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1 Introduction

The Carrollian symmetry group was first found by Lévy-Leblond in 1965 [1] (and inde-
pendently by Sen Gupta [2]) by studying the ultra-relativistic (c→ 0) contraction of the
Poincaré group. Later on, the Carroll group was discovered [3] to be one of possible kine-
matical groups, which means that it could be the spacetime symmetry of a nonrelativistic
manifold, the Carrollian manifold. The Carroll group is generated by the Carrollian boost

~x ′ = ~x, t′ = t−~b · ~x, (1.1)

the translations, and the rotations among spacial directions. In the Carrollian limit, the
lightcones collapse, and there appears the notion of absolute space. Consequently, the
motion of a free Carrollian particle is trivial: it runs without moving [1, 4]. For a massless
Carrollian particle, it has infinite dimensional Carrollian conformal symmetry [5]. However,
for interacting Carrollian particles, there could have nontrivial dynamics.

Since its discovery, the Carrollian symmetry has been found in various physical systems.
The Carrollian boost was discovered in the isometry of plane-gravitational wave [6, 7].
The Carrollian limit was found to control the dynamics of the gravitational field near a
spacelike singularity [8, 9]. The Carrollian symmetry appears in the near horizon of black
hole as well [10–13]. Recently, it has been applied to study various physical problems in
cosmology [14] and condensed matter physics [15, 16]. More importantly, the Carrollian
conformal symmetry [17], which is isomorphic to the BMS group [18–21], is essential in the
study of 3d flat space holography [22–24] and celestial holography [25–27].

The Carrollian invariant field theories can be constructed by taking the ultra-relativistic
contraction of a Lorentz invariant field theories [4, 28–33]. One approach is to directly take
the limit on the equations of motion. Notably, there are two distinct Carroll contractions,
resulting in two different Carrollian field theories, conventionally named as electric sector
and magnetic sector respectively [4]. The constructed theories are manifestly on-shell
Carrollian invariant, but their off-shell actions need to be constructed separately. Typically,
the construction of the electric sector is relatively straightforward, while the construction
of the magnetic sector is found to be more challenging [30]. Another way to construct
the Carrollian invariant field theories by contraction is based on the Hamiltonian action
principle [28]. Even though this approach can yield Carrollian invariant action automatically,
after gauging away the extra field and accordingly modifying the transformation rules, it
lacks manifest spacetime covariance.1

In this paper, we propose a novel method to construct off-shell actions of d-dimensional
Carrollian field theories by performing null reduction on the actions of (d+ 1)-dimensional
Bargmann theories. The logic behind our construction is similar to the one of the null
reduction technique employed in the Galilean case [36]. The key point is that the Carrollian
symmetry forms a subgroup of the Bargmann group. Specifically, by disregarding the
translation along a null direction, the Bargmann group reduces to the Carroll group. Thus,
if we begin with Bargmann-invariant theories and carry out reductions along the null

1Some examples of Carrollian diffeomorphism invariant theory on general Carrollian manifolds are
discussed in [34, 35].
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direction, we will obtain the theories that are guaranteed to be Carrollian invariant. Our
focus in this work is primarily on the free massless scalar theories and free electromagnetic
field theories. Previous discussions in the literature, such as [4, 28], have addressed the
existence of two distinct rescalings of the fields when taking the limit c→ 0, leading to the
electric sectors and magnetic sectors of the theories. In our approach, these two sectors arise
from two distinct Bargmann field theories in one higher dimension. The resulting electric
sector is exactly the same as the one found in [28], while the resulting magnetic sector
differs slightly from the one in [4, 28]. We demonstrate that our action is off-shell Carrollian
invariant,2 and subsequently we calculate the correlators using the path-integral formalism.

Another motivation for present study is to find Carrollian conformal invariant theories
and study their properties. The Carrollian conformal field theory (CCFT) plays an important
role in flat-space holography [22–24] and celestial holography [25–27]. In particular, higher
dimensional (d ≥ 3) CCFT presents some novel features [43]. Firstly, the representations of
the higher dimensional Carrollian conformal algebra(CCA) are much more involved. There
appear the multiplet structure and staggered modules in the highest-weight representations.
Secondly the constraints from the Ward identities on the two-point correlators are less
restrictive. It is important to construct concrete CCFTs and study their properties. As
will be discussed in section 2.2, the d-dimensional Carrollian conformal group is not a
subgroup of the (d + 1)-dimensional Bargmann conformal group. This implies that the
null reduction of a Bargmann conformal invariant theory does not automatically yield a
CCFT. Therefore we need to check the Carrollian conformal invariance of null-reduced
theories case by case. In this work, we demonstrate that the free Carrollian scalar theory
and the Carrollian electromagnetic theory in d = 4 are really Carrollian conformal invariant,
by checking the invariance of the actions and the Ward identities of 2-point correlators of
the primary operators. We also discuss the representations of the fields, and find that the
staggered modules appear naturally in these theories.

The remaining parts of this paper are organized as follows. In section 2, we give a
brief review of the Carrollian symmetry, its conformal extension, and the representations of
Carrollian conformal algebra. Then in section 3 we construct the electric sector and the
magnetic sector of free Carrollian scalar theory from null reduction of the Bargmann scalar
theory. We read the 2-point correlators of the fundamental fields from the path-integral and
check the conformal symmetries in both sectors. In section 4, we investigate more subtle
and nontrivial models, including the electromagnetic theory and free p-form field theories.
For the electromagnetic theory, we discuss in detail the related boost multiplet structures
and compute the 2-point correlators of the fundamental fields in both the electric sector and
the magnetic sector by using the path-integrals in suitable gauges. In section 5, we discuss
the further reduction of the 4d electromagnetic theories from quotient representations. We
conclude with some discussions in section 6.

Some technical details are presented in the appendices. In appendix A, we briefly
review the construction of staggered module, and discuss the possible staggered modules

2The on-shell reduction from Bargmann theories has been discussed in [4]. For recent studies on BMS
invariant theories, refer to [37–42].
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involving the scalars in CCFT. In appendix B, we collect the path-integral computations of
the 2-point correlators of Carrollian field theories. In appendix C, after briefly reviewing
the Ward identities of Carrollian conformal symmetry, we discuss carefully their restrictions
on the 2-point correlators of the primary operators in various representations. Different
from the discussions in [43], we pay more attention to the correlators with δ-function
distribution, which appear in the field theories studied in this paper and in the celestial
holography [25–27].

Conventions. In the present work we use the Greek alphabets α, β, · · · as the spacetime
indices, and use the Latin alphabets i, j, · · · as spacial indices only. Moreover, we use α, β, γ
to be the indices for the Bargmann spacetime, µ, ν, δ for the Carrollian spacetime, and u
and v for the null directions.

2 Carrollian symmetry

In this section, we briefly review the Carrollian symmetry and its relation with Bargmann
symmetry. Additionally, we introduce the fundamentals of Carrollian conformal symmetry
and its representations, which have been thoroughly studied in [43].

2.1 Carrollian symmetry from Bargmann symmetry

In [44], it was shown that Newton-Cartan geometry is associated with the so-called Bargmann
group. Then in [4], it was pointed out that the Galilean group and Carroll group and their
related geometries could be unified in a relativistic Bargmann space. A Bargmann manifold
has three ingredients (B, G, ξ): B is a (d+ 1)-dimensional manifold, G is a metric of Lorentz
signature, and ξ is a nowhere vanishing null vector. In the flat case, it can be described in
terms of the coordinates xα = (u, ~x, v), (α = 0, 1 · · · d) as

B = R× Rd−1 × R, G = 2dudv + δijdx
idxj , ξ = ∂u, (2.1)

where both u, v are the lightcone coordinates and ~x is a (d − 1)-vector. The Bargmann
group is the isometry group of the flat Bargmann structure (2.1) that keeps the metric G
and the null vector ξ invariant, and it is a subgroup of Poincaré group

Barg(d, 1) = ISO(d, 1) \ {J0
d, 1/
√

2
(
J i0 − J id

)
}. (2.2)

The Bargmann generators consist of Pα, J ij , and BB
i , where BB

i are Bargmann boosts.
Their realizations as vector fields on the spacetime are shown in table 1. The commutation
relations of the generators are

[BB
i , Pv] = −Pi, [BB

i , Pj ] = δijPu, [BB
i , Pu] = 0,

[J ij , Jkl] = δikJjl − δilJ k
j + δjlJ

ik − δkj J il,
[J ij , Pk] = δikPj − δjkP i, [J ij , BB

k ] = δikB
B
j − δjkBBi, others = 0.

(2.3)

Geometrically, the Carroll group can be viewed as a subgroup of the Bargmann
group that preserves the v = 0 null hyper-surface. By restricting to the null hyper-
surface v = 0, we see immediately that the flat Bargmann structure reduces to the flat
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Generators Vector fields Finite transformations
Pα pα = ∂α xα + xα0

J ij jij = xi∂j − xj∂i (u,J · ~x, v)

BB
i bBi = v∂i − xi∂u

(
u− ~ν · ~x− 1

2~ν
2v, ~x+ ~νv, v

)
Table 1. Generators of Bargmann symmetry as vector fields on the spacetime.

Carrollian structure (C, g, ξ) with the coordinates xµ = ( t = u , ~x), the degenerated metric
gµν = Gµν |v=0 = δiµδ

j
νδij , and the timelike vector ξ = ∂t. A Bargmann transformation

naturally induces a transformations on the v = 0 null hyper-surface if it leaves the v = 0
null hyper-surface invariant.

The generators of the Carrollian algebra consist of Pµ, J ij , Bi, with the following
commutation relations

[Bi, Pj ] = δijP0, [Bi, P0] = 0
[J ij , Jkl] = δikJjl − δilJ k

j + δjlJ
ik − δkj J il,

[J ij , Pk] = δikPj − δjkP i, [J ij , Bk] = δikBj − δjkBi, others = 0.
(2.4)

2.2 Carrollian conformal symmetry

Besides being a subgroup of the Bargmann group, the Carroll group can be obtained
from the ultra-relativistic (c → 0) contraction of the Poincare group as well. Moreover,
the Carrollian conformal symmetry naturally arises from the c → 0 limit of relativistic
conformal symmetry. The algebra of the Carrollian conformal group is generated by
{Pµ, J ij , Bi, D,Kµ}, µ = 0, 1, . . . , d− 1, i, j = 1, . . . , d− 1 with the commutation relations3

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [D,Bi] = [D, J ij ] = 0,
[J ij , Gk] = δikGj − δjkGi, G ∈ {P,K,B},
[J ij , P0] = [J ij ,K0] = 0,
[J ij , Jkl] = δikJjl − δilJ k

j + δjlJ
ik − δkj J il,

[Bi, Pj ] = δijP0, [Bi,Kj ] = δijK0, [Bi, Bj ] = [Bi, P0] = [Bi,K0] = 0,
[K0, P0] = 0, [K0, Pi] = −2Bi, [Ki, P0] = 2Bi, [Ki, Pj ] = 2δijD + 2J ij .

(2.5)

This algebra is isomorphic to the Poincaré algebra ccad ' iso(d, 1), though their homogeneous
vector space realizations are different. The actions of the generators of the Carrollian
conformal group on space-time point (t, ~x) are shown in table 2.

As shown in the last subsection, the Carroll group appears as the restriction of the
Bargmann group on a null hyper-surface of Bargmann manifold. However, this is not true
for the conformal case. Recall that the (Lorentzian) conformal group is generated by the
diffeomorphisms that transform the metric gL as

a∗gL = Ω2gL. (2.6)
3The spacial indices are raised (lowered) by δij (δij).
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Generators Vector fields Finite transformations
D d = t∂t + xi∂i λxµ

Pµ pµ =
(
∂t , ~∂

)
xµ + aµ

Kµ kµ =
(
−~x2∂t, 2~xxµ∂µ − ~x2~∂

) (
t−a0~x2

1−2~a·~x+~a2~x2 ,
~x−~a~x2

1−2~a·~x+~a2~x2

)
Bi bi = xi∂t (t+ ~v · ~x, ~x)
J ij jij = xi∂j − xj∂i (t,J · ~x)

Table 2. Generators of CCA as the vector fields on the space-time.

In the Bargmann case, there are two geometric notions, the metric G and the invariant
null-vector ξ. One can similarly define the conformal transformations of order k as

a∗G = Ω2G, a∗ξ = Ω−2/kξ. (2.7)

One may take k = 2 to keep the scaling in the ξ direction to be the same as the ones in other
directions. It turns out that the conformal version of the Bargmann group is a subgroup
of Lorentzian conformal group, keeping the null vector ξ invariant. Indeed, the group is
generated by {Pα, J ij , Bi, D}, where D is the dilation generator. But now the Lorentzian
special conformal transformations (SCT) do not satisfy the conformal condition (2.7). In
other words, the G-preservering and ξ-preserving subgroup of Lorentz conformal group
consists of just the Bargmann transformations and a single dilation, but not of special
conformal transformations.

However, things become different on the null hyper-surface v = 0. Since the metric in
the Carrollian manifold is degenerate, the Killing equation a∗g = Ω2g is less constrained.
Actually the solutions to the Carrollian conformal Killing equations are

pi = ∂i, mi
j = xi∂j − xj∂i,

d = xµ∂µ, ki = 2xixµ∂µ − xlxl∂i, m = g(xi)∂0,
(2.8)

where m’s are the vector fields for infinite-dimensional extensions of the Carrollian conformal
transformations and g(xi) is an arbitrary function of spacial coordinates. Especially, the
global transformations in the m’s include the temporal translation, the boosts, and the
temporally special conformal translation:

p0 = ∂0, bi = xi∂0, k0 = −xlxl∂0. (2.9)

Thus the (global) Carrollian conformal group4 is generated by {Pµ, J ij , Bi, D,Kµ} with
K0 = (KL

d+1 +KL
0 )/
√

2|v=0 and Ki = KL
i |v=0. We see that the Carrollian conformal group

is not a subgroup of the Bargmann conformal group.

2.3 Representations of Carrollian conformal algebra

The representations of the higher dimensional Carrollian conformal algebra (CCA) are much
more involved than the ones of its Lorentzian cousin. The so-called scale-spin representation

4In this work, the Carrollian conformal symmetry always means the global one.
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was used to study the representation of homogeneous Carrollian conformal group [31].
However, this description is not precise enough to discuss the representations with a
complicated boost multiplet structure. In [43], the authors discussed the highest-weight
representations (HWR) of the Carrollian conformal group in detail. Here we outline some
main results.

A local operator located at generic point is related to the one at the origin by the
translation operators as

Oa(x) = exp{ixµPµ} Oa(0) exp{−ixµPµ}. (2.10)

Hence, it suffices to consider the representation of local operators at the origin Oa = Oa(0).
The stabilizer algebra of CCA is generated by dilation D, Carrollian rotations M = {J,B}
and special conformal transformations (SCTs)K. The local operatorsOa can be diagonalized
simultaneously into the eigenstates of the dilation and the representations of Carrollian
rotations,

[D,O] = ∆OO, [M,Oa] = Σa
bOb, (2.11)

where ∆ is the scaling dimension of the operator. The highest-weight operator, which is
often called primary operator, in a given representation is defined as the operator with the
lowest eigenvalue of dilation generator D, satisfying the primary condition

[K,O] = 0. (2.12)

An operator in a highest-weight representation is therefore characterized by the scaling
dimension and its representation with respect to the Carrollian rotations.

