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1 Introduction

Statistical Ising model is defined by a specific probability measure, called the Gibbs mea-
sure, over the space of spin configurations on a lattice.1 Despite the simplicity of its
definition, it exhibits surprisingly rich dynamics which has driven developments of several
important branches of math and physics. In particular, the existence of the phase tran-
sition in two and three dimensions provides an outstanding example of dramatic physical
phenomena that may take place in the infinite volume systems.

Even though there exist analytic solutions in some special cases [3, 4], the statistical
Ising model under general temperature and external magnetic field in two and higher
dimensions still remains unsolved — for example, the value of the critical temperature
in three dimensions is unknown. Traditionally, numerical estimates of various quantities
were obtained using the Monte Carlo simulations, where probable spin configurations (on a
finite lattice though) are sampled over based on the Gibbs measure.2 Markov Chain Monte
Carlo (MCMC) is one of the standard dynamical procedures defining such sampling, which
is also called the stochastic Ising model when restricted to the Ising model.

1See e.g. [1, 2] for an introduction to the subject.
2See e.g. [5] for an introduction to the Monte Carlo simulations of statistical physics.
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Alternatively, there is another approach called “bootstrap” where consistency condi-
tions of the model are imposed and the corresponding consequences are studied. In partic-
ular, the conformal bootstrap program has been very successful in studying the continuum
theory that arises at the criticality in two and three dimensions. Unitarity, conformal
symmetry, and the consistency conditions known as crossing equations provide exact solu-
tions in two dimensions [6], and rigorous and highly tight bounds on physical data in three
dimensions with the help of semidefinite programming (SDP) [7–10]. Recently in [11], a
different bootstrap approach (labeled BS′

2 in this work) was applied directly to the statis-
tical Ising model on the infinite lattice, where reflection positivity and spin-flip equations
satisfied by the Gibbs measure were represented as a SDP problem and provided rigor-
ous (and sometimes highly tight) bounds on the spin correlators. It is worth mentioning
that the very definition of the Gibbs measure on the infinite lattice given by the DLR
equations [12, 13] allows for such a bootstrap formulation very naturally.

An obvious but essential fact about MCMC is that, by construction, the Gibbs measure
is guaranteed to be an invariant measure of MCMC. Moreover, under the assumption of
translation invariance, every invariant measure is also Gibbs (see theorem 2). Therefore, it
is natural to pose another bootstrap problem (labeled BS1 in this work) where probability
bounds (stating that the measure is a probability measure) and the invariance condition
(stating that the measure is invariant under the Markov chain dynamics) are imposed as
bootstrap conditions.3 These conditions must be met by the Gibbs measure and thus
should be compatible with the bootstrap problem based on reflection positivity and spin-
flip equations in the sense that they should share common solutions. As we discuss in
section 3, BS1 is described by a linear programming hierarchy while BS′

2 is described by a
SDP hierarchy, where the bootstrap conditions at the lower level are part of those at higher
levels in both cases. For any choice of the transition rate for MCMC, the set of invariance
equations in BS1 will manifestly be a proper subset of the set of spin-flip equations in BS′

2
at each level in the two hierarchies.

The hierarchy of LP/SDP encountered in this work is a special case of the Lasserre
hierarchy which is much studied in the optimization literature.4 Statistical mechanical sys-
tems provide a unique setup for the Lasserre hierarchy where the number of the polynomial
variables is infinite as opposed to finite. One immediate question is the convergence of such
hierarchy and it was conjectured in [11] that the lower and upper bounds on spin correlators
obtained from BS′

2 converge to each other as the hierarchy level increases, when there is a
single phase. As the main result of this work, we will show the asymptotic convergence of
the LP hierarchy of BS1 in the sense that the solutions to the LPs converge to moments of
an invariant probability measure of MCMC. As an intermediate step, we will also discuss the
relevant moment problem over the space of spin configurations on the infinite lattice. Simi-
lar convergence statement for BS′

2 remains unclear to us at the moment. Instead, we will de-
fine the bootstrap problem BS2 by equipping BS′

2 with probability bounds of BS1, which in
practice requires only little extra computational cost while the convergence still holds true.

3See e.g. [14] for an introduction to the bootstrap approach for the invariant measures of Markov chains.
Also see [15–17] for more recent works on bootstrapping (stochastic) dynamical systems. We thank Hamza
Fawzi for pointing out relevant works to us.

4See [18, 19] for the original works by Lasserre and [20] for a comprehensive survey.
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This paper is organized as follows. We first review the definitions and relevant theorems
of the stochastic and statistical Ising model in section 2. They will naturally lead to
the bootstrap problems BS1 and BS2 which we introduce in section 3. In section 4, we
discuss the moment problem for the spin configurations on the infinite lattice and show the
convergence of BS1. We provide the bounds obtained by different bootstrap approaches in
section 5 and end with further discussions in section 6.

2 Review of the statistical and stochastic Ising model

In this section, we will review the definitions of the statistical and stochastic Ising model
and their relations, and rephrase their properties in terms of the polynomial moments. We
will mostly follow [2] where the details of the theorems and proofs may be found. Even
though this section collects very elementary facts about the statistical and stochastic Ising
model, showing that they are all satisfied by the solution of the bootstrap problem to
be defined later will be the main result of this work, which provides several interesting
implications.

2.1 Probability space for the Ising model

In this work, we are going to work on the infinite d-dimensional hypercubic lattice Λ = Zd.
At each lattice site i ∈ Λ, we have a spin degree of freedom si ∈ {−1, 1}. The state space
S is the set of all possible spin configurations s over the lattice Λ: S = {−1, 1}Λ. The
space S is compact and metrizable, with the metric M : S × S → R given by M(s, s′) =∑

i∈Λ 2−||i||∞
(1−sis

′
i

2

)
for s, s′ ∈ S, where || · ||∞ is the L∞-norm [2, 21]. For example, as

can be easily seen, M(s, s) = 0 and M(s, s′) < ∞ for all s, s′ ∈ S. The topology of the
space S and notions such as continuous functions on S follow from the explicit form of the
metric M . We will be interested in a specific set of probability measures on the sample
space S. In order to define the event space, we first define the following.

Definition 1. Let A be a finite subset of Λ, and ui ∈ {−1, 1} for i ∈ A be a specific spin
assignments over the lattice sites of A. An event E({ui}i∈A) is defined as the following set
of spin configurations:

E({ui}i∈A) = {s ∈ S | si = ui, ∀i ∈ A}. (2.1)

In other words, E({ui}i∈A) is the set of all spin configurations whose spins at lattice
sites of A agree with ui. Note that the above definition applies to the case A = ∅:
E ({ui}i∈∅) = S. The event space is going to be the union of the events for all finite
subsets A ∈ Λ and all possible spin assignments ui over them, together with the empty set.

Definition 2. The event space V is the σ-algebra generated by the events E({ui}i∈A) for
all finite subsets A ∈ Λ and all possible spin assignments {ui}i∈A over them.

A probability measure over S and V is defined as follows.

Definition 3. For the sample space S and the event space V defined as above, a probability
measure over them is a function ρ : V → [0, 1] such that

– 3 –
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• ρ (∅) = 0 and ρ (S) = 1,

• given any countable collection of pairwise disjoint events {Ea}∞a=1 ⊆ V , ρ is countably
additive: ρ

( ∞⋃
a=1

Ea

)
=

∞∑
a=1

ρ(Ea).

ρ (Ea) has the interpretation of probability that the event Ea happens. Later when
we try to construct a probability measure for the statistical and stocahstic Ising model
from the candidate moments obtained by LPs, it will be important to check that all the
requirements in the above definition are satisfied.

In order to define the expectation values associated with a probability measure ρ, we
introduce the indicator functions.

