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1 Introduction

Consistent truncations are a powerful technique that simplifies the dynamics of 10-/11-
dimensional supergravity by focusing on a restricted subset of fields. The key principle
behind a consistent truncation is to truncate to a subsector of fields, such that all solutions of
the truncated theory correspond to solutions of the original 10-/11-dimensional supergravity
theory. By considering only a, typically finite, subset of fields, consistent truncations provide
a powerful tool to find complicated new 10-/11-dimensional supergravity solutions and to
study their deformations. Consistent truncations have proven particularly powerful in the
AdS/CFT correspondence, since all well-understood AdS vacua of string theory do not admit
scale-separation and, thus, cannot be studied using the usual tools of lower-dimensional
effective theories.
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Exceptional Field Theory (ExFT) is a reformulation of 10-/11-dimensional supergravity
that unifies the metric and flux degrees of freedom and thereby makes manifest an exceptional
symmetry group.1 Over the last decade, this has proven extremely useful for constructing
consistent truncations, leading to a number of new examples preserving various amounts
of supersymmetry [2–18]. However, consistent truncations to three dimensions have, until
recently [19], remained largely unexplored. One reason is that the E8(8) ExFT requires
modifications for its local symmetry structure, i.e. the generalised Lie derivative, to close
into an algebra [20, 21]. Another is that there are no maximally supersymmetric AdS3
vacua, i.e. preserving 32 supercharges, of string theory, leaving no natural candidate for
constructing a consistent truncation with vacua. Indeed, while the consistent truncations
of 11-dimensional supergravity on S7 and S4 and of 10-dimensional supergravity on S5

contain maximally supersymmetric AdS vacua and are captured by a universal Ansatz in
ExFT [2, 3], the analogous S8 truncation of 11-dimensional supergravity does not exist,
while there are two S7 truncations of 10-dimensional supergravity but neither contains a
maximally symmetric vacuum [19, 22].

Nonetheless, there are half-maximal, i.e. N = (4, 4), supersymmetric AdS3 vacua of
string theory that are extremely intriguing. These are the AdS3 ×S3 ×S3 ×S1 and AdS3 ×
S3 × T 4 of IIB string theory (realising the “large” and “small” N = (4, 4) superconformal
symmetries), and, unlike in higher dimensions, can be supported by pure NS-NS flux.
Not only does this mean that there are also heterotic versions of these vacua (preserving
N = (4, 0) supersymmetry), but also that they can be readily studied via the string
worldsheet CFT [23–26].

Here we will focus on the N = (4, 4) AdS3 × S3 × S3 × S1 vacuum of IIB string
theory and show that it admits a consistent truncation to a 3-dimensional maximal gauged
supergravity, which was first studied in [27]. All vacua of this theory break at least half the
supersymmetries, reflecting the absence of a maximally supersymmetric AdS3 vacuum in
string theory. Key to constructing this consistent truncation is to add new fluxes to the S1

reduction of the consistent truncation of IIB supergravity on S3 × S3 [11]. We will also
show that this procedure for adding flux fails to produce a consistent truncation for the S1

reduction of other “dyonic” truncations to 4 dimensions [11, 28].
Using our consistent truncation, we will show that the AdS3 × S3 × S3 × S1 has a

rich moduli space of symmetry- and supersymmetry-breaking deformations, including some
that are analogous to the “flat deformations” studied for AdS4 × S5 × S1 [29–32]. While
some of these deformations preserve some amounts of supersymmetry, others break all
supersymmetries. Yet, surprisingly, at least a subset of vacua continue to be perturbatively
stable within IIB supergravity, similar to [32]. Our work also provides an uplift of the
supersymmetric deformation of 6-dimensional supergravity on S3 studied in [1] to IIB string
theory. As we will show, some supersymmetric deformations that appear non-compact in
6-dimensional supergravity [1] are compactified within the full 10-dimensional supergravity
theory. We will also find evidence of T-duality playing a role in the global properties of the
moduli space.

1For the purposes of this paper, we do not draw a distinction between ExFT and Exceptional Generalised
Geometry, since these agree when the “section condition” is solved, which we will always assume here.
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Another technical result of our work is the derivation of the potential of 3-dimensional
gauged supergravity [33, 34] in terms of the embedding tensor. The potential was previously
only known in terms of fermion shift matrices. As a by-product, we find a constraint that
must be obeyed by the embedding tensor of any 3-dimensional gauged supergravity that
can be uplifted to 10-/11-dimensional supergravity. This allows to prove the lack of a
higher-dimensional origin of some 3-dimensional gaugings, as we illustrate for an example.

The outline of our paper is as follows. We begin with a review of E8(8) ExFT in
section 2 and how to derive consistent truncations in this formalism in 3. In section 4
we derive the potential of 3-dimensional gauged supergravity in terms of the embedding
tensor and prove the lack of higher-dimensional origin of some 3-dimensional theories. Then,
we show how to add fluxes to consistent truncations in 5, allowing us to construct the
consistent truncation of IIB supergravity on S3 × S3 × S1. Using this truncation, we study
the moduli space of the AdS3 vacua in section 6, before concluding in section 7. We end
the paper by an example in appendix A of how to rule out a higher-dimensional origin for a
three-dimensional supergravity, a review of the construction of consistent truncations on S3

in appendix B and a discussion of the D1(2, 1;α) supermultiplets in appendix C.

2 Review of E8(8) exceptional field theory

The E8(8) exceptional field theory, first constructed in ref. [20], is an E8(8) duality-covariant
formulation of type II and 11d supergravities. It is defined on a set of 3 + 248 coordinates
made of three-dimensional external coordinates {xµ} and internal coordinates {YM} in
the 248-dimensional adjoint representation of E8(8). The dependence of the fields on these
coordinates is constrained by the “section constraints”2

ηMN∂M ⊗ ∂N = 0 ,

fMN
P ∂M ⊗ ∂N = 0 ,

(P3875)MN
KL∂K ⊗ ∂L = 0 ,

(2.1)

where fMN
P are the structure constants of E8(8), ηMN = 1

60 fMK
LfNL

K its Cartan-Killing
metric and (P3875)MN

KL is the projector on the representation 3875:

(P3875)MN
KL = 1

7 δ(M
KδN)

L − 1
56 ηMNη

KL − 1
14 f

P
M

(KfPN
L) . (2.2)

Here and in the following, E8(8) indices are raised and lowered by the Cartan-Killing
metric ηMN . The section constraints (2.1) ensure that the fields depends only on the 7- or
8-dimensional physical internal coordinates embedded in YM .

The theory describes the dynamics of the following bosonic fields:{
gµν ,MMN , Aµ

M , BµM
}
, (2.3)

with gµν the 3-dimensional external metric, MMN the generalized metric parametrizing
the coset space E8(8)/SO(16) and the gauge fields AµM and BµM . It is a gauge theory,

2We use the notation ⊗ to indicate that both derivatives may act on different functions.
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invariant under the generalized Lie derivative of parameters Υ = (ΛM ,ΣM ), whose action
on a vector VM of weight λ is given by

LΥV
M = ΛN∂NVM − 60 (P248)MN

K
L V

N∂KΛL + λVM∂NΛN + fMN
KΣNV K , (2.4)

with (P248)MN
K
L = (1/60) fMNP f

PK
L the projector on the adjoint representation. These

transformations are well-defined (in particular, they close into an algebra) only if the
parameters ΣM and the fields BµM are covariantly constrained: they have to satisfy
algebraic constraints similar to eq. (2.1) and be compatibile with the partial derivatives.
We require that

ηMNCM ⊗ C ′
N = 0 ,

fMN
P CM ⊗ C ′

N = 0 ,
(P3875)MN

KLCK ⊗ C ′
L = 0 ,

∀ CM , C ′
M ∈ {∂M ,ΣM , BµM} . (2.5)

The bosonic action of E8(8) exceptional field theory is invariant under the transforma-
tions (2.4) and has the expression

SExFT =
∫
d3x d248Y

√
|g|
(
R̂+ 1

240 DµMMND
µMMN + Lint +

1√
|g|

LCS

)
. (2.6)

R̂ is the E8(8)-covariantised Ricci scalar and the covariant derivative is defined as

Dµ = ∂µ − L(Aµ,Bµ) . (2.7)

Lint is a potential term depending only on internal derivatives, explicitly

Lint =
1

240 MMN∂MMKL∂NMKL − 1
2 MMN∂MMKL∂LMNK

− 1
7200 f

NQ
P f

MS
RMPK∂MMQK MRL∂NMSL

+ 1
2 g

−1∂Mg ∂NMMN + 1
4 MMN g−2∂Mg ∂Ng +

1
4 MMN ∂Mgµν ∂Ng

µν .

(2.8)

Finally, LCS is a Chern-Simons term required to impose the on-shell duality between scalar
and vector fields, given by

LCS = 1
2 ε

µνρ
(
Fµν

MBρM − fKL
N ∂µAν

K∂NAρ
L − 2

3 f
N
KL ∂M∂NAµ

KAν
MAρ

L

− 1
3 fMKL f

KP
Q f

LR
S Aµ

M∂PAν
Q∂RAρ

S
)
,

(2.9)

where FµνM is the covariant field strength of AµM (see eq. (2.26) of ref. [20]).

3 Consistent truncations to 3-dimensional N = 16 gauged supergravity

The E8(8) exceptional field theory is well suited to the construction of consistent truncation of
type II and 11d supergravities to three-dimensional maximal supergravity. These truncations
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arise as generalised Scherk-Schwarz reductions, described by an E8(8)-valued twist matrix
UM

M and a scale factor ρ. The truncation Ansätze are as follows [19, 35, 36]:

gµν(x, Y ) = ρ(Y )−2 g̊µν(x) ,

MMN (x, Y ) = UM
M (Y )UNN (Y )MMN (x) ,

Aµ
M (x, Y ) = ρ(Y )−1

(
U−1

)
M

M (Y )Aµ
M (x) ,

BµM (x, Y ) = ΣMM (Y )Aµ
M (x) ,

(3.1)

with
ΣMM = ρ−1

60 fM
PQ

(
U−1

)
PP

∂M
(
U−1

)
Q

P . (3.2)

The fields with flat indices M (in the 248 representation of E8(8)) belong to the three-
dimensional theory; all the dependence on the internal manifold is factored out in UM

M

and ρ. Note that with the definition of ΣMM the condition (2.5) is automatically satisfied.
The Ansätze (3.1) describe a consistent truncation if the following condition is satisfied:

LU
M
UN

M = XMN
P UP

M , (3.3)

with UM
M = ρ−1 (U−1)

M
M , UM = (UM , ΣM ) and XMN

P a constant tensor. This condition
ensures that the factorised form of the Ansätze (3.1) is preserved by the generalized Lie
derivative, e.g.