Taken as an example, the scalar primary operator Op at the origin, being the scalar
under the Carrollian rotations, has scaling dimension ∆ and commutes with all other
generators, including the K generators,

[D,Op] = ∆Op, [Jij ,Op] = [Bi,Op] = 0, [Kµ,Op] = 0. (2.13)

The operators generated by acting one generator of Pµ on Op are descendants, and all have
conformal dimension (∆ + 1),

PµOp = [Pµ,Op] = ∂µOp, [D,PµOp] = (∆ + 1)PµOp. (2.14)

Acting the operator Kµ on PµOp leads back to Op or zero:

[Ki, PjOp] = 2∆δijOp, [K0, PiOp] = [Ki, P0Op] = [K0, P0Op] = 0. (2.15)

Similar to usual CFT, there are higher-order descendant operators of Op by acting more
momentum operators. The primary operator Op together with all its descendants is referred
to as the conformal family of Op.

One typical feature in the representations of CCA is the staggered structure. The
staggered module has emerged in the studies of 2D LogCFT [45–48], BMS free scalar [49]
and BMS free fermions [50, 51]. Here we only give a simple example and leave the analysis

– 6 –
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Figure 1. The conformal family of Op to the first order descendent level. This is a part of full
staggered module (A.14).

of the staggered modules in higher dimensional CCFT to the appendix A. For the above
scalar case, there could exist another scalar operator Õ with conformal dimension ∆ + 1
such that acting K0 on it gives Op. More precisely there are

[K0, Õ] = 2∆Op, [Ki, Õ] = 0. (2.16)

The relations among Op, ∂µOp and Õ are shown in figure 1. The operators {Op, ∂µOp, Õ}
form a staggered structure in which {Op, ∂µOp} form a submodule and Õ is a quotient.
The full staggered module containing the higher-order descendants is shown in (A.14).

In order to study the other primary operators besides the scalar, we need to understand
the representations of Carrollian rotations. Because the algebra of Carrollian rotations
is not semi-simple, its finite dimensional representations are generically reducible but
indecomposable, and are much more complicated than the ones of the usual Lorentzian
rotations.

One nontrivial representation for d = 4 Carrollian rotation group, which will appear
in the following study of this work, is given by primary operators Oα = {Ov,Oi,O0} with
α = v, 1, 2, 3, 0, and i = 1, 2, 3. The operator Oα corresponds to a vector representation
in d = 5 Bargmann space. With respect to three-dimensional spacial rotations Jij , the
operators Ov and O0 are scalars, Oi is a vector, and they are related by the boost generators
as follows,

[Jkl,Ov] = 0, [Jkl,Oi] = δikOl − δilOk, [Jkl,O0] = 0,
[Bk,Ov] = −Ok, [Bk,Oi] = δikO0, [Bk,O0] = 0,

(2.17)

as illustrated in figure 2. This representation is denoted as (0)→ (1)→ (0): 0 and 1 are
angular quantum numbers of so(3) so that the first (0) stands for Ov, the last (0) stands for
O0, and (1) stands for Oi operators; the arrows represent the action of boost generator Bi.
This representation is reducible because there exist sub-representation such as the (1)→ (0)
part. The boost generators map Ov to Oi, thus the representation is not decomposable.
There are also descendent operators of Oα, which together with Oα form the conformal
family. The conformal family structure could be of staggered type, similar to the scalar case.

The generic representation of Carrollian conformal group is more involved. The repre-
sentation such as (0)→ (1)→ (0) is called a multiplet in the sense that the representation
contains multiple SO(d− 1) covariant primary operators which are related by the action of

– 7 –
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Figure 2. The structure of Bargmann vector operator.

Bi generators. In contrast, the scalar primary operator discussed before is called a singlet.
From a theorem by Jakobsen [52], the finite dimensional representations of the Carrollian
rotations are all multiplet representations with every sub-sector being the irreducible repre-
sentation of SO(d− 1). The multiplet representations for d ≥ 3 have complicated structures,
including not only the usual chain representations like (0)→ (1)→ (0), which appear in
logCFT [53] and 2d CCFT [49–51, 54–57], but also novel net representations. In a chain
representation, the subsectors are connected in a linear fashion through the boost action,
whereas in a net representation the subsectors exhibit a more intricate structure resembling a
network. In [43], the possible chain representations have been classified (see (5.1) and (5.2)).
Here we would not go into the details, and the interested readers could find them in [43].

It should be stressed that the above discussions about the representations of Carrollian
rotation group M = {J,B} are independent of the conformal part of the symmetry. Thus
it can be applied to the study of general (non-conformal) Carrollian field theories as well.

3 Construction of free Carrollian scalar theories

In section 2.1, we have seen that the Carrollian structure arises as the restriction of the
Bargmann structure to the null hyper-surface v = 0. This motivates us to construct
Carrollian field theories by reducing the Bargmann field theories to the null hyper-surface.
Our strategy is straightforward: firstly write an action of the fields using Bargmann
geometric invariants; secondly do the null reduction to get the action of Carrollian field
theory; moreover check the Carrollian conformal invariance.

In this section, we introduce the procedure of null reduction and illustrate it with the
example of a free scalar theory. We defer the applications to electromagnetic theory and
general p-form theories to the next section.

3.1 Construction of Carrollian theories

To construct the d-dimensional Carrollian field theories from (d+ 1)-dimensional Bargmann
field theories, we implement the following null reduction procedure. In principle, we may
insert a delta-function distribution δ(v) into a Bargmann action, in order to confine the
theory to the v = 0 null hyperplane. In practice, we use a taking-limit procedure to reach
the delta function and show the Carrollian invariance of the confined theory. Starting
from a Bargmann invariant action, we can modify the Bargmann theory by multiplying
the Lagrangian L by an arbitrary function h(v). Such a function is invariant under all the
Bargmann transformations listed in table 1 except the translation along v-direction. As a
consequence, even though the new Lagrangian Lh = h(v)L is not fully Bargmann invariant,

– 8 –
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it is still invariant under spacial rotations, Bargmann boosts, and translations along other
directions. Finally, if we choose h(v) as a family of functions approaching the delta function,
we can confine the integration to the hyper-surface v = 0 by taking the limit. The resulting
action is then naturally Carrollian invariant.

To illustrate the reduction procedure, let us consider a functional S defined on d+ 1
dimensions

S[Φ] =
∫
dd+1x L(Φ(xα), xα). (3.1)

We assume that the integrand L is well-behaved near v = 0. For simplicity, we choose h(v)
to be a uniformly distributed function over a small interval of v,

hε(v) =


1
2ε − ε ≤ v ≤ ε

0 otherwise.
(3.2)

Then we can define a smeared functional

Sε[Φ] ≡
∫
dd+1x hε(v) L(Φ(xα), xα), (3.3)

and expand L to the powers of v

Sε[Φ] =
∫
dudd−1x

1
2ε

∫ ε

−ε
dv L0 + L1v +O(v2)

=
∫
dudd−1x L0 + 0 +O(ε2),

(3.4)

where L0 = L(Φ|v=0, (u, ~x, v = 0)) is the restriction of L to the v = 0 surface. Thus taking
the ε→ 0 limit singles out the contribution of the fields on v = 0 surface

SC [Φ] ≡ lim
ε→0

Sε[Φ] =
∫
dudd−1x L0. (3.5)

If we start with a Bargmann invariant action SB, this manipulation will yield an Carrollian
invariant action SC on v = 0.

However, as have discussed in section 2.2, the Carrollian conformal symmetry is a
different story. As shown in [43], we can construct d-dimensional Carrollian conformal
theories from (d + 1)-dimensional conformal theories on a null hyper-surface, since the
d-dimensional (global) Carrollian conformal group is a subgroup of (d + 1)-dimensional
conformal group. Thus using the above procedure we get

SconC [Φ] ≡ lim
ε→0

Scon
ε [Φ] =

∫
dudd−1x Lcon

0 , (3.6)

the leading expansion in v of (d + 1)-dimensional conformal Lagrangian produces a d-
dimensional Carrollian conformal Lagrangian. However, there are subtleties in null reduc-
tions, due to geometric invariants. For Bargmann theories, as the geometric invariants are
the metric G and the time-like vector ξ, we can construct Carrollian invariant theories in
both the electric sector and the magnetic sector. By contrast, the only geometric invariant
for a relativistic conformal theory is the metric G, and the same kind of null reduction only
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Parent theory kinds of theories preserving conformal symmetry
Bargmann theory electric and magnetic sector not automatically conformal
Conformal theory electric sector automatically conformal

Table 3. Null reduction from different parent theories.

leads to a Carrollian conformal theory in the electric sector. In other words, there could
exist Carrollian conformal theories in the magnetic sector, which cannot be obtained by
doing null reduction from parent CFTs. We summarise these subtleties in table 3.

In this work, we focus on the construction of both the electric-sector and the magnetic-
sector theories from null reduction of Bargmann theories. We will verify the Carrollian
conformal symmetry of the resulting theories case by case.

3.2 Carrollian free scalar theories

We aim to construct the Carrollian massless free scalar theories in d ≥ 3. The building
blocks of Bargmann field theories are geometric invariants Gαβ and ξα. For a massless free
scalar field Φ, there are only two kinds of Bargmann invariant actions:

SB
E = −1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ, SB

M = −1
2

∫
dd+1x Gαβ∂αΦ∂βΦ. (3.7)

The subscript M and E stand for magnetic sector and electric sector, which correspond
to magnetic and electric Carrollian field theories [28], respectively. Let us start with the
simpler one, i.e., the electric sector first.

Electric sector. In this sector, the Bargmann action is

SB
E = −1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ. (3.8)

Expanding Φ near v = 0, we have

Φ(u, ~x, v) = φ(u, ~x) + vπ(u, ~x) +O(v2). (3.9)

Inserting this into the action, and choosing ξα = (1,~0, 0), we have

SB
E = −1

2

∫
dd+1x ∂uΦ∂uΦ = −1

2

∫
dd+1x ∂uφ∂uφ+ 2v∂uπ∂uφ+O(v2). (3.10)

Thus we get the Carrollian invariant action

SC
E = lim

ε→0
SB
E,ε = −1

2

∫
ddx ∂0φ∂0φ. (3.11)

This is actually the electric Carrollian conformal scalar theory with φ being the fundamental
field. Under an infinitesimal symmetry transformation generated by G, the field changes
as δGφ(x) = −ξµG(x)∂µφ(x) + [G,φ(x)], where ξG is the vector field corresponding to G
in table 2 and the term [G,φ(x)] is thus the representation of the symmetry on the field.
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Figure 3. The Carrollian conformal family of φ to the first order.

Using the notation φ = φ(0) introduced in the section 2.3, we have the actions of the CCA
generators on φ:

[D,φ] = ∆φφ, [Kµ, φ] = 0, [Pµ, φ] = ∂µφ,[
J ij , φ

]
= 0, [Bi, φ] = 0, [Bi, ∂jφ] = δij∂0φ.

(3.12)

It can be checked that the action (3.11) is indeed invariant under the Carrollian conformal
transformations.

The field φ is a primary operator and the relations among its first-order descendants
are shown in figure 3. Noticing that ∂0φ is a descendent as well as a primary operator,
because under an action of Kµ, we have

[K0, [P0, φ]] = [[K0, P0], φ] = 0, [Ki, [P0, φ]] = [[Ki, P0], φ] = 2[Bi, φ] = 0. (3.13)

The 2-point correlator of φ can be calculated via the path-integral

〈φ(x)φ(0)〉 = i|t|
2 δ(d−1)(~x). (3.14)

It satisfies the Ward identities of CCA generators, and this fact confirms again that φ is a
primary operator. The computation details and the discussions on the 2-pt correlators in a
CCFT can be found in appendix C.

Magnetic sector. We now consider the more non-trivial magnetic sector. The Bargmann
action is now given by

SB
M = −1

2

∫
dd+1x Gαβ∂αΦ∂βΦ. (3.15)

Using the expansion of Φ (3.9), we get

SB
M = −1

2

∫
dd+1x 2∂uΦ∂vΦ + ∂iΦ∂iΦ = −1

2

∫
dd+1x 2π∂uφ+ ∂iφ∂iφ+O(v). (3.16)

Thus we find the action of magnetic Carrollian scalar theory,

SC
M = −1

2

∫
ddx 2π∂0φ+ ∂iφ∂iφ. (3.17)

The fundamental fields in this theory are φ and π, which are in the expansion of the field Φ.
Classically they are totally independent fields. In this theory, the canonical momentum
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Figure 4. The staggered structure of fields φ, ∂µφ and π.

of scalar field φ is Πφ = 2π, which matches perfectly with [28]. The Carrollian invariance
of this action is quite non-trivial. Under the Bargmann boost BB

i , the Bargmann scalar
transforms as

δBB
i

Φ = −v∂iΦ + xi∂uΦ, (3.18)

which can be expanded as

δBB
i
φ+ vδBB

i
π +O(v2) = xi∂uφ+ vxi∂uπ − v∂iφ+O(v2). (3.19)

In the leading order of v, we get the infinitesimal transformations of the fields φ, π under
the Carrollian boost Bi

δBiφ = xi∂0φ, δBiπ = xi∂0π − ∂iφ, (3.20)

and furthermore we have
δBi∂jφ = xi∂0∂jφ+ δij∂0φ. (3.21)

This means φ transforms as a scalar under Carrollian boost and (π, ∂iφ, ∂0φ) as a (scalar)→
(vector)(d−1) → (scalar) representation, which forms a (0)→ (1)→ (0) chain representation.
This is somehow expected since ∂α could be seen as a contravariant Bargmann vector, and
thus (∂v)→ (∂i)→ (∂u) form a representation of the Carroll group.

Next we would like to check the conformal invariance of this action. Obviously, equipping
φ with conformal dimension ∆φ = d/2 − 1 and π with ∆π = d/2, the action is invariant
under the dilation D. The scalar φ is still a primary operator as in relativistic CFT, and the
field π appears as a part of staggered module of φ’s conformal family, as shown in figure 4.
More explicitly, the generators act on the fields as

[D,φ] = ∆φφ, [Kµ, φ] = 0, [Pµ, φ] = ∂µφ,[
J ij , φ

]
= 0, [Bi, φ] = 0, [Bi, ∂jφ] = δij∂0φ,

[D,π] = (∆φ + 1)π, [K0, π] = 2∆φφ, [Ki, π] = 0,[
J ij , π

]
= 0, [Bi, π] = −∂iφ.

(3.22)

The field π is neither primary nor descendent, as it cannot be generated by acting the
generators P on φ, while ∂0φ is both a primary operator and a descendent of φ. Thus
we should treat π as an independent field, and the fields φ, ∂iφ, ∂0φ and π constitute a
staggered module. The emergence of staggered module is a common feature of the magnetic
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sector of Carrollian theories, in which the next-to-leading-order field in the expansion of
Bargmann field shows up as an independent field in the action.

For the special conformal transformation Kµ, there is

δKνS
B
M = −1

2

∫
ddx ∂µ(kµν (2π∂0φ+ ∂iφ∂iφ)) + ∂0(2∆φφ

2), (3.23)

where kµν is the µ component of the generator Kν . This variation of the action differs from
the usual structure for a generator G,

δGS =
∫
ddx ∂µ(gµL), (3.24)

only by a total derivative ∂0(2∆φφ
2). Thus the magnetic theory is Carrollian conformal

invariant as well.
We can check the conformal family structure by calculating the correlation functions in

the path-integral formalism. The details can be found in appendix B.2. We read the 2-pt
correlators of the fundamental fields

〈φ(~x1, t1)φ(~x2, t2)〉 = 0

〈φ(~x1, t1)π(~x2, t2)〉 = −〈π(~x1, t1)φ(~x1, t2)〉 = − i2Sign(t)δ(d−1)(~x)

〈π(~x1, t1)π(~x2, t2)〉 = i|t|
2
~∂2δ(d−1)(~x)

(3.25)

where t = t1 − t2 and ~x = ~x1 − ~x2. The correlator 〈φφ〉 = 0 obviously satisfies the Ward
identities. However π is not a primary operator, so the correlators of π do not satisfy the
constraints on the primary operators discussed in C. Nevertheless, these correlators indeed
satisfy the Ward identities (C.1) with non-vanishing 〈[K0,O1]O2〉 or 〈O1[K0,O2]〉 terms.

