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1 Introduction

Formulations of Einstein-Gauss-Bonnet gravity in four spacetime dimensions have been
studied in a number of recent papers. The original idea of rescaling the Gauss-Bonnet cou-
pling constant as α → (n − 4) α [1] unfortunately does not lead to a theory derivable from a
diffeomorphism invariant action. Furthermore, the theory has a number of pathologies [2–
6]. Nevertheless, its physical consequences have been extensively explored, including its
black holes solutions and their thermodynamics [7–9].

On the one hand, a consistent purely metric, local, diffeomorphism invariant gener-
alisation of Einstein-Gauss-Bonnet gravity in 4 dimensions appears to be impossible. On
the other hand, starting from the Einstein-Gauss-Bonnet gravity in n > 4 dimensions and
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compactifying n − 4 dimensions yields a consistent four-dimensional theory [10–13]. The
result is special case of Horndeski gravity [14], i.e., a local, diffeomorphism invariant, scalar-
tensor theory that generalises the Einstein-Gauss-Bonnet gravity to four dimensions in a
way free of basic pathologies.1 In fact, this procedure leads to a well-defined scalar-tensor
Einstein-Gauss-Bonnet action in any spacetime dimension n ≥ 2. Remarkably, the static,
spherically symmetric black hole solutions in four dimensions coincide with the ones found
in the coupling rescaling approach [7, 11, 12]. Thermodynamics of static, spherically sym-
metric black holes has been also reported to agree in both approaches [7]. Notably, Wald
entropy found for scalar-tensor Einstein-Gauss-Bonnet gravity contains a term logarithmic
in the horizon area. Since logarithmic corrections to black hole entropy appear as the
leading order quantum gravitational correction on very general grounds [17–20], it would
be rather interesting to recover them for a local classical modified theory of gravity.

Herein, elaborating on our previous short letter [21], we take a critical look at this
reported logarithmic correction to entropy. By applying the covariant phase space formal-
ism [22–25], we derive the first law of black hole mechanics and the expression for Wald
entropy. We argue that the presence of logarithmic term in entropy leads to inconsisten-
cies. The key point is that the equations of motion possess a symmetry under constant
shifts of the scalar field. This symmetry is not respected by Wald entropy, unless one
introduces an extra boundary term in the action. Then, Wald entropy reduces to Beken-
stein entropy of general relativity. Since the total mass of the spacetime, being defined
at asymptotic infinity, is also the same as the ADM mass in general relativity, fulfilling
the first law of black hole mechanics requires modifying the black hole temperature.2 Such
modifications to temperature have been argued to occur generically in Horndeski theories,
due to the propagation speed of gravitons no longer being equal to the speed of light [27].
Interestingly, the same modified temperature, that we fixed ‘add hoc’ to fulfil the first law
of thermodynamics, can be derived via Euclidean methods, by employing the Euclidean
canonical ensemble approach [28]. This provides yet another independent indication that
the black hole temperature should be modified in this theory.

Although we use a particular form of 4D scalar-tensor Einstein-Gauss-Bonnet gravity
as an example, our conclusions regarding the effects of shift symmetry on black hole ther-
modynamics in principle apply to any shift symmetric theory of gravity. In particular, this
includes theories with the 4D action of the form

I ∝
∫

d4x
√
−g (R + αϕG + . . . ) , (1.1)

and/or to 2D Liouville gravity,

I ∝
∫

d2x
√
−g
(
ϕR + . . .

)
, (1.2)

where R denotes the Ricci scalar, G is the Gauss-Bonnet invariant and dots denote ‘ar-
bitrary terms’ that may depend on derivatives of ϕ but not ϕ itself. Moreover, these

1Alternatively, a possibility of formulating a diffeomorphism symmetry breaking theory has been con-
sidered in [15]; see also a recent proposal for an alternative limit of Einstein gravity to two dimensions [16].

2The recovery of area law in shift symmetric Horndeski theories was recently noted [26]. However, they
do not discuss temperature modifications.
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ambiguities in principle appear even in theories not possessing the shift symmetry. We will
have more to say about this in the discussion.

The paper is organised as follows. First, in section 2, we recall the basics of the
covariant phase space formalism which offers a consistent way to derive the Smarr formula
and the first law of black hole mechanics. Section 3 reviews the formulation of scalar-tensor
Einstein-Gauss-Bonnet gravity we work with. In section 4, we derive the covariant phase
space formalism for this theory, including the Noether current and charges. Then, we
apply it in section 5 to find expressions for mass, angular momentum and Wald entropy in
stationary black hole spacetimes. We also argue why Wald entropy should coincide with
Bekenstein entropy. We derive the Smarr formula and the first law of black hole mechanics
for static, spherically symmetric black hole spacetimes in section 6, and show that our
proposal for entropy requires a modified temperature. Section 7 further supports the
modified temperature proposal by obtaining it from a grandcanonical Euclidean ensemble
calculation. Finally, section 8 sums up our findings and touches on some possible future
developments.

Throughout the paper, we set G = ℏ = c = kB = 1, µ0 = 1/4π, and use metric
signature (−, +, . . . , +). Unless specified otherwise, we keep the spacetime dimension n

arbitrary. Other conventions follow reference [29].

2 Covariant phase space formalism

Before going to the expressions for Einstein-Gauss-Bonnet gravity, we start by reviewing the
basics of the covariant phase space formalism in general setting. Consider an n-dimensional
manifold equipped with a volume n-form, ε. Introduce a Lagrangian density, L, constructed
from a collection of dynamical variables, ϕ, and their covariant derivatives, ∇µ, which
satisfy ∇µε = 0 (clearly, ∇µ is not unique). An arbitrary variation of the dynamical
variables, δ1ϕ, leads to a change in L

δ1L = Aϕδ1ϕ + ∇µθµ [δ1] . (2.1)

It is easy to see that Aϕ = 0 correspond to the equations of motion for ϕ, whereas the
second term ∇µθµ [δ1] contributes only a boundary integral to the variation of the action.
Vector density θµ [δ1] is called the symplectic potential [22].

Next, introduce a second independent variation of the dynamical variables, δ2ϕ. The
commutator of the variations acting on L yields

(δ1δ2 − δ2δ1) L = δ1Aϕδ2ϕ − δ2Aϕδ1ϕ + ∇µΩµ [δ1, δ2] , (2.2)

where

Ωµ [δ1, δ2] = δ1θµ [δ2] − δ2θµ [δ1] , (2.3)
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is the symplectic current [22]. Finally, integrating Ωµ [δ1, δ2] over an initial data surface C
yields a symplectic form3

Ω [δ1, δ2] =
∫

C
ΩµdCµ. (2.4)

Suppose that one of the variations is generated by a vector field ξµ, i.e., δ1ϕ = £ξϕ. If
Hamiltonian Hξ corresponding to evolution along ξµ exists, its change under an arbitrary
variation of the dynamical variables, δ2ϕ = δϕ, equals

δHξ = Ω [£ξ, δ] . (2.5)

by the virtue of the Hamilton equations of motion [22].
For a diffeomorphism invariant theory, any vector field ξµ with continuous first deriva-

tives also generates a local infinitesimal symmetry of the theory [22, 23]. Then, we can
define the corresponding conserved Noether current

jµ
ξ = θµ [δξ] − Lξµ. (2.6)

This current can be written as [23, 24]

jµ
ξ = −Aϕ£ξϕ + ∇νQνµ

ξ , (2.7)

where Qνµ
ξ is an antisymmetric tensor density. It follows that the divergence of jµ

ξ vanishes
on shell and Qνµ

ξ is the Noether charge corresponding to the diffeomorphism generated by
ξµ. Now suppose one introduces a small perturbation that changes one solution of the
equations of motion to another (in other words, the perturbation satisfies the linearised
equations of motion, δAϕ = 0). Then it can be shown that a perturbation of the Hamilto-
nian, δHξ, is equal to an integral of the Noether charge variation δQνµ

ξ and the symplectic
current θµ [δ] over the boundary ∂C of the initial data surface C, i.e.,

δHξ =
∫

∂C

(
δQνµ

ξ − 2ξνθµ [δ]
)

dCµν . (2.8)

If ξµ is a Killing vector field, the variation of the Hamiltonian vanishes identically. For a
stationary black hole spacetime, equation (2.8) evaluated for the Killing vector field which
defines the Killing horizon yields the first law of black hole mechanics. Using the expression
for the Hawking temperature TH = κ/2π, with κ being the surface gravity of the horizon,
one can then identify the Wald entropy of the black hole4

SW = 2π

κ

∫
H

Qνµ
ξ dCµν , (2.9)

where the integration is carried out over the spatial cross-section of the horizon orthogonal
to the Killing vector ξµ.

