expressed in terms of q-Pochhammer symbols (X; q)∞ = ∏∞

n=0(1 − Xqn) where X may
contain a fixed power of q. In cases where a vector multiplet has Neumann boundary
conditions we will have an integral over the gauge fugacities while for Dirichlet boundary
conditions we will instead have a sum over monopole fluxes. For cases where there is no
vector multiplet we have simply a rational function of these q-Pochhammer symbols. There
is an obvious simplification by taking a limit q → 0 which results in simply (1 − X) if X

is fixed in this limit (or even more simply 1 if X → 0 in this limit). As we will see, such
limits are well-defined in the examples we consider where we have a vector multiplet with
Neumann boundary condition and in the duals of these boundary confining gauge theories.
In such cases the expressions X will be combinations of the global symmetry fugacities
such as global U(1) (e.g. axial symmetry) fugacities and non-Abelian flavor fugacities. For
example, we typically shift the U(1)R charge by an amount proportional to the U(1)a

charge which corresponds to replacing the axial fugacity a → qr/2a but in the limit q → 0
we keep t = qr/2a fixed. We will refer to such limits of half-indices as reduced half-indices,
II. Specifically, with the understanding that certain combinations of fugacities are fixed,

IIT
B (t, x) = lim

q→0
IITB (t, x; q) . (2.2)

These reduced half-indices have the form of Hilbert series or graded trace for the algebra
formed by the boundary local operators if we also set the non-Abelian flavor symmetry
fugacities to 1 or of refined Hilbert series if we keep them.

In cases where we do not have a proof of the matching of half-indices or even the
resource to calculate low order terms in the q-series expansion of half-indices for high rank
gauge groups (specifically E6 and E7 gauge theories with Neumann boundary conditions
for the vector multiplet) we can still provide some evidence for dualities by showing that
the reduced half-indices match.
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3 Gauge theory with an adjoint chiral

We will focus on N = 2 boundary confining theories with exceptional gauge groups. These
will include cases where there is an adjoint chiral in addition to the vector multiplet which
can also be viewed as N = 4 boundary confining theories with only a vector multiplet. Here
we will first comment on some general features of a gauge theory with gauge group G of
dimension dG and a single adjoint chiral. If we take the same boundary conditions for the
vector multiplet and the adjoint chiral, the gauge anomaly will cancel for any gauge group
without introducing any other chirals or 2d matter. This corresponds to an N = (2, 2)
boundary condition for the N = 4 theory and gives a candidate boundary confining theory
A. We will later present explicit examples for exceptional gauge groups.

If we take the adjoint chiral to have zero R-charge and a U(1)a flavor symmetry charge
+1 then with Neumann boundary conditions for both the vector multiplet and the adjoint
chiral we have the following anomaly

A = h∨
G Tr(s2) + dG

2 r2︸ ︷︷ ︸
VM, N

−
(

h∨
G Tr(s2) + dG

2 (a − r)2
)

︸ ︷︷ ︸
Φ, N

= −dG

2 a2 + dGar (3.1)

where h∨
G is the dual Coxeter number.

Assuming we have a boundary confining duality, the dual theory will have chirals Mdf

with Neumann boundary conditions with U(1)a charges df where df are the degrees of the
independent invariants which can be formed from an adjoint scalar. These are the same as
the degrees of the fundamental invariants of the Coxeter group corresponding to the Weyl
group of G. These degrees are

G dG df

SU(N) N2 − 1 2, 3, 4, . . . N

USp(2N) N(2N + 1) 2, 4, 6, . . . 2N

SO(2N) N(2N − 1) N ; 2, 4, 6, . . . 2N − 2
SO(2N + 1) N(2N + 1) 2, 4, 6, . . . 2N

G2 14 2, 6
F4 52 2, 6, 8, 12
E6 78 2, 5, 6, 8, 9, 12
E7 133 2, 6, 8, 10, 12, 14, 18
E8 248 2, 8, 12, 14, 18, 20, 24, 30

(3.2)

It is straightforward to check (for any special unitary, orthogonal, symplectic or exceptional
group G) that the anomalies match if we pair each of these chirals Mdf

with a chiral Vdf−1
with Dirichlet boundary condition having U(1)a charge 1 − df , and we take all chirals to
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have R-charge zero. The matching of anomalies is then equivalent to the identity∑
df

(2df − 1) = dG (3.3)

which is satisfied for all cases in (3.2). In all these cases there is no standard unitary bulk
duality since all the chirals have R-charge 0 but since some have positive axial charge and
others negative axial charge, we cannot shift the R-charge by an amount proportional to the
axial charge without leaving some chirals with negative dimension. Indeed, these are well
known to be ‘bad’ [62] N = 4 theories. What we are claiming here is that these theories are
well defined with Neumann boundary conditions and that they are then boundary confining
theories with duals described above. It is also possible to switch all Neumann and Dirichlet
boundary conditions to get another boundary confining duality for each group G.

While the existence of the chirals Mdf
in theory B, corresponding to invariants of

the adjoint scalar in theory A, is not surprising, the appearance of the chirals Vdf−1 is
less obvious. However, these are precisely what is required in order to realise half-BPS
boundary conditions for 3d N = 4 gauge theories. Indeed, in theory A the N = 2 vector
multiplet and adjoint chiral multiplet with Neumann boundary conditions correspond to
an N = 4 vector multiplet with Neumann boundary conditions. In terms of the half-index
the correspondence is

(s; q)∞
(qr/2as; q)∞

= (s; q)∞
(q1/2t−2s; q)∞

(3.4)

where there will be a product over s which represents some combination of gauge fugacities,
a is the U(1)a fugacity and t is the U(1)H−C ⊂ SU(2)C × SU(2)H fugacity, following the
conventions in [63]. On the left hand side, the numerator is the contribution from the
N = 2 vector multiplet while the denominator is the contribution from the adjoint chiral.
Similarly, in theory B the pair Mdf

with Neumann boundary conditions and Vdf−1 with
Dirichlet boundary conditions corresponds to an N = 4 twisted hypermultiplet. In terms
of the half-index the correspondence is

(q1+(df−1)r/2adf−1; q)∞
(qdf r/2adf ; q)∞

= (q3/4tx; q)∞
(q1/4t−1x; q)∞

(3.5)

where x is the global fugacity for the N = 4 twisted hypermultiplet. It is straightforward
to see that the N = 2 and N = 4 descriptions match with the identifications

t = q(1−r)/4a−1/2 (3.6)
x = qdf r/2−r/4adf−1/2 (3.7)

which identifies U(1)a as a U(1) subgroup of the N = 4 R-symmetry. We then see that
the U(1)x global symmetry is broken with U(1)x transformations compensated by specific
U(1)R and U(1)a transformations in the N = 2 description. We interpret this a specific
type of N = 4 Dc boundary condition.

Note that for G = SU(N) the fundamental invariants are Tr Φdf where df can take
the values 2, 3, . . . , N . Such a boundary duality for G = SU(2) has been described in [29]

– 6 –
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where indeed the dual theory consists of a chiral with Neumann boundary condition and
U(1)a charge 2, and a chiral with Dirichlet boundary condition and U(1)a charge −1.

More generally, for Neumann boundary conditions in theory A the matching of half-
indices for any group G is equivalent to the identity conjectured by Macdonald [54] and
later proven by Cherednik [55].2 In later sections we will present the explicit results for
exceptional gauge groups.

4 Gauge group G2

In this section we consider boundary confining dualities for G2 gauge theories with fun-
damental or adjoint chirals. We start with the theory with 4 fundamental chirals then
consider instead an adjoint chiral.

4.1 G2 with 4 fundamental chirals

Consider 3d N = 2 gauge theory with gauge group G2 and 4 fundamental chirals Qα,
α = 1, · · · , 4. It is argued in [51] that the theory is confining.3 We now consider the case
with boundary conditions and show that there is a set of boundary conditions for which
the gauge anomaly is cancelled in the G2 gauge theory and that the ’t Hooft anomalies
match for the gauge theory and its dual. We present the matching half-indices, noting that
this is equivalent to an identity proven by Gustafson [42].