3.3 Relations between Bargmann correlators and Carrollian correlators

Given the fact that the fundamental fields of Carrollian theories φ, π, etc., constitute the
components of the Bargmann field Φ, it is reasonable to expect that their correlators form
the components of the expanded correlator of Φ. In this section, we demonstrate that this
relationship holds true for free scalar theories. Our approach is to convert the derivative
operator in (3.3) into an integral kernel, allowing us to derive its “inverse” as the correlator.
We show that this correlator is related to the Bargmann correlator by taking the limit
ε→ 0, and that it is also related to the Carrollian correlator by first taking the ε→ 0 limit
of the generation function and subsequently calculating the correlator. Consequently, we
establish the relationship between the Bargmann correlators and the Carrollian correlators.
At the end of this subsection, we apply these discussions to the electric and magnetic free
scalar theories to reproduce the Carrollian correlators in the last subsection, which were
obtained by using the path integral method.

First, let us show how to convert the derivative operator into an integral kernel by
considering some (d + 1)-dimensional discrete toy models. Usually, an quadratic action
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containing a derivative operator D̂(∂α) can be expressed as an integral with the kernel
D(x1 − x2)∫

dd+1x Φ(x)D̂(∂α)Φ(x) =
∫
dd+1x1d

d+1x2 Φ(x1)D(xα1 − xα2 )Φ(x2). (3.26)

Here D̂(∂α) is a function of ∂α, which can be expanded to finite powers of ∂α. In our specific
case, the action (3.3) considered in this paper is slightly different from the above one by an
insertion of the function hε(v). Consequently, the corresponding kernel is different from the
conventional one, which will be denoted as Dε where the subscript ε indicates the presence
of hε(v),∫

dd+1x hε(v)Φ(x)D̂(∂α)Φ(x) =
∫
dd+1x1d

d+1x2 Φ(x1)Dε(xα1 − xα2 )Φ(x2). (3.27)

Let us start from the following discrete example, whose continuous limit is
∫
d(d+1)x

hε(v)Φ∂µΦ,∑
{n}

hεnvΦ{n}(Φ{n} − Φ{nµ−1})

=
∑
{n}{m}

Φ{n} δn0,m0 · · · (δnµ,mµ − δnµ,mµ−1) · · · δnd−1,md−1h
ε
nvh

ε
mv Φ{m}

=
∑
{n}{m}

Φ{n} δn0,m0 · · · (−δnµ,mµ + δnµ−1,mµ) · · · δnd−1,md−1h
ε
nvh

ε
mv Φ{m}.

(3.28)

Here {n} stands for the point at (n0, . . . , nµ, . . . , nd−1), {nµ − 1} is short for (n0, . . . , nµ −
1, . . . , nd−1, nv), Φ{n} is the field defined at {n}, whose continuous limit is Φ(xα), and hεnv
is defined such that

hεnv =
∑
|lv |≤ε

1
2εδnv ,lv , h

ε
nv

continuous limit−−−−−−−−−−→ hε(v). (3.29)

The function hεnv restricts the action by only counting the interaction in |nv| < ε. Taking
the continuous limit on both sides, the equation (3.28) becomes∫

dd+1x hε(v)Φ(x)∂µΦ(x)

=
∫
dd+1x1d

d+1x2 Φ(x1)
(1

2(−∂xµ1 + ∂xµ2 )(δ(xµ1 − x
µ
2 )hε(v1)hε(v2))

)
Φ(x2).

(3.30)

In other words, the modified integral can be rewritten in terms of the integral kernel
D1,ε(xµ1 − x

µ
2 , v1, v2):∫

dd+1x hε(v)Φ(x)∂µΦ(x) =
∫
dd+1x1d

d+1x2 Φ(x1)D1,ε(xµ1 − x
µ
2 , v1, v2)Φ(x2), (3.31)

with
D1,ε(xµ1 − x

µ
2 , v1, v2) = −1

2(∂xµ1 − ∂xµ2 )(δ(xµ1 − x
µ
2 )hε(v1)hε(v2)). (3.32)
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Similarly, we may consider the following example, whose continuous limit is
∫
d(d+1)x

hε(v)Φ∂vΦ, ∑
{n}

hεnvΦ{n}(Φ{n} − Φ{nv−1})

=
∑
{n}{m}

Φ{n} δn0,m0 · · · δnd−1,md−1h
ε
nv(h

ε
mv − h

ε
mv−1) Φ{m}

=
∑
{n}{m}

Φ{n} δn0,m0 · · · δnd−1,md−1(−hεnv + hεnv−1)hεmv Φ{m}.

(3.33)

In this case, the integral in the continuous limit could be rewritten as∫
dd+1x hε(v)Φ(x)∂vΦ(x) =

∫
dd+1x1d

d+1x2 Φ(x1)D2,ε(xµ1 − x
µ
2 , v1, v2)Φ(x2), (3.34)

with
D2,ε(xµ1 − x

µ
2 , v1, v2) = −1

2(∂v1 − ∂v2)(δ(xµ1 − x
µ
2 )hε(v1)hε(v2)). (3.35)

The examples (3.28) and (3.33) pertain solely to first-order derivatives. They correspond
to the integrals containing uncontracted derivatives, thus result in the integrals of vectors
rather than scalars. From this viewpoint, they should be regarded as formal expressions,
distinct from Bargmann invariant actions. Nonetheless, they illustrate the corresponding
kernels of first-order derivative operators.

The above argument can be generalized to the higher-derivative operators. The reason
behind is that higher-derivative operators correspond to longer range interactions in the lat-
tice model, and the corresponding kernel can be derived in the same way. Now let us consider
a quadratic local action with a generic derivative operator

∫
dd+1x hε(v)Φ(x)D̂(∂α)Φ(x).

The action could be written in terms of the corresponding integral kernel Dε(xµ1 −x
µ
2 , v1, v2)∫

dd+1x hε(v)Φ(x)D̂(∂α)Φ(x) =
∫
dd+1x1d

d+1x2 Φ(x1)Dε(xµ1 − x
µ
2 , v1, v2)Φ(x2), (3.36)

where

Dε(xµ1 − x
µ
2 , v1, v2) = D̂

(
−1

2(∂xα1 − ∂xα2 )
)

(δ(xµ1 − x
µ
2 )hε(v1)hε(v2)). (3.37)

It is illuminating to write the kernel in the momentum space

Dε(xµ1 − x
µ
2 , v1, v2)

=
∫
ddpµdp1vdp2v
(2π)d(2π)2 D̂

(
−ipµ,−

i

2(p1v − p2v)
) sin εp1v sin εp2v

ε2p1vp2v
eipµ(x1−x2)µeip1vv1eip2vv2

=
∫

dd+1pα
(2π)d+1

dpv+
(2π) D̂(−ipα) cos 2εpv − cos 2εpv+

ε2 (p2
v+ − p2

v)
eipα(x1−x2)αeipv+(v1+v2), (3.38)

were pv ≡ (p1v − p2v)/2 and pv+ ≡ (p1v + p2v)/2.
As the action is not invariant under the translation in v direction, there is no mathe-

matically rigorous definition for the inverse of Dε, namely there does not exist D−1
ε such

that ∫
d(d+1)x2 Dε(x1, x2)D−1

ε (x2, x3) = δ(xµ1 − x
µ
3 )δ(v1 − v3). (3.39)
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The kernel Dε(x1, x2) only counts the interaction in |v| < ε, thus the translation symmetry
along v is broken, and the inverse can not be properly defined for |v| > ε. However, we may
impose a looser inverse condition∫

d(d+1)x2 Dε(xα1 , xα2 )D−1
ε (xα2 , xα3 ) = δ(xµ1 − x

µ
3 )δ(v1)δ(v3), (3.40)

such that we can find the “inverse” D−1
ε (xµ1 − x

µ
2 , v1, v2). Noticing that this D−1

ε (xµ1 −
xµ2 , v1, v2) is not the rigorous inverse of Dε(x1, x2), but rather an inverse on v = 0 hypersur-
face. It takes the following form in the momentum space

D−1
ε (xµ1 − x

µ
2 , v1, v2)

=
∫

dd+1pα
(2π)d+1

dpv+
(2π)

1
D̂(−ipα)

ε2 (p2
v+ − p2

v)
cos 2εpv − cos 2εpv+

eipα(x1−x2)αeipv+(v1+v2).
(3.41)

It turns out that this form of inverse D−1
ε is useful in our study. The reason we use the

modified normalization condition is that the Carrollian action is simply defined on the null
hyper-surface and we need not require the translation symmetry along v.

With the integral kernel and its inverse, we can discuss the relation between the
Bargmann correlators and Carrollian correlators. In general, the modified quadratic
Bargmann action can be written as

SB
ε =

∫
d(d+1)x hε(v)ΦD̂Φ =

∫
dd+1x1d

d+1x2 Φ(xα1 )Dε(xµ1 − x
µ
2 , v1, v2)Φ(xα2 ), (3.42)

with Dε(xµ1 − x
µ
2 , v1, v2) being defined in (3.37). The corresponding modified generating

functional, labeled by the subscript ε, is

ZB
ε [J ] =

∫
DΦ exp

(
iSB
ε + i

∫
dd+1x δ(v)J(xα)Φ(xα)

)
=
∫
DΦ exp

(
i

∫
dd+1x1d

d+1x2 Φ(xα1 )Dε(xµ1 − x
µ
2 , v1, v2)Φ(xα2 )

+ i

∫
dd+1x1d

d+1x2J(xα1 )δ(v1)δ(xµ1 − x
µ
2 )δ(v2)Φ(xα2 )

)
= N exp

(
− i4

∫
dd+1x1d

d+1x2 J(xα1 )D−1
ε (xµ1 − x

µ
2 , v1, v2)J(xα2 )

)
,

(3.43)
and the modified correlator is

〈Φ(xµ1 ,v1)Φ(xµ2 ,v2)〉ε = 1
ZB
ε [0]

(−i)2δ2

δJ(xα1 )δJ(xα2 )Z
B
ε [J ]

∣∣∣∣∣
J=0

=−1
2D
−1
ε (xµ1−x

µ
2 ,v1,v2). (3.44)

In the limit ε→ 0, this correlator reduces to the Bargmann correlator 〈Φ(xµ1 , v1)Φ(xµ2 , v2)〉,

lim
ε→0
〈Φ(xµ1 , v1)Φ(xµ2 , v2)〉ε = lim

ε→0

(−i)2δ2

δJ(xα1 )δJ(xα2 )
ZB
ε [J ]
ZB
ε [0]

∣∣∣∣∣
J=0

=
∫

dd+1pα
(2π)d+1 −

1
2D̂
−1(−ipα) eipα(x1−x2)α

∫
dpv+
2π eipv+(v1+v2)

= 2δ(v1 + v2)〈Φ(xα1 )Φ(xα2 )〉, (3.45)
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where 〈Φ(xα1 )Φ(xα2 )〉 is the normal Bargmann correlator without inserting hε(v) in the
action. On the other way, we may interchange the order of taking the ε→ 0 limit and taking
the functional derivatives so that we can find the relation between modified correlator (3.44)
and the Carrollian correlators. Taking the ε → 0 limit first, we see that the modified
Bargmann generating functional (3.43) becomes the Carrollian generating functional,

ZB
ε [J ] ε→0−−→ ZC[J ] =

∫
DφDπ · · · exp

(
iSC + i

∫
dd+1xJ(x)δ(v)(φ(xµ) + π(xµ)v + · · · )

)
.

(3.46)
Here we have expanded the Bargmann field Φ(x) = φ(xµ)+π(xµ)v+· · · . Note that the source
terms corresponding to the component fields are Jφ =

∫
dv J(x)δ(v), Jπ =

∫
dv vJ(x)δ(v),

etc. Next, we take functional derivatives to read the correlation functions,

−iδ
δJ(xα1 )

−iδ
δJ(xα2 ) lim

ε→0
ZB
ε [J ]|J=0

=
∫
DφDπ · · · δ(v1)(φ(xµ1 ) + π(xµ1 )v1 + · · · )δ(v2)(φ(xµ2 ) + π(xµ2 )v2 + · · · ) exp iSC

= δ(v1)δ(v2)(〈φ(xµ1 )φ(xµ2 )〉+ v1〈π(xµ1 )φ(xµ2 )〉
+ v2〈φ(xµ1 )π(xµ2 )〉+ v1v2〈π(xµ1 )π(xµ2 )〉+ · · · )

(3.47)

Matching the last line in (3.45) with the one of (3.47), we find

2δ(v1+v2)〈Φ(xµ1 ,v1)Φ(xµ2 ,v2)〉
= δ(v1)δ(v2)(〈φ(xµ1 )φ(xµ2 )〉+v1〈π(xµ1 )φ(xµ2 )〉+v2〈φ(xµ1 )π(xµ2 )〉+v1v2〈π(xµ1 )π(xµ2 )〉+· · ·).

(3.48)
It shows that the Carrollian correlators are given by the expansion of the Bargmann
correlator, as expected. This matching is feasible only if assuming that taking ε→ 0 limit
and taking the functional derivatives are commutative, and we believe this assumption is
generally correct.

Now we show the relation (3.48) explicitly in the electric sector and the magnetic
sector of the Carrollian scalar theories. For the electric scalar sector (labeled by superscript
E) (3.8), the 2-point correlators of the Bargmann field Φ and the Carrollian field φ are
respectively

〈Φ(xµ1 , v1)Φ(xµ2 , v2)〉E = i

∫
d(d+1)p

(2π)(d+1) e
ipαxα −1

p2
0

= i|t1 − t2|
2 δ(d−1)(~x1 − ~x2)δ(v1 − v2),

〈φ(xµ1 )φ(xµ2 )〉E = i|t1 − t2|
2 δ(d−1)(~x1 − ~x2). (3.49)

Noticing the fact that
2δ(v1 + v2)δ(v1 − v2) = δ(v1)δ(v2), (3.50)

we find that the relation (3.48) indeed holds.
For the magnetic sector (labeled by superscript M) of scalar (3.15), the 2-point

Bargmann correlator of Φ is

〈Φ(xµ1 , v1)Φ(xµ2 , v2)〉M =
∫

d(d+1)p

(2π)(d+1) e
ipα(x1−x2)α −1

~p2 + 2p0pv
. (3.51)
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Integrating pv and expanding in vi, we find

〈Φ(xµ1 ,v1)Φ(xµ2 ,v2)〉M =
∫

ddp

(2π)d
−i
2p0

e
− i~p

2(v1−v2)
2p0 Sign(v1−v2)

= Sign(v1−v2)
v1−v2

(v1−v2)
∫

ddp

(2π)d

(
−i
2p0
− ~p2

4p2
0
(v1−v2)+· · ·

)

= |v1−v2|−1
(

0+v1

∫
ddp

(2π)d
−i
2p0

+v2

∫
ddp

(2π)d
i

2p0
+v1v2

∫
ddp

(2π)d
~p2

2p2
0

+· · ·
)
.