Definition 4. Given an event E({ui}i∈A), the corresponding indicator function
F ({ui}i∈A, ·) : S → {0, 1} is given by

F ({ui}i∈A, s) =
∏
i∈A

(1 + uisi

2

)
. (2.2)

As the name suggests, the indicator function for the event E({ui}i∈A) evaluated on a
spin configuration s ∈ S is equal to 1 if the spin assignments of s agrees with {ui}i∈A over
A, and 0 otherwise. The construction of the expectation value then proceeds as usual.

Definition 5. Given a probability measure ρ over the sample space S and the event space
V , and a function f : S → R, the expectation value of f given by ρ is

⟨f(s)⟩ =
∫

S
f(s)dρ. (2.3)

2.2 The statistical and stochastic Ising model

We are now ready to define the statistical and stochastic Ising model. For any given site
i ∈ Λ, its nearest neighbors are the collection of sites n(i) := {j ∈ Λ | ||i− j||1 = 1}, where
|| · ||1 is the L1-norm. The Ising model is local in the sense that its probability measure is
defined using only the nearest neighboring spins.

Definition 6. The Gibbs measure g of the statistical Ising model on the lattice Λ = Zd at
couplings J ∈ R and h ∈ R is a probability measure over the sample space S and the event
space V such that:
given any lattice site i ∈ Λ, any finite subset T ⊂ Λ such that n(i) ⊂ T and i /∈ T , any
spin assignments {uk}k∈T over T , and any spin assignment ui at i ∈ Λ,

g
(
E
(
{uk}k∈T∪{i}

))
= g (E ({uk}k∈T ))

1 + e
−2
(

hui+J
∑

j∈n(i) uiuj

) . (2.4)

The set of all Gibbs measures at couplings J and h is denoted as ΓJ,h.

This definition is equivalent to the traditional one given by the DLR equations [12, 13].
In case g (E ({uk}k∈T )) ̸= 0, this is equivalent to saying that the conditional probability
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that the spin si at i ∈ Λ takes the value ui, given the spin assignments {uk}k∈T over T which

in particular includes the nearest neighbors of i, is given by
(
1 + e

−2
(

hui+J
∑

j∈n(i) uiuj

))−1
.

When J ≥ 0 and h ≥ 0, the statistical Ising model is called ferromagnetic, and we are going
to focus only on the ferromagnetic case in this work.

The above definition using the conditional probability agrees with the conventional
definition of the statistical Ising model on the finite lattice Λf (Proposition 1.8 in chapter IV
of [2]), which is described by the partition function

Z =
∑
s∈S

exp
(

J
∑
(i,j)

sisj + h
∑

i

si

)
, (2.5)

and probability measure

gf

(
E
(
{uk}k∈Λf

))
= 1

Z
exp

(
J
∑
(i,j)

uiuj + h
∑

i

ui

)
, (2.6)

where ∑(i,j) means that the sum is over all the nearest neighbor pairs (i, j).
It is very important that depending on the value of J and h (and also the dimension

d), there may be more than one Gibbs measure satisfying definition 6! This is the hallmark
of the phase transition which may take place only on the infinite lattice.

Now, we turn to the definition of the stochastic Ising model.

Definition 7. Given the couplings J ∈ R and h ∈ R, the stochastic Ising model is a
Markov chain on the state space S such that:

• on every lattice site of Λ = Zd, a Poisson clock is placed, namely each site is associated
with a Poisson point process5 where the occurrence of points is viewed as the times
when the clock at that site rings;

• if the current state is given by s ∈ S and the Poisson clock at the site i ∈ Λ rings, the
state s makes a transition to another state s′ ∈ S with a strictly positive transition
rate c(i, s) where s′j = sj , ∀j ∈ Λ \ {i}, and s′i = −si;

• the function c(i, s)ehsi+J
∑

j∈n(i) sisj does not depend on the value of si.

On the finite lattice, the equivalent of placing Poisson clocks is to randomly choose a
site with a uniform distribution at each discrete time as in Monte Carlo simulation. On the
infinite lattice, we instead place Poisson clocks on every site to “uniformly” choose which
spin to update. In particular, the expected number of ringings of a Poisson clock grows
linearly in time.

Note that we did not specify the transition rate (or the transition probability) c(i, s).
The key idea is that as long as c(i, s) satisfies the last condition in definition 7, the objects
of interest (which we will introduce soon) will be independent of the specific choice of

5A poisson point process is a random collection of points {S1, S2, · · · } on (0,∞) where {Sn+1−Sn : n ≥ 1}
are identically independently distributed exponential random variables.
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c(i, s). Independence on the value of si is equivalent to saying that the function is even
in si. Popular choices for c(i, s) are c(i, s) = exp

(
− hsi − J

∑
j∈n(i) sisj

)
and c(i, s) =(

1 + exp
(
2hsi + 2J

∑
j∈n(i) sisj

))−1
. Later in section 5, we will work with the following

choice:

c(i, s) = c∗(i, s) := C

1 + exp

−2hsi − 2J
∑

j∈n(i)
sisj

 , (2.7)

where C is a constant depending on d, J, and h whose details will not matter for us. One
possible choice would be C = 1/ (1 + exp(4dJ + 2h)).

When we apply the above definition to the case where Λ is finite, we obtain the
traditional Markov chain (sometimes called the Glauber dynamics) which is used to perform
the Monte Carlo simulation of the Ising model, known as MCMC. The last condition in
definition 7 is nothing but the detailed balance equation for the probability measure gf

in (2.6). The ergodicity theorem states that gf is indeed the unique invariant measure of
the Markov chain. Of course for our case where Λ is infinite, the set of invariant measures
needs not be a singleton.

Definition 8. A probability measure ρ over the sample space S and the event space V is
an invariant measure of the stochastic Ising model if

∑
i∈S

〈
c(i, s)

(
f(si)− f(s)

)〉
=
∑
i∈S

∫
S

c(i, s)
(
f(si)− f(s)

)
dρ = 0, ∀f ∈ D(S), (2.8)

where si ∈ S is defined by
(
si
)

j = sj , ∀j ∈ Λ \ {i}, and
(
si
)

i = −si.
We denote by ΠJ,h the set of all invariant measures of the stochastic Ising model at

couplings J and h.

The definition of the space of functions D(S) (sometimes called the core of the Markov
chain) can be found in chapter I of [2]. For us, the only relevant facts about D(S) are
that it is a dense subset of the set C(S) of continuous functions on S, and the set P (S) of
polynomials in {si}i∈Λ is a subset of D(S). As the name suggests, the invariant measure
remains invariant under the time evolution of the Markov chain.

The stochastic Ising model is defined such that the Gibbs measure of the statistical
Ising model is a reversible measure.

Definition 9. A probability measure ρ over the sample space S and the event space V is
a reversible measure of the stochastic Ising model if〈

c(i, s)
(
f(si)− f(s)

)〉
=
∫

S
c(i, s)

(
f(si)− f(s)

)
dρ = 0, ∀i ∈ Λ, ∀f ∈ C(S). (2.9)

We denote by ΩJ,h the set of all reversible measures of the stochastic Ising model at
couplings J and h.

Theorem 1. (theorem 2.14 in chapter IV of [2]) Given J ∈ R and h ∈ R, ΩJ,h = ΓJ,h.

– 6 –
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Note that a reversible measure is invariant. Furthermore, theorem 1 says that a re-
versible measure is a Gibbs measure. This is essentially because the reversibility condition
and the conditional probability defining the Gibbs measure are equivalent. Also note that
theorem 1 does not rely on the specific choice of the transition rate c(i, s). This implies
that the set of reversible measures is independent of the choice of c(i, s) as long as the
latter satisfies the definition of the stochastic Ising model. A natural question is whether
there are invariant measures which are not reversible. It was shown in [22] that there are
no such measures under the assumption of translation invariance.