We consider first the case where the vector and chiral multiplets obey Neumann bound-
ary conditions. We then propose a dual theory B with the field content (the same as in the
bulk dual discussed in [51]) and boundary conditions: an SU(4) rank-2 symmetric chiral
Mαβ , an SU(4) antifundamental chiral Bα, a singlet B all obeying Neumann boundary con-
ditions, as well as a singlet V with Dirichlet boundary condition. The boundary conditions
and charges of the field content are summarized as follows:

bc G2 SU(Nf = 4) U(1)a U(1)R

VM N Adj 1 0 0
Qα N 7 4 1 0

Mαβ N 1 10 2 0
Bα N 1 4 3 0
B N 1 1 4 0
V D 1 1 −8 2

(4.1)

The operators map as Mαβ ∼ QαQβ with the gauge indices contracted with the symmetric
rank-2 G2-invariant tensor, Bα ∼ Qβ1Qβ2Qβ3ϵαβ1β2β3 with the gauge indices contracted
with the antisymmetric rank-3 G2-invariant tensor, B ∼ Q1Q2Q3Q4 with the gauge indices

2Although we will not pursue it here, this can be also viewed as the identity of 4d half-indices, which
implies the S-duality of Neumann boundary conditions and Nahm pole boundary conditions in 4d N = 4
super Yang-Mills theory as demonstrated in [64].

3See [65, 66] for the study of 4d N = 1 G2 gauge theory.
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contracted with the antisymmetric rank-4 G2-invariant tensor, and V (in the bulk theory)
is dual to the minimal monopole in theory A.

We can easily check there is no gauge anomaly and the ’t Hooft anomalies match as
follows,

A = 4 Tr(s2) + 7r2︸ ︷︷ ︸
VM, N

−
(

4 Tr(s2) + 7
2 Tr(x2) + 14(a − r)2

)
︸ ︷︷ ︸

Qα, N

= −7
2 Tr(x2) − 14a2 + 28ar − 7r2

= −
(
3 Tr(x2) + 5(2a − r)2

)
︸ ︷︷ ︸

Mαβ , N

+ 1
2
(
− 8a + r

)2︸ ︷︷ ︸
V, D

−
(1

2 Tr(x2) + 2(3a − r)2
)

︸ ︷︷ ︸
Bα, N

− 1
2
(
4a − r

)2︸ ︷︷ ︸
B, N

. (4.2)

The half-index for theory A is

IIA
N ,N = (q)2

∞
223

2∏
i=1

∮
dsi

2πisi

(∏3
i ̸=j(sis

−1
j ; q)∞

)∏3
i=1(s±i ; q)∞∏4

α=1(qr/2axα; q)∞
∏3

i=1(qr/2s±i axα; q)∞
, (4.3)

where (X±; q)∞ = (X; q)∞(X−1; q)∞ and ∏3
i=1 si = ∏4

α=1 xα = 1. When we set r = 1/4
and xα = 1, we get

1 + 10a2q1/4 + 4a3q3/8 + 56a4q1/2 + 40a5q5/8 + 240a6q3/4 + 224a7q7/8 + · · · . (4.4)

According to the identity proven by Gustafson [42], it follows that the integral (4.3) is
equal to

IIB
N,N,N,D = (q4ra8; q)∞

(q2ra4; q)∞
(∏4

α≤β(qra2xαxβ ; q)∞
)∏4

α=1(q3r/2a3x−1
α ; q)∞

. (4.5)

The expression (4.5) is precisely the half-index of dual theory B with the above boundary
conditions.

We can also take a suitable limit with q → 0 to produce a reduced half-index. In this
case for theory A we first fix t = qr/2a and xα which gives

IIA
N ,N = 1

223

2∏
i=1

∮
dsi

2πisi

(∏3
i ̸=j(1 − sis

−1
j )
)∏3

i=1(1 − s±i )∏4
α=1(1 − txα)∏3

i=1(1 − s±i txα)
(4.6)

The integrand has simple poles at

(s1, s2) = (txβ , txγ) , β ̸= γ (4.7)
(s1, s2) = (txβ , x−1

β xγ) , β > γ (4.8)

(s1, s2) = (s−1
2 txβ , txγ) , β ̸= γ (4.9)

(s1, s2) = (s−1
2 txβ , t2xβxγ) , β ̸= γ (4.10)

(s1, s2) = (s−1
2 txβ , xβx−1

γ ) , β < γ (4.11)
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when integrating first wrt. s1 and ordering |xβ | < |xγ | for β < γ in the case that |t|
is sufficiently small so that |tx4| < 1. It is straightforward to evaluate the integral by
summing the residues of these poles. The result is precisely the reduced half-index for
theory B

IIB
N,N,N,D = (1 + t4)(∏4

α≤β(1 − t2xαxβ)
)∏4

α=1(1 − t3x−1
α )

. (4.12)

We can also exchange all Neumann and Dirichlet boundary conditions which just
switches the sign of all contributions to the anomalies so the anomalies will still match.
Doing so gives the theory A half-index

IIA
D,D = 1

(q)2
∞

∑
m1,m2∈Z

∏4
α=1(q1−r/2a−1x−1

α ; q)∞
∏3

i=1(q1−r/2±mis±i a−1x−1
α ; q)∞(∏3

i ̸=j(q1+mi−mj sis
−1
j ; q)∞

)∏3
i=1(q1±mis±i ; q)∞

, (4.13)

where ∏3
i=1 si = ∏4

α=1 xα = 1 and ∑3
i=1 mi = 0. The theory B half-index is

IIB
D,D,D,N =

(q1−2ra−4; q)∞
(∏4

α≤β(q1−ra−2x−1
α x−1

β ; q)∞
)∏4

α=1(q1−3r/2a−3xα; q)∞
(q1−4ra−8; q)∞

.

(4.14)
Note that the Dirichlet half-index for theory A is independent of the gauge fugacities

which is not at all obvious from the expression (4.13). Physically this is related to the
confining duality. Mathematically the cases where this happens in such Macdonald type
sums [56] are listed, including the evaluation of the sums, in [44] with proofs in [57–59].
Indeed the above identity of half-indices is equivalent to a known evaluation of a Macdonald
type sum.

4.2 G2 with an adjoint chiral

For gauge group G2 we consider Neumann boundary conditions for both the vector mul-
tiplet and an adjoint chiral. The charges and boundary conditions are summarized as
follows:

bc G2 U(1)a U(1)R

VM N Adj 0 0
Φ N Adj 1 0

M2 N 1 2 0
M6 N 1 6 0
V1 D 1 −1 0
V5 D 1 −5 0

(4.15)

The boundary ’t Hooft anomaly of theory A is given by

AA = 4 Tr(s2) + 7r2︸ ︷︷ ︸
VM, N

−
(
4 Tr(s2) + 7(a − r)2

)
︸ ︷︷ ︸

Φ, N

= −7a2 + 14ar, (4.16)
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which exactly agrees with the boundary anomaly of theory B which is given by

AB = − 1
2(2a − r)2︸ ︷︷ ︸

M2, N

+ 1
2(−a − r)2︸ ︷︷ ︸

V1, D

− 1
2(6a − r)2︸ ︷︷ ︸

M6, N

+ 1
2(−5a − r)2︸ ︷︷ ︸

V5, D

. (4.17)

This gives the half-index for theory A

IIA
N ,N = 1

223
(q)2

∞
(qr/2a; q)2

∞

2∏
i=1

∮
dsi

2πisi

(∏3
i ̸=j(sis

−1
j ; q)∞

)∏3
i=1(s±i ; q)∞(∏3

i ̸=j(qr/2asis
−1
j ; q)∞

)∏3
i=1(qr/2as±i ; q)∞

. (4.18)

For example, when r = 1/2, we find

IIA
N ,N = 1 + a2q1/2 + a4q − aq5/4 +

(
2a6 + a2

)
q3/2 − a3q7/4 +

(
2a8 + a4

)
q2

+
(
−2a5 − a

)
q9/4 +

(
2a10 + 2a6 + a2

)
q5/2 +

(
−3a7 − 2a3

)
q11/4 + · · · . (4.19)

The half-index (4.18) coincides with the half-index for theory B

IIB
N,N,D,D = (q1+r/2a; q)∞(q1+5r/2a5; q)∞

(qra2; q)∞(q3ra6; q)∞
, (4.20)

as shown by Cherednik [55].
We can also exchange all Neumann and Dirichlet boundary conditions which just

switches the sign of the contributions to the anomaly so the anomalies will still match.
Doing so gives the theory A half-index

IIA
D,D = (q1−r/2a−1; q)2

∞
(q)2

∞
(4.21)

×
∑

m1,m2∈Z

(∏3
i ̸=j(q1−r/2+mi−mj a−1sis

−1
j ; q)∞

)∏3
i=1(q1−r/2±mia−1s±i ; q)∞(∏3

i ̸=j(q1+mi−mj sis
−1
j ; q)∞

)∏3
i=1(q1±mis±i ; q)∞

,

where ∏3
i=1 si = 1 and ∑3

i=1 mi = 0. The theory B half-index is

IIB
D,D,N,N = (q1−ra−2; q)∞(q1−3ra−6; q)∞

(q−r/2a−1; q)∞(q−5r/2a−5; q)∞
, (4.22)

as proven in [57, 59].
Note that the full indices won’t be convergent since for r ̸= 0 theory B will contain

chirals of both positive and negative dimension. Similarly, in theory A if r > 0 so that Φ
has positive dimension then there will be negative dimension monopoles.