(3.52)

Viewing |v1 − v2|−1 as a generalized function, it is proportional to δ(v1−v2) by the canonical
regularization [58]

1
Γ(0)|x| = δ(x), (3.53)

thus the equation (3.48) matches the Bargmann correlator with the correlators of Carrollian
fields (B.7),

2δ(v1+v2)〈Φ(xµ1 ,v1)Φ(xµ2 ,v2)〉M

∝ 2δ(v1+v2)δ(v1−v2)
(

0+v1

∫
ddp

(2π)d
−i
2p0

+v2

∫
ddp

(2π)d
i

2p0
+v1v2

∫
ddp

(2π)d
~p2

2p2
0

+· · ·
)

= δ(v1)δ(v2)
(
〈φ(x1)φ(x2)〉M+v1〈π(x1)φ(x2)〉M

+v2〈φ(x1)π(x2)〉M+v1v2〈π(x1)π(x2)〉M+· · ·
)
. (3.54)

Strictly speaking, the relation (3.48) for the magnetic sector of scalar theory is not exact
since there is a divergent overall factor Γ(0). Despite of the overall divergent factors, the
Bargmann correlators could be related to the Carrollian correlators with correct patterns
and relative coefficients.

It is not hard to find that the above discussions also apply to the massive case. Since
turning on the mass term amounts to adding a constant term in the derivative operator
D̂(∂α)→ D̂(∂α) +m2, it does not spoil the discussions.

4 Carrollian p-form field theories

The above construction of Carrollian scalar field theories from Bargmann field theories can
be extended to other kinds of field theories. In this section, we study the construction of
Carrollian p-form field theories, which has been discussed in [28]. The p-form field theories
appear in the low energy effective action of superstring theory, and could be important in
studying the physics near singularity. We start from Carrollian 1-form field, which gives
rise to Carrollian electromagnetic theories. These theories were first studied in [4].

4.1 Electromagnetic theories

In this subsection, we construct Carrollian electromagnetic theories from electromagnetic
theories in Bargmann space. There are two kinds of Bargmann invariant actions for a vector
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field in general5

SB
E = −1

4

∫
dd+1x GαγξβξδFαβFγδ, SB

M = −1
4

∫
dd+1x GαγGβδFαβFγδ. (4.1)

Here Fαβ = ∂αaβ − ∂βaα is the usual field-strength tensor, and aα is the gauge potential,
which is a vector in the Bargmann space. As we have done in the scalar case, we first
expand the fundamental fields to the powers of v near v = 0,

aα(u, ~x, v) = Aα(u, ~x) + v πα(u, ~x) +O(v2), (4.2)

and insert this expansion into the action to read the Carrollian theories. Consequently,
we obtain the actions of electric sector and magnetic sector of Carrollian electromagnetic
theory, from SB

E and SB
M , respectively.

Electric sector. The action of electric Carrollian U(1) gauge theory is

SE = −1
2

∫
ddx F0iF0i, (4.3)

where F0i = ∂0Ai − ∂iA0, and the fundamental fields are Aµ = (A0, Ai). In this theory,
the field Av and the second-order field πα get decoupled, and only the leading-order gauge
symmetry survives. From the perspective of the representations of Carrollian rotations, Aµ
is in the sub-representation (1)→ (0) of the full Aα representation (0)→ (1)→ (0).

It is well known that 4d Lorentzian electromagnetic theory is conformal invariant with
the field-strength tensor Fµν (other than the vector potential fields Aµ) being the primary
operators. However, the story is different in the Carrollian case. As will be shown later, both
the electric sector and the magnetic sector are Carrollian conformal invariant. Moreover, the
gauge potential Aµ itself is now the primary operators with conformal dimension ∆A = 1
in d = 4. The actions of the symmetry generators on Aµ are

[D,Aµ] = ∆AAµ, [Kµ, Aν ] = 0, ∆A = d− 2
2 ,[

J ij , Ak
]

= δikAj − δjkAi,
[
J ij , A0

]
= 0,

[Bk, Ai] = δikA0, [Bk, A0] = 0.

(4.4)

Remarkably, the field-strength tensor F0i is also a primary operator since it satisfies
[Kµ, F0i] = 0. Thus in the electric sector of Carrollian electromagnetic theory given by (4.3),
both Aµ and F0i are primary operators. This is supported by the fact that both the

5For d = 3, 4 there are extra topological terms in one higher dimension constructed by the contraction
with the Levi-Civita tensor:

SB
top = −1

4

∫
d4x εαβγδFαβFγδ, (d = 3)

SB
top = −1

4

∫
d5x ξλε

λαβγδFαβFγδ, (d = 4).

In this paper, we do not discuss these topological terms. For higher dimensions, there could be the actions
involved more than two field-strength tensors, e.g., d = 5 with L = εαβγδσρFαβFγδFσρ.
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correlators of Aµ and the correlators of F0i satisfy the Ward identities of d = 4 Carrollian
conformal symmetry.

The action (4.3) has a gauge symmetry which transforms the potential Aµ as

Aµ(x)→ Aµ(x) + ∂µω0(x). (4.5)

We may select a gauge ∂0A0 = 0 which is Carrollian conformal invariant to compute the
path-integral. When we take this gauge and select the Landau gauge ξ = 0, the correlators
are simply proportional to the Dirac δ-functions (see appendix B.3 for details)

〈Ai(x)Aj(0)〉 = i

2δij |t|δ
(3)(~x), others = 0, (4.6)

which obey the Ward identities for the Carrollian conformal symmetries.
In fact, ξµξν∂µaν = ∂uau is an appropriate Bargmann gauge-fixing term whose leading

order in v is exactly ∂0A0 = 0. Using this gauge-fixing term and taking the gauge ξ = 0,
we find that the path-integral gives the Bargmann correlator

〈ai(x)aj(0)〉 = i

2δij |u|δ
(3)(~x)δ(v), (4.7)

whose leading order in v gives the Carrollian correlator

〈ai(x)aj(0)〉 = 〈Ai(x)Aj(0)〉+O(v). (4.8)

Finally, let us consider the Carrollian Maxwell equations. We denote the magnetic and
electric field as

Bk = 1
2ε

ijkFij , Ek = F0k. (4.9)

Although not appearing in the action, Fij = ∂iAj − ∂jAi can be verified to be a primary
operator. It is clear that the on-shell equations in the electric sector give the first line of
the electric Carroll contraction of the Maxwell equations given in [4],

∇ ·E = 0, ∂E
∂t

= 0,

∇ ·B = 0, ∇×E + ∂B
∂t

= 0.
(4.10)

The other two equations in the second line are indeed automatically satisfied, and in this
sense we say this action is a realization of the electric Carrollian electromagnetism and call
it the electric sector.

Magnetic sector. The action of the magnetic Carrollian U(1) gauge theory is

SM = −1
4

∫
ddx δikδjlFijFkl + 4δijF0iFvj − 2F0vF0v

= −1
4

∫
ddx δikδjl(∂iAj − ∂jAi)(∂kAl − ∂lAk)

+ 4δij(∂0Ai − ∂iA0)(πj − ∂jAv)− 2(π0 − ∂0Av)2.

(4.11)
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Figure 5. The representation structure of field strength tensors under Carrollian boost Bi (arrows)
for d = 4.

The fundamental fields appearing in the action are Aα = (A0, Ai, Av) and πµ = (π0, πi),
with πv being decoupled.

Under the Carrollian rotations, the potential fields Aα form a (0) → (1) → (0)
representation, but the representation of π fields is more complex. Actually, under the
Carrollian rotations, and especially under the boost generators, the π fields together with
the first-order derivatives of Aα, i.e., ∂µAα, form the tensor product of two (0)→ (1)→ (0)
representations, as shown in figure 5. The upper part of figure 5 shows the decomposition
of the tensor product, while the lower part shows the field realizations. The actions of the
Carrollian rotations on the fields are:

[Jkl, Av] = 0, [Jkl, Ai] = δikAl − δilAk, [Jkl, A0] = 0,
[Jkl, πi] = δikπl − δilπk, [Jkl, π0] = 0, [Jkl, πv] = 0,

[Bk, Av] = −Ak, [Bk, Ai] = δikA0, [Bk, A0] = 0,
[Bk, πi] = δikπ0 − ∂kAi, [Bk, π0] = −∂kA0, [Bk, πv] = −πk − ∂kAv,

(4.12)

which can be read off from the expansion of Bargmann field aα, similar to the equation (3.19).
It is easy to see that only the middle part in figure 5, the anti-symmetric part, appears in
the action of the magnetic sector. It is straightforward to verify that the action (4.11) is
invariant under these actions and thus represents a Carrollian field theory.

Now we consider the Carrollian conformal symmetries. Unlike the free scalar theories
that are Carrollian conformal in generic dimension, the magnetic sector of Carrollian
electromagnetic theory is conformal only in d = 4. The potential Aµ is a primary operator
with conformal dimension ∆A = 1, while the combinations of πµ fields and ∂µAν are
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Figure 6. The full structure of the fields {Aα, πα, ∂µAα}. The arrows labels the action of some
Carrollian conformal generators, whose explicit actions are shown in (4.12) and (4.13). The black
part shows the relations among the fields in the magnetic sector of electromagnetic theory, while the
red part involving πv does not appear in the theory.

descendent operators with dimension ∆π = ∆A + 1 = 2. The explicit actions of the CCA
generators on the fields are given by

[D,Aα] = ∆AAα = Aα, [D,πα] = ∆ππα = 2πα, [Kµ, Aα] = 0,
[Ki, πj ] = 2δijAv, [Ki, π0] = −2Ai, [Ki, πv] = 0,
[K0, πi] = 2∆AAi, [K0, π0] = 2(∆A − 1)A0 = 0, [K0, πv] = 2(∆A + 1)Av = 4Av,

(4.13)

where α = 0, i, v, and µ = 0, i. It can be further checked that the field-strength tensors
Fvi, Fv0, Fij , F0i are all primary operators as well.

Different from the electric sector, the fields in the magnetic sector do not form a
staggered structure. The relations between the fields are illustrated in figure 6. The
representations of the operators {Aα, πµ, ∂µAα} do not have a staggered structure. The
fields πi which potentially lead to a staggered structure are combinations of the descendent
operators ∂iAv and the primary operator Fvi, in the form of πi = Fvi + ∂iAv. Similarly,
π0 = Fv0 +∂0Av does not cause a staggered structure. As shown in figure 6, the field πv may
lead to a staggered module, but it does not appear in the action. The actions of the CCA
generators on πv are listed in (4.12) and (4.13), as well as in figure 6. Thus we can safely
say that the magnetic sector of electromagnetic theory does not contain staggered module.

In this case, the gauge fixing should be treated carefully. The gauge transformation
in Bargmann U(1) gauge theory is aµ(u, ~x, v) → aµ(u, ~x, v) + ∂µΩ(u, ~x, v), where Ω(xα)
is the gauge parameter. Considering the expansion to the powers of v and keeping the
leading-order term in v, we find that there are two sets of gauge transformations for the
magnetic Carrollian U(1) theory

Ai(x)→Ai(x)+∂iω0(x), A0(x)→A0(x)+∂0ω0(x),
Av(x)→Av(x)+ω1(x), πi(x)→πi(x)+∂iω1(x), π0(x)→π0(x)+∂0ω1(x),

(4.14)
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where ω0(x), ω1(x) appearing in the expansion of the Bargmann gauge parameters Ω(xα) =
ω0(xµ)+ω1(xµ)v+· · · are referred to as the first-order and the second-order gauge parameters,
respectively. We find that the following gauge-fixing term is manifestly Carrollian conformal
invariant

Lgf = − 1
2ξ1

(∂0A0)2 − 1
2ξ2

(3∂iA0∂iA0 + 2∂0A0(2π0 − ∂0Av − ∂iAi)). (4.15)

In this expression we have summed over repeated indices. With the help of this gauge-fixing
term, the correlators are now computable in the path-integral formalism. In the Landau-type
gauge ξ2 = 0, the correlators can be organized in a relatively compact form

〈Av(x)Av(0)〉 = −2i|t|δ(3)(~x), 〈Av(x)πi(0)〉 = −〈πi(x)Av(0)〉 = 3i
2 |t|∂iδ

(3)(~x),

〈Av(x)π0(0)〉 = −〈π0(x)Av(0)〉 = iSign(t)δ(3)(~x),

〈Ai(x)πj(0)〉 = −〈πj(x)Ai(0)〉 = − i2δijSign(t)δ(3)(~x),

〈πi(x)πj(0)〉 = 〈πj(x)πi(0)〉 = i

2 |t|
(
∂i∂jδ

(3)(~x) + δij~∂
2δ(3)(~x)

)
,

〈πi(x)π0(0)〉 = 〈π0(x)πi(0)〉 = i

2Sign(t)∂iδ(3)(~x), 〈π0(x)π0(0)〉 = iδ(t)δ(3)(~x),

(4.16)

with all other correlators being vanishing. It should be noted that even if we use the
gauge-fixing Lagangian without the ξ1-term, the path-integral is still well-defined and the
final result is the same. The details of calculations can be found in appendix B.4.

Different from the scalar case, the above correlators cannot be reduced directly from
those in the Bargmann theory. This is because the complicated gauge choice lacks a
corresponding consistent choice in the Bargmann theory.

With all field components reduced from the Bargmann fields being unmodified, the
approach adopted above preserves the Carrollian symmetry and gauge symmetry as much
as possible. However, it is still possible to perform the following field redefinition

Πi = πi − ∂iAv, Π0 = π0 − ∂0Av, (4.17)

to simplify the action

S′M [Ai, A0,Πi,Π0] = −1
4

∫
ddx (∂iAj − ∂jAi)2 + 4Πi(∂0Ai − ∂iA0)− 2Π2

0. (4.18)

After this field transformation, the Av field is implicit as it is absorbed into the Π-fields.
The Π-fields and thus the action (4.18) are invariant under gauge transformation generated
by ω1 in (4.14). Actually, the Π-fields lose the interpretation as the sub-leading-order
term of the Bargmann fields aµ, and they match the leading-order term of Bargmann field
strength tensors Fvµ, even though they are not fundamental fields in Bargmann U(1) gauge
theory. Owing to this fact, the second-order gauge symmetry is hidden because it leaves
all the remaining fields invariant, while the first-order gauge symmetry and the Carrollian
symmetry continue to be manifest. The action (4.18) suggests that the Π0 field is decoupled
from other fields, and appears only as a mass term without dynamics. Nevertheless, it is
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Figure 7. The representations of redefined fields in the magnetic sector of electromagnetic theory.
The Aµ fields are in (1)→ (0) representation, while the Π fields as well as the field strength tensors
are in a net representation.

helpful to keep it in the action to show the structure of the representation and to explicitly
exhibit the Carrollian (conformal) symmetry without using the equations of motion. The
transformation rules for the modified fields under the Carrollian boosts and SCTs are

[Bk, Ai] = δikA0, [Bk, A0] = 0,
[Bk,Πi] = δikΠ0 + (∂iAk − ∂kAi) = δikΠ0 + Fik,

[Bk,Π0] = ∂0Ak − ∂kA0 = F0k,

[Kµ, Aν ] = [Kµ,Πν ] = 0, µ, ν = 0, i.

(4.19)

These relations can be illustrated in figure 7.
The modified fields are all Carrollian primaries, and Πi are the conjugate momenta of

Ai. The correlation functions can be derived both from the combination of the previous
correlators in (4.16), or directly from the path-integral by adding the gauge fixing term
− 1

2ξ (∂0A0)2 to (4.18) and taking ξ = 0 in the end. The two approaches turn out to be
consistent, and lead to the correlators of the following forms

〈Π0(x)Π0(0)〉 = iδ(t)δ(3)(~x),

〈Ai(x)Πj(0)〉 = −〈Πj(x)Ai(0)〉 = − i2δijSign(t)δ(3)(~x),

〈Πi(x)Πj(0)〉 = 〈Πi(x)Πj(0)〉 = i

2 |t|
(
δij~∂

2 − ∂i∂j
)
δ(3)(~x).