3The form defined in this way can be degenerate [22]. To make it a well-defined symplectic form, we
must restrict it from the space of field configurations to the space of solutions. However, this subtlety is
not relevant for our purposes.

4We should note that this procedure is not fully consistent. The Hawking temperature represents a result
of quantum physics in curved spacetime that must be identified in an otherwise fully classical expression.
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3 Scalar-tensor Einstein-Gauss-Bonnet gravity in four dimensions

In this section, we recall the basic properties of electrovacuum scalar-tensor Einstein-Gauss-
Bonnet gravity in four spacetime dimensions. The theory can be obtained by a Kaluza-
Klein reduction of electrovacuum Einstein-Gauss-Bonnet gravity in any higher dimension
to four dimensions (see, e.g. [11, 12] for details). The resulting action reads5

IEGB = 1
16π

∫ [
R − 2Λ + αϕG + α

(
4Gλρ∇λϕ∇ρϕ − 4∇λϕ∇λϕ∇ρ∇ρϕ

+ 2∇λϕ∇λϕ∇ρϕ∇ρϕ
)
− FλρF λρ

]√
−gd4x, (3.1)

where
G = R2 − 4RλρRλρ + Rλρστ Rλρστ , (3.2)

denotes the Gauss-Bonnet term. The action (3.1) possesses a shift symmetry, i.e., it is
invariant under shifting the scalar field ϕ by any constant, as one can easily check. This
symmetry of the action is not exact, but only up to a boundary term. To see this, note
that the Gauss-Bonnet term in four spacetime dimensions can be written as a divergence
of some vector field

G = ∇µGµ. (3.3)

Unfortunately, no closed, coordinate-independent expression for Gµ is known [30]. Never-
theless, introducing Gµ allows us to easily show that shifting the scalar field by an arbitrary
constant C, i.e., ϕ → ϕ + C, changes the action as

∆IEGB = C

∫
∇µGµ√−g4nx. (3.4)

Of course, this term has no effect on the equations of motion. However, any boundary term
added to the action affects the symplectic potential and through it the Noether currents
and charges. In particular, we have [24]

∆θµ
EGB [δ] = α

16π
CδGµ, (3.5)

∆jµ
EGB,ξ = α

8π
C∇ν

(
ξ[νGµ]

)
(3.6)

∆Qνµ
EGB,ξ = α

8π
Cξ[νGµ]. (3.7)

Hence, the shift symmetry breaks down on the level of the covariant phase space formalism.
To restore it, we may add a total divergence to the Lagrangian, in order to make it exactly
invariant. We then have the following shift-invariant action

Iinv = IEGB − 1
16π

∫
∇µ (αϕGµ)

√
−gd4x, (3.8)

where IEGB is given by equation (3.1). This modified action is only meaningful in four
spacetime dimensions. In dimensions lower than four, the Gauss-Bonnet term vanishes

5It is straightforward to show that dimensional reduction of the Einstein-Gauss-Bonnet-Maxwell theory
does not lead to any coupling between the Maxwell term and the scalar field.
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identically and there is no divergence term breaking the symmetry, whereas for dimensions
higher than four the symmetry is not present even on the level of the equations of motion.

Varying the action with respect to ϕ yields a scalar equation

8α∇µ∇νϕ
(
−2∇µϕ∇νϕ − gµν∇λϕ∇λϕ −∇µ∇νϕ + gµν∇λ∇λϕ − Gµν

)
−8αRµν∇µϕ∇νϕ + αG = 0. (3.9)

Notably, this equation provides a closed, covariant on-shell expression for Gµ

Gµ = 8Gµν∇νϕ − 8∇ν∇νϕ∇µϕ + 8∇νϕ∇ν∇µϕ + 8∇νϕ∇νϕ∇µϕ + ∇νFνµ, (3.10)

where arbitrary antisymmetric tensor Fνµ represents an ambiguity in Gµ. We will see
that this equation allows us to write the on shell Noether charges in a simple, manifestly
covariant form.

Continuing, we vary the action with respect to the metric to obtain the following
equations

Gµν + Λgµν + 2αϕ

[
RµλρσR λρσ

ν − 2RµλνρRλρ − 2RµλR λ
ν + RRµν − 1

4
(
R2 − 4RλρRλρ

+Rλρστ Rλρστ
)
gµν

]
+ 2α

(
2R λ ρ

µ ν + 2R λ
µ δρ

ν + 2R λ
ν δρ

µ − 2Rµνgλρ − 2Rλρgµν − Rδλ
µδρ

ν

+Rgµνgλρ
)
∇λ∇ρϕ + 2α

(
2R λ ρ

µ ν + 2R λ
µ δρ

ν + 2R λ
ν δρ

µ − Rµνgλρ − 2Rλρgµν − Rδλ
µδρ

ν

+1
2Rgµνgλρ

)
∇λϕ∇ρϕ + 2α

(
2gλσδρ

µδτ
ν − 2gλρδσ

µδτ
ν + gλρgστ gµν − gλσgρτ gµν

)
∇λ∇ρϕ

∇σ∇τ ϕ + 4α
(
gλσδρ

µδτ
ν + gλσδτ

µδρ
ν − gστ δλ

µδρ
ν − gλσgρτ gµν

)
∇λϕ∇ρϕ∇σ∇τ ϕ

+4α∇λϕ∇λϕ∇µϕ∇νϕ − α∇λϕ∇λϕ∇ρϕ∇ρϕgµν − 2FµλF λ
ν + 1

2FλρF λρgµν = 0,

(3.11)

In the following, we will write these equations as Eµν = 0 to simplify our notation. Likewise,
we will use Eϕ = 0 for equation (3.9).

A particular combination of the equations of motion, Eµνgµν +Eϕ, yields the following
useful condition [12]

4Λ − R − α

2 G = 0. (3.12)

This equation is scalar and completely independent both of ϕ and of the electromagnetic
field. Hence, it offers a simple way to check whether a particular ansatz for the metric is
viable, without solving the full equations of motion. We will use this in section 6 to discuss
black hole solutions.

4 Covariant phase space formalism for Einstein-Gauss-Bonnet gravity

We now apply the covariant phase space formalism reviewed in section 2 to the case of
scalar-tensor Einstein-Gauss-Bonnet gravity. To show the significance of the shift symme-
try, we first do so for action IEGB (3.1), which is shift-symmetric only up to a boundary
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term. The calculations necessary to obtain the covariant phase space formalism are involved
but straightforward. For the symplectic potential, we find6

θµ
EGB [δ] =

√
−g

16π

{[
(gµνgρσ − gµσgνρ) (1 + 2αϕR) + 4αϕ(−2Rρσgµν + Rµσgνρ + Rνρgµσ

+ Rµνρσ)
]
∇σδgνρ + 4αϕ∇ρGµνδgνρ + 2α

(
2Rµνλρ + 4Rµνgλρ − 2Rλµgνρ

− 2Rνρgλµ − Rgµνgλρ + Rgλµgνρ)∇λϕδgνρ + 2α
(
2gµνgλρgστ − gµσgλνgρτ

− gνρgλµgστ − gµνgρσgλτ + gµσgνρgλτ )∇λϕ∇τ ϕ∇σδgνρ + 2α
(
2gµνgλσgρτ

− 2gλµgνσgρτ − gµτ gνρgλσ + gλµgνρgστ )∇λϕ∇σ∇τ ϕδgνρ + 2α
(
2gµνgρσ

− gµσgνρ)∇λϕ∇σϕ∇σϕδgνρ + 4α
(
2Gµν∇νϕδϕ −∇νϕ∇νϕ∇µδϕ

− 2∇ν∇νϕ∇µϕδϕ + 2∇νϕ∇ν∇µϕδϕ + 2∇νϕ∇νϕ∇µϕδϕ
)
− 2F µνδAν

}
. (4.1)

Next, we want to find the Noether current corresponding to infinitesimal diffeomor-
phism transformations. However, a subtle problem occurs for fields with gauge freedom,
such as Aµ. The usual definition of an infinitesimal diffeomorphism transformation, i.e.,
a Lie derivative along the diffeomorphism generator ξµ, is not gauge invariant. The issue
can be systematically dealt with by generalising the Noether charge formalism to vector
bundles [31]. However, a simpler solution sufficient for our purposes lies in modifying the
action of infinitesimal diffeomorphisms on Aµ to make it gauge invariant [32]. We have

δξAµ = £ξAµ −∇µ

(
Aνξν − P EM,ξ

)
, (4.2)

where P EM,ξ, is a gauge invariant quantity satisfying [32]

kνFνµ = −∇µP EM,k, (4.3)

for any vector field kµ generating a symmetry of all the dynamical fields. For a suitable
gauge fixing of potentials, we have simply P EM,ξ = Aλξλ, and the gauge invariant diffeo-
morphism transformation reduces to the standard Lie derivative, but this is not generally
the case.