5 Gauge group F4

In this section we consider boundary confining dualities for F4 gauge theories with funda-
mental or adjoint chirals.
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5.1 F4 with 3 fundamental chirals

For gauge group F4 with 3 fundamental chirals there is a 3d bulk s-confinement described
in [19]. We propose a boundary confining duality by taking Neumann boundary conditions
for all chirals except one in the dual theory. The content and boundary conditions are
given by

bc F4 SU(Nf = 3) U(1)a U(1)R

VM N Adj 1 0 0
Qα N 26 3 1 0

Mαβ N 1 6 2 0
Mαβγ N 1 10 3 0
M

αβ N 1 6 4 0
M

α N 1 3 5 0
M̃ N 1 1 6 0
M̂ N 1 1 9 0
V D 1 1 −18 2

(5.1)

The operators map with the chirals in theory A corresponding to gauge-invariant
combinations of the fundamental chirals in theory A (e.g. Mαβ and Mαβγ correspond to
QαQβ and QαQβQγ with the gauge indices contracted with the symmetric rank-2 and
rank-3 F4-invariant tensors) except for V which is dual to the minimal monopole operator
in theory A in the bulk.

With this choice of boundary conditions, we can easily check that the gauge anomaly
cancels and that the ’t Hooft anomalies match.

AA = 9 Tr(s2) + 26r2︸ ︷︷ ︸
VM, N

−
(
9 Tr(s2) + 13 Tr(x2) + 39(a − r)2

)
︸ ︷︷ ︸

Qα, N

= −13 Tr(x2) − 39a2 + 78ar − 13r2, (5.2)

AB = −
(5

2 Tr(x2) + 3(2a − r)2
)

︸ ︷︷ ︸
Mαβ , N

−
(15

2 Tr(x2) + 5(3a − r)2
)

︸ ︷︷ ︸
Mαβγ , N

+ 1
2
(
− 18a + r

)2︸ ︷︷ ︸
V, D

−
(5

2 Tr(x2) + 3(4a − r)2
)

︸ ︷︷ ︸
M

αβ
, N

−
(1

2 Tr(x2) + 3
2(5a − r)2

)
︸ ︷︷ ︸

M
α

, N

− 1
2
(
6a − r

)2︸ ︷︷ ︸
M̃, N

− 1
2
(
9a − r

)2︸ ︷︷ ︸
M̂, N

= −13 Tr(x2) − 39a2 + 78ar − 13r2. (5.3)

We then find the following half-index for theory A

IIA
N ,N = (q)4

∞
2732

4∏
i=1

∮
dsi

2πisi

∏
µ∈Roots(sµ; q)∞∏3

α=1(qr/2axα; q)2
∞
∏

µ∈Short roots(qr/2axαsµ; q)∞
, (5.4)
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where ∏3
α=1 xα = 1 and

∏
µ∈Roots

(sµ; q)∞ =

 ∏
µ∈Short roots

(sµ; q)∞

 ∏
µ∈Long roots

(sµ; q)∞

 , (5.5)

∏
µ∈Short roots

(sµ; q)∞ =
4∏

i<j

(s±i s±j ; q)∞(s±i s∓j ; q)∞, (5.6)

∏
µ∈Long roots

(sµ; q)∞ =
( 4∏

i=1
(s±2

i ; q)∞
) ∏

zi∈{−1,+1}
(sz1

1 sz2
2 sz3

3 sz4
4 ; q)∞. (5.7)

For r = 1/3 and xα = 1, we obtain

IIA
N ,N = 1 + 6a2q1/3 + 10a3q1/2 + 27a4q2/3 + 63a5q5/6 + · · · . (5.8)

On the other hand, theory B has half-index

IIB
N6;D = (q9ra18; q)∞

(q3ra6; q)∞(q9r/2a9; q)∞
(∏3

α≤β(qra2xαxβ ; q)∞
)∏3

α=1(q5r/2a5x−1
α ; q)∞

× 1(∏3
α≤β(q2ra4x−1

α x−1
β ; q)∞

)
(q3r/2a3; q)∞

∏3
α,β=1(q3r/2a3x2

αxβ ; q)∞
. (5.9)

We have confirmed that this precisely coincides with the half-index (5.4) of theory A.
Ito [44] proved an identity for F4 which we can interpret as the matching of the above

half-indices. In fact, we note that the contribution ∏3
α≤β(q2ra4x−1

α x−1
β ; q)∞ from M

αβ

in (5.9) was erroneously replaced with a contribution corresponding to a fundamental
representation of SU(Nf = 3) in [44]. This has been noted by Ito who has confirmed that
the matching of (5.4) and (5.9) is the correct statement.4

Switching all boundary conditions gives a Macdonald type sum which is independent
of the gauge fugacities [57, 59]

IIA
D,D = 1

(q)4
∞

∑
mi∈Z

∏3
α=1(q1−r/2a−1x−1

α ; q)2
∞
∏

µ∈Short roots(q1+m·µ−r/2sµa−1x−1
α ; q)∞∏

µ∈Roots(q1+m·µsµ; q)∞
(5.10)

and matches the Dirchlet half-index of theory B

IIB
D6;N =

(q1−3ra−6; q)∞(q1−9r/2a−9; q)∞
(∏3

α≤β(q1−ra−2x−1
α x−1

β ; q)∞
)∏3

α=1(q1−5r/2a−5xα; q)∞
(q1−9ra−18; q)∞

×

 3∏
α≤β

(q1−2ra−4xαxβ ; q)∞

 (q1−3r/2a−3; q)∞
3∏

α,β=1
(q1−3r/2a−3x−2

α x−1
β ; q)∞. (5.11)

Again, this matching is equivalent to a known identity for a Macdonald type sum which is
listed in [44].

4We thank Masahiko Ito and Masatoshi Noumi for useful communication regarding this issue.
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5.2 F4 with an adjoint chiral

The charges and boundary conditions are summarized as follows:

bc F4 U(1)a U(1)R

VM N Adj 0 0
Φ N Adj 1 0

M2 N 1 2 0
M6 N 1 6 0
M8 N 1 8 0
M12 N 1 12 0
V1 D 1 −1 0
V5 D 1 −5 0
V7 D 1 −7 0
V11 D 1 −11 0

(5.12)

The boundary ’t Hooft anomaly of theory A is given by

AA = 9 Tr(s2) + 26r2︸ ︷︷ ︸
VM, N

−
(
9 Tr(s2) + 26(a − r)2

)
︸ ︷︷ ︸

Φ, N

= −26a2 + 52ar, (5.13)

which exactly agrees with the boundary anomaly of theory B which is given by

AB = − 1
2(2a − r)2︸ ︷︷ ︸

M2, N

+ 1
2(−a − r)2︸ ︷︷ ︸

V1, D

− 1
2(6a − r)2︸ ︷︷ ︸

M6, N

+ 1
2(−5a − r)2︸ ︷︷ ︸

V5, D

− 1
2(8a − r)2︸ ︷︷ ︸

M8, N

+ 1
2(−7a − r)2︸ ︷︷ ︸

V7, D

− 1
2(12a − r)2︸ ︷︷ ︸

M12, N

+ 1
2(−11a − r)2︸ ︷︷ ︸

V11, D

. (5.14)

This gives the half-index for theory A

IIA
N ,N = (q)4

∞
2732

4∏
i=1

∮
dsi

2πisi

∏
µ∈Roots(sµ; q)∞∏

µ∈Roots(qr/2asµ; q)∞
. (5.15)

The Neumann half-index (5.15) agrees with the half-index for theory B

IIB
N4,D4 = (q1+r/2a; q)∞(q1+5r/2a5; q)∞(q1+7r/2a7; q)∞(q1+11r/2a11; q)∞

(qra2; q)∞(q3ra3; q)∞(q4ra8; q)∞(q6ra12; q)∞
, (5.16)

as shown in [55].
Switching all boundary conditions gives matching Dirchlet half-indices, equivalent to

a known identity for a Macdonald type sum which is listed in [44]

IIA
D,D = 1

(q)4
∞

∑
mi∈Z

∏
µ∈Roots(q1+m·µ−r/2sµa−1; q)∞∏

µ∈Roots(q1+m·µsµ; q)∞
(5.17)
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and

IIB
D4,N4 = (q1−ra−2; q)∞(q1−3ra−3; q)∞(q1−4ra−8; q)∞(q1−6ra−12; q)∞

(q−r/2a−1; q)∞(q−5r/2a−5; q)∞(q−7r/2a−7; q)∞(q−11r/2a−11; q)∞
. (5.18)

6 Gauge group E6

In this section we consider boundary confining dualities for E6 gauge theories with
(anti)fundamental or adjoint chirals. The results here for the cases with fundamentals are
new boundary duality results for known bulk dualities discussed in [19]. The conjectured
matching of half-indices gives new examples of generalized Askey-Wilson and Macdonald
sum identities for E6 which have not been studied in the mathematical literature. We give
some numerical evidence for these conjectured boundary confining dualities.