(4.20)

As expected, the Π0 field behaves as a non-kinematic field. Nevertheless, we should still
keep it in the theory if we want to write down the Ward identities associated to Carrollian
boost symmetries, since [Bk,Πi] = δikΠ0 + Fik.

We can recover the magnetic Carrollian electromagnetism found in [4], where the
Maxwell equations are

∇ ·E = 0, ∇×B− ∂E
∂t

= 0,

∇ ·B = 0, ∂B
∂t

= 0.
(4.21)

To reveal it, we need to define

Bk = 1
2ε

ijkFij , Ek = Fvk = Πk (4.22)

– 24 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
0

The equations of motions for (4.18) are given by:

δAi : ∂jFij = ∂0Πi,

δA0 : ∂iΠi = 0,
δΠi : F0i = 0,
δΠ0 : Π0 = 0.

(4.23)

The on-shell equations with regard to πi, π0/Πi,Π0 provide us with F0i = Π0 = 0, and the
equations with regard to A0, Ai give the first line in (4.21), after using (∇×B)i = ∂jFij .

A simple calculation shows that ∇ ·B = εijk∂kFij = 0. Finally, from F0i = 0 we have

∂0Fij = ∂iF0j − ∂jF0i = 0,

which implies the last Maxwell equation ∂0B = 0. Under F0i = Π0 = 0, the on-shell boost
transformation rule becomes

[Bi,Ej ] = εijkBk = −(bi ×B)j . (4.24)

Besides, it is well worth mentioning that in the case d = 3, the corresponding (d+1) = 4
Bargmann theory possesses the electromagnetic duality F ↔ ∗F . After restriction to the
null hyperplane, the magnetic U(1) Lagrangian (4.11) is invariant under the transformations

π0 − ∂0Av ↔ F12, π1 − ∂1Av ↔ F02, π2 − ∂2Av ↔ F01. (4.25)

Note that this kind of duality is intrinsic in the magnetic sector.

4.2 p-form theories

It is straightforward to extend the above construction to the p-form free theory. Here we
only briefly introduce the construction of the Carrollian action, without discussing the
Carrollian conformal symmetry. For a general p-form field a, the field strength F is a
(p+ 1)-form. Similar to the electromagnetic case, there are only two kinds of Bargmann
invariant actions:

SB
E = − 1

2(p+ 1)!

∫
dd+1x ξα1ξβ1Gα2β2 · · ·Gαp+1βp+1Fα1···αp+1Fβ1···βp+1 ,

SB
M = − 1

2(p+ 1)!

∫
dd+1x Gα1β1 · · ·Gαp+1βp+1Fα1···αp+1Fβ1···βp+1 .

(4.26)

Other combinations of G, ξ and F would be vanishing since the field strength is anti-
symmetric. In the above actions, Fα1···αp+1 = (p + 1)∂[α1aα2···αp+1] is the field strength
tensor, and aα1···αp is a p-form gauge potential in Bargmann space. The expansion of the
field a to the powers of v near v = 0 is

aα1···αp(u, ~x, v) = Aα1···αp(u, ~x) + v πα1···αp(u, ~x) +O(v2). (4.27)

For the p-form gauge theory, the action of the electric sector is

SE = − 1
2(p+ 1)!

∫
ddx F0i2···ip+1F0i2···ip+1 , (4.28)
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and the action of the magnetic sector is

SM = − 1
2(p+ 1)!

∫
ddx Fi1···ip+1Fi1···ip+1

+ 2(p+ 1)F0i2···ip+1Fvi2···ip+1 − p(p+ 1)F0vi3···ip+1F0vi3···ip+1

= − 1
2(p+ 1)!

∫
ddx (p+ 1)2(∂[i1Ai2···ip+1])2

+ 2(p+ 1)2∂[0Ai2···ip+1](πi2···ip+1 + ∂[i2Ai3···ip+1]v)
− p(p+ 1)(π0i3···ip+1 + ∂[0Ai3···ip+1]v)2.

(4.29)

After integrating out πui2···ipand A0i2···ip , we find the following action

SM =
∫
ddx

(p+ 1)
p! Πi2···ip+1∂[0Ai2···ip+1] −

1
2 (p− 1)!(∂[i1Ai2···ip+1])2, (4.30)

which is the same as the one in [28]. The fundamental fields in this action are Aα1···αp and
πµ1···µp , where Πi1···ip are canonical momenta of the fields Ai1···ip . The representation of A
is the totally anti-symmetric part of [(0)→ (1)→ (0)]⊗p, and the representation of (π, ∂A)
is the totally anti-symmetric part of [(0)→ (1)→ (0)]⊗ [A] in d = 4.

5 Carrollian field theories from further reduction

In the last few sections, we have constructed Carrollian invariant field theories from null
reduction of Bargmann field theories. Although we managed to obtain a bunch of Carrollian
field theories including scalar theories, U(1) theories and p-form theories, we can take a
further step. In this section, we will show that some of these theories can be modified
by removing some of its field components, and the resulting theories are still Carrollian
invariant. The essential point is that both the removed fields and the remaining fields still
form bona fide sub-representations of Carrollian rotations. Such modifications result in
intrinsically different theories. In this way, we are able to discuss Carrollian field theories
which can not be directly reduced from Bargmann field theories.

As reviewed in section 2.3, a multiplet representation of Carrollian rotation group is
reducible but indecomposible. It could be organized as either chain representation or net
representation. An interesting property is that we can always find sub-representations in a
multiplet representation. The presence of such sub-representations allows us to remove them
and construct another shorter but well-defined representation of the Carrollian rotations
using the remaining fields. We have seen in [43] that the possible chain representations of
at least rank 2 are in one of the following patterns:

Rank 2:
(j)→ (j), j 6= 0
(j)→ (j + 1),
(j)→ (j − 1).

(5.1)
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≥ Rank 3:
(0)→ (1)→ (0),

· · · → (j)→ (j + 1)→ (j + 2)→ · · · ,
· · · → (j)→ (j − 1)→ (j − 2)→ · · · .

(5.2)

For (0) → (1) → (0) representation, both (1) → (0) and (0) are the sub-representations.
After removing one of these sub-representations from the chain, the resulting quotient
representation (0) or (0)→ (1) still belongs to the allowed patterns. Similar results hold for
the increasing and decreasing chains. Let us consider the chain (j)→ (j ± 1)→ (j ± 2)→
· · · → (j ± n) of length n. For any integer m < n the sub-chain starting at (j ± (m+ 1))
and ending at (j±n) will give a sub-representation. Upon removing this sub-representation
from the full representation we get a shorter chain (j)→ (j ± 1)→ (j ± 2)→ · · · → (j ±m)
as a quotient representation. Moreover, we can generalize the above operation to net
representations and notice that removing a sub-net from the whole net will give another
legal net representation. Although this seems not to be the unique way to get bona fide
representation of the Carrollian rotations by removing fields, because for example we can
also remove the first few terms and the last few terms of a chain representation to get
another representation, it is necessary to remove just sub-representations to get quotient
representations in order that the reduced action is Carrollian invariant.

Consequently, we are able to reduce the field components from already established
Carrollian field theories so as to obtain new Carrollian field theories of the remaining
field components. The only requirement is that the removed fields should consist of only
fundamental fields with no derivatives and they form a sub-representation. Here we use
Φ = (Φi)i∈I to stand for the original Carrollian fields and S[Φ] for the original action, Ψ for
the fields making up the sub-representation, Φ̄ = (Φ̄j)j∈I′⊂I for the remaining fields after
removing Ψ from Φ, and S̄[Φ̄] for the modified action. For any generator g of Carrollian
(conformal) group, the invariance of modified action under the transformation can be seen
from the variation

δ̄gS̄[Φ̄] =
∑
j∈I′

δS

δΦ̄j

∣∣∣∣∣
Ψ=0

δ̄gΦ̄j =
(∑
i∈I

δS

δΦi
δgΦi

)∣∣∣∣∣
Ψ=0

= δgS[Φ]|Ψ=0 = 0, (5.3)

where δ̄gΦ̄j = δgΦj |Ψ=0. The removed fields must fit into a sub-representation in this
argument, because δgΨ should only depend on Ψ and becomes vanishing after the reduction.
This does not only make sense for Carrollian symmetry, but also for Carrollian conformal
symmetry.

Now we take the U(1) magnetic sector as a non-trivial example. In this case, as
analyzed in previous sections, the potential fields Aα = (Av, Ai, A0) form a (0)→ (1)→ (0)
representation. As discussed above, (A0) and (Ai) → (A0) are two sub-representations,
which can be removed from the theory. Let us consider the resulting Lagrangians case by case.

A0 = 0. The simplest choice is A0 = 0, and the reduced action is given by

S̄M [Av,Ai,πi,π0] =−1
4

∫
ddx (∂iAj−∂jAi)2+4(∂0Ai)(πi−∂iAv)−2(π0−∂0Av)2. (5.4)
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The actions of the boost generators and SCTs in d = 4 are modified to be

[Bk, Av] = −Ak, [Bk, Ai] = 0, [Bk, πi] = δikπ0 − ∂kAi, [Bk, π0] = 0,
[K0, πi] = 2Ai, [Ki, π0] = −2Ai, [Ki, πj ] = 2δijAv.

(5.5)

The action is still invariant under all the Carrollian conformal transformations. However, the
gauge transformation on A0 is no longer a symmetry, and the action is now only invariant
under the second order gauge transformation

Av(x)→ Av(x) + ω1(x), πi(x)→ πi(x) + ∂iω1(x), π0(x)→ π0(x) + ∂0ω1(x). (5.6)

It is not difficult to work out the 2-point correlators via the path-integral, if we carefully
choose the gauge-fixing term to be − 1

2ξ (2π0 − ∂0Av − ∂iAi)2,

〈Av(x)Av(0)〉=−i
(

2− ξ2

)
|t|δ(3)(~x), 〈Av(x)πi(0)〉=−〈πi(x)Av(0)〉= i

2(3−ξ)|t|∂iδ(3)(~x),

〈Av(x)π0(0)〉=−〈π0(x)Av(0)〉= i

(
1− ξ2

)
Sign(t)δ(3)(~x),

〈Ai(x)πj(0)〉=−〈πj(x)Ai(0)〉=− i2δijSign(t)δ(3)(~x),

〈πi(x)πj(0)〉= 〈πj(x)πi(0)〉= i

2 |t|
(
(1−ξ)∂i∂jδ(3)(~x)+δij~∂2δ(3)(~x)

)
,

〈πi(x)π0(0)〉= 〈π0(x)πi(0)〉= i

2(1−ξ)Sign(t)∂iδ(3)(~x), 〈π0(x)π0(0)〉= i(1−ξ)δ(t)δ(3)(~x).
(5.7)

Similarly, after redefining Π-fields as in (4.17) to absorb Av, we get the action

S̄M [Ai,Πi,Π0] = −1
4

∫
ddx (∂iAj − ∂jAi)2 + 4Πi∂0Ai − 2Π2

0. (5.8)

The corresponding actions under the symmetry generators are

[Bk, Ai] = 0,
[Bk,Πi] = δikΠ0 + (∂iAk − ∂kAi), [Bk,Π0] = ∂0Ak,

[Kµ, Aν ] = [Kµ,Πν ] = 0, µ, ν = 0, i.
(5.9)

In this formulation, we are free of gauge redundancy, and do not need to impose gauge
fixing. The correlators are now

〈Π0(x)Π0(0)〉 = iδ(t)δ(3)(~x),

〈Ai(x)Πj(0)〉 = −〈Πj(x)Ai(0)〉 = − i2δijSign(t)δ(3)(~x),

〈Πi(x)Πj(0)〉 = 〈Πi(x)Πj(0)〉 = i

2 |t|
(
δij~∂

2 − ∂i∂j
)
δ(3)(~x),

(5.10)

which are the same as the ξ = 0 correlators in (4.20) if neglecting the ones involving A0. In
fact, the resulting theory is intrinsically different from the original theory. This can be seen
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from the equations of motion

δAi : ∂iFij = ∂0Πi,

δΠi : ∂0Ai = 0,
δΠ0 : Π0 = 0.

(5.11)

Here is no equation with respect to A0, which leads to ∂iΠi = 0.
As it stands, there are four apparently different Lagrangians starting from the Bargmann

U(1) theory, including (4.11), (4.18), (5.4), and (5.8), each having different number of
fundamental fields and gauge symmetries.

Ai = A0 = 0. If the field components Ai, A0 in the (0)→ (1)→ (0) representation are
removed, the action will reduce to a simpler one,

S̄M [Av, π0] = 1
2

∫
ddx (π0 − ∂0Av)2. (5.12)

Not only do Ai, A0 vanish, but πi also decouples. The actions of the boost generators are

[Bk, Av] = 0, [Bk, π0] = 0. (5.13)

Since we can redefine a new scalar field χ = π0−∂0Av to absorb Av, the Lagrangian includes
purely a quadratic term 1

2χ
2 without dynamics and thus the theory is somehow trivial.6

From the above examples, we see that we can always obtain new Carrollian invariant
actions by starting from a Carrollian field theory, setting some field components vanishing,
but ensuring the remaining field components to be in a sub-representation. These resulting
theories cannot be read from the Bargmann action directly. This paves a new way to find
more Carrollian theories. It is more effective, if the original representation is complicated,
as there are more choices to get sub-representations.

6 Discussions

In this work, we tried to construct the Carrollian invariant field theories by restricting
the parent Bargmann invariant theories to a null hyper-surface. Such a null reduction
guarantees the resulting theories to be Carrollian invariant. We mainly focused on the free
massless scalar and U(1) electromagnetic theories, and managed to reproduce the known
electric-sector and magnetic-sector theories in the literature. The theories we constructed
are manifest off-shell Carrollian invariant.

Another focus in this work is on the Carrollian conformal invariance. We found that
for both the free scalar and U(1) electromagnetic theories in d = 4, their electric-sector
and magnetic-sector theories are all Carrollian conformal invariant. We computed the
2-point correlators by using the path-integral formalism, and found the correlators to be
consistent with the Ward identities. One remarkable point is that even in the simple theories

6Due to the constraint from the equation of motion, the system with a Lagrangian L = (q1 − d
dt
q2)2 has

no physical degrees of freedom and is therefore trivial. For further details, please refers to chapter 1.6 of [59].
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studied in this work, the operators have constituted the generic representations of Carrollian
conformal algebra [43]. In the magnetic sector of free scalar, there appears the staggered
structure, similar to the case in the BMS free scalar theory [49] and the BMS free fermion
theory [50, 51]. More interestingly, in the magnetic sector of Carrollian electromagnetic
theory, the gauge potentials form a chain representation, and the restricted field strength
form a net representation of CCA. Another distinct feature in Carrollian electromagnetic
theory is that both the gauge potential and the field strength are primary operators in d = 4.

The null-reduction method can be applied to other constructions. There are several
directions worthy of pursuing:

• Non-conformal massive & interacting Carrollian theory. Although the discussions in
the present work cover only the free massless scalar theories and the free massless
vector theories, there are no obstacles for the construction to be generalized to other
cases, including the massive scalar theories and the interacting theories, say Yang-Mills
theory and (scalar) QED [60]. This is due to the fact that if we do not require the
conformal symmetry, there are more options on the Bargmann actions, for example
the massive theory or the theory with general interaction terms.

• Fermionic theory. Recently, in [61] the Carrollian Clifford algebra were studied and the
actions for the Carroll fermions were constructed. It would be interesting to reconsider
the fermionic theory from the reduction of the Bargmann fermion. Moreover, one
may study the supersymmetric Carrollian field theory.

• Higher-order derivative theory. We expect that the null-reduction method can be
applied to the construction of higher-derivative Carrollian field theory as well. In
this case, the higher-order components in the expansion of the Bargmann field will
become relevant in the construction.