Definition 10. Let tp : Λ → Λ for p = 1, 2, . . . , d be a translation of the lattice sites by one
unit in p-th direction: tp(i) = i + ep where ep is the unit vector along the p-th direction.
A probability measure ρ over the sample space S and the event space V is translation
invariant if ρ(E({ui}i∈A)) = ρ(E({vj}tp(j)∈A)) for all events E({ui}i∈A) and p, where
vt−1

p (i) = ui, ∀i ∈ A.

Theorem 2. Let ρ be a translation invariant probability measure over the sample space S

and the event space V . Then, ρ ∈ ΠJ,h ⇔ ρ ∈ ΩJ,h ⇔ ρ ∈ ΓJ,h.

In fact, it can be shown that for d = 1 and d = 2, invariant measures are reversible
even in the absence of the translation invariance assumption (see e.g. chapter IV.5 of [2]).
However, as far as we are aware, this is not established for d ≥ 3.

2.3 Moments, positivity, invariance, and reversibility

Later when we formulate the bootstrap problems for the Ising model, the information about
a probability measure will be expressed in terms of moments. Therefore, we describe the
properties of a probability measure discussed so far in terms of moments in this subsection.

Say that we are given a candidate set of polynomial moments ⟨p(s)⟩, ∀p(s) ∈ P (S).
The question is, how do we make sure that they correspond to the expectation values of
some probability measure ρ satisfying either invariance or reversibility? In the general
case of real-valued polynomial moment problems, this type of question remains unsolved.
However, as we will see in this work, this question for the Ising model has a definite answer.

We first address the positivity of the candidate measure. Given a candidate set of
polynomial moments ⟨p(s)⟩, ∀p(s) ∈ P (S), we know in particular the moments of all the
indicator functions because indicator functions F ({ui}i∈A, s) = ∏

i∈A

(
1+uisi

2

)
for events

E({ui}i∈A) are polynomials themselves. Then, the candidate probability measure ρ realiz-
ing the given set of moments should satisfy

ρ(E({ui}i∈A)) = ⟨F ({ui}i∈A, s)⟩, (2.10)

for all events E({ui}i∈A). This is a natural requirement for the candidate measure ρ since
the value of the measure evaluated on an event has the interpretation of the probability
that the event takes place, which in turn should be equal to the expectation value of the
corresponding indicator function. Therefore,

– 7 –
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Lemma 1. A candidate probability measure ρ over the sample space S and the event
space V is positive only if its candidate moments satisfy ⟨F ({ui}i∈A, s)⟩ ≥ 0 for all events
E({ui}i∈A).

Note that the above lemma states only a necessary condition for the probability mea-
sure. Such a condition can be readily checked for the candidate moments ⟨p(s)⟩. In contrast
to the general polynomial moment problems where the indicator functions are not poly-
nomials and thus require extra conditions to even discuss their moments, the Ising model
(and many other statistical models) is particularly simple since the indicator functions are
polynomials. Just checking the positivity of the candidate probability measure evaluated
on the generators of the event space V is not enough to guarantee that it is indeed a prob-
ability measure, since one also has to make sure that countable additivity can be made
sense. We will have further discussions on this in section 4.1.

Next, we turn to the invariance and reversibility conditions for a candidate measure
and candidate moments. Given s′ ∈ S, s′′ ∈ S such that s′ ̸= s′′, there exists at least
one site i ∈ Λ such that s′i ̸= s′′i . The polynomial function si then separates two points s′

and s′′. Therefore, the set P (S) of polynomials in {si}i∈Λ is a subalgebra of C(S) which
separates points in S. As already discussed above definition 1, the space S is compact
under the metric M . Then, Stone-Weierestrass theorem implies that P (S) is dense in
C(S), and also in D(S).6

The implication of this fact is that the invariance and reversibility for a measure, which
by definition require considering the expectation values of arbitrary functions in D(S) and
C(S), can be checked by considering only the polynomial moments.

Lemma 2. A probability measure ρ over the sample space S and the event space V is
an invariant measure of the stochastic Ising model if and only if its polynomial moments
satisfy ∑

i∈S

〈
c(i, s)

(
f(si)− f(s)

) 〉
= 0, ∀f ∈ P (S). (2.11)

Lemma 3. A probability measure ρ over the sample space S and the event space V is
a reversible measure of the stochastic Ising model if and only if its polynomial moments
satisfy 〈

c(i, s)
(
f(si)− f(s)

) 〉
= 0, ∀i ∈ Λ, ∀f ∈ P (S). (2.12)

It may not be immediately obvious how c(i, s)
(
f(si)− f(s)

)
may be expressed as

a polynomial. This is essentially because the spin variables si at each site i ∈ S can
take values only in {−1, 1} and c(i, s) is a local expression around the site i involving
only the nearest neighbors so that any reasonable choice of c(i, s) (such as ones discussed
around (2.7)) can be equivalently written as a polynomial of finite number of spin variables.
Therefore, (2.11) and (2.12) are indeed equations for polynomial moments.

6A notion of the sequential compactness of S and thus the statement that P (S) is dense in C(S) can be
found for example in chapter 6 of [21].
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3 Bootstrap problems for the stochastic and statistical Ising model

In this section, we formulate the bootstrap problems for the stochastic and statistical
Ising model. Such a formulation is very natural from the definitions of the stochastic
and statistical Ising model for two reasons. The first is that the object of interest is a
probability measure, whose positivity is a crucial defining property. The second is that any
such measure satisfying a given set of equations (invariance or reversibility) is physical.
The combination of positivity and equations provides a bootstrap-friendly setup, and it
is thus expected that imposing them over the set of candidate measures would lead to
rigorous and nontrivial results about the space of physical measures.

We first begin by introducing some notations. We define Dn = {i ∈ Zd| ||i||1 ≤ n− 1}
for n = 1, 2, 3, . . ., where || · ||1 is the L1-norm. For example, it is a diamond in d = 2 and
octahedron in d = 3. The hierarchy of LP/SDP for the bootstrap problems originates in
part from the hierarchy of Dn.

Given two subsets A ⊂ Λ and B ⊂ Λ, we write A ∼ B if they can be transformed into
each other by a symmetry transformation of the lattice Λ = Zd (which are generated by
translations, rotations, and reflections). This defines an equivalence relation on the set of
finite subsets of Λ.

Given any finite subset A ⊂ Λ, we define the monomials sA := ∏
i∈A si, and we also

define s∅ := 1. For each n, we further define Pn := {
∑

A∈Dn
tAsA, tA ∈ R}, the set

of polynomials in spin variables restricted to Dn. In the hierarchy of LP/SDP, the level
n LP/SDP will impose constraints on candidate moments for polynomials in Pn. Such
candidate moments will be denoted as mn : Pn → R.

3.1 Bootstrapping the invariant measure of the stochastic Ising model

We now introduce the hierarchy of LPs which provides a series of rigorous bounds on the
objective moment of the invariant measure of the stochastic Ising model.

Definition 11. Given p ∈ Pm for some m ∈ N, we define the bootstrap problem BS1(p)
as the following hierarchy of LPs:
For each n ∈ N (called the level of the LP hierarchy) such that n ≥ m, we have the LP
problem LP (p, n) of minimizing mn(p) over the space of candidate moments mn : Pn → R
satisfying the following conditions:

• Probability bound. For all the spin assignments {ui}i∈Dn over Dn,
0≤mn(F ({ui}i∈Dn , s)) where F ({ui}i∈Dn , s) is the corresponding indicator function.

• Linearity. Given any polynomials q1 ∈ Pn and q2 ∈ Pn, with λ ∈ R, their moments
satisfy linearity: mn(q1 + λq2) = mn(q1) + λmn(q2).

• Unit normalization. mn(1) = 1.

• Symmetry. For any A ⊂ Dn and B ⊂ Dn such that A ∼ B, mn(sA) = mn(sB).