DµM(x, Y ) = UM
M (Y )UNN (Y )DµMMN (x) ,

L(Aµ,Bν)Aµ(x, Y ) = ρ(Y )−1
(
U−1

)
M

M (Y ) JAµ,AνKM (x) ,
(3.4)

where

DµMMN = ∂µMMN + 2Aµ
PXP (M

QMN)Q , and JAµ,AνKM = XPQ
MAµ

PAQ
ν .

(3.5)
Thus, for a given twist matrix UM

M satisfying the consistency condition (3.3), the
action (2.6) reduces to three-dimensional N = 16 gauged supergravity [33, 34]. The
constant tensor XMN

P plays the role of the embedding tensor of the three-dimensional
gauged supergravity, as is clear from its appearance in (3.5) in the gauge-covariant derivative
and the gauge algebra of the vector fields. From eq. (3.3), it has the following expression in
terms of the twist matrix and ρ:

XMN
P = −ρ−1 ΓMN

P + ρ−1 fPNQ f
QK

L ΓKM
L − 1

60 ρ
−1 fPKN fML

Q ΓKQ
L

− 1
2 ρ

−1 fPNQ f
QK

M ΓRK
R +

(
δM

KδN
P − 1

2 fM
LKfNL

P
)
ξK .

(3.6)

Here, we defined the E8(8) current ΓMN
P =

(
U−1)

M
K
(
U−1)

N
L∂KUL

P and the trom-
bone gauging

ξM = 2UM
N∂Nρ

−1 − ρ−1 ΓNM
N . (3.7)
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The embedding tensor is most nicely expressed once projected on the adjoint representation:

XMN = − 1
60 XMP

Q fNQ
P = −2 ρ−1 Γ(MN) − ρ−1 ΓP (M

Q fN)Q
P + 1

2fMN
P ξP

= −14 ρ−1 (P3875)MN
PQ ΓPQ − 1

4 ρ
−1 ηMN ΓP

P − 1
2fMN

P ξP ,

(3.8)

with the projection of the current ΓMN = − 1
60 ΓMP

Q fNQ
P . In the following, we will focus

on gaugings with ξM = 0.
The three-dimensional action follows from inserting the Ansätze (3.1) in the ExFT

action (2.6). The expressions of the kinetic and Chern-Simons terms result immediately
from eq. (3.4):

Lkin = 1
240 DµMMND

µMMN =
gSS

ρ2

240 DµMMND
µMMN ,

LCS =
gSS

−ρ−1 εµνρXMN Aµ
M
(
∂νAρ

N − 1
3 JAν ,AρKN

)
.

(3.9)

However, the case of the potential term Lint, leading to a potential V for the three-
dimensional scalars MMN , is more subtle. We expect V to be quadratic in the embedding
tensor, which makes the identification of XMN more complicated. Moreover, the potential
of three-dimensional N = 16 gauged supergravity in terms of the embedding tensor is
unknown, with currently the potential only expressed in terms of the fermion shift matrices
of the gauged supergravity [33, 34]. Thus, in the following, we will follow the truncation
procedure carefully and thereby construct the potential of the three-dimensional N = 16
gauged supergravity in terms of the embedding tensor.

4 Deriving the potential of N = 16 gauged supergravity

Here we will use the E8(8) ExFT Lagrangian and the consistent truncation Ansatz (3.1)
to derive the potential of three-dimensional N = 16 gauged supergravity [33, 34] in terms
of the embedding tensor. Not only is this an interesting application of ExFT, relying
on purely bosonic considerations and bypassing the usual construction of the gauged
supergravity potential using supersymmetry,3 but the potential is crucial for finding vacua
of the three-dimensional theory and uplifting these in the later parts of this paper.

In order to derive the potential, we adopt the following strategy. We want Lint (2.8)
to reduce to the embedding tensor squared upon inserting the generalised Scherk-Schwarz
Ansätze (3.1). However, as in higher dimensions, e.g. [40–42], this does not have to match
identically, but only up to total derivative terms and terms which violate the section
condition. The possible boundary terms are

1√
|g|
∂M

(√
|g|∂NMMN

)
and 1√

|g|
∂M

(
MMN∂N

√
|g|
)
. (4.1)

3Note that the same strategy was recently used to impressively derive the potential of maximal two-
dimensional gauged supergravity [37], where fermions are extremely poorly understood. As a result, in that
case, the bosonic E9(9) ExFT [38, 39] provides the only currently accessible route for computing the gauged
supergravity potential.
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However, since the N = 16 supergravity potential will be given by terms quadratic in XMN
P ,

we do not want the boundary terms to involve any double derivative terms. Therefore, the
two boundary terms (4.1) can only appear via the combination

1√
|g|

∂M

(√
|g| ∂NMMN + 4

3 MMN∂N

√
|g|
)
. (4.2)

Now, we first insert the generalized Sherk-Schwarz Ansätze (3.1) into the expression of
Lint (2.8) with the additional total derivative (4.2)

Lint+
a√
|g|
∂M

(√
|g|∂NMMN+4

3M
MN∂N

√
|g|
)

=
gSS

−1
2M

MN ΓMKΓN
K−MMN ΓMKΓKN− 1

2 ΓMNΓ
NM− 1

2M
MNMKLΓMKΓNL

− 1
2M

MNMKLΓMKΓLN+3
2 (a−1)MMNΓMN

KΓLK
L− a

2M
MNΓKM

KΓLN
L

+
(1
2−a

)
MMNΓKM

LΓLN
K+MMNΓMK

LΓLN
K− 1

2M
MNMKLfQL

PΓPN
QΓMK .

(4.3)
Secondly, knowing that the N = 16 potential must be quadratic in XMN , we consider the
most general quadratic function in XMN and develop it in E8(8) currents using eq. (3.8).
Note that in higher dimensions, there exist only two quadratic combinations of the embed-
ding tensor:

XMN
PXQP

NMMQ and XMN
PXQR

SMMQMNRMPS , (4.4)

or equivalently with eq. (3.8)

XMNXPQMMP ηNQ and XMNXPQMMPMNQ. (4.5)

However, in three dimensions, because the vector fields transform in the adjoint representa-
tion of E8(8), we can write two additional terms

XMNXPQ η
MP ηNQ and XMNXPQ η

MNηPQ , (4.6)

where the second term corresponds to the square of the singlet part of the embedding tensor.
It turns out that for gaugings that arise from consistent truncations, these two terms (4.6)

can be related to the square of the trombone tensor. We can square eq. (3.8) to derive an
expression for XMNX

MN in terms of the current Γ. We find

XMNX
MN = 21ρ−2 ΓMN ΓNM + 19ρ−2

(
ΓM

M
)2

− 15 ξM ξM . (4.7)

Similarly, squaring the trombone tensor ξ gives

ξM ξM = ρ−2
(
ΓM

MΓN
N + ΓMNΓ

NM
)
. (4.8)

We can now deduce
XMN X

MN = 6 ξM ξM − 2 ρ−2
(
ΓM

M
)2

, (4.9)
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which can be expressed entirely in terms of XMN after tracing eq. (3.8):

XMN X
MN = 6 ξM ξM − 1

1922
(
XM

M
)2

. (4.10)

Thus, (4.10) is a constraint on the embedding tensor of three-dimensional supergravity
which must be satisfied in order for it to have an uplift to 10-/11-dimensional supergravity
(see appendix A for an example). Note that this constraint is not implied by the quadratic
constraint. To see this, simply observe that the theory with E8(8) gauging has XMN = ηMN

and ξM = 0 [33, 34], violating (4.10).
Since we are focusing on gaugings with vanishing trombone ξM = 0, (4.10) implies that

the two terms in (4.6) are proportional and we only need to consider one of these terms
in the gauged supergravity potential. Thus, the most general Ansatz for the supergravity
potential, for gaugings that have an uplift to 10-/11-dimensional supergravity,4 is

−V = XMNXPQ

(
αMMPMNQ + βMMP ηNQ + δ ηMP ηNQ

)
=

gSS
ρ−2

(
14αΓMN ΓPQMMPMNQ + 14αΓMN ΓPQMMQMNP

+ 2βMMN ΓMKΓKN + βMMN ΓMK ΓN
K + (−12α+ 2 δ) ΓMN ΓMN

− 2βMMNΓMK
L ΓLN

K + βMMNΓKM
L ΓLN

K +
(
7α+ β

2

)
MMNΓKM

K ΓLN
L

+ 14αMMNMKLfQL
PΓPN

Q ΓMK

)
.

(4.11)
Finally, by requiring √

|g|Lint =
gSS

−
√
|̊g|V , (4.12)

the parameters in (4.3) and (4.11) are fixed to

α = 1
28 , β = 1

2 , δ = 13
28 , a = 1 . (4.13)

With the generalized Scherk-Schwarz Ansätze (3.1) and for gaugings satisfying (4.10),
the action (2.6) becomes

SExFT =
gSS

∫
d248Y ρ−1

∫
d3x

[√
|̊g|
(
R̊+ 1

240 DµMMND
µMMN − V

)
− εµνρXMN Aµ

M
(
∂νAρ

N − 1
3 JAν ,AρKN

)]
,

(4.14)

with the potential5

V = XMN XPQ

( 1
28 MMPMNQ + 1

2 MMP ηNQ + 13
28 η

MP ηNQ
)
. (4.15)

4If we do not require the three-dimensional gauged supergravity to arise from a consistent truncation, (4.10)
may be violated and we need to include both terms of (4.6). However, here we are not interested in
such gaugings.

5Comparison with the potential in [33, 34], expressed in terms of fermion shift matrices, requires a careful
SO(16) normalisation. We will not carry out this comparision here, as the embedding tensor expression is
the more useful one for ExFT.
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As in higher dimensions, XMN obtained from (3.3) automatically satisfies the linear con-
straint of the 3-dimensional maximal gauged supergravity [33, 34], and the section condition
implies the quadratic constraints for XMN .

5 Adding fluxes to consistent truncations

In order to construct the consistent truncation around the N = (4, 4) AdS3 × S3 × S3 × S1

vacuum of IIB supergravity, a promising starting point is the dyonic S3 × S3 truncation of
IIB supergravity constructed in [11], and further reducing this on S1. However, this will
not give the correct AdS3 vacuum since the truncation is missing the required 7-form flux
on S3 × S3 × S1. Indeed, the 3-dimensional gauged supergravity that would be obtained
this way does not have any AdS3 vacua. We can remedy this situation by defining a new
consistent truncation by adding a 7-form flux to the one obtained from the S3×S3 reduction
constructed in E7(7) ExFT.