6.1 E6 with 4 fundamental chirals

We have dual confining boundary conditions for E6 gauge theory with 4 fundamental chirals

bc E6 SU(Nf = 4) U(1)a U(1)R

VM N Adj 1 0 0
Qα N 27 4 1 0

Mαβγ N 1 20 3 0
M

αβ N 1 10 6 0
M N 1 1 12 0
V D 1 1 −24 2

(6.1)

We see that the anomaly polynomials match for theories A and B:

AA = 12 Tr(s2) + 39r2︸ ︷︷ ︸
VM, N

−
(

12 Tr(s2) + 27
2 Tr(x2) + 54(a − r)2

)
︸ ︷︷ ︸

Qα, N

= −27
2 Tr(x2) − 54a2 + 108ar − 15r2, (6.2)

AB = −
(21

2 Tr(x2) + 10(3a − r)2
)

︸ ︷︷ ︸
Mαβγ , N

+ 1
2
(
− 24a + r

)2︸ ︷︷ ︸
V, D

−
(
3 Tr(x2) + 5(6a − r)2

)
︸ ︷︷ ︸

M
αβ

, N

− 1
2
(
12a − r

)2︸ ︷︷ ︸
M, N

= −27
2 Tr(x2) − 54a2 + 108ar − 15r2. (6.3)

Similarly the half-indices match. Theory A has half-index

IIA
N ,N = (q)6

∞
27345

3∏
n=1

2∏
i=1

∮
dsn,i

2πisn,i

∏
µ∈Roots(sµ; q)∞∏4

α=1
∏

µ∈Fund. weights(qr/2sµaxα; q)∞
, (6.4)
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where ∏4
α=1 xα = 1 and

∏
µ∈Roots

(sµ; q)∞ =

 3∏
i,j,k=1

(s±1,is
±
2,js±3,k; q)∞

 3∏
n=1

3∏
i<j

(s±n,is
∓
n,j ; q)∞, (6.5)

∏
µ∈Fund. weights

(sµ; q)∞ =
3∏

i,j=1
(s1,is

−1
2,j ; q)∞

3∏
i,j=1

(s2,is
−1
3,j ; q)∞

3∏
i,j=1

(s3,is
−1
1,j ; q)∞, (6.6)

with ∏3
i=1 sn,i = 1. Theory B has half-index

IIB
N,N,N,D = (q12ra24; q)∞

(q6ra12; q)∞
(∏4

α≤β(q3ra6x−1
α x−1

β ; q)∞
)∏4

α≤β≤γ(q3r/2a3xαxβxγ ; q)∞
. (6.7)

Calculating the q-series expansion of the theory A half-index is computationally expen-
sive. However, we can consider the reduced half-index given by taking the q → 0 limit after
fixing t = qr/2a and xα. It is then straightforward to numerically check the evaluation of
the theory A reduced half-index for various choices of t and xα such that |txα| < 1. We have
checked that the Mathematica Monte Carlo numerical integration matches the evaluation of
the theory B reduced half-index to the order of approximately 1%, providing strong numer-
ical evidence for the claimed boundary confining duality. Details are given in appendix A.

Switching all boundary conditions gives

IIA
D,D = 1

(q)6
∞

∑
mn,i∈Z

∏4
α=1

∏
µ∈Fund. weights(q1−m·µ−r/2s−µa−1xα; q)∞∏

µ∈Roots(q1+m·µsµ; q)∞
, (6.8)

with ∑3
i=1 mn,i = 0. Theory B has half-index

IIB
D,D,D,N =

(q1−6ra−12; q)∞
(∏4

α≤β(q1−3ra−6xαxβ ; q)∞
)∏4

α≤β≤γ(q1−3r/2a−3x−1
α x−1

β x−1
γ ; q)∞

(q1−12ra−24; q)∞
.

(6.9)
We conjecture a new Macdonald type sum identity corresponding to the matching of these
half-indices.
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6.2 E6 with 3 fundamental and 1 antifundamental chirals

We have dual confining boundary conditions for E6 gauge theory with 3 fundamental chirals
and 1 antifundamental chiral

bc E6 SU(Nf = 3) U(1)a U(1)b U(1)R

VM N Adj 1 0 0 0
Qα N 27 3 1 0 0
Q N 27 1 0 1 0

Mα N 1 3 1 1 0
Bαβγ N 1 10 3 0 0

B N 1 1 0 3 0
Mαβ N 1 6 2 2 0
M

αβ N 1 6 4 1 0
M N 1 1 6 0 0

M̃αβ N 1 3 5 2 0
M̃ N 1 1 9 3 0
V D 1 1 −18 −6 2

(6.10)

We see that the anomaly polynomials match for theories A and B:

AA = 12 Tr(s2) + 39r2︸ ︷︷ ︸
VM, N

−
(

9 Tr(s2) + 27
2 Tr(x2) + 81

2 (a − r)2
)

︸ ︷︷ ︸
Qα, N

−
(

3 Tr(s2) + 27
2 (b − r)2

)
︸ ︷︷ ︸

Qα, N

= −27
2 Tr(x2) − 81

2 a2 + 81ar − 27
2 b2 + 27br − 15r2, (6.11)

AB = −
(1

2 Tr(x2) + 3
2(a + b − r)2

)
︸ ︷︷ ︸

Mα, N

−
(15

2 Tr(x2) + 10(3a − r)2
)

︸ ︷︷ ︸
Bαβγ , N

− 1
2(3b − r)2︸ ︷︷ ︸

B, N

−
(5

2 Tr(x2) + 3(2a + 2b − r)2
)

︸ ︷︷ ︸
Mαβ , N

−
(5

2 Tr(x2) + 3(4a + b − r)2
)

︸ ︷︷ ︸
M

αβ
, N

− 1
2
(
6a − r

)2︸ ︷︷ ︸
M, N

−
(1

2 Tr(x2) + 3
2(5a + 2b − r)2

)
︸ ︷︷ ︸

M̃αβ , N

− 1
2(9a + 3b − r)2︸ ︷︷ ︸

M̃, N

+ 1
2(−18a − 6b + r)2︸ ︷︷ ︸

V, D

= −27
2 Tr(x2) − 81

2 a2 + 81ar − 27
2 b2 + 27br − 15r2. (6.12)
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Similarly the half-indices match. Theory A has half-index

IIA
N ,N,N = (q)6

∞
27345

3∏
n=1

2∏
i=1

∮
dsn,i

2πisn,i

∏
µ∈Roots(sµ; q)∞∏

µ∈Fund. weights(qrb/2s−µb; q)∞
∏3

α=1(qra/2sµaxα; q)∞
,

(6.13)
where ∏3

α=1 xα = 1 and

∏
µ∈Roots

(sµ; q)∞ =

 3∏
i,j,k=1

(s±1,is
±
2,js±3,k; q)∞

 3∏
n=1

3∏
i<j

(s±n,is
∓
n,j ; q)∞, (6.14)

∏
µ∈Fund. weights

(sµ; q)∞ =
3∏

i,j=1
(s1,is

−1
2,j ; q)∞

3∏
i,j=1

(s2,is
−1
3,j ; q)∞

3∏
i,j=1

(s3,is
−1
1,j ; q)∞, (6.15)

with ∏3
i=1 sn,i = 1. Theory B has half-index

IIB
N8;D = (q9ra+3rba18b6;q)∞

(q3rb/2b3;q)∞(q3raa6;q)∞(q9ra/2+3rb/2a9b3;q)∞

× 1∏3
α≤β(qra+rba2b2xαxβ ;q)∞(q2ra+rb/2a4bx−1

α x−1
β ;q)∞

(6.16)

× 1(∏3
α≤β≤γ(q3ra/2a3xαxβxγ ;q)∞

)∏3
α=1(qra/2+rb/2abxα;q)∞(q5ra/2+rba5b2x−1

α ;q)∞
.

Again, calculating the q-series expansion of the theory A half-index is computationally
expensive. However, we can consider the reduced half-index given by taking the q → 0
limit after fixing t = qr/2a and xα. We have checked that the Mathematica Monte Carlo
numerical integration of the theory A reduced half-index matches the evaluation of the
theory B reduced half-index for various choices of t and xα such that |txα| < 1 to the order
of approximately 1% as shown in appendix A, providing strong numerical evidence for the
claimed boundary confining duality.