We are now ready to compute the Noether current corresponding to an infinitesimal
diffeomorphism transformation generated by a vector field ξµ. Starting from the general
definition (2.6), we get

jµ
EGB,ξ =

√
−g

8π

(
ξνE µ

ν − 2P EM,ξ∇νF νµ
)

+
√
−g

16π
∇ν

{
∇[νξµ] (2 + 4αϕR) − 16αϕRλ[ν∇λξµ]

+ 4αϕRνµλρ∇λξρ − 8αR∇[νϕξµ] + 16α∇λϕRλ[νξµ] + 16αR
[µ

λ ∇ν]ϕξλ

+ 8αRµνλρ∇λϕξρ + 4α∇[µξν]∇λϕ∇λϕ + 8α∇λξ[µ∇ν]ϕ∇λϕ + 8αξ[µ∇ν]∇λϕ∇λϕ

− 8αξ[µ∇ν]ϕ∇λ∇λϕ + 8αξλ∇λ∇[µϕ∇ν]ϕ + 8α∇λϕ∇λϕ∇[νϕξµ] + 2F νµP EM,ξ
}

.

(4.4)
6As an aside, upon setting ϕ = 0, the results of this section also hold for the purely metric Einstein-

Gauss-Bonnet gravity in any spacetime dimension n ≥ 5.
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The first two terms are proportional to the equations of motion for the metric and the
electromagnetic field. Note that the equations of motion for the scalar field ϕ as well as
the second set of the Maxwell equations ∇[µFνρ] = 0 do not appear in the Noether current.

The total divergence term in the Noether current (4.4) gives us directly the Noether
charge antisymmetric tensor density

Qνµ
EGB,ξ =

√
−g

16π

[
∇[νξµ] (2 + 4αϕR) − 16αϕRλ[ν∇λξµ] + 4αϕRνµλρ∇λξρ − 8αR∇[νϕξµ]

+ 16α∇λϕRλ[νξµ] + 16αR
[µ

λ ∇ν]ϕξλ + 8αRµνλρ∇λϕξρ + 4α∇[µξν]∇λϕ∇λϕ

+ 8α∇λξ[µ∇ν]ϕ∇λϕ + 8αξ[µ∇ν]∇λϕ∇λϕ − 8αξ[µ∇ν]ϕ∇λ∇λϕ

+ 8αξλ∇λ∇[µϕ∇ν]ϕ + 8α∇λϕ∇λϕ∇[νϕξµ] + 2F νµP EM,ξ
]
. (4.5)

In the previous section, we have shown that the symplectic potential θµ
EGB [δ], the

Noether current jµ
EGB,ξ, and the Noether charge Qνµ

EGB,ξ are not invariant under shifting
the scalar field by a constant, ϕ → ϕ + C. Since the equations of motion and, therefore, all
the solutions of the theory do not change under such a shift, it is somewhat unsatisfactory
that the locally defined Noether currents and charges, which are used to define measurable
quantities such as mass and entropy, do not share this invariance. The solution lies in
deriving the symplectic potential from the action Iinv (3.8), which is exactly shift-invariant.
Then, we obtain

θµ
inv [δ] = θµ

EGB [δ] − α

16π
ϕδGµ, (4.6)

jµ
inv,ξ = jµ

EGB,ξ −
α

8π
∇ν

(
ϕξ[νGµ]

)
(4.7)

Qνµ
inv,ξ = Qνµ

EGB,ξ −
α

8π
ϕξ[νGµ], (4.8)

where we recall that Gµ is defined so that its divergence equals the Gauss-Bonnet term,
G = ∇µGµ. The expressions θµ

inv [δ], jµ
inv,ξ and Qνµ

inv,ξ have the advantage of being explicitly
invariant under constant shifts of the scalar field. On shell, using equation (3.10), we can
express Gµ in terms of derivatives of ϕ and curvature tensors, making the formulas for the
symplectic potential and Noether currents and charges explicitly covariant.

Of course, the covariant phase space formalism is also affected by other boundary
contributions to the action, most notably by the Gibbons-Hawking-York boundary term.
For the scalar-tensor Einstein-Gauss-Bonnet theory we consider, this term has been derived
in the literature [33]. In section 6, we show that it has no effect on thermodynamics of
static, spherically symmetric black holes. We expect this result to hold in general as well,
since it requires only regularity of the Gibbons-Hawking-York term on the horizon and its
sufficiently fast fall-off in the asymptotic region [34].

One might wonder whether the shift symmetry also carries a nontrivial Noether charge
that might affect the covariant phase space formalism. Starting from the symplectic po-
tential (4.6), and setting δCϕ = C, δCgµν = 0, we easily obtain the Noether current
corresponding to shift symmetry

jµ
C = αC (8Gµν∇νϕ − 8∇ν∇νϕ∇µϕ + 8∇νϕ∇ν∇µϕ + 8∇νϕ∇νϕ∇µϕ − αGµ) . (4.9)
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On shell, the Noether current vanishes due to equation (3.10). Hence, there is no nontrivial
Noether charge associated with shift symmetry and it will not generate any contributions
to conserved quantities.

At this point, we have a complete covariant phase space formalism for electrovacuum
scalar-tensor Einstein-Gauss-Bonnet theory. Deriving an explicit expression for the sym-
plectic current would again be straightforward (albeit laborious), but we do not need it for
our purposes. We stress that the expression for the symplectic form is not affected by the
boundary term we added to the action — it is explicitly shift symmetric regardless whether
we derive it from θµ

EGB [δ] or θµ
inv [δ]. The difference in both expressions is proportional to

(δ1δ2 − δ2δ1)Gµ, see equation (2.3), which vanishes identically. Therefore, the fundamental
theorem of covariant phase space formalism [35], which asserts the uniqueness of the sym-
plectic form, is respected. In the remainder of the paper, we apply this formalism to the
particular case of black hole spacetimes. The general formalism can be, of course, equally
applied to any other setting of interest, such as spacetime causal diamonds, cosmological
spacetimes, or gravitational waves.

5 Conserved quantities in stationary black hole spacetimes

5.1 Mass and angular momentum

We are ready to identify the conserved quantities in 4D scalar-tensor Einstein-Gauss-
Bonnet gravity. We will do so on the example of an asymptotically flat, stationary space-
time containing a single black hole. In particular, we require that there exist a coordinate
system in which one can write the metric as gµν = ηµν + O (1/r). Consequently, the Rie-
mann tensor behaves asymptotically as O

(
1/r3). Inspecting equations of motion for the

metric (3.11) and the scalar field (3.9) we can see that this allows asymptotic behaviour
of the scalar field at most ϕ = O

(
r1/4

)
. Otherwise, ϕ would source a contribution to the

Riemann tensor larger than O
(
1/r3). In an asymptotically flat, stationary spacetime, the

canonical mass M is defined as the contribution to the Hamiltonian corresponding to the
evolution along the time translation Killing vector tµ coming from the asymptotic infin-
ity [23, 24]. Therefore, we have for a small on-shell perturbation of M (the perturbation
must be such that it does not spoil the asymptotic flatness)

δM =
∫

∞
(δQνµ

t − 2tνθµ [δ]) dCµν . (5.1)

Interestingly, all the correction terms yield vanishing contributions. Therefore, we recover
the GR result for canonical mass which is equivalent to the ADM mass. In total, it holds
M = MADM,GR. The same applies to the canonical angular momentum J , defined with
respect to the rotational Killing vector φµ

δJ = −
∫

∞
δQνµ

t dCµν = δJADM,GR. (5.2)

To sum up, the conserved charges of asymptotically flat spacetimes in the scalar-tensor
Einstein-Gauss-Bonnet gravity defined at the asymptotic infinity are the same as their
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counterparts in general relativity. This is natural, since one does not expect the higher
order curvature corrections to significantly affect the weak gravity regime. For the same
reason, these results hold regardless of whether we consider the shift-symmetric Noether
charge Qνµ

inv,ξ or the Noether charge Qνµ
EGB,ξ, which changes under constant shifts of the

scalar filed.

5.2 Entropy prescription

The situation with black hole entropy is more interesting. The definition of Wald entropy
of a stationary asymptotically flat black hole spacetime reads

SW = 2π

κ

∫
H

Qνµ
ξ dCµν , (5.3)

where ξµ = tµ +ΩHφµ is the Killing vector tangent to the horizon (ΩH denotes the constant
angular frequency of the horizon), κ the corresponding surface gravity, and H a spatial
cross-section of the horizon.