This motivates the following question: given a consistent truncation, i.e. UMM , satisfy-
ing (3.3), when can we add a new flux component of string theory to the compactification
to obtain a new consistent truncation? Adding a new flux component to the truncation is
equivalent to twisting the generalised frame as follows

UM
M −→ U ′

M
M = UM

N exp(C)NM , (5.1)

where C denotes the E8(8) generator corresponding to the potential we want to add to
the compactification. The effect of the twist (5.1) is that the generalised Lie derivative of
U ′ satisfies

LU′
M
U ′
N
M =

(
LU

M
UN

N + FPQ
N UM

P UN
Q
)
exp(C)NM , (5.2)

where FMN
P is a tensor in the 1 ⊕ 248 ⊕ 3875 of E8(8), i.e. the same representation

as the embedding tensor, corresponding to the field strength of the potential C in (5.1).
Using (3.3), we now have

LU′
M
U ′
N
M =

(
XMN

P + ρ−1 FMN
P
)
U ′
P
M , (5.3)

where we defined
FMN

P ≡
(
U−1

)
M

M
(
U−1

)
N

N UP
P FMN

P , (5.4)

and XMN
P is already constant. Therefore, we have a consistent truncation if and only if

ρ−1 FMN
P is constant.

A particularly simple way of having constant ρ−1 FMN
P is to switch on fluxes which

are stabilised by the twist matrix UMM , which typically only lives in a subgroup G ⊂ E8(8).
Therefore, in this case, we can simply tune the G-singlet components of the flux FMN

P to
be proportional to ρ to obtain a new consistent truncation.

5.1 Adding fluxes to the S3 truncation of 6-dimensional supergravity

As a warm-up for the S3 × S3 × S1 truncation, let us demonstrate this methodology
for the consistent truncation of N = (1, 1) 6-dimensional supergravity on S3, which was
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constructed in [1]. As discussed in [1], the consistent truncation of N = (1, 1) 6-dimensional
supergravity to 3-dimensional half-maximal gauged supergravity can be described using the
SO(8, 4) ExFT [36, 43]. On the other hand, the consistent truncation on S3 is conveniently
described by twist matrices living in SL(4) ≃ SO(3, 3) [2, 3, 6] with the embedding
SO(3, 3) ⊂ SO(4, 4) ⊂ SO(8, 4). However, the twist matrix in [1] differs from this SO(3, 3)
twist matrix [2, 3, 6] by an additional parameter, λ, which gives rise to an external 3-form
flux or, equivalently, a new internal 3-form flux.

The construction of the SL(4) ≃ SO(3, 3) twist matrix describing the consistent trun-
cation on S3 is detailed in appendix B. To demonstrate our methodology, we will now
show how the parameter λ introduced in [1] can be obtained by the twisting procedure
described above. Thus, we want to consider the SO(3, 3) ⊂ SO(4, 4) twist matrix corre-
sponding to S3 (B.15) and add a 3-form flux via a SO(4, 4) twist. We begin by decomposing
SO(4, 4) → SO(3, 3)× SO(1, 1), such that

8 → 60 ⊕ 12 ⊕ 1−2 ,

28 → 150 ⊕ 62 ⊕ 6−2 ⊕ 10 .
(5.5)

Correspondingly, we write a SO(4, 4) vector VM as

VM =
(
V A, V z, V z̄

)
, (5.6)

where A = 1, . . . , 6 labels the vector of SO(3, 3) and z, z̄ label the 12 and 1−2, respectively.
We denote by UA

A the SO(3, 3) twist matrix corresponding to the S3 truncation
constructed in [3, 6] and obtained from (B.10), (B.9), (B.15). Then, we can add a 3-form
potential by twisting with the SO(4, 4) generator

(eC)MN = ηMN + CA
(
tA
)MN

, (5.7)

with CA an element of the 62, and
(
tA
)MN

the generator corresponding to SO(4, 4) whose
only non-zero component is (

tA
)Bz

= ηAB . (5.8)

Here ηMN and ηAB are the SO(4, 4) and SO(3, 3) invariant metrics, respectively, and are
used to raise/lower the corresponding vector indices. Decomposing with respect to the
geometric SL(3)× R+ of the S3, the coordinates on S3 live in the Y A =

(
yi, yi

)
, i = 1, 2, 3,

while CA =
(
Ci, C

i
)

naturally contains a 2-form Ci. The field strength H(3) = ∂ACA = ∂iC
i

is a singlet of SO(3, 3) and thus we see that ρ−1FMN
P in (5.4) is constant and we obtain a

consistent truncation with a new 3-form flux. Evaluating the twist matrix

U ′
M
M = (eC)MNUN

M , (5.9)

explicitly using (5.7) and setting Ci = ρ−1 λ ξi, with ∇iξ
i = 1, in the notation of [1], we

obtain precisely the twist matrix used in [1] for the consistent truncation of 6-dimensional
N = (1, 1) supergravity on S3 with H3 flux. We will now follow this same procedure in the
next section to obtain the consistent truncation of IIB supergravity on S3 × S3 × S1 with
7-form flux.
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5.2 Adding flux to the S3 × S3 × S1 truncation of IIB supergravity

Our strategy for constructing the consistent truncation on S3 × S3 × S1 with 7-form flux is
to embed the S3×S3 truncation of E7(7) ExFT [11] into E8(8) → E7(7)×SL(2), as described
in [19]. This will give us the consistent truncation on S3 × S3 × S1 without 7-form flux.
Then we add a 7-form flux to this truncation as outlined above.

5.2.1 The S3 × S3 truncation

Let us first review the dyonic S3 × S3 truncation of IIB supergravity [11], which forms the
starting point of our construction. The key step in the construction of [11] is that we can
use the SL(4) generalised frame (B.10) to form a generalised Leibniz parallelisation of E7(7)
via the embedding

E7(7) → SL(8) → SL(4)1 × SL(4)2 × R+ . (5.10)
The fundamental of E7(7) then decomposes as

56→28⊕28→
[
(6,1)2⊕(1,6)−2⊕(4,4)0

]
⊕
[
(6,1)−2⊕(1,6)2⊕

(
4,4

)
0

]
, (5.11)

where the first square brackets denote the branching of the 28 under SL(4)1 × SL(4)2 ×R+

and the second square brackets that of the 28. Crucially, for the generalised Leibniz
condition (3.3) to hold, the coordinates and generalised vector fields corresponding to the
SL(4)1 and SL(4)2 must be embedded within the 28 and 28, respectively, which we will
call “electric” and “magnetic” coordinates, following [11]. Thus, we write the 56 E7(7)
coordinates as

YM =
(
Y AB, YAB

)
, (5.12)

with A,B = 1, . . . , 8 labelling the fundamental of SL(8), corresponding to the decomposition
E7(7) → SL(8). Following the conventions of [11], the coordinates of the two SL(4) ExFTs
are embedded as Y IJ ⊂ Y AB, with I, J = 1, 2, 3, 8, and YAB ⊂ YAB, with A,B = 4, 5, 6, 7.
Solving the SL(4) ExFT section condition for Y IJ and YAB guarantees a solution to the
E7(7) ExFT, and we choose the solution where the six physical coordinates of IIB are

yi = Y i8, ỹa = Ya7 , i = 1, 2, 3 , a = 4, 5, 6 . (5.13)

This solution of the section condition defines the “geometric” SL(3)1 × R+
SL(4)1

⊂ SL(4)1

and SL(3)2 × R+
SL(4)2

⊂ SL(4)2 subgroups, that will play an important role when adding
flux in section 5.2.3.

We can now use one copy of the SL(4) frame (B.10) for each SL(4) subgroup of (5.10)
to construct a generalised parallelisation for the full E7(7) ExFT, with an embedding tensor
via (3.3) given as in (B.13) embedded in E7(7) as follows. Under E7(7) → SL(8), the
embedding tensor representation branches as

912 → 36 ⊕ 36 ⊕ 420 ⊕ 420 , (5.14)

and we only generate the 36 and 36 components, ηAB, η̃AB. Thus, the E7(7) embedding
tensor is given by

XAB,CD
EF = ηA[Cδ

EF
D]B − ηB[Cδ

EF
D]A ,

XAB
CD

EF = −η̃A[E
δ
F ]B
CD + η̃

B[E
δ
F ]A
CD .

(5.15)
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Because we are embedding the SL(4)1 coordinates in the 28 but those of SL(4)2 in the 28,
the twist matrix will generate an embedding tensor in the 36 for SL(4)1 and 36 for SL(4)2,
whose only non-vanishing components are

ηIJ = δIJ , η̃AB = δAB . (5.16)

We can also rescale their S3’s using their corresponding R+ generator. Without loss of
generality, we can rescale S3 to have radius α, using the R+

1 generator on the frame. The
embedding tensor then becomes

ηIJ = 1
α
δIJ , η̃AB = δAB . (5.17)

5.2.2 The S3 × S3 × S1 truncation

We now construct the consistent truncation on S3 × S3 × S1 by embedding the E7(7) twist
matrix corresponding to the S3 × S3 truncation reviewed above in 5.2.1 in E8(8) via the
branching E8(8) → E7(7) ×SL(2), such that 248 → (133,1)⊕ (56,2)⊕ (1,3). As explained
in [19], we can construct a consistent truncation on M × S1 to 3-dimensional gauged
supergravity by embedding a consistent truncation on M to 4-dimensional supergravity,
characterised by an E7(7) twist matrix and E7(7) scalar density σ, as well as the SL(2) twist
matrix given by

vi
i =

(
σ 0
0 σ−1

)
. (5.18)

Finally, the E8(8) scalar density satisfies ρ = σ2 to ensure a consistent truncation on M ×S1.
Employing this procedure for M = S3 × S3, gives us the consistent truncation on

S3 × S3 × S1. However, this does not have any AdS3 vacua, since we still need to add the
7-form flux. To do this, let us first review the group theory of the S3 × S3 truncation, since
this will allow us to determine whether the 7-form flux is stabilised by the twist matrix.

5.2.3 Adding flux

To add a 7-form flux to the above truncation, we need to determine whether the 7-form
flux is stabilised by the twist matrix on S3 × S3 × S1 constructed in section 5.2.2. Thus,
we need to understand whether IIB supergravity admits a 7-form field strength that is a
singlet under the two SL(4) groups in (5.10). To answer this question, we pick a gauge
where the 6-form potential lives entirely in S3 × S3 but depends on the S1 coordinate, z.
Therefore, in this gauge choice, the 6-form potential corresponds to an adjoint generator
of E7(7), and since the S1 coordinate is an E7(7) singlet, this adjoint generator must be a
singlet under SL(4)1 × SL(4)2 ⊂ SL(8) ⊂ E7(7) for us to have a consistent truncation.

IIB supergravity contains an S-duality doublet of 6-forms, which we can easily identify
using the decomposition E7(7) → SL(6) × SL(2) × R+

IIB, under which the E7(7) adjoint
decomposes as

133 → (35,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (1,2)±6

⊕
(
15,2

)
2 ⊕

(
15,1

)
−4 ⊕ (15,2)−2 ⊕ (15,1)4 .