• Carrollian gravity. There have already existed two approaches to Carrollian gravity.
One is by gauging the Carrollian algebra [62–64], and the other is by using the
contraction of Lorentz theory [28]. A comparison between the magnetic theory from
Carrollian contraction and the construction from gauge procedure were made in [65],
while the electric sector is missing in the gauging description. In [35], the authors
claimed that the two sectors correspond to the leading and next-to-leading order
theory in the expansion of general relativity. The Bargmann reduction may provide
another viewpoint of this issue, as it could in principle lead to both the electric sector
and the magnetic sector of Carrollian gravity at the same time.
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A Staggered modules in higher dimensional Carrollian CFT

The staggered modules (i.e. representations) appear in 2d Logarithmic CFTs, e.g. [45–48],
and 2d Carrollian CFTs [49–51]. In this appendix we briefly review the features of this
type of modules and discuss its analog in higher dimensional Carrollian CFTs. We adopt
a condensed notation without explicit indices on the generators of the conformal algebra or
on the operators. The generators of the Carrollian conformal algebra contain dilatation D,
generalized rotationM , translation P and SCT K, with the following commutation relations

[D,P ] = pDP, [D,K] = kDK, (A.1)
[M,P ] = pMP, [M,K] = kMP, [P,K] = dD +mM (A.2)

The actions on primary operators Oi are DOi = ∆iOi and MOi = ξiOi.
Mathematically, the staggered modules come from non-trivial module extensions. To

understand the structure of a generic module of an algebra g, we can try breaking it into the
simplest pieces — irreducible modules, VN

?= ⊕N
i=1Wi. But this direct sum decomposition

cannot be achieved for non-semisimple Lie algebras, since it loses the track of the relations
between different Wi-s. For this reason we need a method of sewing Wi-s back to VN , and
this leads to the problem of module extensions, see e.g. [66, 67].

The standard way of decomposing VN is to choose a maximal submodule VN−1 ⊂ VN and
to take the quotient VN/VN−1 =: WN , then by the maximality of VN−1, WN is irreducible.
Repeatedly we get a series of submodules,

0 = V0 ⊂ V1 ⊂ . . . VN−1 ⊂ VN , (A.3)

which is called the Jordan-Holder composition series of VN . The irreducible modules
Wi = Vi/Vi−1 are called the factors and N is called the length of VN . The composition
series is not unique, but the length and the factors are invariants of VN itself. If relaxing
the condition of maximality, the resulting composition series will be shorter than the
Jordan-Holder one, and Wi can be reducible modules.

On the other way, we can compose Wi-s into some bigger VN . Let us start from N = 2.
More broadly, dropping the condition of irreducibility and considering two arbitrary modules
W1 and W2, we find that the composed V2 must satisfy the quotient condition W2 = V2/W1,
or written in a short exact sequence,

0 W1 =: V1 V2 W2 0.ι π (A.4)

In this notation the intertwinning map ι is injective and π is surjective, and they characterize
the ways of W1 being embedded into V2 and W2 being projected from V2. For the same pair
(W1,W2) there can be inequivalent (ι, π)-s corresponding to not necessarily isomorphic V2-s,
and each triplet (V2, ι, π) is called an extension of W1 by W2. For N > 2, we can introduce
new irreducible modules Wi and repeat the preceding step recursively,

0 Vi−1 Vi Wi 0.ιi πi (A.5)
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In this decomposition-composition procedure, we find that there can be other solutions
of the constraint (A.4) providing new modules of the algebra, besides the original module
VN . This phenomenon happens for the representations of non-semisimple Lie algebras
and infinite dimensional representations of semi-simple or affine Lie algebras and Virasoro
algebras. The former case appears in the Carrollian, Galilean and Schrodinger7 (conformal)
field theories, and the latter one appears in relativistic CFTs.

Now the remaining problem is to solve the module extensions of (A.4). It turns out
that the equivalence classes of different extensions constitute a basis of the Ext vector space
Extg(W2,W1), and the trivial extension W1 ⊕W2 corresponds to the zero element, see e.g.
chapter 3 & 7 of [67]. The vector space Ext is hard to compute, but in practice we only
need to construct certain extensions according to the physical problem by constraining the
undetermined coefficients in (ι, π).

Actually the module extension problem has already been encountered in the construction
of finite dimensional modules of Carrollian rotation algebra [43]. For example, the 4d electric
vector V = (0)→ (1) is an extension of (1) by (0). Here (1) is the submodule W1, and the
morphisms (ι, π) are given by the actions of generators from W2 = (0) to {(1), (0)}, which
can be constrained by the commutation relations using the Wigner-Eckart theorem. In this
simple example, the Ext vector space can be computed as Extg((0), (1)) = C, hence the
electric vector (0)→ (1) is the only nontrivial extension. We leave the technical computation
of Extg((0), (1)) = C to the end of this appendix.

After introducing module extensions, we give a sketchy analysis of the staggered modules
in the Logarithmic and Carrollian CFTs. For simplicity we focus on N = 2 and assume that
W1, W2 are singlet highest-weight modules, i.e. the corresponding primary operators O1, O2
(indices omitted) are irreducible representations of the generalized rotation subalgebra8

{D,M}. By the surjectivity of π, we can choose the pre-images of O2 in the extended module
V , Õ2 ∈ V, π(Õ2) = O2, and denote the conformal dimensions of O1, Õ2 as ∆1, ∆2 respec-
tively.9 To preserve the grading of the dilatation D, the difference l = ∆2 −∆1 ∈ Z must
be an integer. All the possible nontrivial extended modules V can be cast into three types:

• l = 0. It can be shown in this case that for some generators g ∈ {D,M} of the
dilatation or the generalized rotation algebra, O1 = gÕ2. The resulting module
corresponds to a rank-2 logarithmic multiplet in LogCFT, a boost multiplet in 2d
Carrollian CFT, or a chain multiplet in higher dimensional Carrollian CFT.

• l < 0. In this case O1 and Õ2 can be related by some lowering operators: O1 =
P 1 . . . P |l|Õ2. Then V itself is a reducible highest-weight module, and O1 are singular
in the sense that it is simultaneously primary and descendent.

7The “alien operators” introduced in [68] belong to a class of neutral operators in Schrodinger CFT, and
could enter into the story of staggered modules.

8For reducible but indecomposable O1, O2, this corresponds to the case N > 2 and is more sophisticated
than N = 2 case.

9The choice of Õ2 admits gauge redundancies: for each O ∈W1 we have π(O) = 0 and π(Õ2 +O) = O2.
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• l > 0. This type is called (strictly) staggered module and reveals new features
comparing with the above two types. There can exist singular vectors in V , and Õ2
can be neither primary nor descendent.

To obtain this result we need to consider how W2 is “staggered” with W1. The
action of conformal algebra on W2 is determined by the operators A = (D −∆2)Õ2, A

′ =
(M − ξ2)Õ2, B = KÕ2, C = P Õ2. The operators C generate descendents and is irrelevant
to the discussion. Noticing that the intertwinning map π commutes with the action,
we have π(A) = (D − ∆2)π(Õ2) = (D − ∆2)O2 = 0, hence by the exactness of (A.4)
A ∈ im(π) = ker(ι) = W1. Similarly A′, B ∈W1. Then the extended module is illustrated
by the following diagram:

∆2 − 1 B

∆2 A′ O2 A

K

M D

(A.6)

For l = 0 there is no operator with conformal dimension less than ∆2, hence B = 0
and Õ2 are primary operators in V . There are no other primary operators besides O1,
hence {A,A′} are linear combinations of O1. On the contrary, due to the irreducibility
of O1 under {D,M}, either O1 ∩ {A,A′} = 0 or O1 ⊂ {A,A′}. The former case implies
A = A′ = 0, hence V = W1 ⊕W2 is trivial. The latter case implies O1 and {A,A′} are
linear combinations of each other, hence O1 = gÕ2 for some generator g ∈ {D,M}. For
l < 0 the analysis is similar: if V is non-trivial then O1 are in the descendents of Õ2, hence
are singular in V .

Now we consider the interesting case l > 0 and assume the extension V is non-
trivial. At the level ∆2 the operator number equals #(O2) + #(P 1 . . . P |l|O1), hence there
must be operators not coming from the descendents of O1. By the gauge redundancy
Õ2 → Õ2 + O, O ∈ W1 we can choose the extra operators to be Õ2. If B 6= 0 then Õ2
are neither primary nor descendent. There can be singular vectors from {A,A′}. Firstly,
KA = (D − ∆2 + 1)KÕ2 = (D − ∆2 + 1)B = 0, hence KA is singular in V if A 6= 0.
Secondly, from KA′ = (M − ξ2 + kM )B, the matrix equation (M − ξ2 + kM )B = 0 can
have non-vanishing solutions B0, which further provides singular vectors A′0 ⊂ {A′} with
KA′0 = (M − ξ + b)B0 = 0. For example, in 2d Carrollian CFT, supposing that the two
singlet primaries are related by O1 = L1Õ2, we have M1A

′ = (M0 − ξ)M1Õ2 = 0 and
L1A

′ = (M0 − ξ)O1 +M1Õ2 = 0, hence A′ = M0Õ2 is a singular vector if not vanishing.
Finally let us consider a special case O1 = KÕ2 and KO1 = 0, i.e. l = ∆[K]. This

case is still broad enough to include the known staggered modules in the present work, in
2d Carrollian CFT and even in Schrodinger CFT. Writing A, A′ as linear combinations of
PO1, we have

DÕ2 = aPO1, MÕ2 = bPO1, (A.7)
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subject to the matrix equation a(pM + ξ1)PO1 = b(pD + ∆1)PO1 from [D,M ] = 0. To
exploit the additional information KO1 = 0, applying K on both sides we get

(∆1 − k)O1 = a(d∆1 +mξ1)O1, (ξ1 − k)O1 = b(d∆1 +mξ1)O1. (A.8)

These three matrix equations provide strong constraints on the undetermined parameter
matrices a, b.

A.1 Staggered (scalar, scalar) modules

In this subsection we construct the staggered modules from two scalars φ, π with l = 1.
The Carrollian magnetic-sector scalar falls into this class.

The two highest-weight modules W1, W2 are generated by φ, π respectively, and we
can make the most general ansatz respecting the conformal dimension and spin of SO(3)
without Levi-Civita tensor,

[D,φ] = ∆φφ, [J ij , φ] = 0, [Bi, φ] = 0, [Kµ, φ] = 0,
[D,π] = ∆ππ + c0∂0φ, [J ij , π] = 0, [Bi, π] = c1∂iφ,

[K0, π] = c2φ, [Ki, π] = 0.
(A.9)

As a consistency check we unfreeze the condition ∆π −∆φ = l = 1 and treat ∆π as a free
parameter. From the definition of the representation, the nontrivial constraints come from
the commutators [Bi,Ki], [D,Bi]. The relation [[Bi,Ki], π] = [Bi, [Ki, π]] − [Ki, [Bi, π]]
gives (c2 + 2c1∆φ)φ = 0, and from [D,Bi] we have c1(1 + ∆φ −∆π)∂iφ = 0. Solving them
with respect to ∆φ, we find the solutions can be classified as,

trivial: c0 = c1 = c2 = 0, ∆π is arbitrary. (A.10)
B-staggered: c0 = 0, c2 + 2c1∆φ = 0, ∆π = ∆φ + 1 (A.11)
D-staggered: c0 6= 0, c1 = c2 = 0, ∆π is arbitrary. (A.12)
{B,D}-staggered: c0 6= 0, c2 + 2c1∆φ = 0, ∆π = ∆φ + 1 (A.13)

For the first solution the modules generated by φ, π are decoupled and the extension is
trivial. For the second solution, the independent parameter c1 can be absorbed by the
field renormalization φ→ a1φ, π → a2π, hence the magnetic scalar is the only non-trivial
extension. For the third and fourth solutions with c0 6= 0, the free parameter c0 indicates
the dilatation D contains Jordan blocks, which is similar to the staggered modules in
Logarithmic CFTs. Besides, [D −∆π, π] = c0∂0φ is a singular vector, consistent with the
previous analysis that A = (D −∆2)Õ2 is singular.

The structure of the extended module V is illustrated as below. Notice that due to
[K0, P0] = 0, the operator ∂0φ is singular inW1 and V , andW1,2 = W1/W1,1 is an additional

– 34 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
0

quotient module.

∆φ φ

∆φ + 1 ∂0φ ∂iφ π

...

∆φ + n+ 1 ∂n∂0φ ∂n∂iφ ∂nπ

...
...

...
...

W1,1 W1,2 W2

P0
Pi

Pnµ

Bi

Ki

Pnµ

K0,c2

Bi,c1

Pnµ

D,c0

(A.14)

Finally if allowing the spacial Levi-Civita tensor, the ansatz should be modified by

[J ij , π] = e1ε
i
j∂0φ+ d1ε

ik
j ∂kφ, [Bi, π] = c1∂iφ+ e2ε

ij∂jφ, (A.15)

where the d-term and e-terms only appear in d = 3, 4 respectively. Similar computation
shows that for d = 4 the d-term must vanish, while for d = 3, only e2 is forced to vanish,
and e1 is a free parameter. The extra staggered module in d = 3 is

[D,φ] = ∆φφ, [J ij , φ] = 0, [Bi, φ] = 0, [Kµ, φ] = 0,
[D,π] = (∆φ + 1)π + c0∂0φ, [J ij , π] = e1ε

i
j∂0φ, [Bi, π] = c1∂iφ,

[K0, π] = −2c1∆φφ, [Ki, π] = 0.
(A.16)

A.2 Computation of Extg((0), (j))

The traditional way of computing the vector space Ext(W2,W1) is through the projective or
injective resolution of modules. But unlike the case of semisimple Lie algebras, we find that
the category of finite dimensional modules of iso(3) does not have enough projective/injective
modules, and infinite dimensional modules must enter into the game.

Instead, we can utilize the relation between Ext and Lie algebra cohomology,
Extg(C,M) ' H1(g,M), see e.g. [67]. For W2 = (0) = C and W1 = (1) = M , the
problem gets reduced to the computation of the first cohomology H1(g,M) of iso(3). The
cohomology of semi-direct product of Lie algebras can be calculated via the Hochschild-Serre
spectral sequence [69, 70]. We need only theorem 13 in [70]: supposing Lie algebra g and
its ideal subalgebra l such that g/l is semisimple, for the module M of g, the cohomology is

Hn(g,M) '
⊕
i+j=n

H i(g/l,C)⊗Hj(l,M)g, (A.17)

where Mg ≡ H0(g,M) means the invariant vectors in M : Mg := {x ∈M : gx = 0, ∀g ∈ g}.
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In our case, g = iso(3), l = C3, g/l = so(3) and M is the singlet module (1) of
iso(3). By the Wighthead lemma the first cohomology of semisimple Lie algebra vanishes
H1(so(3),C) = 0, hence there is only one term at the right-hand side of (A.17)

H1(iso(3), (1)) = H0(so(3),C)⊗H1(C3, (1))g. (A.18)

The H1 is just Hom, hence H1(C3, (1)) = Mat3(C). Then Mat3(C)g contains a constant
diagonal matrix c · I, which is invariant under the rotations. Finally with H0(so(3),C) = C
we get H1(iso(3), (1)) = C. Hence the electric vector is the only nontrivial extension of (1)
by (0). With the same method we can show Extg((0), (j)) = 0 for j 6= 1, and this agrees
with the result of the chain representations.

B Path-integral formalism for Carrollian theories

In this section we present the path-integral formalism for free Carrollian field theories,
including the scalar and electromagnetic field theories. In each theory, we discuss the
electric sector and magnetic sector separately.