Switching all boundary conditions gives

IIA
D,D,D = 1

(q)6
∞

∑
mn,i∈Z

∏
µ∈Fund. weights(q1+m·µ−rb/2sµb−1; q)∞

∏3
α=1(q1−m·µ−ra/2s−µa−1x−1

α ; q)∞∏
µ∈Roots(q1+m·µsµ; q)∞

,

(6.17)
with ∑3

i=1 mn,i = 0 and theory B has half-index

IIB
D8;N = (q1−3rb/2b−3; q)∞(q1−3raa−6; q)∞(q1−9ra/2−3rb/2a−9b−3; q)∞

(q1−9ra−3rba−18b−6; q)∞

×
3∏

α≤β

(q1−ra−rba−2b−2x−1
α x−1

β ; q)∞(q1−2ra−rb/2a−4b−1xαxβ ; q)∞

×

 3∏
α≤β≤γ

(q1−3ra/2a3x−1
α x−1

β x−1
γ ; q)∞


×

3∏
α=1

(q1−ra/2−rb/2a−1b−1x−1
α ; q)∞(q1−5ra/2−rba−5b−2xα; q)∞. (6.18)

We conjecture a new Macdonald type sum identity corresponding to the matching of these
half-indices.
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6.3 E6 with 2 fundamental and 2 antifundamental chirals

We have dual confining boundary conditions for E6 gauge theory with 2 fundamental chirals
and 2 antifundamental chirals

bc E6 SU(Nf = 2) SU(Na = 2) U(1)a U(1)b U(1)R

VM N Adj 1 1 0 0 0
QI N 27 2 1 1 0 0
Qα N 27 1 2 0 1 0

MIα N 1 2 2 1 1 0
BIJK N 1 4 1 3 0 0
B̃αβγ N 1 1 4 0 3 0

MIJαβ N 1 3 3 2 2 0
MI N 1 2 1 1 4 0
Mα N 1 1 2 4 1 0
M̂Iα N 1 2 2 3 3 0
M N 1 1 1 4 4 0
M̂ N 1 1 1 6 6 0
V D 1 1 1 −12 −12 2

(6.19)

We see that the anomaly polynomials match for theories A and B:

AA = 12Tr(s2)+39r2︸ ︷︷ ︸
VM,N

−
(

6Tr(s2)+ 27
2 Tr(x2)+ 54

2 (a−r)2
)

︸ ︷︷ ︸
QI , N

−
(

6Tr(s2)+ 27
2 Tr(x̃2)+ 54

2 (b−r)2
)

︸ ︷︷ ︸
Q̃α, N

=−27
2 Tr(x2)− 27

2 Tr(x̃2)−27a2 +54ar−27b2 +54br−15r2, (6.20)

AB =−
(
Tr(x2)+Tr(x̃2)+2(a+b−r)2

)
︸ ︷︷ ︸

MIα, N

−
(
5Tr(x2)+2(3a−r)2

)
︸ ︷︷ ︸

BIJK , N

−
(
5Tr(x̃2)+2(3b−r)2

)
︸ ︷︷ ︸

B̃αβγ , N

−
(

6Tr(x2)+6Tr(x̃2)+ 9
2(2a+2b−r)2

)
︸ ︷︷ ︸

MIJαβ , N

−
(1

2 Tr(x2)+(a+4b−r)2
)

︸ ︷︷ ︸
MI , N

−
(1

2 Tr(x̃2)+(4a+b−r)2
)

︸ ︷︷ ︸
Mα, N

−
(
Tr(x2)+Tr(x̃2)+2(3a+3b−r)2

)
︸ ︷︷ ︸

M̂Iα, N

− 1
2(4a+4b−r)2︸ ︷︷ ︸

M, N

− 1
2(6a+6b−r)2︸ ︷︷ ︸

M̂, N

+ 1
2(−12a−12b+r)2︸ ︷︷ ︸

V, D

=−27
2 Tr(x2)− 27

2 Tr(x̃2)−27a2 +54ar−27b2 +54br−15r2. (6.21)
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Similarly the half-indices match. Theory A has half-index

IIA
N ,N,N = (q)6

∞

27345

3∏
n=1

2∏
i=1

∮
dsn,i

2πisn,i

∏
µ∈Roots(s

µ; q)∞∏
µ∈Fund. weights

(∏2
I=1(qra/2sµaxI ; q)∞

) (∏2
α=1(qrb/2s−µbx̃α; q)∞

) ,

(6.22)
where ∏2

I=1 xI = ∏2
α=1 x̃α = 1 and

∏
µ∈Roots

(sµ; q)∞ =

 3∏
i,j,k=1

(s±1,is
±
2,js±3,k; q)∞

 3∏
n=1

3∏
i<j

(s±n,is
∓
n,j ; q)∞, (6.23)

∏
µ∈Fund. weights

(sµ; q)∞ =
3∏

i,j=1
(s1,is

−1
2,j ; q)∞

3∏
i,j=1

(s2,is
−1
3,j ; q)∞

3∏
i,j=1

(s3,is
−1
1,j ; q)∞, (6.24)

with ∏3
i=1 sn,i = 1. Theory B has half-index

IIB
N9;D = (q6ra+6rba12b12; q)∞

(q2ra+2rba4b4; q)∞(q3ra+3rba6b6; q)∞
(∏2

I≤J

∏2
α≤β(qra+rba2b2xIxJ x̃αx̃β ; q)∞

)
× 1∏2

I=1(qra/2+2rbab4xI ; q)∞
∏2

α=1(q2ra+rb/2a4bx̃α; q)∞

× 1(∏2
I≤J≤K(q3ra/2a3xIxJxK ; q)∞

) (∏2
α≤β≤γ(q3rb/2b3x̃αx̃βx̃γ ; q)∞

)
× 1∏2

I=1
∏2

α=1(qra/2+rb/2abxI x̃α; q)∞(q3ra/2+3rb/2a3b3xI x̃α; q)∞
. (6.25)

As for the previous cases with E6 gauge group, calculating the q-series expansion of the
theory A half-index is computationally expensive. However, we can consider the reduced
half-index given by taking the q → 0 limit after fixing t = qr/2a and xα. We have checked
that the Mathematica Monte Carlo numerical integration of the theory A reduced half-
index matches the evaluation of the theory B reduced half-index for various choices of t

and xα such that |txα| < 1 to the order of approximately 1% as shown in appendix A,
providing strong numerical evidence for the claimed boundary confining duality.

Switching all boundary conditions gives

IIA
D,D,D = 1

(q)6
∞

∑
mn,i∈Z

∏
µ∈Fund. weights

∏2
I=1(q1−m·µ−ra/2s−µa−1x−1

I ; q)∞∏
µ∈Roots(q1+m·µsµ; q)∞

×
∏

µ∈Fund. weights

2∏
α=1

(q1+m·µ−rb/2sµb−1x̃−1
α ; q)∞, (6.26)
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where ∑3
i=1 mn,i = 0. Theory B has half-index

IIB
D9;N = (q1−2rA−2rba−4b−4; q)∞(q1−3rA−3rba−6b−6; q)∞

∏2
I=1(q1−rA/2−2rba−1b−4x−1

I ; q)∞
(q1−6rA−6rba−12b−12; q)∞

×

 2∏
I≤J

2∏
α≤β

(q1−rA−rba−2b−2x−1
I x−1

J x̃−1
α x̃−1

β ; q)∞

 2∏
α=1

(q1−2rA−rb/2a−4b−1x̃−1
α ; q)∞

×

 2∏
I≤J≤K

(q1−3rA/2a−3x−1
I x−1

J x−1
K ; q)∞

 2∏
α≤β≤γ

(q1−3rb/2b−3x̃−1
α x̃−1

β x̃−1
γ ; q)∞

×
2∏

I=1

2∏
α=1

(q1−rA/2−rb/2a−1b−1x−1
I x̃−1

α ; q)∞(q1−3rA/2−3rb/2a−3b−3x−1
I x̃−1

α ; q)∞.

(6.27)

We conjecture a new Macdonald type sum identity corresponding to the matching of these
half-indices.