– 9 –
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• Invariance. For any polynomial f ∈ Pn−1, the moments satisfy the invariance with
respect to the transition rate c(i, s) of the stochastic Ising model in (2.7):∑

i∈Dn−1

mn

(
df

i

)
= 0, (3.1)

where df
i (s) := c(i, s)

(
f(si)− f(s)

)
is an element of Pn due to s2

j = 1, ∀j ∈ Λ.

The minimum of mn(p) obtained by LP (p, n) will be denoted as ⟨p⟩∗n. The correspond-
ing candidate moments mn(q) for polynomials q ∈ Pn realizing such a minimum (which
may not be unique) will be denoted as ⟨q⟩∗n.

A few comments are in order. Firstly, the invariance condition written above makes
sense because f ∈ Pn−1, and the transition rate c(i, s) depends only on the nearest neigh-
bors of the site i ∈ Dn−1, so that df

i indeed is an element of Pn and (3.1) therefore is a
linear equation on the moments mn : Pn → R. In fact, the very existence of the hierarchy
of LPs for the stochastic Ising model is due to locality, where invariance equations involve
only the nearest neighbor expressions. It is also worth mentioning that we could replace
the invariance condition by reversibility condition:

mn

(
df

i

)
= 0, ∀i ∈ Dn−1, ∀f ∈ Pn. (3.2)

Theorem 2 implies that this condition is obeyed by any invariant measure of the stochastic
Ising model with the transition rate c(i, s) respecting the symmetries of the lattice. We will
see later that the invariance condition is already sufficient for the convergence of BS1(p)
and the resulting measure will be not only invariant, but also reversible (which is equivalent
to Gibbs).

Secondly, the above LP problem LP (p, n) is always feasible because the measure gf

in (2.6) for the statistical Ising model on a large enough but finite torus will satisfy all
the conditions. Of course, the Gibbs measure of the statistical Ising model on the infinite
lattice (whose existence was established long time ago) also satisfies all the conditions of
LP (p, n) for any n.

Let us compare BS1(p) to the traditional K-moment problem [23], where there will be
a variable xi ∈ R at each lattice site and the moment m′ will map polynomials in xi (of any
positive integer power) to R. x2

i = 1 will then be imposed by m′
((

(xi)2 − 1
)

f(x)
)
= 0 for

all i ∈ Λ and all sums of squares functions f(x). This is indeed how SDP was formulated
for 0-1 problem in [18] for example. BS1(p) instead imposes x2

i = 1 directly within m′(·)
and thus considers polynomials which are at most linear in each xi.

⟨p⟩∗n for any n provides a rigorous lower bound on the expectation value ⟨p⟩ of any
invariant measure respecting all the symmetries of the lattice, for the stochastic Ising model
with the transition rate c(i, s). One may use any c(i, s) for the stochastic Ising model as
long as it allows for a polynomial expression, and still obtain rigorous lower bounds on the
expectation value ⟨p⟩. Of course, one can obtain rigorous upper bounds simply by studying
the analogous LP problem of maximizing mn(p).

All the conditions of LP (p, n) are a subset of the conditions of LP (p, k) when k ≥ n.
Therefore, the obtained lower bounds can only increase as we increase the level n of the LP
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hierarchy: ⟨p⟩∗n ≤ ⟨p⟩∗k, ∀k ≥ n. Later, we will discuss its convergence to the expectation
value of an extremal Gibbs measure.

3.2 Bootstrapping the Gibbs measure of the statistical Ising model

In this subsection, we review the bootstrap problem BS′
2 proposed in [11] for the Gibbs

measure of the statistical Ising model and discuss the related bootstrap problem BS2
which will be shown to converge later. BS′

2 is mainly based on two properties of the Gibbs
measure: reflection positivity and spin-flip equations, both of which are explained in full
details in [11]. We provide a brief summary of the two below.

For the lattice Λ = Zd = {
∑d

µ=1 vµeµ, vµ ∈ Z} where eµ is the unit vector along the
µ-th direction, there are three inequivalent reflections preserving the lattice up to rotations
and translations by integer units (except for d = 1 where there are only two inequivalent
reflections). They are denoted as Rv,c where the pair (v, c) consists of a vector v on the
lattice and a constant c. Their actions on a site i ∈ Λ are given by Rv,c(i) = i − 2(v·i−c)

v2 v.

Each of reflections splits Λ into half-spaces Hv,c = {i ∈ Λ | v · i ≥ c}. Three inequivalent
reflections are given by Rv,c with (v, c) ∈ κ := {(e1, 0), (e1, 1/2), (e1 + e2, 0)}, where the
last reflection is absent for d = 1. Reflection positivity states that the expectation value
⟨·⟩ of the Gibbs measure satisfies:

⟨OORv,c⟩ ≥ 0, where O =
∑

A⊂Hv,c

tAsA, ORv,c =
∑

A⊂Hv,c

tAsRv,c(A), ∀tA ∈ R, ∀(v, c) ∈ κ.

(3.3)
Spin-flip equations can be most easily seen from the Gibbs measure on the finite lattice

gf in (2.6). When evaluating the expectation value of a function using gf , sum over all
possible spin configurations {ui}i∈Λ is performed. Since the spin values ui at each site i ∈ Λ
are summed over both −1 and 1, the expectation value should be the same if one takes a
change of variable ui → −ui. This produces spin-flip equations, which can be extended to
the infinite lattice case:〈

f̃(s)− f̃
(
s̄i
)
exp

(
− 2hsi − 2J

∑
j∈n(i)

sisj

)〉
= 0, ∀f̃(s) ∈ P (S), ∀i ∈ Λ. (3.4)

We now define the bootstrap problem BS2, which is a small extension of the bootstrap
problem BS′

2 in [11], for the Gibbs measure as follows:

Definition 12. Given p ∈ Pm for some m ∈ N, we define the bootstrap problem BS2(p)
as the following hierarchy of SDPs:
For each n ∈ N (called the level of the SDP hierarchy) such that n ≥ m, we have the SDP
problem SDP (p, n) of minimizing mn(p) over the space of candidate moments mn : Pn → R
satisfying the following conditions:

• Reflection positivity. For each of reflections Rv,c with (v, c) ∈ κ∪{(e1+e2, 1)}, de-
fine the matrix Mv,c

n by its matrix elements (Mv,c
n )A,B = mn

(
s(A∪Rv,c(B))\(A∩Rv,c(B))

)
where A ⊂ (Dn ∩ Hv,c) and B ⊂ (Dn ∩ Hv,c). Then these matrices should satisfy
reflection positivity Mv,c

n ⪰ 0.
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• Probability bound. For all the spin assignments {ui}i∈Dn over Dn,
0≤mn(F ({ui}i∈Dn , s)) where F ({ui}i∈Dn , s) is the corresponding indicator function.

• Linearity. Given any polynomials q1 ∈ Pn and q2 ∈ Pn, with λ ∈ R, their moments
satisfy linearity: mn(q1 + λq2) = mn(q1) + λmn(q2).

• Unit normalization. mn(1) = 1.

• Symmetry. For any A ⊂ Dn and B ⊂ Dn such that A ∼ B, mn(sA) = mn(sB).

• Spin-flip equation. For all i ∈ Dn−1 and f̃ ∈ Pn, the moments satisfy spin-flip
equations:

mn

(
f̃(s)

)
= mn

f̃
(
s̄i
)
exp

−2hsi − 2J
∑

j∈n(i)
sisj

 , (3.5)

where the r.h.s. is a polynomial moment due to s2
j = 1, ∀j ∈ Λ.

The minimum of mn(p) obtained by SDP (p, n) will be denoted as ⟨p⟩#
n . The cor-

responding candidate moments mn(q) for polynomials q ∈ Pn realizing such a minimum
(which may not be unique) will be denoted as ⟨q⟩#

n .