B.1 Electric sector of scalar

The electric sector of Carrollian scalar theory has the action

SC
E = −1

2

∫
ddx ∂tφ∂tφ = −1

2

∫
ddx φ(−∂2

t )φ (B.1)

up to a boundary term. Its corresponding generating functional is

ZC
E [jφ] = N

∫
DφDπ exp

(
i

(
SC
E +

∫
ddxjφφ

))
= N ′ exp

(
i

∫
ddx

1
2jφ(x)ΠE(x− y)jφ(y)

) (B.2)

where ΠE(x− y) =
∫ ddp

(2π)d e
i(~p·~x+ωt) · 1

ω2 = − |t|2 δ(d−1)(~x). Thus the 2-pt correlator is simply

〈φ(x)φ(y)〉 = (−i)2 1
Z[0]

δ2

δjφ(x)δjφ(y)Z
C
E [J ]

∣∣∣∣∣
jφ=0

= −iΠE(x− y) = i|tx − ty|
2 δ(d−1)(~x− ~y)

(B.3)

B.2 Magnetic sector of scalar

In order to perform the path-integral for the magnetic sector action, we need to rewrite the
action in a standard balanced quadratic form:

SC
M = −1

2

∫
ddx 2π∂tφ+ ∂iφ∂iφ = −1

2

∫
ddxΦ†ÂΦ (B.4)

where Φ = (φ, π) and the operator Â =
(
−~∂2 −∂t
∂t 0

)
.
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By adding a source term and then performing the Gaussian integral, we easily get the
related generating functional Z[J ] in the following form

ZC
M [J ] = N

∫
DφDπ exp

(
i

(
SC
M +

∫
ddxJΦ

))
= N

∫
DφDπ exp

(
i

∫
ddx

(
−1

2Φ†ÂΦ + JΦ
))

= N ′ exp
(
i

∫
ddx

1
2J
†Â−1J

)
= N ′ exp

(
i

∫
ddx

∫
ddy

1
2J
†(x)ΠM (x− y)J(y)

)
(B.5)

where J = (jφ, jπ), and ΠM (x − y) is the Green function of Â, satisfying ÂΠ(x − y) =
δ(d−1)(~x). The Green function can be calculated by inverting Â in the momentum space,

ΠM (x− y) =
∫

ddp

(2π)d e
i(~p·~x+ωt) ·

(
~p2 −iω
iω 0

)−1

=
∫

ddp

(2π)d e
i(~p·~x+ωt) ·

(
0 −i

ω
i
ω
−~p2

ω2

)
.

(B.6)

Then the 2-pt correlator can be read from the partition function,

〈Φi(x)Φj(y)〉 = (−i)2 1
Z[0]

δ2

δJi(x)δJj(y)Z
C
M [J ]

∣∣∣∣∣
J=0

= − i2(Πij(x− y) + Πji(y − x))

= − i2

∫
ddp

(2π)d e
i(~p·~x+ωt) · (Πij(p) + Πji(−p))

=
∫

ddp

(2π)d e
i(~p·~x+ωt) ·

(
0 − 1

ω
1
ω i ~p

2

ω2

)

= i

2

(
0 −Sign(tx − ty)δ(d−1)(~x− ~y)

Sign(tx − ty)δ(d−1)(~x− ~y) |tx − ty|~∂2δ(d−1)(~x− ~y)

)
.

(B.7)

This gives us the correlators in (3.25).

B.3 Electric sector of U(1) theory

For the electric sector of U(1), it is very similar to the magnetic sector of scalar. The action is

SC
E = −1

2

∫
ddx F0iF0i = −1

2

∫
ddx Φ†B̂Φ (B.8)

with Φ = (Ai, A0) and

B̂ =
(
−∂2

0δij ∂0∂i
∂0∂j −~∂2

)
. (B.9)
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Then with the temporal gauge-fixing term Lgf = − 1
2ξ (∂0A0)2, we may read the

correlators. In d = 4, the correlators are

〈Ai(x)Aj(0)〉 = 〈Aj(x)Ai(0)〉 = i

2δij |t|δ
(3)(~x) + iξ

12 t
3Sign(t)∂i∂jδ(3)(~x),

〈Ai(x)A0(0)〉 = 〈A0(x)Ai(0)〉 = iξ

4 t
2Sign(t)∂iδ(3)(~x), 〈A0(x)A0(0)〉 = iξ

2 |t|δ
(3)(~x).

(B.10)
Moreover, in the Landau gauge ξ = 0, the correlators containing A0 vanish and the

remaining ones are
〈Ai(x)Aj(0)〉 = i

2δij |t|δ
(3)(~x). (B.11)

B.4 Magnetic sector of U(1) theory

For the U(1) magnetic sector, we can rewrite the action as

SC
M = −1

4

∫
ddx FijFij + 4F0iFvi − 2F 2

0v

= −1
4

∫
ddx (∂iAj − ∂jAi)2 + 4(∂0Ai − ∂iA0)(πi − ∂iAv)− 2(π0 − ∂0Av)2

= −1
2

∫
ddx Φ†B̂Φ

(B.12)

with Φ = (Av, Ai, A0, πi, π0) and

B̂ =


∂2

0 ∂0∂j −~∂2 0 −∂0
∂0∂i −~∂2δij + ∂i∂j 0 −∂0δij 0
−~∂2 0 0 ∂j 0

0 ∂0δij −∂i 0 0
∂0 0 0 0 −1

. (B.13)

Since there are abundant gauge symmetries, this matrix is not invertible in the momentum
space. In order to properly inverse it and perform the path-integral, we ought to include
the gauge-fixing terms.

The gauge fixing of magnetic U(1) sector is tricky, especially if we want to keep the
Carrollian conformal invariance. We actually need two gauge-fixing terms for the first-order
and second-order gauge transformations in (4.14). Just as we prefer to choose Lorentz
invariant gauge in the relativistic gauge theory, the ideal gauge-fixing term Lgfddx should
be a Carrollian conformal invariant one in d = 4. The choice of the first-order gauge fixing
is simple by setting the temporal derivative of the time component of Aµ to zero, ∂0A0 = 0,
with the help of a Rξ-type auxiliary field, leading to the gauge-fixing term L1 = − 1

2ξ1
(∂0A0)2.

However, it turns out to be impossible to find a usual quadratic gauge-fixing term for the
second-order gauge transformation, which retains the invariances under both the boost
and special conformal transformations simultaneously. Nevertheless, it is possible to find
a Carrollian conformal invariant gauge-fixing term, if we allow for more general terms.
By direct calculation, we find that the gauge-fixing term (4.15) turns up to be Carrollian
conformal invariant up to total derivatives.
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Unlike the usual gauge-fixing term of a quadratic form, which can be implemented into
the path-integral by the standard Faddeev-Popov procedure, the gauge-fixing term (4.15)
here contains a part which is obviously not quadratic, and one may question whether such
an exotic term will function properly as a gauge fixing term for the second-order gauge
transformation. To show that (4.15) can play the role of gauge fixing, we need to use a
generalized “Stueckelberg trick” as in chapter 14.5 of [71]. Shortly speaking, this trick works
as follows. One may formally multiply and then divide the path-integral of the generating
function by a suitable infinite function f(ξ) which is an integration of auxiliary field, then in
the multiplication one exchanges the orders of doing the integrations, and shift the auxiliary
field to get the gauge-fixing term Rξ. To apply this trick to the case at hand, we need to
select f(ξ) appropriately to make it consistent with our non-quadratic gauge-fixing term.
We can consider the following function of ξ1, ξ2, which is an integration over two auxiliary
fields α(x) and β(x),

f(ξ1, ξ2) =
∫
Dα(x)Dβ(x)exp

{
−i
∫
ddx

( 1
2ξ1

(∂2
0α)2+ 1

2ξ2

(
3(∂0∂iα)2+2∂2

0α∂0β
))}

=
∫
Dα(x)Dβ(x)exp

{
−i
∫
ddx

(
1

2ξ1

(
∂2

0α+ ξ1
ξ2
∂0β

)2
+ 3

2ξ2
(∂0∂iα)2− ξ1

2ξ2
2

(∂0β)2
)}

.

This integral is actually divergent, but is in a form of Gaussian integral if we treat ∂0α(x),
∂iα(x), and ∂0β as independent integration variables. Then, we shift the auxiliary fields
one by one

α(x)→ α(x)− 1
∂0
A0(x), β(x)→ β(x)− 1

∂0

(
(2π0(x)− ∂0Av(x)− ∂iAi(x)) + ~∂2α(x)

)
,

where we have used the notation that h(x) = 1
∂0
g(x) is the solution of ∂0h(x) = g(x). As

the shift does not change the integral, we have

f(ξ1, ξ2) =
∫
Dα(x)Dβ(x)exp

{
−i
∫
ddx

( 1
2ξ1

(∂2
0α−∂0A0)2

+ 1
2ξ2

(
3(∂0∂iα−∂iA0)2+2(∂2

0α−∂0A0)(∂0β−(2π0−∂0Av−∂iAi)−~∂2α))
))}

.

(B.14)
We can multiply and divide (B.14) when doing the path-integral, and use the “Stueckelberg
trick” to perform the gauge transformation shift, with α(x), β(x) being the gauge parameters,

Ai(x)→ Ai(x) + ∂iα(x), A0(x)→ A0(x) + ∂0α(x),
Av(x)→ Av(x) + β(x), πi(x)→ πi(x) + ∂iβ(x), π0(x)→ π0(x) + ∂0β(x).

(B.15)

Since the measures Dα(x)Dβ(x)DΦ(x), the action SC
M [Φ(x)], and gauge-invariant operators

Oi are all invariant under the transformations, we have

〈O1(x1) · · ·On(xn)〉

= 1
Z[0]

( 1
f(ξ1, ξ2)

∫
DαDβ

)
×
∫
DΦO1(x1) · · ·On(xn)

×exp
{
i

(
SC
M−

1
2ξ1

(∂0A0)2− 1
2ξ2

(3∂iA0∂iA0+2∂0A0(2π0−∂0Av−∂iAi))
)}

.

(B.16)
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Therefore, we see that the term (4.15) appears in the action naturally. In other words, (4.15)
can be taken as the gauge-fixing term. With this term, it is not difficult to perform the
standard inversion in the momentum space, and then use Fourier transform to calculate
the correlators. The 2-point correlator of the field can be written as

〈Φi(x)Φj(y)〉 = − i2(Πij(x− y) + Πji(y − x)), (B.17)

where Πij(x− y) is the position space Green function, as in (B.6). It needs to be pointed
out that even if we drop the ξ1 term and only keep the ξ2 term in Lgf , the inversion is also
possible and well-defined.

In the end, we find the 2-point correlators in the magnetc sector of U(1) theory

〈Av(x)Av(0)〉=−2i
(

1+ ξ2
2

4ξ1

)
|t|δ(3)(~x)− iξ2

12 t
3Sign(t)~∂2δ(3)(~x),

〈Av(x)Ai(0)〉= 〈Ai(x)Av(0)〉= iξ2
4 t2Sign(t)∂iδ(3)(~x),

〈Av(x)A0(0)〉= 〈A0(x)Av(0)〉= iξ2
2 |t|δ

(3)(~x),

〈Av(x)πi(0)〉=−〈πi(x)Av(0)〉= 3i
2

(
1+ ξ2

2
3ξ1

)
|t|∂iδ(3)(~x)+ iξ2

12 t
3Sign(t)∂i~∂2δ(3)(~x),

〈Av(x)π0(0)〉=−〈π0(x)Av(0)〉= i

(
1+ ξ2

2
2ξ1

)
Sign(t)δ(3)(~x)+ iξ2

4 t2Sign(t)~∂2δ(3)(~x),

〈Ai(x)πj(0)〉=−〈πj(x)Ai(0)〉=− i2δijSign(t)δ(3)(~x)− iξ2
4 t2Sign(t)∂i∂jδ(3)(~x),

〈Ai(x)π0(0)〉=−〈π0(x)Ai(0)〉= 〈A0(x)πi(0)〉=−〈πi(x)A0(0)〉=− iξ2
2 |t|∂iδ

(3)(~x),

〈A0(x)π0(0)〉=−〈π0(x)A0(0)〉=− iξ2
2 Sign(t)δ(3)(~x),

〈πi(x)πj(0)〉= 〈πj(x)πi(0)〉= i

2

(
1+ ξ2

2
ξ1

)
|t|
(
∂i∂jδ

(3)(~x)+δij~∂2δ(3)(~x)
)

+ iξ2
12 t

3Sign(t)∂i∂j~∂2δ(3)(~x),

〈πi(x)π0(0)〉= 〈π0(x)πi(0)〉= i

2

(
1+ ξ2

2
ξ1

)
Sign(t)∂iδ(3)(~x)+ iξ2

4 t2Sign(t)∂i~∂2δ(3)(~x),

〈π0(x)π0(0)〉= i

(
1+ ξ2

2
ξ1

)
δ(t)δ(3)(~x)+ iξ2

2 t2|t|~∂2δ(3)(~x). (B.18)

It can be checked directly that for every choice of ξ1, ξ2, the Ward Identities are all satisfied,
which reveals the Carrollian conformal invariance of the theory. Though these expressions
look complicated, we can select the Landau-type gauge ξ2 = 0 to simply them and obtain
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the nonvanishing correlators listed in (4.16). Here we list them again for completeness.

〈Av(x)Av(0)〉 = −2i|t|δ(3)(~x), 〈Av(x)πi(0)〉 = −〈πi(x)Av(0)〉 = 3i
2 |t|∂iδ

(3)(~x),

〈Av(x)π0(0)〉 = −〈π0(x)Av(0)〉 = iSign(t)δ(3)(~x),

〈Ai(x)πj(0)〉 = −〈πj(x)Ai(0)〉 = − i2δijSign(t)δ(3)(~x),

〈πi(x)πj(0)〉 = 〈πj(x)πi(0)〉 = i

2 |t|
(
∂i∂jδ

(3)(~x) + δij~∂
2δ(3)(~x)

)
,

〈πi(x)π0(0)〉 = 〈π0(x)πi(0)〉 = i

2Sign(t)∂iδ(3)(~x), 〈π0(x)π0(0)〉 = iδ(t)δ(3)(~x).

(B.19)

C Ward identities and 2-point correlation functions

In this appendix, we review the constraints on the 2-point correlation functions of the
primary operators from the Ward identities of Carrollian conformal symmetries. There
could be four classes of the correlators with different structures, which will be labeled by
Case 1.1, Case 1.2, Case 2.1, and Case 2.2. It turns out that the correlators discussed in
the main text belong to Case 2.1.

Similar to the case in CFT, the structure of 2-point correlation functions in CCFT
is very much constrained by the Ward identities of the symmetries. For the Carrollian
conformal symmetries, the corresponding Ward identities are listed in (C.1),

Pµ : (∂µ1 + ∂µ2 )〈O1O2〉 = 0,
D : xµ∂µ〈O1O2〉+ ∆1〈O1O2〉+ ∆2〈O1O2〉 = 0,

Jij : (xi∂j − xj∂i)〈O1O2〉+
〈

(J ijO1)O2
〉

+
〈
O1(J ijO2)

〉
= 0,

Bi : xi∂t〈O1O2〉+ 〈[Bi,O1]O2〉+ 〈O1[Bi,O2]〉 = 0,
K0 : (〈[K0,O1]O2〉+ 〈O1[K0,O2]〉)− xi(〈[Bi,O1]O2〉 − 〈O1[Bi,O2]〉) = 0,
Ki : (〈[Ki,O1]O2〉+ 〈O1[Ki,O2]〉) + xi(∆1 −∆2)〈O1O2〉

+ xj
(〈

[J ij ,O1]O2
〉
−
〈
O1[J ij ,O2]

〉)
+ t(〈[Bi,O1]O2〉 − 〈O1[Bi,O2]〉) = 0.