We first look at the entropy computed from the Noether charge Qνµ
EGB,ξ, which is not

shift-symmetric. Using that ∇[νξµ] = κϵνµ, where ϵνµ denotes the binormal to the horizon,
we easily obtain, in agreement with the previously reported results [7]

SW,EGB = 1
16

∫
H

[
ϵµν (2 + 4αϕR) − 16αϵλµϕR ν

λ + 4αϵλρϕRνµλρ
]

ϵνµd2A

= A
4 + 1

4

∫
H

αϕ
(
ϵµνR − 4ϵλµR ν

λ + ϵλρRνµλρ
)

ϵνµd2A. (5.4)

where d2A is the area element on the horizon. The first term is the well known Bekenstein
entropy, the second one is a Gauss-Bonnet correction. Notably, the correction term is
independent of the derivatives of ϕ. In fact, it is simply the correction to entropy obtained in
the purely metric Einstein-Gauss-Bonnet gravity in dimensions higher than four, multiplied
by the scalar field ϕ. Since, as we discussed, ϕ can be shifted by any constant C, we have
a constant ambiguity in the total entropy of the form

∆S = 1
4C

∫
H

α
(
ϵµνR − 4ϵλµR ν

λ + ϵλρRνµλρ
)

ϵµνd2A = 4παC, (5.5)

where we used that the integral is proportional to the Euler characteristic of the horizon
spatial cross-section.

Next, we look at the entropy given by the shift-symmetric Noether charge Qνµ
inv,ξ. Since

ξµ is a null vector tangent to the horizon (and, if the horizon possesses a bifurcation surface,
ξµ vanishes there), the terms in Qνµ

ξ proportional to ξµ (and not containing its derivatives)
should integrate to 0 over the horizon and not contribute to Wald entropy. The difference
between Qνµ

inv,ξ and Qνµ
EGB,ξ equals −αϕξ[νGµ]/ (8π), which is proportional to ξµ. Hence, it

would seem that the black hole entropy does not depend on whether we work with Qνµ
inv,ξ

or Qνµ
EGB,ξ. However, the properties of the Gauss-Bonnet term change this picture. It has

been shown that adding the boundary term ∇µGµ to the Einstein-Hilbert action in four
dimensions, while leaving the Einstein equations unchanged, shifts Wald entropy of a black
hole by a constant proportional to the Euler characteristic of the horizon [36, 37]. In our
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case, with the Gauss-Bonnet term being multiplied by the scalar field, the entropy changes
more substantively. The easiest way to see that the Gauss-Bonnet term contributes to
Wald entropy is by considering its form in a spacetime with Killing symmetries. There,
the vector Gµ reads [30]

Gµ = −2 ∂G
∂Rµνρσ

ξν∇ρξσ. (5.6)

Hence, Gµ depends on the derivative of the Killing vector and can contribute to Wald
entropy.7 The contribution to Wald entropy given by the extra term −αϕξ[νGµ]/ (8π) in
the shift-invariant Noether charge Qνµ

inv,ξ equals

−2π

κ

∫
H

αϕξ[νGµ]/ (8π) ϵνµd2A = −1
4

∫
H

αϕ
(
ϵµνR − 4ϵλµR ν

λ + ϵλρRνµλρ
)

ϵνµd2A. (5.7)

Therefore, the total Wald entropy corresponding to Qνµ
inv,ξ reduces to the well-known Beken-

stein entropy of general relativity
SW,inv = A

4 . (5.8)

without any correction terms. At the first glance, this is a surprising result that differs from
the ones arrived at in various studies of black hole thermodynamics in four-dimensional
Einstein-Gauss-Bonnet gravity. However, this is also essentially the only entropy prescrip-
tion compatible with the symmetry of the equations of motion under ϕ → ϕ + C. Stated
differently, the equations of motion imply that physics depends only on derivatives of ϕ

and not on the value of the field itself. Hence, ϕ is not a physical observable. It would
then be fairly strange if entropy depended on the value of ϕ in any way. We stress that
the ambiguity one obtains when entropy depends on the value of ϕ on the horizon is more
serious than that from adding the Gauss-Bonnet term to the Einstein-Hilbert action. In
that case, the entropy is shifted by a universal constant depending only on the value of the
Gauss-Bonnet coupling. However, the dependence on the arbitrary value of ϕ allows for two
otherwise physically identical black hole spacetimes to have different entropies. Moreover,
we are free to choose a suitable negative ϕ on the horizon to make the overall entropy of
the black hole zero (or even negative). Since the entropy of the (minimally coupled) matter
outside of the black hole does not depend on the value of ϕ, a small variation of ϕ can
in principle violate the second law of thermodynamics. An alternative argument for the
area law entropy in shift symmetric theories was recently proposed [26]. It suggests that,
since the value of the scalar field is arbitrary, it is natural to eliminate its contribution to
entropy by setting it to zero on the horizon.

Since we do not have a general, manifestly covariant expression for Gµ, one might in
principle worry whether the entropy formula we obtained respects the covariance. How-
ever, Wald entropy is an on shell quantity. Then, the on shell expression for Gµ (3.10)
guarantees that entropy (and, hence, the first law of black hole mechanics) remains fully
covariant. Equation (3.10) does contain an ambiguity given by divergence of an an-
tisymmetric tensor Fνµ, but it can be shown that this ambiguity does not affect the

7Another way to see this is by noting that Gµ diverges on the bifurcation surface of the horizon (if one
exists), compensating the vanishing of ξµ. The overall contribution of the Gauss-Bonnet boundary term is
then finite.
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conserved quantities. To see this, note that the ambiguity in the conserved quantities
(both at the Killing horizon and at the asymptotic infinity) would be proportional to
ξ[µ|∂λ

(√
−gFλ|ν]

)
ξ[µnν], where nµ denotes a spacelike vector normal to the boundary and

we used that covariant derivative of an antisymmetric tensor density of weight 1 reduces
to a partial derivative. Any contributions to Fλν orthogonal to bi-normal ξ[µnν] contract
to zero. Hence, we can only study Fλν = fξ[λnν], where f is an arbitrary function. If
we adapt the coordinate system so that ∂λnν = ∂λξν = 0, we are left with contribu-
tion ξµξ[λnν]∂λ (

√
−gf) ξ[µnν] = ξµnνξλ∂λ (

√
−gf) ξ[µnν]. This is proportional to the Lie

derivative of
√
−gf with respet to Killing vector ξλ. If the Killing symmetry is respected,

this Lie derivative must vanish. Therefore, the ambiguity in Gµ does not affect any of the
conserved quantities.

To sum up, the consistency of black hole thermodynamics in scalar-tensor Einstein-
Gauss-Bonnet gravity seems to favour the unmodified entropy prescription (5.8). In the
following, we study the implications of this choice of entropy on the example of a static,
spherically symmetric black hole spacetime. We will see that it requires a modified pre-
scription for the black hole temperature.

6 Spherical black holes

6.1 Black hole solutions

We now apply the general covariant phase space formalism to the particular case of static,
spherically symmetric, electrovacuum black hole solutions in four spacetime dimensions.
For the sake of clarity, we consider asymptotically flat spacetimes. Our treatment can be
straightforwardly generalised to the asymptotically anti-de Sitter case, upon introducing a
suitable regularisation [38] (the asymptotically de Sitter case must be treated separately
due to the presence of the cosmological horizon).

Any static, spherically symmetric metric can be written as

ds2 = −f (r) dt2 + dr2

f (r) h (r) + r2
(
dθ2 + sin2 θdϕ2

)
. (6.1)

where f (r), h (r) are arbitrary functions. Here we are interested only in the solutions with
h (r) = 1, which can be found analytically.

The requirements of staticity and spherical symmetry together with the Maxwell equa-
tions imply Ftr = −Frt = Q/r2√h, where Q is the constant electric charge and, for h = 1,
we have P EM,ξ = −Q/r. We note that this result does not depend on the equations of
motion for the metric (3.11) and the scalar field (3.9), and applies to static, spherically
symmetric solutions of any gravitational theory, provided that the electromagnetic field is
minimally coupled.