Bootstrap problem BS′
2 in [11] is the same as BS2 except that the condition of prob-

ability bound was not imposed. It can be checked that reflection positivity alone does not
imply probability bound within the domain Dn. In d = 1, the combination of reflection
positivity and spin-flip equations still does not imply probability bound. In contrast in
d = 2, it was empirically observed in [11] that the same combination implies square posi-
tivity which we will later show to be equivalent to probability bound. In any case, adding
probability bounds to the SDP does not increase the computational cost significantly since
they are merely a lot of 1×1 inequalities, rather than a large irreducible matrix inequality.

Similar to the previous discussion on BS1, the existence of the SDP hierarchy for BS2
is due to the local nature of spin-flip equations which involve only the nearest neighbor
expressions. Also, the feasibility of BS2 is guaranteed due to the existence of the Gibbs
measure on the infinite lattice. The sequence of the mimina ⟨p⟩#

n gives rigorous lower
bounds which can only increase as n increases. In [11], it was observed that well away
from the criticality in d = 2, BS′

2 produces lower and upper bounds for the nearest spin
correlator ⟨sisi+e1⟩ which are very close to each other already at n = 2, where the gap
between the two sometimes was as small as 10−15.

BS1 and BS2 differ in terms of the equations imposed on the candidate measure, and
the latter further imposes reflection positivity. Nonetheless, they should be compatible be-
cause the Gibbs measure on the infinite lattice provides a feasible solution to both of them.
By theorem 1, one may expect that BS2 is stronger than BS1 since every Gibbs/reversible
measure is invariant.

Lemma 4. For each n ∈ N, spin-flip equations of SDP (p, n) include reversibility equa-
tions (3.2), which also include invariance equations of LP (p, n), under the linearity as-
sumption.
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Proof. Making the following choice of f̃ in spin-flip equations (3.5),

f̃(s) = c(i, s)f
(
s̄i
)

(3.6)

for f(s) ∈ Pn and i ∈ Dn−1, and using that c(i, s) exp
(
hsi + J

∑
j∈n(i) sisj

)
is even in si

by definition, it is straightforward to derive

mn

(
c(i, s)

(
f(s̄i)− f(s)

))
= 0, (3.7)

which is the reversibility equation (3.2). The latter then implies invariance equations by
linearity.

Lemma 4 shows that any solution of SDP (p, n) is feasible for LP (p, n). In particular,
⟨p⟩∗n ≤ ⟨p⟩#

n . It should be noted though that there are considerably many more spin-flip
equations than invariance equations at each level of the hierarchy, which may lead to a
bigger scale separation issue for BS2 (this issue will be discussed further in section 5).
In contrast, even if LP (p, n) is further equipped with spin-flip equations, it is safer from
the scale separation issue since LP is less sensitive about it than SDP in general. We will
consider different combinations of positivity and equations later in section 5.

4 Asymptotic convergence of BS1

In this section, we show that as the level n of the LP hierarchy BS1 increases, one can
find a convergent subsequence of moments {⟨q⟩∗n}n∈N for q ∈ P (S) where the convergent
limit corresponds to the moments of an invariant measure of the stochastic Ising model.
Theorem 2 then implies that this measure is also a Gibbs measure. Also, BS2 converges
in the same sense by lemma 4.

There are two steps in the proof. The first step is to show that the candidate moments
indeed come from a valid probability measure, a problem often called “the moment prob-
lem”. The second step is to make sure that such a measure is indeed an invariant measure
of the stochastic Ising model respecting the symmetries of the lattice. We will obtain the
desired result by explicitly constructing a probability measure realizing the candidate mo-
ments produced by LP. Since the indicator functions corresponding to the generators of
the event space V are finite polynomials, the value of the measure evaluated on such events
can be naturally associated with the candidate polynomial moments of the corresponding
indicator functions obtained from LP. This natural prescription indeed will be shown to
define a consistent probability measure.

4.1 Moment problem on S

Establishing a moment problem over a general sample and event space is very difficult and
the answers are known only in some special cases, such as Hamburger moment problem
or K-moment problem. In this subsection, we will see that statistical mechanical systems
are particularly well-suited for formulating the moment problem.7 Even though we present

7Discussions on the moment problem of the statistical mechanical systems can be found for example
in [24].
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only the case of the Ising model, the ideas can be straightforwardly generalized to other
statistical mechanical systems.

We begin by explaining the moment problem on a finite lattice.8

Theorem 3. Consider a finite subset Λf ⊂ Λ = Zd. Denote the space of spin configurations
over Λf by Sf = {−1, 1}Λf and the corresponding event space by Vf . Let P (Sf ) be the
space of polynomials of spin variables over Sf . A candidate moment mΛf

: P (Sf ) → R is
a moment of a probability measure over the sample space Sf and the event space Vf if and
only if it satisfies:

• Probability bound. For all the spin assignments {ui}i∈Λf
over Λf ,

0≤mΛf

(
F
(
{ui}i∈Λf

, s
))

where F
(
{ui}i∈Λf

, s
)

is the corresponding indicator function.

• Linearity. Given any polynomials q1 ∈ P (Sf ) and q2 ∈ P (Sf ), with λ ∈ R, their
moments satisfy linearity: mΛf

(q1 + λq2) = mΛf
(q1) + λmΛf

(q2).

• Unit normalization. mΛf
(1) = 1.

Proof. “Only if” part is trivial since moments of non-negative functions for a probabil-
ity measure are non-negative. For the “if” part, we explicitly construct a probability
measure ρΛf

giving rise to the moment mΛf
. Since the moment is defined on all polyno-

mials of spin variables over Λf , it is defined in particular on the indicator functions (2.2):
F ({ui}i∈A, s) = ∏

i∈A

(
1+uisi

2

)
for all A ⊂ Λf . The event space Vf is generated by the

events E ({ui}i∈A, s) defined in (2.1), where spin assignments ui are specified over a subset
A ⊂ Λf . We define ρΛf

by its value on these generating events:

ρΛf
(E ({ui}i∈A)) := mΛf

(F ({ui}i∈A, s)) = mΛf

(∏
i∈A

(1 + uisi

2

))
. (4.1)

We extend the definition linearly: given disjoint generating events
{

E
(
{u

(t)
i }i∈A(t)

)}
t∈T

for some finite index set T such that A(t) ⊂ Λf ∀t ∈ T ,

ρΛf

(⋃
t∈T

E
(
{u

(t)
i }i∈A(t)

))
=
∑
t∈T

ρΛf

(
E
(
{u

(t)
i }i∈A(t)

))
. (4.2)

ρΛf
on the complement events are defined by

ρΛf

((⋃
t∈T

E
(
{u

(t)
i }i∈A(t)

))c)
= 1−

∑
t∈T

ρΛf

(
E
(
{u

(t)
i }i∈A(t)

))
. (4.3)

This definition is consistent in that, if there are two sets of pairwise disjoint events such that
their unions coincide, ρΛf

evaluated on them are the same. This is due to the assumption
8An equivalent problem was discussed in [24], and similar problems where the sample space is given by

a finite product of a finite set appeared in various places, such as 0-1 problem and MAX-CUT problem —
see e.g. [18].
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mΛf
(1) = 1, linearity, and the properties of the indicator functions, together with the

fact that the sample and event spaces under consideration are finite. This determines ρΛf

completely and finite additivity of ρΛf
naturally follows.