6.4 E6 with an adjoint chiral

The charges and boundary conditions are summarized as follows:

bc E6 U(1)a U(1)R

VM N Adj 0 0
Φ N Adj 1 0

MI N 1 I 0
VI−1 D 1 −(I − 1) 0

(6.28)

where I ∈ {2, 5, 6, 8, 9, 12}.
The boundary ’t Hooft anomaly of theory A is given by

AA = 12 Tr(s2) + 39r2︸ ︷︷ ︸
VM, N

−
(
12 Tr(s2) + 39(a − r)2

)
︸ ︷︷ ︸

Φ, N

= −39a2 + 78ar, (6.29)

which exactly agrees with the boundary anomaly of theory B which is given by

AB =
∑

I∈{2,5,6,8,9,12}

− 1
2
(
Ia − r

)2︸ ︷︷ ︸
MI , N

+ 1
2
(
(1 − I)a − r

)2︸ ︷︷ ︸
VI−1, D

 . (6.30)

This gives the half-index for theory A

IIA
N ,N = 1

27 · 34 · 5
(q)6

∞
(qr/2a; q)6

∞

3∏
n=1

2∏
i=1

∮
dsn,i

2πisn,i

∏
µ∈Roots(sµ; q)∞∏

µ∈Roots(qr/2asµ; q)∞
, (6.31)
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where

∏
µ∈Roots

(sµ; q)∞ =

 3∏
i,j,k=1

(s±1,is
±
2,js±3,k; q)∞

 3∏
n=1

3∏
i<j

(s±n,is
∓
n,j ; q)∞, (6.32)

with ∏3
i=1 sn,i = 1.

The half-index (6.31) coincides [55] with the half-index for theory B

IIB
N6;D6 = (q1+r/2a; q)∞(q1+4r/2a4; q)∞(q1+5r/2a5; q)∞

(qra2; q)∞(q5r/2a5; q)∞(q3ra6; q)∞

× (q1+7r/2a7; q)∞(q1+4ra8; q)∞(q1+11r/2a11; q)∞
(q4ra8; q)∞(q9r/2a9; q)∞(q6ra12; q)∞

. (6.33)

Switching all boundary conditions gives

IIA
D,D = (q1−r/2a−1; q)6

∞
(q)6

∞

∑
mn,i∈Z

∏
µ∈Roots(q1+m·µ−r/2a−1sµ; q)∞∏

µ∈Roots(q1+m·µsµ; q)∞
, (6.34)

where ∑3
i=1 mn,i = 0.

The half-index (6.34) coincides with the half-index for theory B, equivalent to a known
identity for a Macdonald type sum which is listed in [44]

IIB
D6;N6 = (q1−ra−2; q)∞(q1−5r/2a−5; q)∞(q1−3ra−6; q)∞

(q−r/2a−1; q)∞(q−4r/2a−4; q)∞(q−5r/2a−5; q)∞

× (q1−4ra−8; q)∞(q1−9r/2a−9; q)∞(q1−6ra−12; q)∞
(q−7r/2a−7; q)∞(q−4ra−8; q)∞(q−11r/2a−11; q)∞

. (6.35)

7 Gauge group E7

In this section we consider boundary confining dualities for E7 gauge theories with fun-
damental or adjoint chirals. The result here for the cases with 3 fundamental chirals is a
new boundary duality corresponding to a known bulk duality. The conjectured matching
of half-indices gives a new example of a generalized Askey-Wilson identity for E7 which
has not been studied in the mathematical literature. We give some numerical evidence for
these conjectured boundary confining dualities — see appendix A for details.
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7.1 E7 with 3 fundamental chirals

We have dual confining boundary conditions for E7 gauge theory with 3 fundamental chirals

bc E7 SU(Nf = 3) U(1)a U(1)R

VM N Adj 1 0 0
Qα N 56 3 1 0
Mα N 1 3 2 0

Bαβγδ N 1 15 4 0
Bαβγ N 1 10 6 0
Bαβ N 1 6 8 0
B N 1 1 12 0
B̂ N 1 1 18 0
V D 1 1 −36 2

(7.1)

We see that the anomaly polynomials match for theories A and B:

AA = 18 Tr(s2) + 133
2 r2︸ ︷︷ ︸

VM, N

−
(
18 Tr(s2) + 28 Tr(x2) + 84(a − r)2

)
︸ ︷︷ ︸

Qα, N

= −28 Tr(x2) − 84a2 + 168ar − 35
2 r2, (7.2)

AB = −
(1

2 Tr(x2) + 3
2(2a − r)2

)
︸ ︷︷ ︸

Mα, N

−
(35

2 Tr(x2) + 15
2 (4a − r)2

)
︸ ︷︷ ︸

Bαβγδ , N

−
(15

2 Tr(x2) + 5(6a − r)2
)

︸ ︷︷ ︸
Bαβγ , N

−
(5

2 Tr(x2) + 3(8a − r)2
)

︸ ︷︷ ︸
Bαβ , N

− 1
2
(
12a − r

)2︸ ︷︷ ︸
B, N

− 1
2
(
18a − r

)2︸ ︷︷ ︸
B̂, N

+ 1
2
(
− 36a + r

)2︸ ︷︷ ︸
V, D

= −28 Tr(x2) − 84a2 + 168ar − 35
2 r2. (7.3)

Similarly the half-indices match. Theory A has half-index

IIA
N ,N = (q)7

∞
210 · 34 · 5 · 7

7∏
i=1

∮
dsi

2πisi

∏
µ∈Roots(sµ; q)∞∏3

α=1
∏

µ∈Fund. weights(qr/2sµaxα; q)∞
, (7.4)

where ∏3
α=1 xα = 1 and

∏
µ∈Roots

(sµ; q)∞ =

 ∏
1≤i<j<k<l≤7

(s±i s±j s±k s±l ; q)∞

 8∏
i<j

(s±i s∓j ; q)∞, (7.5)

∏
µ∈Fund. weights

(sµ; q)∞ =
8∏

i<j

(s±i s±j ; q)∞, (7.6)

with ∏8
i=1 si = 1.
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Theory B has half-index

IIB
N6;D = (q18ra36; q)∞

(q6ra12; q)∞(q9ra18; q)∞
(∏3

α=1((qra2x−1
α ; q)∞

)∏3
α≤β≤γ≤δ((q2ra4xαxβxγxδ; q)∞

× 1(∏3
α≤β≤γ((q3ra6x−1

α x−1
β x−1

γ ; q)∞
)∏3

α≤β((q4ra8xαxβ ; q)∞
. (7.7)

As for the cases with E7 gauge group, calculating the q-series expansion of the theory
A half-index is computationally expensive. However, we can consider the reduced half-
index given by taking the q → 0 limit after fixing t = qr/2a and xα. We have checked that
the Mathematica Monte Carlo numerical integration of the theory A reduced half-index
matches the evaluation of the theory B reduced half-index for various choices of t and xα

such that |txα| < 1 to the order of approximately 1%, providing strong numerical evidence
for the claimed boundary confining duality. Details are given in appendix A.

With the opposite boundary conditions we have

IIA
D,D = 1

(q)7
∞

∑
mi∈Z

∏3
α=1

∏
µ∈Fund. weights(q1+m·µ−r/2sµa−1x−1

α ; q)∞∏
µ∈Roots(q1+m·µsµ; q)∞

, (7.8)

with ∑8
i=1 mi = 0.

Theory B has matching half-index

IIB
D6;N =

(q1−6ra−12; q)∞(q1−9ra−18; q)∞
∏3

α≤β≤γ≤δ(q1−2ra−4x−1
α x−1

β x−1
γ x−1

δ ; q)∞
(q1−18ra−36; q)∞

(7.9)

×

( 3∏
α=1

(q1−ra−2xα; q)∞

) 3∏
α≤β≤γ

(q1−3ra−6xαxβxγ ; q)∞

 3∏
α≤β

(q1−4ra−8x−1
α x−1

β ; q)∞.

We conjecture a new Macdonald type sum identity corresponding to the matching of these
half-indices.

7.2 E7 with an adjoint chiral

The charges and boundary conditions are summarized as follows:

bc E7 U(1)a U(1)R

VM N Adj 0 0
Φ N Adj 1 0

MI N 1 I 0
VI−1 D 1 −(I − 1) 0

(7.10)

where I ∈ {2, 6, 8, 10, 12, 14, 18}.
The boundary ’t Hooft anomaly of theory A is given by

AA = 18 Tr(s2) + 133
2 r2︸ ︷︷ ︸

VM, N

−
(

18 Tr(s2) + 133
2 (a − r)2

)
︸ ︷︷ ︸

Φ, N

= −133
2 a2 + 133ar, (7.11)
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which exactly agrees with the boundary anomaly of theory B which is given by

AB =
∑

I∈{2,6,8,10,12,14,18}

− 1
2
(
Ia − r

)2︸ ︷︷ ︸
MI , N

+ 1
2
(
(1 − I)a − r

)2︸ ︷︷ ︸
VI−1, D

 . (7.12)

This gives the half-index for theory A

IIA
N ,N = 1

210 · 34 · 5 · 7
(q)7

∞
(qr/2a; q)7

∞

7∏
i=1

∮
dsi

2πisi

∏
µ∈Roots(sµ; q)∞∏

µ∈Roots(qr/2asµ; q)∞
, (7.13)

where ∏
µ∈Roots

(sµ; q)∞ =

 ∏
1≤i<j<k<l≤7

(s±i s±j s±k s±l ; q)∞

 8∏
i<j

(s±i s∓,j ; q)∞, (7.14)

with ∏8
i=1 si = 1.