To determine the function f , we may first use condition (3.12) which is independent
of the scalar field ϕ. It implies

αf2 −
(
r2 + 2α

)
f − C2 − C1r + r2 = 0, (6.2)
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which has a general solution

f± = 1 + r2

2α

1 ±

√
1 + 4αC1

r3 + 4α (C2 + α)
r4

 . (6.3)

Plugging this ansatz into the equations of motion8 yields three independent conditions.
Two of them are solved by setting ϕ to [11, 12]

ϕ (r) = ln
(

r

L

)
±
∫ r

r+

1
ρ
√

f (ρ)
dρ. (6.4)

The third equation yields a further constrain on f

(
r3 + 2αr − 2αrf

)
f ′ +

(
r2 − 2α + αf

)
f + α − r2 + Q2 = 0, (6.5)

where ′ denotes a partial derivative with respect to r. The ansatz (6.3) for f solves this
equation provided we set C2 = −Q2−α. In the following we study only the asymptotically
anti-de Sitter/flat branch of the solution which corresponds to the minus sign between the
terms in the brackets in ansatz (6.3). This branch approaches the Schwarzschild-anti-de
Sitter black hole in the limit of α → 0. The last unspecified constant is then related to
Schwarzschild mass parameter, C1 = 2M . As we have shown in the previous section, the
Schwarzschild mass parameter also gives the canonical mass of the black hole solution we
consider. In total, we have the following solution for f :

f = 1 + r2

2α

1 −

√
1 + 8αM

r3 − 4αQ2

r4

 . (6.6)

By computing the Kretschmann scalar, one can easily check that even with the Gauss-
Bonnet corrections, the resulting black hole spacetime remains singular in the origin at
r = 0. Function f has two real roots. The larger one corresponds to the location of the
event horizon, the smaller to the inner, Cauchy horizon. In between the horizons, f is
negative. The event horizon is a Killing horizon with respect to the time translational
Killing vector tµ = (1, 0, 0, 0).

6.2 Thermodynamics and modified temperature

Let us now look at the thermodynamics of these black hole solutions. Integrating the
on-shell identity jµ

inv,t = ∇νQνµ
inv,t over a spatial Cauchy surface C connecting the spatial

8In practice, it is easier to first use the symmetries to simplify the action and then derive the equations
of motion specialised for the static, spherically symmetric case [11, 12].
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infinity and the black hole event horizon yields the Smarr formula9∫
∞

Qνµ
inv,tdCµν −

∫
H

Qνµ
inv,tdCµν =

∫
C

jµ
inv,tdCµ (6.8)

M

2 − κ

2π

A
4 + Q2

2r+
= Q2

r+
+ ακ + α

2r+
. (6.9)

where the non-zero contribution to the volume integral of jµ
inv,t = θµ

inv [δt] − Linvtµ comes
from the Lagrangian Linv evaluated for the black hole solution we study.

The first law of black hole mechanics can be derived from the equation (2.8) for vari-
ation δHt of the Hamiltonian corresponding to evolution along Killing vector tµ∫

∞
(δQνµ

t − 2tνθµ [δ]) dCµν −
∫

H
(δQνµ

t − 2tνθµ [δ]) dCµν = 0, (6.10)

δM − κ

2π

(
1 + 2α

r2
+

)
δA
4 − Q

r+
δQ = 0. (6.11)

In deriving this equation we assume, as is usually done [23, 39], that the surface gravity κ

is held fixed, i.e., δκ = 0. We would like to interpret the first law of black hole mechan-
ics (6.11) as the first law of black hole thermodynamics. We can easily identify the last
term as the electric field work contribution, ΦδQ, where Φ = Q/r+ denotes the electric
potential on the horizon. The mass term δM corresponds to a variation of the black hole
enthalpy [38] (though no variation of Λ is considered here). The second term should then
be interpreted as THδSW,EGB, where TH denotes the Hawking temperature at which the
black hole radiates. The standard calculations of the black hole radiation yield for the
Hawking temperature κ/ (2π). However, our form of the first law (6.11) implies

TH = κ

2π

(
1 + 2α

r2
+

)
. (6.12)

As the Hawking temperature should depend on the kinematic features of the black hole
spacetime and not on the gravitational dynamics [40], the idea of modifying it in this
case may seem curious. However, it is well known that scalar-tensor theories of gravity
generically lead to propagation speeds of gravitons which differ from the speed of light. It
has been pointed out that, since gravitons contribute to black hole radiation, the change
in their propagation speed can affect the Hawking temperature [27]. Computations of the
Hawking temperature always somehow rely on the assumption that the emitted particles
move with the speed of light. For instance, the geodesic peeling approach to computing the
black hole temperature relies on choosing the null geodesics [41]. If the gravitons in fact

9If we instead use the ϕ-dependent Noether current jµ
EGB,t and charge Qνµ

EGB,t, the integral of Qνµ
EGB,t

over the horizon contains an extra term 4πα ln r+
L

. The same extra term appears in the volume integral of
jµ

EGB,t. Hence, the Smarr formula we find reads

M

2 − κ

2π

(A
4 + 4πα ln r+

L

)
− Q2

2r+
= α

2r+
− 2ακ ln r+

L
+ ακ, (6.7)

which agrees with the previously reported result [7, 8]. The only difference is that the other references chose
to set L =

√
α, although the constant L is in fact completely arbitrary.
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move along timelike/spacelike geodesics, the resulting temperature found in this way will
be altered [27]. That the speed of propagation influences the Hawking effect also becomes
apparent in the field of analogue Hawking radiation, where the experimental detection of
the effect is possible precisely because the relevant speed is that of sound waves in the
medium which is of course much lower than that of light [42–44]. Moreover, for certain
Horndeski theories of gravity, the first law of black hole mechanics apparently cannot be
satisfied without introducing the modified Hawking temperature [27]. All these theories
share an interesting feature. In the Smarr formula (6.7), we have two contributions to
the term −THSW,inv. The one coming from the integral of the Noether charge over the
horizon reads − (κ/2π) SW,inv. The second contribution is given by the volume integral
of the Noether current and equals − (κ/2π)

(
2α/r2

+
)

SW,inv. Thus, the surface integral
over the horizon gives us the standard Hawking temperature κ/2π, whereas the volume
integral contributes the correction term to it. The same situation occurs in other Horndeski
theories with modified temperature [27]. At the moment, we cannot say whether this is just
a mathematical coincidence or it suggests that the temperature corrections are somehow
related to what happens far outside the horizon.

6.3 Modified speed of gravitons argument

We can try to evaluate the modified temperature in scalar-tensor Einstein-Gauss-Bonnet
gravity directly, using the method proposed for generic Horndeski theories [27]. The pre-
scription for the modified Hawking temperature in static, spherically symmetric solutions
of Horndeski theories depends only on the radial speed of the gravitons [27]. Metric per-
turbations in the static spherically symmetric black hole background has been analysed in
general Horndeski gravity [45, 46]. As part of the analysis, an expression for the radial
speed of graviton propagation was derived. Unfortunately, metric perturbations of the
black hole spacetime we consider diverge on the horizon (due to diverging ϕ′). Hence, the
black hole solution we consider is apparently unstable under perturbations, preventing us
from evaluating the corrections to black hole temperature. However, it has been observed
that the invariance of the equations of motion under a constant shift of ϕ implies that
one has a freedom to add a function linear in time to ϕ in a static spherically symmetric
spacetime. Notably, this has no effect on the metric. Hence, the most general solution time
dependent solution for ϕ reads

ϕ (r, t) = ln
(

r

L

)
±
∫ r

r+

1
ρ
√

f + L2ρ2 dρ + Lt + C, (6.13)

where C, L are constants. Since function f has a finite minimum fmin < 0 somewhere
between the event and the Cauchy horizon, we have a range of values of L for which ϕ is
well defined everywhere except at the singularity r = 0. The additive constant C is then
an arbitrary real number. The previously done analysis of perturbations fails for this time
dependent ϕ (the linear time dependence is only innocuous due to spherical symmetry,
which the perturbations break). Therefore, the analysis of both stability and graviton
speed in this case needs to be done separately. For these reasons, we are unable to derive
our proposed modified temperature (6.12) by the modified graviton propagation approach.

– 15 –



J
H
E
P
1
1
(
2
0
2
3
)
1
9
5

However, we know that the consistency of the first law of black hole thermodynamics
requires this form of the temperature and that the temperature generically appears to be
modified in Horndeski theories. Hence, the temperature prescription (6.12) seems plausible.
Moreover, in the next section, we employ a Euclidean grandcanonical ensemble approach
to black hole thermodynamics and show that it leads to the modified temperature (6.12).

6.4 York-Gibbons-Hawking boundary term

We have seen that adding the Gauss-Bonnet boundary term affects black hole thermo-
dynamics. Since the action should also contain an appropriate York-Gibbons-Hawking
boundary term, it is natural to ask whether it influences thermodynamics as well. For
completeness, we discuss the boundary terms both for the usually considered action IEGB
and for the shift invariant action Iinv.