It remains to show that ρΛf
is non-negative and bounded from above by 1. By defini-

tion, if we sum over all the indicator functions corresponding to all the events where every
spin over Λf is specified, we should get the function 1:∑

u∈{−1,1}Λf

F
(
{ui}i∈Λf

, s
)
= 1. (4.4)

Since every summand in the above is non-negative by probability bound assumption, lin-
earity and unit normalization imply that any partial sum of m

(
F
(
{ui}i∈Λf

, s
))

should
be bounded from above by 1, leading to

0 ≤ ρΛf

(⋃
t∈T

E
(
{u

(t)
i }i∈A(t)

))
≤ 1, (4.5)

for all pairwise disjoint events E
(
{u

(t)
i }i∈A(t)

)
. Since mΛf

(1) = 1 by assumption, ρf

evaluated on the complement events are also bounded from below by 0 and from above
by 1. This completes the proof.

Now, we extend probability measure ρΛf
constructed above to a probability measure

ρ over the sample space S and the event space V on the infinite lattice Λ = Zd using
the Kolmogorov extension theorem in stochastic process. The key idea of the extension
theorem is that if probability measures defined on the finite subsets of an infinite set are
compatible with each other in the sense explained below, then it is guaranteed that there
exists a probability measure on the infinite set which agrees with probability measures on
the finite subsets when restricted to those finite subsets.

Theorem 4. A candidate moment m : P (S) → R is a moment of a probability measure if
it satisfies:

• Probability bound. 0 ≤ m (F ({ui}i∈A, s)) for any the spin assignments {ui}i∈A

over any finite subset A ⊂ Λ.

• Linearity. Given any polynomials q1 ∈ P (S) and q2 ∈ P (S), with λ ∈ R, their
moments satisfy linearity: m(q1 + λq2) = m(q1) + λm(q2).

• Unit normalization. m(1) = 1.

Proof. Since Λ = Zd is countable, we can consider the sequence {ri}i∈N where ri ∈ Λ
and ri ̸= rj for i ̸= j such that ⋃i∈N{ri} = Λ. Given N ∈ N, consider the subsequence
RN := {r1, r2, . . . , rN}. Considering RN as Λf in theorem 3, we obtain a valid probability
measure ρr1,...,rN

RN
over the sample space {−1, 1}RN and the corresponding event space VRN

as defined in the proof of theorem 3:

ρr1,...,rN
RN

(E ({ui}i∈A)) := m (F ({ui}i∈A, s)) = m

(∏
i∈A

(1 + uisi

2

))
, (4.6)
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for all A ⊂ RN and spin configurations {ui}i∈A over it. This definition extends linearly and
specifies the probability measure ρr1,...,rN

RN
completely as outlined in the proof of theorem 3.

Given any permutation π on the set {1, 2, . . . , N}, we similarly define

ρ
rπ(1),...,rπ(N)
RN

(E ({ui}i∈A)) := m

(∏
i∈A

(1 + uπ(i)sπ(i)
2

))
, (4.7)

and this defines a valid probability measure ρ
rπ(1),...,rπ(N)
RN

. These probability measures are
then manifestedly permutation invariant.

Furthermore, given any N ′ > N ,

ρ
r1,...,rN′
RN′ (E ({ui}i∈A)) = m (F ({ui}i∈A, s)) = ρr1,...,rN

RN
(E ({ui}i∈A)) (4.8)

for any A ⊂ RN and spin configurations {ui}i∈A over it. This implies that given the joint
probability measure ρ

r1,...,rN′
RN

, the marginal probability measure where the spin values on
{rN+1, . . . , rN ′} are summed over is given by ρr1,...,rN

RN
.

The above two properties of ρr1,...,rN
RN

, permutation invariance and marginality, are the
sufficient conditions for the Kolmogorov extension theorem, which states that there is a
probability measure ρ over the sample space S and the event space V on the infinite lattice⋃

i∈N{ri} = Λ = Zd such that its marginals are given by ρr1,...,rN
RN

:

ρ (E ({ui}i∈A)) = m (F ({ui}i∈A, s)) = ρr1,...,rN
RN

(E ({ui}i∈A)) , (4.9)

for all N ∈ N, A ⊂ RN , and spin configurations {ui}i∈A over A. By construction, m :
P (S) → R is the moment of the probability measure ρ.

Probability bounds are the minimal positivity requirements for the existence of a mea-
sure realizing the candidate moments. It turns out that they are equivalent to another
familiar positivity condition, square positivity.

Lemma 5. Given a candidate moment mΛf
: P (Sf ) → R satisfying the linearity and unit

normalization of theorem 3, the following two conditions are equivalent:

• Probability bound. For all the spin assignments {ui}i∈Λf
over Λf ,

0≤mΛf

(
F
(
{ui}i∈Λf

, s
))

where F
(
{ui}i∈Λf

, s
)

is the corresponding indicator function.

• Square positivity. For any polynomial q ∈ P (Sf ), the moment of its square is
positive: mΛf

(q2) ≥ 0.

Proof. Since every indicator function squares to itself, square positivity trivially implies
probability bound. For the opposite direction, note that F

(
{ui}i∈Λf

, s
)

for all {ui}i∈Λf

provide a complete basis of P (Sf ). Therefore, we can expand

q =
∑

u∈{−1,1}Λf

tuF
(
{ui}i∈Λf

, s
)

(4.10)
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for any q ∈ P (Sf ) with tu ∈ R. By definition, the product of indicator functions corre-
sponding to pairwise disjoint events vanishes. Therefore,

mΛf

(
q2
)
=

∑
u∈{−1,1}Λf

(tu)2 mΛf

(
F
(
{ui}i∈Λf

, s
))

≥ 0, (4.11)

which is the desired result.

Similarly, theorem 4 holds true if probability bound is replaced by square positivity.
Lemma 5 implies that the LP problem BS1 can be equivalently formulated as a SDP
problem where square positivity is imposed instead of probability bound. This is because,
by defining the matrix M via its matrix elements MA,B = m

(
s(A∪B)\(A∩B)

)
where A ⊂ Λf

and B ⊂ Λf , square positivity is equivalent to M ⪰ 0, which is a SDP constraint. However,
there is no advantage in doing so because LP is much faster and cheaper than the equivalent
SDP in this case.

Theorem 4 not only shows the existence of a probability measure ρ realizing the candi-
date moments, but also is constructive in that ρ evaluated on any event can be expressed in
terms of the moments of the indicator functions. For example, given an infinite sequence
of disjoint events {Ek}k∈N, ρ evaluated on the partial union ⋃n

k=1 En is bounded from
above by 1. Therefore, the limit ρ (⋃n

k=1 En) as n → ∞ exists and is what the countable
additivity of ρ predicts. Similarly, given an infinite sequence of strictly descending events
E1 ⊋ E2 ⊋ E3 ⊋ . . ., the sequence ρ(Ek) is non-increasing and bounded from below by 0.
Therefore, the limit ρ(Ek) as k → ∞ exists and this for example defines the value of ρ eval-
uated on the event where spin values on an infinitely many lattice sites are specified. Even
though we expect such a value to be essentially 0 for the Ising model, it may even be 1 for
extreme cases like Dirac measure on S. This illustrates the point that the moment problem
we discussed above is about the space of all possible probability measures on the sample
space S and the event space V , while the probability measure of our interest is specifically
that of the Ising model. We now address how the symmetry and invariance conditions of
BS1 pin down the invariant/reversible/Gibbs measure of the Ising model within the space
of all probability measures on S.

4.2 Asymptotic convergence of the Ising bootstrap

In this subsection, we show that the bootstrap problem BS1 converges as the level n of
the LP hierarchy increases. Two main ingredients for the proof have already been pre-
sented: the moment problem in theorem 4 and the polynomial representation of invariance
equations in lemma 2. The rest of the proof follows the usual steps.9

Theorem 5. Consider the bootstrap problem BS1(p) with LP hierarchy LP (p, n) for p ∈
Pm. Recall that the minimum of mn(p) obtained by LP (p, n) is denoted as ⟨p⟩∗n and the

9Similar proofs of convergence of SDP hierarchy for the dynamical system or Markov chain bootstrap
can be found for example in [14, 15]. In [25], a similar proof of convergence of the bootstrap method for
the quartic one-matrix model was presented based on the result of the Hamburger moment problem. We
thank the anonymous referee of the Journal of High Energy Physics for pointing this reference to us.
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corresponding candidate moments mn(q) of the polynomials q ∈ Pn are denoted as ⟨q⟩∗n.
For l ∈ N, define the sequence Nm,l = {max(m, l),max(m, l)+1,max(m, l)+2, . . .}. Then,

• The limit ⟨p⟩∞ := lim
n→∞

⟨p⟩∗n exists.