The half-index (7.13) coincides [55] with the half-index for theory B

IIB
N7;D7 = (q1+r/2a; q)∞(q1+5r/2a5; q)∞(q1+7r/2a7; q)∞(q1+9r/2a9; q)∞

(qra2; q)∞(q3ra6; q)∞(q4ra8; q)∞(q5ra10; q)∞

× (q1+11r/2a11; q)∞(q1+13r/2a13; q)∞(q1+17r/2a17; q)∞
(q6ra12; q)∞(q7ra14; q)∞(q9ra18; q)∞

. (7.15)

With the opposite boundary conditions we have

IIA
D,D = (q1−r/2a−1; q)7

∞
(q)7

∞

∑
mi∈Z

∏
µ∈Roots(q1+m·µ−r/2a−1sµ; q)∞∏

µ∈Roots(q1+m·µsµ; q)∞
, (7.16)

where ∑8
i=1 mi = 0.

The half-index (7.16) coincides with the half-index for theory B, equivalent to a known
identity for a Macdonald type sum which is listed in [44]

IIB
D7;N7 = (q1−ra−2; q)∞(q1−3ra−6; q)∞(q1−4ra−8; q)∞(q1−5ra−10; q)∞

(q−r/2a−1; q)∞(q−5r/2a−5; q)∞(q−7r/2a−7; q)∞(q−9r/2a−9; q)∞

× (q1−6ra−12; q)∞(q1−7ra−14; q)∞(q1−9ra−18; q)∞
(q−11r/2a−11; q)∞(q−13r/2a−13; q)∞(q−17r/2a−17; q)∞

. (7.17)

8 E8 with an adjoint chiral

For E8 there is no distinction between the fundamental and adjoint representations so
we have only one case to consider for a boundary confining duality. It is most naturally
interpreted as an example with an adjoint chiral.
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The charges and boundary conditions are summarized as follows:

bc E8 U(1)a U(1)R

VM N Adj 0 0
Φ N Adj 1 0

MI N 1 I 0
VI−1 D 1 −(I − 1) 0

(8.1)

where I ∈ {2, 8, 12, 14, 18, 20, 24, 30}.
The boundary ’t Hooft anomaly of theory A is given by

AA = 30 Tr(s2) + 124r2︸ ︷︷ ︸
VM, N

−
(
30 Tr(s2) + 124(a − r)2

)
︸ ︷︷ ︸

Φ, N

= −124a2 + 248ar, (8.2)

which exactly agrees with the boundary anomaly of theory B which is given by

AB =
∑

I∈{2,8,12,14,18,20,24,30}

− 1
2
(
Ia − r

)2︸ ︷︷ ︸
MI , N

+ 1
2
(
(1 − I)a − r

)2︸ ︷︷ ︸
VI−1, D

 . (8.3)

This gives the half-index for theory A

IIA
N ,N = 1

214 · 35 · 52 · 7
(q)8

∞
(qr/2a; q)8

∞

8∏
i=1

∮
dsi

2πisi

×
∏

1≤i<j≤8

(
(s2

i s2
j

∏8
n=1 s−1

n )±; q
)
∞(

qr/2a(s2
i s2

j

∏8
n=1 s−1

n )±; q
)
∞

(
(∏8

n=1 sn)±; q
)
∞(

qr/2a(∏8
n=1 sn)±

)
∞

×
∏

1≤i<j≤8

(s2
i s±2

j ; q)∞(s−2
i s±2

j ; q)∞
(qr/2as2

i s±2
j ; q)∞(qr/2as−2

i s±2
j ; q)∞

×
∏

1≤i<j<l<m≤8

(
(s2

i s2
js2

l s2
m

∏8
n=1 s−1

n )±; q
)
∞(

qr/2a(s2
i s2

js2
l s2

m

∏8
n=1 s−1

n )±; q
)
∞

. (8.4)

The half-index (8.4) coincides [55] with the half-index for theory B

IIB
N8;D8 = (q1+r/2a; q)∞(q1+7r/2a7; q)∞(q1+11/ra11; q)∞(q1+13r/2a13; q)∞

(qra2; q)∞(q4ra8; q)∞(q6ra12; q)∞(q7ra14; q)∞

× (q1+17r/2a17; q)∞(q1+19r/2a19; q)∞(q1+23r/2a23; q)∞(q1+29r/2a29; q)∞
(q9ra18; q)∞(q10ra20; q)∞(q12ra24; q)∞(q15ra30; q)∞

. (8.5)
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Switching all boundary conditions gives

IIA
D,D = (q1−r/2a−1; q)8

∞
(q)8

∞

∑
mi∈Z

×
∏

1≤i<j≤8

(
q1−r/2a−1(s̃2

i s̃2
j

∏8
n=1 s̃−1

n )±; q
)
∞(

(s̃2
i s̃2

j

∏8
n=1 s̃−1

n )±; q
)
∞

(
q1−r/2a−1(∏8

n=1 s̃n)±
)
∞(

(∏8
n=1 s̃n)±; q

)
∞

×
∏

1≤i<j≤8

(q1−r/2a−1s̃2
i s̃±2

j ; q)∞(q1−r/2a−1s̃−2
i s̃±2

j ; q)∞
(s̃2

i s̃±2
j ; q)∞(s̃−2

i s̃±2
j ; q)∞

×
∏

1≤i<j<l<m≤8

(
q1−r/2a−1(s̃2

i s̃2
j s̃2

l s̃2
m

∏8
n=1 s̃−1

n )±; q
)
∞(

(s̃2
i s̃2

j s̃2
l s̃2

m

∏8
n=1 s̃−1

n )±; q
)
∞

, (8.6)

where s̃i ≡ qmisi.
The half-index (8.6) coincides with the half-index for theory B, equivalent to a known

identity for a Macdonald type sum which is listed in [44]

IIB
D8;N8 = (q1−ra−2; q)∞(q1−4ra−8; q)∞(q1−6ra−12; q)∞(q1−7ra−14; q)∞

(q−r/2a−1; q)∞(q−7r/2a−7; q)∞(q−11/ra−11; q)∞(q−13r/2a−13; q)∞

× (q1−9ra−18; q)∞(q1−10ra−20; q)∞(q1−12ra−24; q)∞(q1−15ra−30; q)∞
(q−17r/2a−17; q)∞(q−19r/2a−19; q)∞(q−23r/2a−23; q)∞(q−29r/2a−29; q)∞

. (8.7)
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A Numerical checks of E6 and E7 refined Hilbert series identities

We present some tables of numerical evaluations of IIA using Mathematica NIntegrate with
Monte Carlo method and 1011 samples in the cases of E6 with Nf + Na = 4 and E7 with
Nf = 3. These give evidence for the matching of the refined reduced half-indices (boundary
Hilbert series) and hence for the boundary confining dualities.

The flavour fugacities are chosen randomly within the unit circle. We present 10 such
examples for each case theory, with the first table giving the fugacity values and the second
showing the ration of the evaluated reduced half-indices for theories A and B. Note that the
reduced half-indices in each case typically match to better than 1%. However, the theory
A integrals are numerically challenging with lots of cancellations, so some cases the relative
numerical error can be much larger than 1%. The theory B reduced half-indices are rational
functions so will be evaluated exactly to the number of significant figures presented. For
comparison we also list equivalent numerical integration results for the case of G2 with
Nf = 4. In that case, the matching is a known identity but we see similar accuracy in
numerical comparison (even though this is only a 2-dimensional integral).
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A.1 E6 — [4]

tx1, tx2, tx3, tx4

1 −0.0234759+0.00711192i,0.496534+0.610979i,−0.326678+0.169003i,0.0828884+0.68146i

2 0.302088+0.313318i,0.0140813−0.0538188i,−0.163671−0.199149i,0.0451775−0.15439i

3 −0.0250033+0.166172i,−0.291018−0.37288i,0.183273−0.0258147i,−0.0495631+0.0706467i

4 0.685339−0.129819i,0.50425−0.326404i,−0.24908−0.133475i,−0.0947395+0.0335816i

5 0.190953−0.208135i,0.239949−0.0329212i,0.137727−0.355568i,0.109013−0.151154i

6 −0.170367−0.0648944i,0.18149+0.384322i,0.0712975+0.0470663i,0.321017+0.545043i

7 −0.455215+0.310856i,−0.01625−0.00814275i,−0.0535401+0.994244i,0.361642+0.158975i