First, suppose we take the action IEGB which is not exactly shift invariant and set
Dirichlet boundary conditions both for the metric, δgµν |∂Ω = 0, and the scalar field, δϕ|∂Ω =
0. For this case, the boundary term necessary to have a well posed variational problem
reads10

IYGH = 1
8π

∫
∂Ω

K
√
−hd3x

≡ 1
8π

∫ [
K − 2

3αϕ
(
K3 − 3KKλρKλρ + 2KλρKρσK λ

σ + 3(3)GλρKλρ
)

+2α
(
Kλρ − Khλρ

)
∂λϕ∂ρϕ + 2

3αnρ∂ρϕ∂λϕ∂λϕ

]
√
−hd3x , (6.14)

where hµν = gµν −nµnν denotes the induced metric on the boundary, nλ the normal to the
boundary (which is taken to be spacelike), (3)Gλρ the boundary Einstein tensor, and Kµν =
hλ

µ∇λnν its extrinsic curvature. The first term corresponds to the Ricci scalar in the bulk
action, the second one to the Gauss-Bonnet term, the third one to the term coupling the
Einstein tensor with derivatives of ϕ and the last one to the term containing d’Alembertian
of ϕ. The York-Gibbons-Hawking boundary term shifts the Noether charge tensor by
Qνµ

YGH = 1
4πK

√
−hξ[νnµ]. If an integral of Qνµ

YGH over the spacetime boundary does not
vanish, it will affect its Hamiltonian (and, therefore, the first law of thermodynamics for
black hole spacetimes). In our case of static, spherically symmetric black hole spacetime,
we have the boundary normal corresponding to a unit, radial vector, i.e., nµ =

(
0,
√

f, 0, 0
)
.

The York-Gibbons-Hawking boundary term then reads

K = f ′

2
√

f
+ 2

√
f

r
− 8αϕ

f
√

f

r3 + 2
3αϕ

f ′
√

f
+ 2

3α

(√
f − 1
r

).

(6.15)

10As far as we can tell, reference [33] missed the terms proportional to (3)GλρKλρ and nρ∇ρϕ∇λϕ∇λϕ.
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Then, we have for the integral of Qνµ
YGH over the horizon

∫
H

Qνµ
YGHdCµν = 1

4π

∫  f ′

2
√

f
+ 2

√
f

r
− 8αϕ

f
√

f

r3 + 2
3αϕ

f ′
√

f
+ 2

3α

(√
f − 1
r

)3


fr2dΩ2
∣∣∣∣
r=r+

= 0, (6.16)

since f (r+) = 0. At the asymptotic infinity, we obtain

∫
∞

Qνµ
YGHdCµν = 1

4π

∫  f ′

2
√

f
+2

√
f

r
−8αϕ

f
√

f

r3 + 2
3αϕ

f ′
√

f
+ 2

3α

(√
f−1
r

)3
fr2dΩ2

∣∣∣∣
r→∞

.

(6.17)
This contribution diverges. However, the corrections proportional to α vanish. Hence,
the divergent contribution is exactly the same as in general relativity and can be removed
by regularisation of the York-Gibbons-Hawking boundary term (i.e., by subtracting K0,
the flat spacetime contribution to K). The Gibbons-Hawking-York term corresponding
to action IEGB with Dirichlet boundary conditions therefore does not affect black hole
thermodynamics in any way.

Let us now consider the York-Gibbons-Hawking term for the exactly shift invariant
action Iinv. Suppose that we again set Dirichlet boundary conditions, δgµν = 0, δϕ = 0.
The action no longer contains the ϕG term, and the corresponding boundary term thus no
longer appears. It turns out that no extra York-Gibbons-Hawking term is required for the
−Gµ∇µϕ present in Iinv. Thus, we simply have

IYGH,inv = 1
8π

∫
∂Ω

[
K + 2α

(
Kλρ − Khλρ

)
∂λϕ∂ρϕ + 2

3αnρ∂ρϕ∂λϕ∂λϕ

]√
−hd3x , (6.18)

which again does not affect gravitational dynamics. However, there is some tension between
the invariance of the action under shifts of ϕ by a constant, and fixing the variation of ϕ to
zero on the boundary. It would be better to impose a boundary condition on the derivative
of ϕ. A suitable choice is a restricted Neumann boundary condition

nν (Gµ − 8Gµν∇νϕ − 8∇ν∇νϕ∇µϕ + 8∇νϕ∇ν∇µϕ + 8∇νϕ∇νϕ∇µϕ) |∂Ω = 0. (6.19)

If we also impose Dirichlet boundary conditions for the metric and take our action to be
Iinv +IYGH,inv, we have a well posed variational problem without the need to fix either ϕ or
δϕ on the boundary. Therefore, the boundary conditions we impose do not break the shift
symmetry. Moreover, the boundary condition (6.19) for the derivatives of ϕ is automatically
satisfied by any solution of the equations of motion, as a consequence of equation (3.10).
Hence, we lose no potential solutions by imposing it. Since, as we discussed, the York-
Gibbons-Hawking term IYGH,inv has no influence on black hole thermodynamics, all the
conclusions of the previous sections are valid for this choice of boundary conditions.

In summary, the York-Gibbons-Hawking boundary term does not affect the black hole
thermodynamics. Therefore, the only boundary term relevant for the definition of the
conserved quantities is the Gauss-Bonnet one.
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7 Grandcanonical ensemble derivation of the modified temperature

Upon discussing black hole thermodynamics in 4D Einstein-Gauss-Bonnet gravity from
the perspective of the covariant phase space formalism, we study the same problem from
the perspective of Euclidean canonical ensemble [28]. It has the crucial advantage of
directly obtaining the black hole temperature by finding stationary points of the Euclidean
action. Entropy is then derived by the standard grandcanonical ensemble methods only
upon fixing the temperature. Hence, this method supplements the covariant phase space
formalism approach, which is unable to directly derive the temperature.

In our case, the only variable describing the grandcanonical ensemble is the hori-
zon radius, r+ (other variables, e.g. the electric potential can be easily added [28]). The
key point of the method lies in introducing an artificial boundary (and the appropriate
York-Gibbons-Hawking contribution to action) at finite radial distance. The usual ther-
modynamic quantities are then recovered in the limit of taking this boundary to infinity.

7.1 Gauss-Bonnet boundary term in 4D general relativity

As a warm-up and to introduce the machinery of the grandcanonical ensemble method,
we show how the Gauss-Bonnet boundary term in 4D changes entropy of a standard
Schwarzschild black hole. We work with a general Euclidean ansatz for a spherical, static
black hole metric

ds2 = (b (y))2 dτ2 + (a (y))2 dy2 + (r (y))2 dΩ2 (7.1)

where the τ denotes the Euclidean time coordinates τ ∈ [0, 2π), and coordinate y ∈ [0, 1] is
chosen so that r (0) = r+ corresponds to the black hole event horizon and r (1) = rb > r+
to the artificial boundary of the spacetime with topology S1 × S2. To have the geometry
regular at the horizon, we require b (0) = 0 and (b′/a)y=0 = 1 [28]. The inverse temperature
β measured by a static observer on the boundary is given by the proper length of its S1

component, i.e., β = 2πb (1) [28].
The Euclidean action we work with corresponds to vacuum general relativity (for

simplicity with Λ = 0) with the Gauss-Bonnet term, i.e.,

I = − 1
16π

∫
Ω

(R + α∇µGµ)
√
gd4x. (7.2)

where Ω denotes the spacetime. Moreover, we need to fix Dirichlet boundary conditions.
Hence, it is necessary to add the appropriate Gibbons-York-Hawking boundary term, which
reads (combining the contributions for the Ricci scalar and the Gauss-Bonnet term)

IYGH = 1
8π

∫
∂Ω

[
K − K0 − 2

3α
(
K3 − 3KKλρKλρ + 2KλρKρσK λ

σ + 3(3)GλρKλρ
)]√

hd4x.