• Given l∈N, consider the polynomials sA∈Pl for A⊂Dl. The sequence {⟨sA⟩∗n}n∈Nm,l

in R2|Dl| has a convergent subsequence {⟨sA⟩∗n}n∈Q for an appropriate index set Q ⊂
Nm,l, whose convergent limit is denoted as ⟨sA⟩∞ := lim

n∈Q,n→∞
⟨sA⟩∗n.

Furthermore, there exists an invariant measure ρ of the stochastic Ising model with the
transition rate c(i, s) which respects the lattice symmetries, whose corresponding expectation
values ⟨·⟩ satisfy:

• ⟨p⟩ = ⟨p⟩∞.

• ⟨sA⟩ = ⟨sA⟩∞.

Finally, given any other invariant measure ρ′ of the stochastic Ising model with the tran-
sition rate c(i, s) respecting the lattice symmetries, ⟨p⟩ ≤ ⟨p⟩′, where ⟨p⟩′ is the expectation
value of p given by ρ′.

Proof. Square positivity (which follows from probability bounds by lemma 5) and unit
normalization imply that −1 ≤ ⟨sA⟩∗n ≤ 1 for any A ⊂ Dl and any n ∈ Nm,l. Therefore,
{⟨sA⟩∗n}n∈Nm,l

is a bounded sequence in R2|Dl| and thus has a convergent subsequence
{⟨sA⟩∗n}n∈Q with the limiting values ⟨sA⟩∞. By continuity, ⟨sA⟩∞ as candidate moments
satisfy all the conditions of theorem 3 with Λf = Dl. Therefore, we can construct a
probability measure ρl on the sample space {−1, 1}Dl and corresponding event space by
declaring that its moments are given by ⟨sA⟩∞, A ⊂ Dl. Furthermore, for all l2 > l1 ≥ l,
we can similarly define ρl1 and ρl2 such that ρl1 is the marginal probability measure of ρl2 .
Then, following the proof of theorem 4, there is a probability measure ρ on the sample
space S and the event space V such that its marginal probability measures are {ρl′}l′≥l.
Since each lattice symmetry constraint involves only finitely many moments, ρ respects the
lattice symmetries by continuity. Similarly, each invariance equation involves only finitely
many moments and thus the moments of ρ satisfy invariance equations in lemma 2 with the
transition rate c(i, s) by continuity. Therefore, ρ is the invariant measure of the stochastic
Ising model with the transition rate c(i, s) and the corresponding expectation value ⟨sA⟩
of sA for any A ⊂ Dl agrees with that given by the finite marginal probability measure:
⟨sA⟩ = ⟨sA⟩∞.

As discussed below definition 11 of BS1(p), the sequence {⟨p⟩∗n} is a non-decreasing
sequence in R. Square positivity, unit normalization, and linearity also imply that the
sequence is bounded from above. Therefore, its limit ⟨p⟩∞ exists and coincides with the
corresponding moment of ρ: ⟨p⟩ = ⟨p⟩∞. Let ν be an invariant measure of the stochastic
Ising model with the transition rate c(i, s) respecting the lattice symmetries such that its
moment ⟨p⟩ν for p is minimal among all such invariant measures. Since ⟨·⟩ν is feasible for
BS1(p), we have ⟨p⟩ ≤ ⟨p⟩ν . Because ρ itself is an invariant measure, the definition of ν

implies ⟨p⟩ ≥ ⟨p⟩ν . Therefore, ⟨p⟩ = ⟨p⟩ν .
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A few corollaries follow from previous discussions. Due to the symmetry conditions of
BS1(p), theorem 2 implies:

Corollary 1. Probability measure ρ in theorem 5 is a Gibbs measure of the statistical Ising
model.

Corollary 2. The bootstrap problem BS2(p) converges in the same sense as BS1(p) in
theorem 5.

It is worth mentioning how to obtain the extremal Gibbs measure from BS1(p) or
BS2(p). A Gibbs measure is extremal if it cannot be written as a weighted sum of two
different Gibbs measures. Of course, this notion is nontrivial only in the low temperature
and in the absence of the external magnetic field where there are infinitely many Gibbs
measures. This is exactly where the order parameter ⟨si⟩ (also called the magnetization)
becomes nonzero. Therefore, if we choose p = si and minimize (or maximize) ⟨si⟩, the
corresponding measure ρ is expected to be an extremal measure.

Theorem 5 for BS1(p) may sound strange from the Euclidean field theory perspective
since the natural positivity of the latter is reflection positivity, while BS1(p) converges with
just probability bound/square positivity. However, reflection positivity is a property satis-
fied by specific Hamiltonians and thus, it indirectly appears through invariance equations.
Rather surprising fact is that it is spin-flip equations which are analogous to the equations
of motions of the Euclidean field theories, while BS1(p) contains only a “summed” version
of such equations of motions. This is another place where the nontriviality of theorem 2
is highlighted. Another very curious fact is that, in d = 1, the combination of reflection
positivity and spin-flip equations was not enough to produce probability bounds, while it
seems enough for d = 2 from empirical evidences.

5 The statistical Ising bootstrap in practice

In the previous section, we have shown that the bootstrap problems BS1 and BS2 con-
verge in principle. In this section, we discuss how the insights from the convergence proof
may help formulating other convergent bootstrap problems and hopefully produce better
bootstrap bounds on the expectation values.

5.1 Improving the LP and SDP

If we replace invariance equations with spin-flip equations in BS1, we not only obtain
stronger bounds (which are still rigorous even for the invariant measures), but also can
reduce the number of probability bounds that we need to impose. This is essentially
because the transition rate c(i, s) is strictly positive.

Lemma 6. If invariance equations of BS1 are replaced by spin-flip equations, we can reduce
probability bound conditions to the following subset and the resulting bootstrap problem still
converges:

0 ≤ mn (F ({ui}i∈Dn , s)) , (5.1)

for all spin assignments {ui}i∈Dn such that ui = 1 for i ∈ Dn−1.
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Proof. Spin flip equations imply reversibility conditions

mn

(
c(i, s)

(
f(s̄i)− f(s)

))
= 0, (5.2)

for all f(s)∈Pn and i∈Dn−1. Taking f(s) to be a specific indicator functionF ({uj}j∈Dn , s),
reversibility condition becomes

c(i, u′)mn

(
F
(
{u′

j}j∈Dn , s
))

= c(i, u)mn (F ({uj}j∈Dn , s)) , (5.3)

where u′
j = uj for j ̸= i and u′

i = −ui. Probability bound 0 ≤ F ({uj}j∈Dn , s) then implies

0 ≤ mn

(
F
(
{u′

j}j∈Dn , s
))

, (5.4)

since c(i, u) is strictly positive. By repeatedly applying the same argument, we obtain

0 ≤ mn

(
F
(
{u′′

j }j∈Dn , s
))

, (5.5)

for all u′′ such that u′′
j = uj for j ∈ ∂Dn.

This lemma implies that the number of probability bounds which should be imposed
is of order 2|∂Dn| ∼ 2n rather than 2|Dn| ∼ 2n2 in the presence of reversibility conditions.
Instead, the number of spin-flip equations is of order |Dn−1|2|Dn| ∼ n22n2 while that of
invariance equations is of order |Dn−1| ∼ n2. Therefore, the size of the LP increases
from 2n2 to n22n2 as we replace invariance equations with spin-flip equations, but this
replacement nonetheless produces stronger bounds.