(5.19)
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The 6-form doublet corresponds to the (1,2)6. To understand if one of the 6-forms in
the doublet are singlets under SL(4)1 × SL(4)2 ⊂ E7(7), we must decompose E7(7) with
respect to the common subgroup of SL(4)1 × SL(4)2 and SL(6)× SL(2), which is SL(3)1 ×
SL(3)2×R+

SL(4)1
×R+

SL(4)2
, as defined by the embedding of the physical coordinates in (5.13).

Important for us is the correct identification of the R+ charges in both decompositions. We
have, on the one hand,

E7(7) → SL(8) → SL(4)× SL(4)× R+
SL(8)

→ SL(3)1 × SL(3)2 × R+
SL(4)1

× R+
SL(4)2

× R+
SL(8) ,

(5.20)

and, on the other,

E7(7) → SL(6)× SL(2)× R+
IIB

→ SL(3)1 × SL(3)2 × R+
SL(2) × R+

SL(6) × R+
IIB .

(5.21)

Here, we label the R+’s with a subscript that refers to the groups they belong to. The R+

generators of the two decompositions are related as

R+
SL(6) = −1

2
(
R+

SL(4)1
+ R+

SL(4)2

)
,

R+
SL(2) =

1
4
(
R+

SL(4)1
− R+

SL(4)2
+ R+

SL(8)

)
,

R+
IIB = 1

2
(
R+

SL(4)1
− R+

SL(4)2
− 3R+

SL(8)

)
.

(5.22)

The branching of the adjoint (5.19) under SL(6)× SL(2)×R+
IIB in (5.21) needs to now

be compared with that via SL(4)1 × SL(4)2 × R+
SL(8), given by

133 → 63 ⊕ 70
→ (15,1)0 ⊕ (1,15)0 ⊕ (1,1)0 ⊕

(
4,4

)
2 ⊕

(
4,4

)
−2

⊕ (1,1)−4 ⊕ (1,1)4 ⊕
(
4,4

)
−2 ⊕

(
4,4

)
2 ⊕ (6,6)0 .

(5.23)

Using (5.22), we can now identify each of the singlet generators (1, 1)±4 with one of the SL(2)
doublet generators of charge ∓6. Therefore, we find exactly one singlet SL(4)1 × SL(4)2
generator, which we can write as t1238, corresponding to a 6-form potential. The other
SL(4)1 × SL(4)2 singlet generator, t4567, only differs by a compact generator and thus does
not correspond to a different physical field. Finally, the other elements of the SL(2) doublet
of 6-form potential can be mapped to the

(
4,4

)
2 ⊕

(
4,4

)
−2 generators, specifically t78 and

t8
7 and are clearly not SL(4) singlets.

Therefore, we can add a 7-form flux to the twist matrix using

UM
M −→ U ′

M
M = UM

N exp(C)NM , (5.24)

with CMN = λ z ρ−1 t1238M
N and λ a numerical parameter corresponding to the amount of

7-form flux. The resulting embedding tensor is most nicely written using the branching

E8(8) −→ E7(7) × SL(2) −→ SL(8)× SL(2)
248 (63,1)⊕ (70,1)⊕ (28,2)⊕ (28,2)⊕ (1,3)

XM
{
XA

B, X
ABCD, XAB i, XAB

i, Xα
}
,

(5.25)
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and has the following non-vanishing components under the SL(4)1 × SL(4)2 subgroups
of SL(8):

X(63,1);(28,2) :


XI

J
;KL+ = − 1

α
δI[KδL]

J ,

XA
I

;BJ+ = − 1
2α δABδJ

I ,

X(63,1);(28,2) :


XA

B
;
CD

+ = − δA
[CδD]B ,

XA
I

;
BJ

+ = −1
2 δA

BδIJ ,

X(70,1);(1,3) : XIJKL;++ = − λ

12
√
6
εIJKL .

(5.26)

With this embedding tensor, the potential (4.15) has a vacuum at the scalar origin when
λ = ±4

√
3
√
1 + (1/α2). The sign changes the chirality of the Killing spinors and, therefore,

without loss of generality, we will choose λ = 4
√
3
√
1 + (1/α2) from here onwards.

The gauge group of this supergravity is then

SO(4)× SO(4)⋉ Σ, (5.27)

with Σ a nilpotent algebra that can be decomposed into

Σ ≃ T̂34 ⊕ T12. (5.28)

The subalgebra T̂34 transforms in the representations 2 · (1
2 ,

1
2 ,

1
2 ,

1
2)⊕ 2 · (0, 0, 0, 0) of SO(4)2

and closes into T12, an abelian subalgebra that transforms in the adjoint of SO(4)2 (see
ref. [27] for more details).

5.3 Adding fluxes to other consistent truncations

We can also try to apply the same procedure we described here to turn on fluxes in other
consistent truncations. One set of natural candidates are the S1 reductions of the consistent
truncations to dyonically gauged 4-dimensional maximal supergravities [11, 28]. These
4-dimensional truncations arise from compactifications of 10-dimensional supergravity on
S6, S5 × S1, S4 × S2, with the 10-d theory corresponding to (massive) IIA/IIB when the
spheres have even/odd dimensions, respectively. The corresponding twist matrices for S6,
S5 × S1, S4 × S2 belong to SL(8− p)× SL(p), with p = 1, 2, 3 for the respective cases, and
are constructed as in appendix B.

Let us see whether we can turn on a similar flux as in the case of S3 × S3 × S1 for
these cases. Here we will consider the case of a flux which has one leg on S1, so as to
require the truncation to 3 dimensions. In this case, we can always choose a gauge where
the potential is fully on S7−p × Sp−1 and depends on the S1 coordinate. Turning on such a
flux only leads to a consistent truncation if we can find singlets in the 133 of E7(7) under
SL(8− p)× SL(p) for the respective cases of S7−p × Sp−1, p = 1, 2, 3, that correspond to
p-form potential. And, indeed for all these cases, the 133 only contains exactly one singlet,
corresponding to the R+ generator that commutes with SL(8− p)× SL(p).
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However, this R+ generator cannot correspond to a form potential. If it did, there would
also have been a corresponding compact generator in the same representation (with possibly
different R+ chargse), just as in (5.23), associated to the “dual” potential. Since we only
have one SL(8− p)×SL(p) singlet, this cannot be a p-form potential and, therefore, turning
on new fluxes with legs on S1 will not lead to consistent truncation for S7−p × Sp−1 × S1,
p = 1, 2, 3. This analysis also reveals why the S3 × S3 × S1 case is special: the 133
contains a 4-form of SL(8), i.e. the 70, which naturally contains the relevant singlets under
SL(4)× SL(4).

Our analysis does not rule out the possibility of adding fluxes whose only legs are on
S7−p × Sp, with none on S1. In this case, we could use the analysis above but look for
singlets in the 56 ⊗ 133, corresponding to the fluxes on S7−p × Sp.

6 Moduli of AdS3 × S3 × S3 × S1

6.1 The undeformed N = (4, 4) AdS3 × S3 × S3 × S1 solution

At λ = 4
√
3
√
1 + (1/α2), the three-dimensional solution described by the embedding

tensor (5.26) corresponds to the consistent truncation of the pure NSNS ten-dimensional
solution [44]

ds2 = ℓ2AdS ds2 (AdS3) + α2 ds2(S3)+ ds2(S̃3)+ dz2,

H(3) = 2
(
ℓ2AdS Vol(AdS3) + α2 Vol

(
S3)+Vol

(
S̃3)) , (6.1)

with H(3) = dB(2) and

ℓ2AdS = α2

1 + α2 . (6.2)

The S1 coordinate z has periodicity z → z + 1.
The AdS3 solution (6.1) preserves N = (4, 4) supersymmetry, with super-isometry group

G = D1(2, 1;α)L ×D1(2, 1;α)R, i.e. two copies of the large N = 4 supergroup. The even
part of D1(2, 1;α) is isomorphic to SL(2,R)× SO(3)× S̃O(3) and the bosonic isometries of
the AdS3 ×S3 × S̃3 background are built from the even part of G. The AdS3 isometry group
is SO(2, 2) ≃ SL(2,R)L×SL(2,R)R, and the factors SO(3)L×SO(3)R × S̃O(3)L× S̃O(3)R ≃
SO(4)× S̃O(4) combine into the isometry groups of the two spheres. Additionally, there is
a U(1)F symmetry due to the S1 factor in (6.1). The spectrum organizes into multiplets
of G, made out of products of long representations [ℓ, ℓ̃] of D1(2, 1;α) (see appendix C for
a review of the representations of D1(2, 1;α)), and carrying a charge n under the U(1)F .
Explicitly, the spectrum is [45]⊕

ℓ,ℓ̃≥0, n

(
[ℓ, ℓ̃]⊗ [ℓ, ℓ̃]

)
n

⊖ [0, 0]s ⊗ [0, 0]s . (6.3)

In each factor the lowest conformal dimension is

hL = hR = −1
2 + 1

2

√
1 + 4 ℓ(ℓ+ 1) + 4α2 ℓ̃(ℓ̃+ 1) + α2(2πn)2

1 + α2 , (6.4)
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with n corresponding to the S1 harmonics, and the lowest conformal dimension of [ℓ, ℓ̃]⊗[ℓ, ℓ̃]
is then

∆
ℓ, ℓ̃, n

= hL + hR = −1 +

√
1 + 4 ℓ(ℓ+ 1) + 4α2 ℓ̃(ℓ̃+ 1) + α2(2πn)2

1 + α2 . (6.5)

For n = 0, the representations get shortened whenever ℓ = ℓ̃. The spectrum at the consistent
truncation is then the one of ref. [27]. It corresponds to ℓ = ℓ̃ = n = 0 in eq. (6.3):

[0, 0]s ⊗ [1/2, 1/2]s ⊕ [1/2, 1/2]s ⊗ [0, 0]s ⊕ [1/2, 1/2]s ⊗ [1/2, 1/2]s . (6.6)

The first two terms build the supergravity multiplet, each of them carrying one spin-2 field,
four gravitini, seven vectors and four spin-1/2 fields, all massless. The only propagating
degrees of freedom are in [1/2, 1/2]s ⊗ [1/2, 1/2]s (see the details in table 4 of [27]).