(C.1)
It should be mentioned that we have used the techniques explained in the appendix of [43]
to simplify the expression for Carrollian special conformal transformation generators K0,Ki.
These identities hold for all of the correlators appearing in this article. The one from the
translational generator Pµ requires that

〈O1O2〉 = f(xµ), (C.2)

where xµ = xµ1 − x
µ
2 .

As shown in [43], by solving the Ward identities, the 2-point correlators of the operators
in a CCFT is generically composed of two independent types, one being of the power-law
form, the other being proportional to the Dirac δ-function. In [43], the authors have
discussed the one of the power-law form in detail. In this appendix, we mainly focus
on the 2-point correlators for the primary operators in chain representations, and pay
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more attention to the correlators which appear as the generalized functions10 in general d
dimensions, including the Dirac δ-functions. The techniques used here is similar to the ones
in [43], and we strongly recommend the reader to find more details there.

It should also be stressed that here we only consider the correlators of the primary
operators. Some operators in the staggered modules, like π in the magnetic scalar theory,
are special in the sense that they are neither primary (KO 6= 0) nor descendent, and their
correlators can not be constrained by the discussions here. Even though these operators do
obey some Ward identities from their transformation laws, which help us to determine their
correlators, there is short of general rules on the correlators of these operators.

For the primary operators O1,O2, their 2-point correlation function f = 〈O1O2〉 is a
homogeneous function by using the Ward identity of D,

D : (t∂t + xi∂i)f(t, ~x) + (∆1 + ∆2)f(t, ~x) = 0. (C.3)

The solution to this equation is a combination of two independent solutions, the power-law
functions and the generalized functions like the (derivatives of) Dirac δ-distribution. For
example, the one-dimensional version of this differential equation is

x∂f(x) + λf(x) = 0, (C.4)

with the solution being
f(x) = c1x

−λ + c2∂
(λ−1)δ(x), (C.5)

where ci are constants, and c2 6= 0 for λ = 1, 2, . . . ,. In the Carrollian case, t direction and
xi directions could be considered separately, and thus the solution to (C.3) is simply

f(t, ~x) = g(t)g(~x), (C.6)

where g(t) and g(~x) are the homogeneous generalized functions of the form (C.5).
Another important constraint is from the Ward identity of Bi on the lowest-level

correlators f = 〈O1O2〉:
Bi : xi∂tf(t, ~x) = 0. (C.7)

By the “lowest-level”, we mean [Bi,O1] = [Bi,O2] = 0. Considering the fact xδ(x) = 0, we
find four independent solutions,

∂tf = 0 :


f(t,~x)∝P (~x), (Case 1.1)

f(t,~x)∝
∏
i

∂nii (~∂2)nδ(d−1)(~x), ∆1+∆2 = d−1+
∑
i

ni+2n, (Case 1.2)

xif = 0 :

f(t,~x)∝P (t)δ(d−1)(~x), (Case 2.1)

f(t,~x)∝ ∂ntt δ(t)δ(d−1)(~x), ∆1+∆2 = d+nt, (Case 2.2)

where both P (t) and P (~x) are the power-law functions, and Case 1.2 appears for ∆1 + ∆2 =
d − 1, d, d + 1, . . . and Case 2.2 appears for ∆1 + ∆2 = d, d + 1, d + 2, . . .. In fact, the
correlators of the primary operators in this paper belong to Case 2.1.

10A nice introduction to the generalized functions can be found in [58].
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The Case 1.1 with f(t, ~x) ∝ P (~x) being the power-law function has been discussed
in [43]. In the rest of this section, we first repeat the constraints in Case 1.1 and then
discuss the other situations.

C.1 Case 1.1 and Case 1.2

As shown in [43], the chain representations can have the following forms

(j)
(j)→(j), j 6= 0

(0)→ (1)→ (0),
· · · → (j)→ (j + 1)→ (j + 2)→ · · · ,
· · · → (j)→ (j − 1)→ (j − 2)→ · · · .

(C.8)

For Case 1.1, the correlators could be the power-law functions of xµ, and the non-vanishing
2-point correlators only appear in the case that O1,O2 have (partially) inverse structure,
and the selection rule is ∆1 = ∆2. The correlator takes the form

〈O1O2〉 =
C (t/|~x|)r Im1,m2

j1,j2

|~x|(∆1+∆2) δ∆1,∆2 , (C.9)

where I is a rank-0 homogeneous function of xi representing the tensor structure of Oi.
For Case 1.2, ∆1 + ∆2 ≥ d− 1 ∈ Z, there exists another solution for the lowest-level

2-point correlators,

f(t, ~x) ∝
∏
i

∂nii (~∂2)nδ(d−1)(~x),
∑
i

ni = ∆1 + ∆2 − (d− 1)− 2n, ni ∈ N+. (C.10)

For the higher-level correlators, the solutions are of the form f ′(t,~x)∝ tr∏i∂
n′i
i (~∂2)nδ(d−1)(~x)

with∑in
′
i−2n−r= ∆1+∆2−(d−1),n′i ∈N+. The full restriction on the 2-point correlators

in Case 1.2 is similar to Case 1.1, except the case that one of the operators is a scalar,
which will be discussed separately later. The reason that the selection rule is (almost) the
same is that the power laws are proportional to (derivatives of) Dirac δ-functions under
canonical regularization [58]:

2
Ω(d−1)

rλ

Γ
(
λ+d−1

2

)
∣∣∣∣∣∣
λ=−(d−1)−2k

= (−1)k(d− 2)!
2kk!(d− 1 + 2k − 2)!(

~∂2)kδ(d−1)(~x) (C.11)

for k = 0, 1, 2, . . ., with r2 = ∑
i x

2
i . As a result, most of the constraints from the Ward

identities are the same as the ones in Case 1.1. Thus if ∆1 + ∆2 ≥ d− 1 ∈ Z and ∆1 = ∆2,
the correlators are non-vanishing for O1 and O2 in partially inverse representations, and
the structures of the correlators are of the form〈
O{s1}

1,l1 O
{s2}
2,l2

〉
= C tr (Ds1Ds2(~∂2)nδ(d−1)(~x)− traces), with Dsi = ∂si,1 · · · ∂si,li (C.12)

The explicit selection rule is rather tedious, and we do not repeat them here. The interested
readers may refer [43] for detailed discussions.
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The exceptional situation in Case 1.2 is when one of the primary operators is in scalar
representation (0). In this case, there is one additional set of the selection rules, due to
the special property of Dirac δ-function. In the following, we explain how this additional
selection rule emerges and show the structure of the correlators in this situation. Firstly,
for the simplest case that both O1 and O2 are scalars with ∆1 + ∆2 = d− 1, the correlator
is f = 〈O1O2〉 ∝ δ(d−1)(~x) in Case 1.2. It is known that

Case 1.1: xif ∝
xi

r(d−1) 6= 0,

Case 1.2: xif ∝ xiδ(d−1)(~x) = 0,
(C.13)

which makes the constraints from the Ward identities of Ki on f for Case 1.1 and 1.2
different,

Case 1.1: solution: f = C1
r(d−1) , constraint: ∆1 = ∆2 = d− 1

2 ,

Case 1.2: solution: f = C2δ
(d−1)(~x), constraint: ∆1 + ∆2 = d− 1.

(C.14)

Thus for Case 1.2, we have the selection rule

〈O1O2〉 = C δ(d−1)(~x), O1,O2 ∈ (0), ∆1 + ∆2 = d− 1. (C.15)

Next, we consider the case that O1 is in more complicated chain representation. In
the case that O1 ∈ (j) is a symmetric traceless tensor (STT) with spin j, O2 ∈ (0) is a
scalar. Using the fact xi∂iδ(d−1)(~x) = −δ(d−1)(~x), we find that the restrictions from the
Ward identities of Ki are〈
O{s1,...,sj}

1 O2
〉

= C (∂s1 · · · ∂sjδ(d−1)(~x)− traces), ∆1 = 1, ∆2 = d− 2 + j. (C.16)

The “traces” term is the trace of ∂s1 · · · ∂sjδ(d−1)(~x), and subtracting this term makes the
correlators respect the traceless condition of O1. Moreover for O1 ∈ (j)2 → (j)1 and
O2 ∈ (0), we have11〈

O{s1,...,sj}
1,(j)2

O2
〉

= C (∂s1 · · · ∂sjδ(d−1)(~x)− traces), 〈O1,othersO2〉 = 0,

∆1 = 1, ∆2 = d− 2 + j,
(C.17)

For O1 being a decreasing chain, O1 ∈ (j + n) → (j + n − 1) · · · → (j + 1) → (j) and
O2 ∈ (0), we have〈
O{s1,...,sl1}

1,l1=j+r O2

〉
= C tr

r! (∂s1 · · · ∂sl1 δ
(d−1)(~x)− traces), ∆1 = 1,∆2 = d− 2 + j, (C.18)

where O1,l1 is the spin-l1 part of O1. For O1 in an increasing chain representation, O1 ∈
(j)→ (j + 1) · · · → (j + n− 1)→ (j + n), and O2 ∈ (0), the correlators vanish except for
the highest-rank sector in O1. Namely, we have〈
O{s1,...,sj}

1,(j) O2
〉

= C (∂s1 · · · ∂sjδ(d−1)(~x)−traces), 〈O1,othersO2〉 = 0, ∆1+∆2 = d−1+j.
(C.19)

11Here we use subscripts to distinguish different sectors of (j)2 → (j)1 with the same spin j. Similar
notation for (0)3 → (1)2 → (0)1 will appear below.
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And finally, for O1 ∈ (0)3 → (1)2 → (0)1 and O2 ∈ (0), we have

〈
O1,(0)3O2

〉
= C δ(d−1)(~x), 〈O1,othersO2〉 = 0, ∆1 + ∆2 = d− 1. (C.20)

We have presented all the exceptional cases involving a scalar primary operator. Here we
only discuss the case that the other operator belong to a chain representation, and we do
not discuss the case that the other operator is in a net-like representation.

C.2 Case 2.1 and 2.2

Case 2.1 and Case 2.2 come from the fact that xiδ(d−1)(~x) = 0 solves the equation of the
Ward identities of Bi. The selection rules for these two cases are very different from the
ones in Case 1.1 and Case 1.2.

First we consider Case 2.1 with the operators being the symmetric traceless tensors
(STTs) and in the singlet representations (j). Since the spacial dependence in the correlators
is always δ(d−1)(~x), the only possible non-vanishing lowest-level correlator is from the case
that O1 and O2 have the same spin, l1 = l2. It can be checked that the Ward identities
of Ki are manifestly satisfied using the fact that xiδ(d−1)(~x) = 0, and there is no selection
rule on ∆1 and ∆2. Therefore we have

〈O1O2〉 = C t(d−1−∆1−∆2)δ(d−1)(~x), l1 = l2 = 0,〈
Oi11 O

j1
2

〉
= C δi1j1t

(d−1−∆1−∆2)δ(d−1)(~x), l1 = l2 = 1,〈
Oi1i21 Oj1j22

〉
= C

(
δi1j1δ

i2
j2

+ δi1j2δ
i2
j1
− 2
d− 1δ

i1i2δj1j2

)
t(d−1−∆1−∆2)δ(d−1)(~x), l1 = l2 = 2,

...〈
Oi1···is1 Oj1···js2

〉
= C

(
δi1(j1 · · · δ

is
js) − trace

)
t(d−1−∆1−∆2)δ(d−1)(~x), l1 = l2 = s.

(C.21)

The “trace” term is to cancel the trace of O1 indices and the trace of O2 indices, as both
O1 and O2 are STTs. The coefficient C’s are undetermined constants.

For the chain representations, there are very limited restrictions for the correlators
being non-vanishing. The calculations show that if two chain representations have the same
sub-sector, the correlators of the operators in these subs-sectors and in the higher levels are
non-vanishing. In other words, if

O1 ∈ · · · → (jn+1)→ (jn)→ (jn−1)→ · · · ,
O2 ∈ · · · → (jm+1)→ (jm)→ (jm−1)→ · · · , with jn = jm

(C.22)

then 〈
O1,l1=j≥nO2,l2=j≥m

〉
6= 0. (C.23)
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For the chains, there are the selection rules on ∆1 and ∆2, but the specific selection rule
must be discussed case by case. For examples, we have〈
O{s1,...,sl1}

1,l1 O{r1,...,rl2}
2,l2

〉
=C

(d−1−∆1−∆2)! t(d−1−∆1−∆2+l1+l2)

(d−1−∆1−∆2+l1+l2)! (∂s1 · · ·∂sl1∂r1 · · ·∂rl2 δ
(d−1)(~x)−traces)

for O1,O2 ∈ ·· ·→ (2)→ (1)→ (0), with ∆1 = ∆2 = 1.

(C.24)

〈
O{s1,...,sl1}

1,l1 O{r1,...,rl2}
2,l2

〉
=C

(d−1−∆1−∆2)! t(d−1−∆1−∆2+l1+l2−2)

(d−1−∆1−∆2+l1+l2)!
(
δ

(r1
(s1
∂s2 · · ·∂sl1 )∂

r2 · · ·∂rl2 )δ(d−1)(~x)−traces
)

for O1,O2 ∈ ·· ·→ (3)→ (2)→ (1), with ∆1 = ∆2 = 0.
(C.25)

Especially, we have

〈
O1,(0)3O2,(0)3

〉
= C

t(d−1−2∆+2)

(5− 2∆)(∆− 3)∂
2δ(d−1)(~x)

〈
O1,(0)3O

r
2,(1)2

〉
= C

t(d−1−2∆+1)

(∆− 3) ∂rδ
(d−1)(~x)

〈
Os1,(1)2

O2,(0)3

〉
= C

t(d−1−2∆+1)

(∆− 3) ∂sδ
(d−1)(~x)〈

O1,(0)3O2,(0)1

〉
= C t(d−1−2∆)δ(d−1)(~x)〈

Os1,(1)2
Or2,(1)2

〉
= C

1−∆
∆− 3 t

(d−1−2∆)δsrδ
(d−1)(~x)〈

O1,(0)1O2,(0)3

〉
= C t(d−1−2∆)δ(d−1)(~x) 〈others〉 = 0

for O1,O2 ∈ (0)3 → (1)2 → (0)1, with ∆1 = ∆2 = ∆

(C.26)

The selection rule for Case 2.2 is the same as the ones for Case 2.1. Different from
the relation between Case 1.1 and 1.2, there is no exceptional situation. The analog of the
exceptional case in Case 1.2 is when ∆1 + ∆2 = d with the correlator f ∝ δ(t)δ(d−1)(~x),
but the constraint from the Ward identities of Ki gives similar selection rules for Case 2.1
and 2.2.

The correlators appeared in the main text are all of Case 2.1. The primary operator in
the electric scalar theory is the field φ, and the correlator is 〈φ(x)φ(0)〉 = i

2 |t|δ
(d−1)(~x). It

can be checked that the correlator satisfies the Ward identities, no matter if the temporal
part is in power of t or |t|, and this correlator matches the form of (C.21). Similar to
the electric scalar theory, the magnetic scalar theory have the primary operator φ with
〈φ(x)φ(0)〉 = 0, which obviously matches the form of (C.21). The primary operators in
the electric sector of electromagnetic theory are Aµ = (A0, Ai). They are in (1) → (0)
representation and the corresponding correlators are (B.10). These correlators have the same
form with (C.24). Finally, the fundamental operators Aα = (Av, Ai, A0) in the magnetic

– 46 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
0

sector of electromagnetic theory are primary operators, which are in (0) → (1) → (0)
representation. Their correlators are in (B.18) which match the ones in (C.26) with
∆1 = ∆2 = 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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