In total, the Euclidean action reads

Itotal = − 1
16π

∫
Ω

(R + α∇µGµ)
√
gd4x + 1

8π

∫
∂Ω

[
K − K0

− 2
3α
(
K3 − 3KKλρKλρ + 2KλρKρσK λ

σ + 3(3)GλρKλρ
) ]√

hd4x. (7.3)
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Evaluating this action for our static spherically symmetric black hole spacetime yields

Itotal = −
∫ 2π

0
dτ

∫ 1

0
dy

[
−
(

r2b′

2a

)′

− ab

2r′

(
rr′2

a2 − r

)′

+ 2α

(
−b′

a
+ r′2b′

a3

)′]

+
∫ 2π

0
dτ

[
−
(
br2)′
a

+ 2br − 2α

(
−b′

a
+ r′2b′

a3

)]
y=1

. (7.4)

The constraint equation obtained by varying the symmetry reduced action with respect
to b implies r′/a =

√
1 − r+/r, where r+ is an integration constant corresponding to the

Schwarzschild radius. Plugging this into equation (7.4) and carrying out the integration
gives us

Itotal (r+) = βrb

(
1 −

√
1 − r+

rb

)
− πr2

+ − 4πα, (7.5)

where we used β = 2πb (1). This action corresponds to the grandcanonical partition
function for the black hole system we study. To determine the equilibrium configuration,
we must find its stationary points with respect to r+, leading to the condition

∂r+Itotal (r+) = 0, (7.6)

which is solved by
β = 4πr+

√
1 − r+

rb
. (7.7)

This corresponds to the redshifted inverse Hawking temperature measured by a stationary
observer at a radial finite distance rb from the black hole. In the limit rb → ∞ we
recover the standard Hawking temperature TH = 1/4πr+. The entropy obeys the standard
relations

S = β

(
∂Itotal

∂β

)
rb

− Itotal = πr2
+ + 4πα, (7.8)

giving the well known constant correction to black hole entropy appearing due to the
presence of the Gauss-Bonnet boundary term [36, 37].

7.2 Modified temperature in 4D scalar-tensor Einstein-Gauss-Bonnet gravity

Upon reviewing the approach on the example of general relativity with the Gauss-Bonnet
boundary term, we move on to the 4D scalar-tensor Einstein-Gauss-Bonnet gravity. Again
considering the metric ansatz (7.1), we work with the shift symmetric Euclidean action

Iinv = − 1
16π

∫
Ω

[
R − αGλ∇λϕ + α

(
4Gλρ∇λϕ∇ρϕ − 4∇λϕ∇λϕ∇ρ∇ρϕ

+ 2∇λϕ∇λϕ∇ρϕ∇ρϕ
)]√

gdnx + 1
8π

∫
∂Ω

[
K − K0 + 2α

(
Kλρ − Khλρ

)
∂λϕ∂ρϕ + 2

3αnρ∂ρϕ∂λϕ∂λϕ

]√
hd3x. (7.9)

The action already contains the York-Gibbons-Hawking term, which does not include the
part corresponding to the Gauss-Bonnet term. This is because, in the shift invariant ac-
tion, the Gauss-Bonnet term is replaced by −αGλ∇λϕ which allows a well-posed Dirichlet
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boundary conditions for the metric without any York-Gibbons-Hawking boundary contri-
bution. For the scalar field we set the restricted Neumann boundary condition (6.19) which
is consistent with the shift symmetry.

Evaluating the action for the black hole metric (7.1) yields

IEGB = −
∫ 2π

0
dτ

∫ 1

0
dy

[
−
(

r2b′

2a

)′

− ab

2r′

(
rr′2

a2 − r

)′

+ 2αϕ

(
−b′

a
+ r′2b′

a3

)′

+ α
ϕ′2

a3

(
−a2b + 2rr′b′ + br′2

)
− α

ϕ′2

a2

(
br2

a
ϕ′
)′

+ α
br2ϕ′4

2a3

]
+
∫ 2π

0
dτ

[
−
(
br2)′
a

+ 2br

+ 2αϕ

(
−b′

a
+ r′2b′

a3

)
+ α

br2ϕ′3

3a3

]
y=1

. (7.10)

The constraint equations implied by variation of the action with respect to b requires

ζ (r) ≡ r′ (y)
a (y) =

√√√√√1 + r2 (y)
2α

1 −

√√√√1 + 4αr+
r3 (y)

(
1 + α

r2
+

) , (7.11)

where r+ is an integration constant. Moreover, to satisfy the restricted Neumann boundary
condition (6.19) for a boundary at an arbitrary rb, we must have

ϕ (y) = ln r (y)
L

−
∫ y

0

a (ξ)
r (ξ) r′ (ξ)dξ. (7.12)

where L denotes an integration constant. Plugging this into the action and integrating
gives

Iinv = βrb (1 − ζ (rb))
[
1 − 4α

3r2
b

(ζ (rb) − 1) (2ζ (rb) − 1)
]
− πr2

+. (7.13)

Looking for stationary points with respect to r+ yields the following condition on β

βinv = 4πr+
1

1 − α
r2

+

ζ (rb)
1 − 2α

r2
b

(
ζ (rb)2 − 1

)
1 − 8α

3r2
b

(ζ (rb) − 1) (3ζ (rb) − 2)
. (7.14)

In the limit of rb → ∞ we get precisely the modified temperature (6.12) we guessed by
requiring the validity of the first law of thermodynamics

βinv = 4πr+
1

1 − α
r2

+

= 2π

κ

1
1 + 2α

r2
+

. (7.15)

Interestingly, at finite distance rb, the inverse temperature (7.14) does not just contain the
expected redshift factor ζ (rb), but also an extra correction. We are currently not aware of
any natural interpretation of this correction term. For entropy, we obtain

Sinv = β

(
∂Iinv
∂β

)
rb

− Iinv = πr2
+, (7.16)

i.e., the area law of general relativity.
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The Euclidean grandcanonical ensemble approach shows that the modified temperature
indeed naturally emerges in 4D scalar-tensor Einstein-Gauss-Bonnet gravity if its shift
symmetry is respected by the thermodynamic description. Unfortunately, it provides no
clear hints regarding the origin of the temperature modification. Nevertheless, it clearly
shows that black hole temperature is sensitive to certain boundary terms appearing in the
action. Reasons for this sensitivity require further exploration.

8 Discussion

We have studied black hole thermodynamics in scalar-tensor Einstein-Gauss-Bonnet gravity
that is symmetric under the shift of the value of the scalar field by a constant. We argue
that one naturally obtains the standard (uncorrected) Bekenstein entropy and a modified
Hawking temperature rather than the usual picture of entropy with a logarithmic correction
and the standard Hawking temperature. This result is based on three key ideas. First,
the shift symmetry ought to be respected by all the physical quantities in the theory,
including Wald entropy. Second, the Gauss-Bonnet boundary term affects Wald entropy,
even if it does not change the equations of motion. Third, scalar-tensor theories generically
have modified propagation speed of gravitons, which may lead to changes in the process
of the Hawking radiation (as the majority of the emitted particles are gravitons). This
modified temperature can also be derived directly in the Euclidean grandcanonical ensemble
approach. While we lack detailed explanation as to how the temperature modifications
appear, it might be associated with modified propagation of gravitons in scalar-tensor
theories, or perhaps due to a change in thermodynamic ensemble [47]. Our reasoning is not
limited to the particular action we studied in this work, but applies to any shift-symmetric
gravitational theory in four dimensions containing a term of the form ϕG.

It is interesting to ask what impact can our ideas have on thermodynamics of other
gravitational theories. For instance, Liouville gravity, a scalar-tensor theory of gravity in
two spacetime dimensions is also shift symmetric [48, 49]. It depends on the value of ϕ

only through a term of the form ϕR and the scalar curvature R is a total divergence in
two dimensions. Nevertheless, Wald entropy for two dimensional black hole is held to be
proportional to the horizon value of ϕ. Applying the logic we outlined here to this case
would instead suggest that the entropy is equal to zero. This might make some sense given
that the horizon spatial cross-section in two dimension is point-like, but the issue certainly
deserves a more careful study in the future.

More generally, we have shown that certain boundary terms in action both affect Wald
entropy and equilibrium temperature of a Euclidean grandcanonical ensemble correspond-
ing to a black hole spacetime. In fact, this is true not just for the shift symmetric theories
we discuss above, but essentially for any scalar-tensor theory of gravity. For example, to
any scalar-tensor action in four dimensions (among others, any Horndeski theory) we can
add a boundary term of the form α∇µ (ϕGµ) /16π. This leads to a change in the black hole
entropy

∆S = 1
4

∫
H

αϕ
(
ϵµνR − 4ϵλµR ν

λ + ϵλρRνµλρ
)

ϵµνd2A. (8.1)
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To then satisfy the first law of black hole mechanics, we must also modify the temperature.
In principle, nothing prevents us to add a surface term like this to action, in the same way
as we are free to add the Gauss-Bonnet boundary α∇µGµ/16π without a scalar field to
four dimensional Einstein-Hilbert action. A possibility to affect black hole thermodynamics
by boundary terms is not limited to four dimensions. We can similarly add any Lovelock
density in its critical dimension, where it becomes a total derivative. Do these terms have a
genuine impact on physics that can explain these changes? Or do they signify an ambiguity
in both covariant phase space and Euclidean approaches to black hole thermodynamics?
In that case, is there a physical way to fix this ambiguity? In the case of 4D scalar-tensor
Einstein-Gauss-Bonnet gravity we relied on the shift symmetry as guiding principle, but
it is unclear how to approach this problem in general. On the one hand, it might be
tempting to fix these ambiguities by demanding the recovery of the standard Hawking
temperature. On the other hand, the first law of black hole mechanics then appears to be
violated in certain Horndeski theories. Moreover, fixing the standard Hawking temperature
is inconsistent with shift symmetry in the case we analysed here. Thus, in our opinion, the
possibility of temperature modifications should be taken seriously.