6.2 Moduli in gauged supergravity

Surprisingly, within the 3-dimensional gauged supergravity, the AdS3 vacuum contains a
large moduli space, which even has supersymmetric submanifolds. In particular, a simple
search already reveals a continuous 11-parameter family of AdS3 solutions, connected to
the origin and given by the E8(8) coset representative

Vdef = exp
[√

2
(
χ1
(
t(28,2)

)
23,− + χ2

(
t(28,2)

)
81,− + χ̃1

(
t(28,2)

)
56,− + χ̃2

(
t(28,2)

)
74,−

)]
× exp

[√
2
(
ζ1
(
t(28,2)

)
23,+ + ζ2

(
t(28,2)

)
81,+ + ζ̃1

(
t(28,2)

)
56,+ + ζ̃2

(
t(28,2)

)
74,+

)]
× exp

[ Ω
120

((
t(63,1)

)
1

1 −
(
t(63,1)

)
2

2 −
(
t(63,1)

)
3

3 +
(
t(63,1)

)
8

8
)

+ Ω̃
120

((
t(63,1)

)
4

4 −
(
t(63,1)

)
5

5 −
(
t(63,1)

)
6

6 +
(
t(63,1)

)
7

7
)]

× exp
[
ψ

( 1
120

(
t(63,1)

)
I
I − 1

120
(
t(63,1)

)
A
A − 1

2
(
t(1,3)

)
1

)]
,

(6.7)

where we denoted the generators according to the decomposition (5.25). The (χi, χ̃i, ζi, ζ̃i)
deformations excite the (6,1)2 and (1,6)2 generators in the branching (5.11). Note that
changing the sign in some terms in (6.7), e.g. changing the factor with Ω to

exp
[ Ω′

120
((
t(63,1)

)
1

1 +
(
t(63,1)

)
2

2 −
(
t(63,1)

)
3

3 −
(
t(63,1)

)
8

8
)]
, (6.8)

creates yet another flat direction of the potential. This highlights how many flat directions
the AdS3 vacuum appears to have.

6.3 Moduli in 10 dimensions

The consistent truncation Ansatz we constructed in this paper can be used to uplift the full
11-parameter family of AdS3 vacua of the 3-dimensional gauged supergravity in (6.7) to
IIB supergravity. However, this full 11-parameter solution can quickly become unwieldy.
Therefore, here we will instead focus on a few interesting subsets of deformations.
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(χ, χ̃,Ω, Ω̃, ψ) Using Hopf coordinates for both S3’s we can write the 7-parameter
deformation involving (χi, χ̃i,Ω, Ω̃, ψ), i = 1, 2, as follows:

ds2 = ℓ2AdS ds2(AdS3) + α2 dθ2 + α2

cos2(θ) + eΩ sin2(θ)
(
eΩ cos2(θ) dϕ′12 + sin2(θ) dϕ′22

)
+ dθ̃2 + 1

eΩ̃ cos2(θ̃) + sin2(θ̃)

(
cos2(θ̃) dϕ̃′12 + eΩ̃ sin2(θ̃) dϕ̃′22

)
+ e2ψ dz2 ,

H(3) = 2 ℓ2AdS Vol(AdS3)

+ 2α2 eΩ cos(θ) sin(θ)(
cos2(θ) + eΩ sin2(θ)

)2 dθ ∧ dϕ′1 ∧ dϕ′2 +
2 eΩ̃ cos(θ̃) sin(θ̃)(

eΩ̃ cos2(θ̃) + sin2(θ̃)
)2 dθ̃ ∧ dϕ̃′1 ∧ dϕ̃′2 ,

(6.9)

where 
dϕ′1 = dϕ1 +

1
α
χ1 dz ,

dϕ′2 = dϕ2 +
1
α
χ2 dz ,


dϕ̃′1 = dϕ̃1 + χ̃1 dz ,

dϕ̃′2 = dϕ̃2 + χ̃2 dz .
(6.10)

This 7-parameter deformation generically breaks SO(3)L × SO(3)R × S̃O(3)L × S̃O(3)R to
U(1)L ×U(1)R × Ũ(1)L × Ũ(1)R and all supersymmetries. The moduli space of the solution
is described by the following metric:

ds2
mod. = −1

2

[
e−2ψ

(
eΩ dχ2

1 + e−Ω dχ2
2 + e−Ω̃ dχ̃2

1 + eΩ̃ dχ̃2
2

)
+ 2dψ2 + 1

2 dΩ2 + 1
2 dΩ̃2

]
.

(6.11)

A particularly interesting family of solutions is obtained in the case Ω = Ω̃ = 0, where
eq. (6.9) reduces to

ds2 = ℓ2AdSds2(AdS3)+α2
(
dθ2+cos2(θ)dϕ′12+sin2(θ)dϕ′22

)
+dθ̃2+cos2(θ̃)dϕ̃′12+sin2(θ̃)dϕ̃′22+e2ψ dz2 ,

H(3) =2ℓ2AdSVol(AdS3)+2α2 cos(θ)sin(θ)dθ∧dϕ′1∧dϕ′2+2cos(θ̃)sin(θ̃)dθ̃∧dϕ̃′1∧dϕ̃′2 .
(6.12)

Again, the deformation generically breaks SO(3)L × SO(3)R × S̃O(3)L × S̃O(3)R to U(1)L ×
U(1)R × Ũ(1)L × Ũ(1)R and all supersymmetries. The χi, χ̃i, i = 1, 2 deformations are
analogous to the two-parameter “flat deformations” [30] of AdS4 × S5 × S1 [29, 31, 32].
From the 4-dimensional perspective obtained after reducing on S3 × S3, these deformations
correspond to turning on Wilson lines for the SO(3)L × SO(3)R × S̃O(3)L × S̃O(3)R gauge
fields along S1. The ψ deformation is even simpler: it just rescales the S1 radius. These
χi, χ̃i, ψ deformations are completely analogous to C-structure deformations of T 2, with
the χi, χ̃i corresponding to the real part and the ψ deformation to the imaginary part of
the C-structure deformation. Note that the ψ deformation does not exist in the otherwise
analogous AdS4 × S5 × S1 vacua in [29–32], due to the “S-fold” identification in that case.
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This leads to an important difference in the global structure of the moduli space that we
will discuss in section 6.4.

Since these deformations simply affect the C-structure of the T 2’s, their effect on
the Kaluza-Klein spectrum is completely analogous to the T 2 C-structure deformation.
Moreover, one can use the Kaluza-Klein spectrometry developed in [46, 47] to confirm this
effect on the spectrum.6 We thus find that the conformal dimension of each physical field
(cf. eq. (6.5)) get shifted by replacing

2πn −→ e−ψ
[
2πn+ 1

2

(
(qL + qR)

χ1
α

+ (qL − qR)
χ2
α

+ (q̃L + q̃R) χ̃1 + (q̃R − q̃L) χ̃2

)]
,

(6.13)
where the q denote the charges under the different U(1).

Eq. (6.13) can be used to search for SUSY enhancement points within the 5-parameter
landscape. At the undeformed origin, the massless gravitini sit in the two first multiplets in
eq. (6.6) with SO(3)L × S̃O(3)L × SO(3)R × S̃O(3)R spins(

1/2, 1/2; 0, 0
)

and
(
0, 0; 1/2, 1/2

)
, (6.14)

and conformal dimension ∆ = 3/2. Turning on the deformation leads to a split into four
groups of two modes, with the following U(1)L × Ũ(1)L × U(1)R × Ũ(1)R charges and
conformal dimensions within the 3-dimensional truncation:

(±1,±1; 0, 0) : ∆ = 1
2 +

√√√√1 +
(
χ1 + χ2 + α

(
χ̃1 − χ̃2

))2
4 e2ψ (1 + α2) ,

(±1,∓1; 0, 0) : ∆ = 1
2 +

√√√√1 +
(
χ1 + χ2 − α

(
χ̃1 − χ̃2

))2
4 e2ψ (1 + α2) ,

(0, 0;±1,±1) : ∆ = 1
2 +

√√√√1 +
(
χ1 − χ2 + α

(
χ̃1 + χ̃2

))2
4 e2ψ (1 + α2) ,

(0, 0;±1,∓1) : ∆ = 1
2 +

√√√√1 +
(
χ1 − χ2 − α

(
χ̃1 + χ̃2

))2
4 e2ψ (1 + α2) .

(6.15)

SUSY enhancement points are then given by combinations of the parameters that yield
∆ = 3/2. This can either happen by leaving some modes with ∆ = 3/2 invariant, or
where some other, originally massive gravitini outside the consistent truncation, i.e. with
conformal dimension given by (6.5) with n ̸= 0, obtain ∆ = 3/2. Here we will focus on
the supersymmetry enhancement within the 3-dimensional truncation and will discuss the
higher KK modes in section 6.4. The different possibilities are listed below.

• N = 2 The four-dimensional hypersurfaces

χ2 = χ1 ± α (χ̃1 + χ̃2) or χ2 = −χ1 ± α (χ̃1 − χ̃2) , (6.16)

give enhancements to N = (0, 2) and N = (2, 0), respectively. On this hypersur-
face (6.16), the spectrum then organizes into multiplets of SU(1|1, 1).

6More details on the Kaluza-Klein spectrometry for E8(8) ExFT will be given in ref. [48].
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• N = 4 Choosing χ2 = χ1 ,

χ̃2 = −χ̃1 ,
or

χ2 = −χ1 ,

χ̃2 = χ̃1 ,
(6.17)

leads to enhancements to N = (0, 4) and N = (4, 0), respectively. On these three-
dimensional hyper-surfaces (6.17), the isometry group is SO(4) × U(1)2 and the
spectrum reorganizes into multiplets of D1(2, 1;α). In the special case

χ1 = χ2 = 0,
χ̃1 = − χ̃2 = χ̃ =

√
1− e−2ω,

ψ = −ω,

(6.18)

the solution (6.12) corresponds to the 10-dimensional uplift on S3 × S1 of the one-
parameter deformation of AdS3 ×S3 preserving N = (0, 4) supersymmetries of ref. [1].

Another possibility is to setχ̃1 = ±χ1/α ,

χ̃2 = ∓χ2/α ,
or

χ̃1 = ±χ2/α ,

χ̃2 = ∓χ1/α ,
(6.19)

giving 3-parameter families of N = (2, 2) solutions, with multiplets of SU(1|1, 1)L ×
SU(1|1, 1)R.

• N = 6 Finally, for 
χ2 = χ1 ,

χ̃1 = ±χ1/α ,

χ̃2 = ∓χ1/α ,

or


χ2 = −χ1 ,

χ̃1 = ±χ1/α ,

χ̃2 = ±χ1/α ,

(6.20)

there are enhancements to N = (2, 4) and N = (4, 2), respectively. The isometry
group is SO(4)×U(1)2 and the spectrum is then given by multiplets of D1(2, 1;α)L,R×
SU(1|1, 1)R,L.

In the above cases, it is easy to see from (6.13) that the spectrum is invariant under
χi → χi+4πki α, χ̃i → χ̃i+4πk̃i, for ki, k̃i ∈ Z, with the SUSY enhancements also occurring
if the relations (6.16), (6.17), (6.19) or (6.20) are satisfied up to integer shifts. We will
return to this point below in section 6.4, when discussing compactness of the moduli space.