8 0.23476+0.11059i,0.40632+0.228978i,−0.725015−0.0481284i,−0.692562+0.272425i

9 0.275143+0.0751123i,0.30426−0.00926237i,0.439344+0.111412i,−0.591255+0.754494i

10 −0.0521672−0.113462i,0.657591−0.366998i,0.896003+0.358691i,−0.763347−0.0959539i

IIB IIA/IIB

1 0.290701−0.299555i 1.03254+0.0123426i

2 0.991963+0.0363137i 0.991567+0.00135808i

3 1.06149−0.0384057i 0.993826−0.00103762i

4 0.826482−0.858645i 1.00281−0.00120006i

5 0.760051−0.113749i 0.988162−0.00166513i

6 0.598655−0.0512807i 1.00783+0.00417579i

7 0.348527−1.11526i 1.02099−0.324376i

8 0.645306+0.400197i 0.993663+0.00940664i

9 1.29865+1.01025i 0.987966−0.0289081i

10 2.72067+1.40683i 1.01216−0.00880855i

A.2 E6 — [3+1]

tx1, tx2, tx3, t̃

1 −0.751832+0.00396913i,−0.0971231+0.00130853i,−0.284908+0.102964i,−0.110992+0.990821i

2 −0.317032+0.779203i,−0.140079−0.89742i,0.00280996−0.00357397i,0.558137+0.012314i

3 −0.190562+0.0957396i,−0.355162−0.362745i,−0.150115+0.896124i,−0.323203−0.557585i

4 0.0464883−0.177868i,0.00293396+0.5284i,−0.502174−0.853927i,−0.207428+0.43438i

5 −0.00129523−0.000809934i,0.086667−0.417337i,−0.29446+0.303761i,0.122194−0.266339i

6 0.113931−0.362205i,−0.08484−0.203071i,−0.256592+0.560824i,−0.695269+0.511302i

7 −0.531755−0.47155i,0.417641+0.832083i,−0.0743604+0.217454i,−0.111881−0.181178i

8 −0.00951035+0.0135762i,0.0573461−0.273941i,−0.339735−0.374335i,−0.255882−0.102164i

9 −0.784786+0.338097i,−0.229029−0.388009i,−0.31641−0.310386i,−0.395246+0.485849i

10 0.0938797+0.406379i,−0.522526+0.706919i,0.243731−0.499185i,0.655442+0.401781i
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IIB IIA/IIB

1 −0.0367995−0.151403i 1.09724−0.120556i

2 1.1731+0.204169i 1.00162−0.00807585i

3 2.95137−1.8163i 0.990775+0.0110375i

4 42.7386−32.547i 1.0001−0.0084357i

5 0.923462+0.137879i 0.996371−0.00324904i

6 0.773316+0.598055i 0.987898−0.0126232i

7 0.959142−0.66293i 0.993842−0.00968543i

8 1.12691+0.196216i 0.985935+0.00401361i

9 0.400957−0.901223i 1.03522+0.0286261i

10 1.58318+0.259849i 0.996495+0.00061966i

A.3 E6 — [2+2]

tx1, tx2, t̃x̃1, t̃x̃2

1 0.640038+0.53923i,−0.268455−0.84344i,0.386667−0.806928i,0.010295−0.207447i

2 0.737773+0.2534i,−0.16533−0.232279i,−0.38595+0.775523i,−0.623401−0.20632i

3 0.109171−0.585594i,−0.793789+0.0964344i,0.279103−0.134808i,0.0354895+0.380692i

4 0.7167−0.383209i,0.101425+0.389796i,0.0839903+0.0738067i,−0.037217−0.0324649i

5 0.0230923−0.0765744i,0.585828+0.258123i,0.347055−0.479408i,−0.160716+0.578402i

6 0.067434−0.318034i,0.00650358+0.00587156i,0.00240265+0.0439869i,−0.0368151+0.102164i

7 0.030406+0.000694502i,−0.159088−0.106352i,0.6817+0.0870333i,−0.0849712+0.326787i

8 −0.448639−0.191149i,−0.604296+0.25106i,−0.84651−0.456231i,−0.418166+0.446437i

9 0.0454495−0.577359i,0.495194+0.000122798i,−0.26322+0.104288i,0.0123185−0.0233005i

10 −0.360204−0.362996i,0.658296−0.624635i,0.272641+0.195759i,0.0429119−0.0867349i

IIB IIA/IIB

1 1.15761−0.17734i 1.02376+0.0135868i

2 1.65281+0.416576i 0.991742−0.00349281i

3 0.589971−0.228187i 0.974194−0.0293323i

4 1.07735−0.326778i 1.00913−0.00814665i

5 1.1857−0.046149i 1.00832−0.00136545i

6 1.02442+0.049962i 1.00376+0.00238796i

7 1.19983+0.15792i 0.996318−0.00325625i

8 2.86869+0.260658i 1.00807+0.00773062i

9 0.814242+0.166933i 1.00164+0.00296507i

10 0.788741−0.284616i 1.00576+0.00282165i
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A.4 E7 — [3]

tx1, tx2, tx3

1 −0.212731+0.922799i,0.114579+0.268194i,0.0614174−0.0300152i

2 0.0835584+0.223947i,0.302454+0.111834i,−0.391574−0.0772544i

3 −0.376041−0.245701i,−0.250929+0.260853i,0.626473+0.249931i

4 0.00383335−0.0756743i,−0.782634+0.251244i,0.108969+0.021749i

5 0.00383962−0.00433834i,0.470105−0.391208i,−0.500468+0.101544i

6 0.00725631+0.242431i,−0.000621355−0.587519i,−0.0760336+0.0527554i

7 −0.0529269+0.0145817i,0.174268+0.0158707i,0.4198−0.0719301i

8 −0.157932−0.0235142i,−0.234763−0.797787i,0.0424514+0.00463794i

9 −0.0676571−0.620083i,0.824613+0.0368542i,0.496211−0.134759i

10 0.0663995−0.017729i,−0.402693+0.302654i,−0.165837+0.26069i

IIB IIA/IIB

1 0.768066+1.16539i 1.0144−0.0139891i

2 0.882036−0.0624183i 1.00039−0.000403221i

3 0.765711−0.0555455i 0.977582+0.00160989i

4 0.907271−0.325205i 1.00847−0.000441181i

5 0.78249+0.156931i 1.00442−0.00500289i

6 1.2972+0.0197836i 1.00008+0.000310746i

7 1.09277−0.0202721i 1.00913−0.000147894i

8 0.930522−0.441435i 0.996598−0.00105783i

9 1.26266−2.09384i 0.99619+0.0000279944i

10 0.837406−0.0978072i 1.00388−0.00224307i

A.5 G2 — [4]

tx1, tx2, tx3, tx4

1 0.0481169−0.00954673i,−0.348491+0.0943523i,−0.0316049+0.146036i,−0.241138−0.160531i

2 0.0426109−0.271141i,0.00864091+0.344733i,0.271189−0.200707i,0.153095−0.0210072i

3 0.100328+0.216854i,0.197554−0.169338i,−0.202581−0.0579197i,−0.0990293+0.527108i

4 0.779234−0.378523i,0.215991−0.400936i,−0.141533+0.648036i,0.141146−0.491235i

5 −0.195434+0.215521i,0.374101−0.579846i,0.0373534+0.168928i,0.757218+0.271768i

6 0.51837−0.202005i,0.154656+0.234617i,0.41523+0.475004i,−0.870508−0.00263467i

7 −0.0558345+0.155365i,0.161043+0.269449i,−0.330075+0.392033i,0.289452+0.23516i

8 0.890437+0.40596i,−0.0656358+0.435523i,−0.00233228−0.0562747i,−0.0391703−0.691975i

9 −0.846045+0.027989i,0.252581−0.195542i,0.813427+0.129812i,−0.108949−0.076414i

10 0.666819+0.0422453i,0.513887−0.364365i,0.132615+0.275064i,0.499662−0.227566i

– 29 –



J
H
E
P
1
1
(
2
0
2
3
)
1
9
9

IIB IIA/IIB

1 1.25477−0.0400717i 0.99436+0.00017306i

2 1.07994−0.159265i 0.996044−0.00191212i

3 0.783351−0.0359792i 0.999261−0.000784243i

4 0.47606−1.37787i 0.985373+0.00539493i

5 1.42525+0.586382i 0.985169+0.00329354i

6 2.03766+0.00186711i 0.988306+0.00382371i

7 0.524428−0.0300966i 0.990844−0.0340454i

8 0.705707+0.776239i 0.964218+0.0377104i

9 4.48897+1.74889i 0.996121−0.000867226i

10 6.87446−10.4909i 1.00913+0.00694605i

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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