Furthermore, the modified propagation speed of gravitons occurs even beyond scalar-
tensor theories, e.g. in Lovelock gravity [50–52]. It would be interesting to see whether a
modified temperature can occur even in these cases (as speculated in [21]). In particular,
is it possible that we have entropy in modified gravity given by the Bekenstein formula and
move the modifications entirely to the temperature instead? If so, what are the necessary
conditions?

A possible way to decide whether the modified thermodynamics we discuss here is
physically reasonable would be to check the validity of the second law of thermodynamics.
Unfortunately, this is far from straightforward. For example, in the case of four dimen-
sional Einstein-Hilbert action it has been suggested that the Gauss-Bonnet boundary term
violates it [37], which could be a reason to exclude it. However, a way to make this term
consistent with the second law has been recently proposed [53].

Another possibility is that, in this theory, the first law and Smarr relation receive a
new contribution. This contribution could be independent from T and S in the generic case
but become degenerate with it in the case of spherical symmetry, leading to the modified
temperature. For example, something similar happens for Taub-NUT solutions for the
entropy, which in the traditional view receives contributions from the horizon and the
Misner string. Testing this idea would be possible once more complicated solutions to the
theory have been constructed.
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A Variational principles in shift symmetric theories: a toy example

In the main text we have shown that by adding a certain boundary term to the 4D Gauss-
Bonnet theory, we can restore its shift symmetry at the level of the action. We also briefly
discussed how to then obtain a well-posed variational problem without breaking the shift
symmetry in the process. Herein, for the sake of clarity, we discuss this question on a toy
example of a 2D gravity. Thus we start from the action:

I0 =
∫

Ω
d2x

√
−g
(
ϕR + 1

2(∇ϕ)2
)

, (A.1)

where in 2D, we can write R = ∇µRµ. Such an action is not manifestly shift symmetric,
as under ϕ → ϕ + C it changes as

∆I0 = C

∫
d2x

√
−g∇µRµ . (A.2)

Varying with respect to the scalar field we find

δϕI0 =
∫

Ω
d2x

√
−g
(
Rδϕ + ∇ϕ · ∇δϕ

)
=
∫

Ω
d2x

√
−g
(
R −∇2ϕ)δϕ +

∫
∂Ω

dx
√
−h(n · ∇ϕ)δϕ . (A.3)

We thus have a well posed variational principle with Dirichlet boundary conditions (DBC)

δϕ|∂Ω = 0 , (A.4)

which yields the following equation of motion for the scalar field

∇2ϕ − R = 0 . (A.5)

Alternatively, one can impose a restricted Neumann boundary condition (RNBC)

(n · ∇ϕ)|∂Ω = 0 , (A.6)

which of course yields the same EOM.
The latter can be generalized to the full NBC by adding the corresponding boundary

term, namely by considering

IN
0 = I0 −

∫
∂Ω

dx
√
−hϕ(n · ∇ϕ)

=
∫

d2x
√
−g
[
(R −∇2ϕ)ϕ − 1

2(∇ϕ)2
]

, (A.7)

which is shift-symmetric on-shell. The variation then yields

δϕIN
0 =

∫
Ω

d2x
√
−g
(
R −∇2ϕ)δϕ −

∫
∂Ω

dx
√
−hϕδ(n · ∇ϕ) , (A.8)
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giving the (full) Neumann boundary condition (NBC):

δ(n · ∇ϕ)|∂Ω = 0 . (A.9)

To summarize so far, we have seen that the original action I0 is not shift symmetric. It
leads to a well posed variational principle with DBC, which also break the shift symmetry
on the boundary. Alternatively, it gives rise to a variational principle with restricted NBC
which respects the shift symmetry on the boundary but is not general and will exclude
some physically interesting solutions. On the other hand, the Neumann action IN

0 is shift-
symmetric on-shell and the (full) NBC respects the shift symmetry as well. However, to set
Dirichlet conditions for the metric, we must add a York-Gibbons-Hawking term of the form
ϕK which again breaks the on shell shift symmetry. It has been noted that imposing the
Neumann boundary conditions for the metric still allows one to recover the correct black
hole entropy [34]. However, even this option appears to break the shift symmetry in our
setup. So far, we were unable to find a way to consistently set the boundary conditions,
that allows us to both keep the on-shell shift invariance and define the Euclidean canonical
ensemble.

Let us finally turn to the type of action studied in the main text:

I = I0 −
∫

d2x
√
−g∇µ(ϕRµ) =

∫
d2x

√
−g
(
−Rµ∇µϕ + 1

2(∇ϕ)2
)

. (A.10)

This is manifestly shift symmetric even off-shell. Varying this now yields

δϕI =
∫

Ω
d2x

√
−g
(
R −∇2ϕ)δϕ +

∫
∂Ω

dx
√
−h
[
n · (∇ϕ −R)

]
δϕ . (A.11)

This again admits a well posed Dirichlet problem, which, however, breaks the shift sym-
metry on the boundary. Instead, thus, we can consider the RNBC:

(n · A)|∂Ω = 0 , A ≡ ∇ϕ −R . (A.12)

Note that in this notation we then also write the EOM, (A.5), as

∇ · A = 0 (A.13)

Hence, setting the RNBC does not restrict the solutions of the equations of motion in any
way. Moreover,the shift symmetry is respected even off shell.

B Alternative boundary term

A possible problem with using vector Gµ in the action is that we lack a general expression
for it [30]. However, we can circumvent this issue by considering an explicitly covariant
vector

Sµ = 8Gµν∇νϕ − 8∇ν∇νϕ∇µϕ + 8∇νϕ∇ν∇µϕ + 8∇νϕ∇νϕ∇µϕ. (B.1)

By the virtue of equation (3.10), we have Sµ = Gµ on shell (we have shown in subsection 5.2
that the ambiguity in Gµ has no effect on thermodynamics).
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Then, adding boundary term −∇µ (αϕSµ) to action IEGB (3.1) makes it on shell shift
invariant. The expressions for symplectic potential, Noether current and Noether charge
obtained from this action read

∆θµ
EGB [δ] = α

16π
CδSµ, (B.2)

∆jµ
EGB,ξ = α

8π
C∇ν

(
ξ[νSµ]

)
(B.3)

∆Qνµ
EGB,ξ = α

8π
Cξ[νSµ]. (B.4)

On shell, these expressions precisely reduce to the ones obtained for the invariant action
Iinv we considered in the main text. Since the covariant phase space construction is on
shell, we obtain exactly the same conclusions as before, in particular, modified Hawking
temperature and Wald entropy proportional to the horizon area.

We may similarly repeat the Brown-York style construction of the Euclidean grand-
canonical ensemble. Since Sµ coincides with Gµ the final result for the partition function
is not going to be affected by swapping both vectors, except we in principle need to add
different York-Gibbons-Hawking boundary terms. Unfortunately, we do not know the ap-
propriate York-Gibbons-Hawking term corresponding to −∇µ (αϕSµ). Nevertheless, we
can look for the relevant contributions in the static spherically symmetric case correspond-
ing to the metric (7.1). There, we only need to concern ourselves with the terms that do
not vanish on the horizon. Since b (r = r+) = 0, these are only the terms proportional to b′.
For the boundary term corresponding to −∇µ (αϕSµ), these contribute to the Euclidean
action

−
[
2αϕ

(
2 b′

a3 rr′ϕ′ − b′

a3 r2ϕ′2
)]

r=r+

= 2αϕ (B.5)

where we used b′/a|r=r+ = 1, r′/a|r=r+ = 0, r′|r=r+ = 1, and ϕ′ = r′/r−a/(rr′). Compared
to the analysis we carried out for Iinv in subsection 7.2, we also have to include the York-
Gibbons-Hawking boundary term corresponding to αϕG which is given in equation (6.14).
This term contributes −2αϕ to the Euclidean action, precisely cancelling the term we
obtained above. Therefore, we exactly recover the Euclidean action expression (7.13),
which implies modified temperature and area law entropy.

To summarize, we have shown that all our results can be reproduced using Sµ. This
has the potential advantage that the covariant expression is known explicitly, as opposed
to Gµ, for which we have an explicit expression only on-shell. Overall, having two paths to
the same result strengthens our conclusion.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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