For generic values of χi, χ̃i, the AdS3 vacuum will be completely non-supersymmetric.
However, it is easy to see from inspection of the spectrum (6.5) and (6.13) that the spectrum
is bounded from below by the masses of the 3-dimensional gauged supergravity modes at
the N = (4, 4) supersymmetric origin, i.e. where χi = χ̃i = n = ℓ = ℓ̃ = 0. Therefore,
these non-supersymmetric AdS3 vacua are perturbatively stable within IIB supergravity
and, similarly to [32] suggest that there may be a dual non-supersymmetric conformal
manifold if there are no instabilities beyond supergravity. However, just as in [32], the
non-SUSY vacua are protected against perturbative α′ or gs corrections of string theory,
which might have lifted the moduli χi, χ̃i, and there are no scalars at the BF bound which
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may have been pushed below by such corrections. The moduli χi, χ̃i locally correspond
to diffeomorphisms and, therefore, any diffeomorphism-invariant quantity, such as higher
powers of the curvature tensor or fluxes, as would appear in α′ or gs corrections, will be
independent of χi and χ̃i.

The vacua are also protected against Witten’s bubbles of nothing [49] due to topological
obstructions. For the bubble of nothing to occur, a part of the compactification must
collapse. For this to happen smoothly, the compactification must be trivial in bordism [50],
i.e. the compactification C must be the boundary of some manifold B, C = ∂B, which is
realised in the bounce solution representing the bubble of nothing instanton. There are two
potential bubbles of nothing that could occur: the S1 could shrink or one of the S3’s could
shrink. For the case C = S1, Witten’s bubble of nothing corresponds to S1 = ∂D, D the
disc. However, under rotations by 2π on D, fermons will transform non-trivially, picking up
a −1. Extending this to the boundary, ∂D = S1, we see that the fermions on S1 would have
to have anti-periodic boundary conditions. For periodic boundary conditions, S1 ̸= ∂D, as
the spin-structure on S1 does not extend smoothly onto D. Indeed, the two-dimensional
spin bordism group is given by Z2, generated by the two spin structures on S1. Since our
vacua are continuously connected to supersymmetric AdS3 ×S3 ×S3 ×S1 vacua, the spinors
on S1 are periodic. Therefore, the S1 is protected against Witten’s bubble of nothing.
Similarly, the case C = S3 cannot be the boundary of a four-manifold due to the flux on S3.
If S3 = ∂M4, we would have ∫

S3
H3 =

∫
M4

dH3 = 0 , (6.21)

by the Bianchi identity. Thus, the flux
∫
S3 H3 provides an obstruction to this bubble of

nothing. However, this does not rule out all potential sources of instabilities. For example,
the non-SUSY vacua may suffer from non-perturbative instabilities triggered by brane
nucleation [51, 52] or non-vanishing β-functions of marginal multi-trace operators [53].
However, our non-SUSY vacua here may have further protection against such instabilities
due to their continuous limits to the SUSY vacua, just as they have against perturbative
higher-derivative corrections.

(ζ, ζ̃,Ω, Ω̃, ψ) Restricting to the parameters (ζi, ζ̃i,Ω, Ω̃, ψ), i = 1, 2, and using again
Hopf coordinates, the metric is

ds2 = ℓ2
AdSds2 (AdS3)−∆

(
cos2(θ)+eΩ sin2(θ)

)(
eΩ̃ cos2(θ̃)+sin2(θ̃)

)
dz2

+α2
[
dθ2+∆

(
eΩ̃ cos2(θ̃)+sin2(θ̃)

)(
eΩ cos2(θ)dϕ2

1+sin2(θ)dϕ2
2

)]
+dθ̃2+∆

(
cos2(θ)+eΩ sin2(θ)

)(
cos2(θ̃)dϕ̃2

1+eΩ̃ sin2(θ̃)dϕ̃2
2

)
+∆e2ψ eΩ cos2(θ)cos2(θ̃)

(
αζ̃2dϕ1−ζ2dϕ̃1

)2
+∆e2ψ eΩ̃ sin2(θ)sin2(θ̃)

(
αζ̃1dϕ2−ζ1dϕ̃2

)2

+∆e2ψ eΩ+Ω̃ cos2(θ)sin2(θ̃)
(
αζ̃1dϕ1−ζ2dϕ̃2

)2
+∆e2ψ sin2(θ)cos2(θ̃)

(
αζ̃2dϕ2−ζ1dϕ̃1

)2

−2α∆e2ψ
(
ζ1 cos2(θ)dϕ1+eΩ ζ2 sin2(θ)dϕ2

)(
eΩ̃ ζ̃1 cos2(θ̃)dϕ̃1+ζ̃2 sin2(θ̃)dϕ̃2

)
+∆e2ψ

(
eΩ̃ cos2(θ̃)+sin2(θ̃)

)[
cos2(θ)(αζ1dϕ1+dz)2+eΩ sin2(θ)(αζ2dϕ2+dz)2

]
+∆e2ψ

(
cos2(θ)+eΩ sin2(θ)

)[
eΩ̃ cos2(θ̃)

(
ζ̃1dϕ̃1−dz

)2
+sin2(θ̃)

(
ζ̃2dϕ̃2−dz

)2 ]
,

(6.22)
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with the warp factor

∆−1 =
(
cos2(θ) + eΩ sin2(θ)

)(
eΩ̃ cos2(θ̃) + sin2(θ̃)

)
+ e2ψ

(
cos2(θ) + eΩ sin2(θ)

)(
ζ̃2

2 cos2(θ̃) + eΩ̃ ζ̃2
1 sin2(θ̃)

)
+ e2ψ

(
eΩ̃ cos2(θ̃) + sin2(θ̃)

) (
eΩ ζ2

2 cos2(θ) + ζ2
1 sin2(θ)

)
.

(6.23)

To provide an expression for H(3) it is convenient to first define some forms:

Φ1 = α
((
eΩ̃ cos2(θ̃) + sin2(θ̃)

)(
eΩ + e2ψ ζ2

1
)
+ e2ψ+Ω

(
ζ̃2

2 cos2(θ̃) + eΩ̃ ζ̃2
1 sin2(θ̃)

))
dϕ1,

Φ2 = α
((
eΩ̃ cos2(θ̃) + sin2(θ̃)

)(
1 + e2ψ+Ω ζ2

2
)
+ e2ψ

(
ζ̃2

2 cos2(θ̃) + eΩ̃ ζ̃2
1 sin2(θ̃)

))
dϕ2,

Φ̃1 =
((

cos2(θ) + eΩ sin2(θ)
)(
1 + e2ψ+Ω̃ ζ̃2

1
)
+ e2ψ

(
eΩ ζ2

2 cos2(θ) + ζ2
1 sin2(θ)

) )
dϕ̃1,

Φ̃2 =
((

cos2(θ) + eΩ sin2(θ)
)(
eΩ̃ + e2ψ ζ̃2

2
)
+ e2ψ+Ω̃

(
eΩ ζ2

2 cos2(θ) + ζ2
1 sin2(θ)

) )
dϕ̃2,

φ1 = α e2ψ cos2(θ) dϕ1, φ2 = α e2ψ sin2(θ) dϕ2,

φ̃1 = e2ψ cos2(θ̃) dϕ̃1, φ̃2 = e2ψ sin2(θ̃) dϕ̃2.
(6.24)

In terms of these forms, we get

H(3) =2ℓ2AdSVol(AdS3)

+2∆2 cos(θ)sin(θ)dθ∧
[
Φ1∧Φ2+

(
ζ1ζ̃2+eΩ+Ω̃ζ2ζ̃1

)(
Φ1∧φ̃1−Φ2∧φ̃2

)
+
(
eΩ̃ζ1ζ̃1+eΩζ2ζ̃2

)(
Φ1∧φ̃2−Φ2∧φ̃1

)
+
(
ζ2

1−e2Ωζ2
2

)(
e2Ω̃ζ̃2

1−ζ̃2
2

)
φ̃1∧φ̃2

+e2ψ
(
eΩ̃ cos2(θ̃)+sin2(θ̃)

)((
eΩζ2Φ1−ζ1Φ2

)
−
(
ζ2

1−e2Ωζ2
2

)(
ζ̃2 φ̃1+eΩ̃ζ̃1 φ̃2

))
∧dz

]
+2∆2 cos(θ̃)sin(θ̃)dθ̃∧

[
Φ̃1∧Φ̃2+

(
ζ1ζ̃2+eΩ+Ω̃ζ2ζ̃1

)(
Φ̃1∧φ1−Φ̃2∧φ2

)
+
(
eΩ̃ζ1ζ̃1+eΩζ2ζ̃2

)(
Φ̃1∧φ2−Φ̃2∧φ1

)
+
(
ζ2

1−e2Ωζ2
2

)(
e2Ω̃ζ̃2

1−ζ̃2
2

)
φ1∧φ2

+e2ψ
(
cos2(θ)+eΩ sin2(θ)

)((
ζ̃2 Φ̃1−eΩ̃ζ̃1 Φ̃2

)
−
(
e2Ω̃ζ̃2

1−ζ̃2
2

)(
eΩζ2φ1+ζ1φ2

))
∧dz

]
.

(6.25)
Finally, the metric parametrising this moduli space is:

ds2
mod. = −1

2

[
e2ψ

(
e−Ω dζ2

1 + eΩ dζ2
2 + eΩ̃ dζ̃2

1 + e−Ω̃ dζ̃2
2

)
+ 2dψ2 + 1

2 dΩ2 + 1
2 dΩ̃2

]
.

(6.26)
As previously, the deformation breaks the isometry group down to U(1)L ×U(1)R × Ũ(1)L ×
Ũ(1)R and all supersymmetries. Note that for

ζ1 = ±ζ2, ζ̃1 = ∓ζ̃2, ψ = Ω = Ω̃ = 0, (6.27)
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the solution (6.22) reproduces eq. (6.12) for

χ1 = ±χ2 = ζ1

1 + ζ2
1 + ζ̃2

1
, χ̃1 = ∓χ̃2 = − ζ̃1

1 + ζ2
1 + ζ̃2

1
, e2ψ = 1

(1 + ζ2
1 + ζ̃2

1 )2
,

(6.28)
with N = (4, 0) (or (0, 4)) and symmetry enhancement to SO(4)×U(1)2. There seems to
be no other points with (super)-symmetry enhancement in the scalar manifold.

6.4 Compactification of the moduli space

We can use the Kaluza-Klein spectrum and the uplift of the 3-dimensional gauged super-
gravity models to IIB supergravity to understand properties of the dual CFTs that are
obscured in the lower-dimensional supergravities. One such aspect is the compactness of
the conformal manifold. Consider the deformations χi, χ̃i, which appear non-compact
in 3-dimensional N = 16 gauged supergravity, with only the point χi = χ̃i = 0 hav-
ing N = (4, 4) supersymmetry. The subset of these deformations corresponding to the
limit (6.18) was analysed in the half-maximal theory in ref. [1]. Again, within 3-dimensional
N = 8 supergravity, this deformation is non-compact, and remains non-compact even after
uplifting to 6-dimensional supergravity on S3, with no periodicity in χ̃ observed in the KK
spectrum of the 6-dimensional solution [1].

However, from (6.3), (6.5), (6.13) we see that the full Kaluza-Klein spectrum is invariant
under the shifts

χi → χi + 4πα ki ,
χ̃i → χ̃i + 4πk̃i ,

(6.29)

for ki, k̃i ∈ Z. In these cases, higher KK modes on the S1 outside the N = 16 truncation
replace those within the consistent truncation. Therefore, even though neither the 3-
dimensional gauged supergravity, nor 6-dimensional supergravity is invariant under these
shifts, upon lifting to the full 10-dimensional IIB theory, the higher KK modes on S1

restore the invariance under the shifts, just as in the analogous deformations studied in
AdS4 × S5 × S1 [31, 32]. This highlights the importance of the S1 direction in studying
these AdS3 vacua.

The compactification of the moduli space in 10 dimensions can also be understood
geometrically. Each of χi, χ̃i corresponds to the real part of the complex structure modulus
of a T 2 fibration with local coordinates ϕi, ϕ̃i together with z, respectively. Explicitly, the
complex structures for the T 2

(ϕi, z) and T 2
(ϕ̃i, z)

are given by

τi = i
eψ

α
+ 1
α
χi , τ̃i = i eψ + χ̃i . (6.30)

Under this identification, the shifts (6.29) correspond to T -transformations of the tori, which
belong to the modular group SL(2,Z), just as for AdS4 × S5 × S1 [31, 32]. In fact, (6.30)
only shows how the bosonic fields transform and thus suggests that the periodicities are 2πα
and 2π. However, this is wrong: as the KK spectrum (6.13) shows, the fermions require
double that periodicity, i.e. 4πα and 4π as in (6.29).
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Given the interpretation of the shifts (6.29) as T -transformations of a T 2-fibration, it is
natural to ask whether S-transformations of these T 2 would also leave the AdS3×S3×S3×S1

solution invariant. The S-transformation acts on the moduli as

χi → − α2χi
χ2
i + e2ψ , eψ → α2 eψ

χ2
i + e2ψ , (6.31)

for the T 2
(ϕi, z) and

χ̃i → − χ̃i
χ̃2
i + e2ψ , eψ → eψ

χ̃2
i + e2ψ , (6.32)

for the T 2
(ϕ̃i, z)

. Thus, the S-transformation effectively inverts the radius of the S1, while
transforming the combinations

e−ψχi → −e−ψχi , e−ψχ̃i → −e−ψχ̃i . (6.33)

If we consider a truncation where the n ̸= 0 modes are discarded, for example, by uplifting
only on S3 to 6 dimensions as in [1] or on S3 × S3 × S1 to 9 dimensions, then the S-
transformation clearly leaves the KK spectrum (6.3), (6.5), (6.13) invariant. This is because
the spectrum for the n = 0 modes only depends on the combinations e−ψχi and e−ψχ̃i,
which pick up minus signs, as in (6.33). The effect of (6.31) is to simply exchanges modes
of the opposite charges under the U(1)L × Ũ(1)L ×U(1)R × Ũ(1)R within the spectrum.

However, if we include the n ̸= 0 modes by going to the full 10-dimensional IIB
supergravity theory, the KK spectrum (6.3), (6.5), (6.13) is not invariant under the S

transformation. At the same time, the S-transformation effectively inverts the radius of
the S1, as in (6.33) and, thus, takes us out of the regime of validity of supergravity, with
new string degrees of freedom potentially becoming light. Indeed, in this case, after the
transformation (6.33), strings wound around S1 will become light, and one would expect
them to replace the KK modes that have become heavy, realising the T-duality on S1.
This suggests that in the full IIB string theory, the moduli space of each T 2 fibration with
complex structure (6.30) should be identified under the Möbius group SL(2,Z), which has a
natural action on the metric of this 5-parameter submanifold of moduli space (6.11). Note
that this is quite different from the AdS4 × S5 × S1 “S-fold” vacua [31, 32], which do not
have a S1 rescaling modulus and, therefore, do not carry the natural action of SL(2,Z) on
each complex structure modulus that we find here.

7 Conclusions

In this paper, we used E8(8) ExFT to construct the consistent truncation of IIB supergravity
around the N = (4, 4) AdS3 × S3 × S3 × S1 vacuum. Even though the vacuum breaks half
of the supersymmetries, we are able to construct a consistent truncation to 3-dimensional
maximal gauged supergravity, providing an uplift to the N = 16 gauged supergravity
proposed in [27] for the 3-dimensional description of this AdS3 vacuum. We constructed
our consistent truncation by doing a S1 reduction of the truncation of IIB on S3 × S3 [11],
and turning on an additional H(7) flux on S3 × S3 × S1, which is necessary to obtain an
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AdS3 vacuum. We also show that it is not possible to turn on such an additional flux for
the other “dyonic” consistent truncations on S6, S5 × S1, S4 × S2 [11, 28] reduced on S1,
whilst maintaining a consistent truncation to N = 16 gauged supergravity.

To find this vacuum, we had to construct the potential of 3-dimensional N = 16 gauged
supergravity in terms of the embedding tensor, which was not previously known. Since
the vector fields of N = 16 gauged supergravity transform in the adjoint of E8(8), the
Cartan-Killing metric of E8(8) can be used to construct new terms in the potential, which
leads to a different form of the potential compared to the universal one found in D ≥ 4
dimensions. Nonetheless, we used the generalised Scherk-Schwarz Ansatz of E8(8) ExFT [19]
to obtain the potential in terms of the embedding tensor, for all gauged supergravities
that can be uplifted to maximal 10-/11-dimensional supergravity. This condition of being
able to uplift imposes additional quadratic constraints on the embedding tensor (4.10),
beyond the usual quadratic constraints of gauged supergravity. This can be used to rule
out the higher-dimensional origin of some 3-dimensional N = 16 gauged supergravities, as
we illustrated in appendix A on one N = (8, 0) AdS3 vacuum of ref. [54].

Using our consistent truncation and the 3-dimensional potential, we studied the moduli
space of the AdS3 vacuum within 3-dimensional gauged supergravity. Even a simple search
led to a surprisingly large 11-dimensional moduli space of AdS3 × S3 × S3 × S1 vacua, with
more moduli likely. While most of these moduli break all supersymmetries, we also identified
submanifolds where N = (4, 2), (4, 0), (2, 2), (2, 0) is preserved, where the N = 4 cases
always correspond to the “large” superconformal algebra. The corresponding moduli are
analogous to the “flat deformations” that arise in the AdS4 × S5 × S1 vacuum [29–32]. i.e.
they correspond to local diffeomorphisms mixing angles on the S3’s with the S1, but which
are not globally well-defined, much like complex structure deformations of T 2, allowing us
to compute the full Kaluza-Klein spectrum of these deformed AdS3 vacua. Generic “flat
deformations” of this type break all supersymmetries but are still perturbatively stable.
Moreover, they are protected against perturbative higher-derivative corrections because the
deformations locally correspond to diffeomorphisms.

We also saw that uplifting our AdS3 vacua to IIB string theory leads to the compactness
of some directions of moduli space. The “flat deformations” that we studied appear non-
compact within the 3-dimensional gauged supergravity, but upon uplifting to 10 dimensions,
the moduli become compact, similar to [31, 32]. Interestingly, this compactness is not visible
upon only uplifting on S3 to 6-dimensional supergravity [1], but require the uplift on the
additional S1 direction. The compactification of the moduli can be understood geometrically
as the T -action of SL(2,Z) on T 2-fibration. Differently from the AdS4×S5×S1 case [29–32],
in the AdS3 × S3 × S3 × S1 case we also have a S1 rescaling modulus, so that we naturally
have the full complex structure moduli related to the T 2-fibrations and which carry a natural
action of the full SL(2,Z). While the S-action of SL(2,Z) left the Kaluza-Klein spectrum
of 6-dimensional supergravity on AdS3 × S3 [1] invariant, it is broken by the additional S1

direction when uplifting to IIB supergravity. However, we argued that the S-action leave
invariant the full AdS3 × S3 × S3 × S1 solution of IIB string theory, once string winding
modes around S1 are included. In this case, the complex structure deformations live in
the fundamental domain of SL(2,Z), rather than the whole C-plane, as the 3-dimensional
supergravity would suggest.
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Our work raises several questions that deserve further inquiry. Firstly, we only performed
a simple search, yielding an 11-dimensional moduli space of AdS3 ×S3 ×S3 ×S1 within the
N = 16 gauged supergravity. It would be good to complete our analysis to compute the full
3-dimensional moduli space and to understand why it is so large. Our consistent truncation
Ansatz could then be used to uplift the moduli space to IIB supergravity, and to use
Kaluza-Klein spectrometry [46, 47, 55] to obtain the conformal dimensions of all single-trace
operators and determine the perturbative stability of the non-SUSY vacua. This would
shed light on the dual conformal manifold. Secondly, it would be interesting to study the
string sigma-model [25] on the “flat deformations” of AdS3 ×S3 ×S3 ×S1, or the analogous
deformations of AdS3 × S3 × T 4. Since these deformations locally are diffeomorphisms, one
may expect a simple worldsheet description on the N = (4, 2), (4, 0), (2, 2), (2, 0) SUSY
vacua and, potentially, even for the non-SUSY AdS3 × S3 × S3 × S1 vacua obtained this
way. The non-perturbative stability of the perturbatively stable non-supersymmetric AdS3
vacua we found also deserves further study. Thirdly, similar “flat deformations” arise in
any string compactification involving an S1, in particular AdS3 × S3 × T 4. It would be
interesting to understand universal features of these deformations and their CFT duals.
Finally, we would like to use the tools developed here to study RG flows between solutions
of three-dimensional supergravity, or equivalently between two-dimensional conformal field
theories. Note however that this cannot be applied to the RG flow of ref. [56]: their
theory cannot be described using the generalized Scherk-Schwarz Ansatz of E8(8) or SO(8, 8)
exceptional field theory as reproducing their embedding tensor would require breaking the
section constraint. We leave these questions for future work.
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A Ruling out gaugings

As mentioned in section 4, eq. (4.10) can be used to assess whether a given three-dimensional
theory of embedding tensor XMN has a higher-dimensional origin. Let us illustrate that on
the N = (8, 0) AdS3 vacuum with GL(6)× SO(2, 2) gauging constructed in ref. [54]. This
theory has a compact gauging smaller than SO(9), thus escaping the no-go result of ref. [19].
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The embedding tensor of the theory is expressed by breaking E8(8) as

E8(8) −→ SO(8, 8)
248 −→ 120 ⊕ 128

XM −→
{
X [IJ], XA

}
,

(A.1)

with I and A labels of the fundamental and spinorial representations of SO(8, 8), respectively.
Explicitly,

XIJ,KL = ΘIJ,KL ,

XAB = −2 θ ηAB + 1
24 ΓIJ,KL

AB ΘIJKL ,

XIJ,A = 0 ,

(A.2)

where ΓIJKL
AB is the four-fold product of SO(8, 8) Γ matrices and ηAB the 128⊗128 component

of the Cartan-Killing metric, or equivalently the SO(8, 8) charge conjugation matrix. The
tensor ΘIJ,KL is given by

ΘIJ,KL = θIJKL + 1
2
(
ηK[IθJ]L − ηL[IθJ]K

)
+ θ ηK[IηJ]L , (A.3)

with θIJKL totally antisymmetric and θIJ symmetric. They have the following non-vanishing
components:

θij = δij , θαβ = −3 δαβ , θr+s+ = −δr+s+ , θr−s− = 3 δr−s− ,
θ = −1 , θαβr−s− = −3 ϵαβ ϵr−s− , θijr+s+ = 2 δi[r+ δs+]j , (A.4)

where we split the indices according to

SO(8, 8) −→ SO(8)× SO(8) −→ SO(6)× SO(2)× SO(6)× SO(2)

X I
{
Xi, Xα, Xr+ , Xr−

}
,

(A.5)

and defined the matrix

ϵ =
(

0 1
−1 0

)
. (A.6)

With this embedding, we get

XMN X
MN = 55

1922
(
XM

M
)2

, (A.7)

thus violating the condition (4.10) (the trombone gauging vanishes for the truncation).
Then, we deduce that the N = (8, 0) theory of ref. [54] with gauging GL(6) × SO(2, 2)
does not admit a higher-dimensional origin as constructed with E8(8) exceptional field
theory. This illustrates how the constraint (4.10) can be used to determine if a given
three-dimensional gauged supergravity can be uplifted.
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B The Sn twist matrix

Let us construct the SL(4) ≃ SO(3, 3) twist matrix that describes the consistent truncation
on S3. This can be viewed as a special case of a family of consistent truncations on
Sn [2, 3, 6]. Here, we give a slightly different, but equivalent, form of this construction.

We use an SL(n + 1) ExFT, like in [3], which encodes an n-dimensional metric and
volume-form flux, i.e. Freund-Rubin compactifications, and thus gives a natural description
of Sn compactifications. The SL(n+1) ExFT formally has coordinates in the antisymmetric
representation of SL(n+ 1), yIJ = −yJI , with I = 1, . . . , n+ 1, and similarly, generalised
vector fields transform in the antisymmetric representation of SL(n+ 1). The generalised
Lie derivative on a generalised tensor in the fundamental V I of weight λ is given by

LΛV
I = 1

2Λ
JK∂JKV

I − V J∂JKΛIK +
(
λ

2 + 1
n+ 1

)
V I∂JKΛJK , (B.1)

and similarly for other generalised tensors. Closure of the generalised Lie derivative (B.1)
requires the section condition

∂[IJ ⊗ ∂KL] = 0 , (B.2)

which restricts the dependence of all fields to a subset of physical coordinates.
We are interested in the maximal solutions of the section condition (B.2) which preserve

a SL(n) ⊂ SL(n + 1) subgroup. Under this decomposition SL(n + 1) → SL(n) with
V I =

(
V i, V 0), where i = 1, . . . , n, we solve the section condition by having physical

coordinates y0i on the n-dimensional manifold M , i.e. ∂ij = 0 for all fields with only
∂0i = ∂i ̸= 0. Correspondingly, the generalised tangent bundle, whose sections are in the
antisymmetric representation of SL(n+ 1) and carry weight n−3

n+1 , decomposes as

E = TM ⊕ Λn−2T ∗M . (B.3)

Note that for the case of interest to us, n = 3, (B.3) reduces to

E = TM ⊕ T ∗M , (B.4)

and its fibres transform in the 6 of SL(4) ≃ SO(3, 3). It is convenient to also introduce
the generalised bundle with fibres in the anti-fundamental of SL(n+ 1), which is, similarly,
given by

N = T ∗M ⊕ ΛnT ∗M . (B.5)

Sections of N are generalised tensors transforming in the anti-fundamental of SL(n+1) and
carrying weight 2

n+1 . For V, V ′ ∈ Γ(E) and W ∈ Γ(N), the generalised Lie derivative (B.1)
reduces to

LV V ′ = [v, v′] + Lvω
′
(n−2) − ıv′dω(n−2) ,

LVW = Lvω(1) + Lvω(n) + ω(1) ∧ dω(n−2) ,
(B.6)

where we write V = v+ω(n−2), V ′ = v′ +ω′
(n−2) and W = ω(1) +ω(n) as a formal of vectors

and p-forms, and L denotes the ordinary Lie derivative and [v, v′] the ordinary Lie bracket
between vector fields v and v′.
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We can now describe the Sn consistent truncation using the SL(n+ 1) ExFT above.
Let Y I , I = 1, . . . , n+ 1 be the embedding coordinates of Sn ⊂ Rn+1, such that Y I YI = 1.
On Sn, we can define a parallelisation of N using the generalised frame

UI = dY I + Y I volSn − dY I ∧A , (B.7)

where A is an (n− 1)-potential with field strength dA = (n− 1)volSn , and

volSn = 1
n!ϵI1I2...In+1Y

I1 dY I2 ∧ . . . ∧ dY In+1 , (B.8)

is the volume form on Sn. The frame in (B.7) has the important property that the n+ 1
generalised tensors are nowhere vanishing since dY I = 0 only when Y I = 1. Therefore, (B.7)
provides a generalised parallelisation of Sn in the SL(n+ 1) ExFT.

In a local basis, (B.7) gives us a GL(n+ 1) matrix, UI I , whose determinant allows us
to define the scalar density

ρ =
(
detUI I

)−1/2
= (det g̊)−1/2 , (B.9)

with g̊ the round metric on Sn. Using (B.7) and (B.9) we can define the SL(n) twist matrix

UI
I = ρ2/(n+1) UI I , (B.10)

and hence a generalised frame for E or a generalised bundle in any other rep of SL(n+ 1).
For example, in the generalised tangent bundle (B.3), we have the generalised frame
UIJ

IJ = (det g̊)1/2 U[I
IUJ ]

J , with components given by

2UIJ = vIJ + ⋆dYIJ + ıv
IJ
A , (B.11)

where vIJ are the SO(n+1) Killing vectors of the round Sn, matching precisely the SL(n+1)
parallelisations constructed in [3].

Using (B.1), we can easily check that the generalised frame (B.11), (B.15) defines a
generalised Leibniz parallelisation. In particular, using dA = (n− 1)volSn , we obtain the
embedding tensor

LU
IJ
UK = −XIJL

K UL , (B.12)

with
XIJ,L

K = −δL[Iδ
K
J ] . (B.13)

Finally, we can also connect the above with the SL(n+1) Ansatz construction of [2]. We
do this by evaluating (B.9) and (B.10) on the northern hemisphere Y I =

(
yi,

√
1− yiyi

)
,

i = 1, . . . , n and using the gauge choice for the potential A

Ai1...in−1 = ϵi1...in−1j y
j(1 +K(v)) , (B.14)

with v = yi yi and ϵi1...in−1j the volume form on Sn. With the above choices, we precisely
recover the SL(n+ 1) twist matrix of [2], i.e.

(
U−1

)
I

I =

(1− v)−1/(n+1) (δij + yi y
jK(v)

)
yi (1− v)(n−1)/(2(n+1))

yj (1− v)(n−1)/(2(n+1))K(v) (1− v)
n
n+1

 . (B.15)
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C Representations of D1(2, 1;α)

The supergroup D1(2, 1;α) has

SU(1, 1)× SU(2)× S̃U(2) (C.1)

as its even part. Its multiplets are labelled by the spins ℓ and ℓ̃ of each SU(2) factor and the
eigenvalue h of the su(1, 1) ≃ sl(2,R) generator. Generic short multiplets [ℓ, ℓ̃]s are given
by [44, 45]

h0
(
ℓ, ℓ̃
)

h0 + 1/2
(
ℓ+ 1/2, ℓ̃− 1/2

)
⊕
(
ℓ− 1/2, ℓ̃− 1/2

)
⊕
(
ℓ− 1/2, ℓ̃+ 1/2

)
h0 + 1

(
ℓ, ℓ̃− 1

)
⊕
(
ℓ, ℓ̃
)
⊕
(
ℓ− 1, ℓ̃

)
h0 + 3/2

(
ℓ− 1/2, ℓ̃− 1/2

)
,

(C.2)

with h0 = (α ℓ+ ℓ̃)/(1 + α). Shortenings occur for ℓ < 1 or ℓ̃ < 1 [44]. For instance:

[0, 0]s : h0 = 0 (0, 0), [1/2, 1/2]s :

h0 = 1/2
(

1/2, 1/2
)

1
(
1, 0
)
⊕
(
0, 0
)
⊕
(
0, 1
)

3/2
(

1/2, 1/2
)

2
(
0, 0
)
.

(C.3)

Two short multiplets can combine into a long multiplets [ℓ, ℓ̃] as follows:

[ℓ, ℓ̃] = [ℓ, ℓ̃]s ⊕ [ℓ+ 1/2, ℓ̃+ 1/2]s . (C.4)

The value of h is then not constrained. The explicit content of the long representation
[ℓ, ℓ̃] is

h
(
ℓ, ℓ̃
)

h+ 1/2
(
ℓ+ 1/2, ℓ̃+ 1/2

)
⊕
(
ℓ+ 1/2, ℓ̃− 1/2

)
⊕
(
ℓ− 1/2, ℓ̃+ 1/2

)
⊕
(
ℓ− 1/2, ℓ̃− 1/2

)
h+ 1

(
ℓ+ 1, ℓ̃

)
⊕
(
ℓ, ℓ̃− 1

)
⊕
(
ℓ, ℓ̃
)
⊕
(
ℓ, ℓ̃
)
⊕
(
ℓ− 1, ℓ̃

)
⊕
(
ℓ, ℓ̃+ 1

)
h+ 3/2

(
ℓ+ 1/2, ℓ̃+ 1/2

)
⊕
(
ℓ+ 1/2, ℓ̃− 1/2

)
⊕
(
ℓ− 1/2, ℓ̃+ 1/2

)
⊕
(
ℓ− 1/2, ℓ̃− 1/2

)
h+ 2

(
ℓ, ℓ̃
)
.

(C.5)
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