Lemma 6 also applies to the SDP problem of BS2. There is even a further reduction
in the number of probability bounds since reflection positivity implies that the indicator
function corresponding to reflection symmetric spin assignments has a non-negative mo-
ment. Therefore, one only needs to impose probability bounds on the spin assignments
over ∂Dn which are not symmetric under all of the reflections.

5.2 Comparisons of different bootstrap approaches

We have discussed two sets of positivities in this work for the LP/SDP hierarchy (for each
domain Dn ⊂ Λ):

Probability bound (LP) ⊂ Reflection positivity + Probability bound (SDP)

These positivities are sufficient to solve the moment problem on S. We then combine one
of these with the equations specifying the statistical/stochastic Ising model:

Invariance equations ⊂ Spin-flip equations.

Any combination of positivity and equations in the above is guaranteed to converge.
LP is much faster and cheaper than SDP, but the latter involving reflection positivities
produces stronger bounds. Including too many equations leads to a SDP matrix whose
ratio between the element of the biggest magnitude to the element of the smallest nonzero
magnitude is large. In such cases, higher precision SDP solvers are needed which are
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P E n Min Max ST Note
PB I 3 0.167853 0.851084 ∼0.5 sec
PB S 3 0.303045 0.820244 ∼0.5 sec
PB S 3.5 0.444667 0.820244 a few mins only a subset of PB used
RP I 3 0.628600 0.753475 a few secs
RP S 3 0.654752 0.753475 a few mins data from [11]
RP I 4 0.682418 0.740840 ∼20 mins only a subset of RP used

Table 1. Comparison of different LP/SDP results. The abbreviations are given by- P: positivity,
E: equations, n: LP/SDP hierarchy level, Min: lower bound on ⟨p⟩ rounded down to six significant
digits, Max: upper bound on ⟨p⟩ rounded up to six significant digits, ST: solver runtime, PB:
probability bound, RP: reflection positivity, I: invariance equations based on the transition rate
c∗(i, s), S: spin-flip equations.

necessarily much slower. Therefore, there is an advantage in using invariance equations
instead of spin-flip equations because such a scale problem may be milder for the former.
For the LP problem in contrast, such a precision issue is less likely to occur and imposing
more equations do not require much extra computation cost. One great advantage of LP is
that equations do not need to be solved because they can be directly implemented as part
of the linear constraints. In contrast, directly incorporating equations into SDP is hard in
practice, and one should instead solve the equations and substitute the solutions into SDP
matrices by hand.

In [11], it was observed that BS′
2 produces the weakest bounds around the critical

points. We thus take the d = 2 Ising model at the criticality, J = log(1+
√

2)
2 , h = 0, as the

testing ground for different combinations of positivities and equations, where the objective
function was the free energy ⟨p⟩ = ⟨sisi+e1⟩ whose exact value is given by 0.707107 . . ..
Table 1 provides a summary of the results obtained by MOSEK [26] on the Intel i9-10900F
processor.

For the third row, we imposed spin-flip equations for polynomials in P3 where the
spin flip may take place at the boundary of D3. PB was then imposed only on the spin
configurations generated by such spin-flip equations. For the last row, we truncated reflec-
tion positivity matrices to some arbitrary 200× 200 principal submatrices because the full
problem was slow. As expected, LP (used for PB) is much faster than SDP (used for RP),
but produces much weaker bounds than the latter. However, it seems straightforward to
extend the LP to D4, in which case the bounds may be comparable to those obtained by
SDP while still requiring shorter amount of runtime for the solver.

For SDP, spin-flip equations on D3 produced SDP matrices where the element of the
biggest magnitude was ∼ 103, while it was ∼ 102 for invariance equations on D3. Even
though there are only 5 invariance equations on D3 (fourth row), they still produce bounds
of the same order as the full 549 spin flip equations on D3 (fifth row), where the upper
bounds are identical and the solver runtime is much shorter. This is where theorem 2 is
realized in practice. Finally, invariance equations on D4 were still mild enough in terms
of the scaling to produce SDP matrices that can be run on a double-precision solver and
produced the strongest bounds (last row).
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6 Discussions

In this work, we discussed the convergence of the bootstrap approach to the statistical and
stochastic Ising model. We discuss several interesting conclusions.

• As already demonstrated many times in literature (e.g. [14–16]) and again in this work,
Markov processes and stochastic models are amenable to the bootstrap approach. This is
essentially because the observable of interest in these systems is an invariant measure, and
LP/SDP provide systematic methods to study such a measure problem. One great feature
manifest in many of such systems is that they have better chances to be ergodic and free
of special solutions. This is in contrast to the classical dynamical systems where chaotic
systems are always accompanied by infinitely many unstable periodic orbits which prevent
bootstrap from directly accessing the ergodic orbit. Furthermore, this work suggests that
any system that used to be studied by the traditional MCMC simulations may allow for an
alternative bootstrap approach — one may choose to run the simulations, or to “bound” the
simulations. The latter may be more expensive computationally, but the relative advantage
is that bootstrap provides rigorous bounds on the observables of the infinite volume systems
directly.

• We also demonstrated that statistical mechanical systems on the lattice are partic-
ularly well-suited for the Lasserre hierarchy formulation. As long as there is a notion of
compactness on the local degrees of freedom and there is locality in the system, most of the
steps in the moment problem and the convergence presented in this work may be extended
straightforwardly. For example, lattice pure Yang-Mills theory may be an interesting case
to study, where the compactness is present since SU(N) is compact.10 Above all, the very
definition of the Gibbs measure on the infinite lattice using the local conditional probabil-
ities allows for a very natural bootstrap formulation.

• A general lesson for the positive measure bootstrap is that considering the associated
MCMC may help identifying the relevant pieces of bootstrap conditions. In the case of
the Ising model considered in this work, there are plethora of spin correlator inequalities
(some of which are non-convex) which have played important roles in establishing highly
nontrivial results such as the existence of the phase transition. Also, the number of spin-flip
equations explodes as the domain under consideration increases. Considering the problem
of finding the invariant measure of the stochastic Ising model showed that the minimal set of
bootstrap conditions which guarantee the convergence is probability bounds and invariance
equations. In other words, these are enough to completely determine the theory. Of course
for more general theories, the analogue of theorem 2 may be hard to prove and the set
of invariant measures may be strictly bigger than the set of physical measures of interest.
Still, bootstrap approach may provide insights into such differences which are interesting
problems on their own.

10Large N pure Yang-Mills theory on the lattice has recently been studied in [27]. The approach seems
to allow for a straightforward generalization to the finite N case. We thank Zechuan Zheng for the relevant
discussion.
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There are also very obvious next steps.

• It will be very important to obtain the rate of the convergence as n increases. At least
away from the criticality, empirical results of [11] suggest that the convergence is exponen-
tially fast. Establishing the rate of the convergence is meaningful from both conceptual
and practical perspectives. The asymptotic convergence shows that bootstrap can serve as
an alternative definition of the system, while the rate of the convergence will tell us how
to determine the physical observables to any desired precision. It will be also interesting
to understand how much reflection positivity speeds up the convergence.

• In many examples on the lattice, an important quantity which is not explored in this
work is the long-range correlators, which are often used to extract critical exponents or
mass gap. From the convergence proof of BS1, we learned that to pin down the invariant
measure, we need to impose probability bounds and invariance equations over the entire
lattice in principle. If we consider a subset of probability bounds and invariance equations
involving the long-range correlators, the bounds will be tight only if there is some univer-
sality among all the measures satisfying the subset of conditions. Furthermore, we will
need to face the computational cost which increases exponentially as the number of spin
configurations to be considered grows. Whether there will be an alternative approach to
directly study critical exponents or mass gap within the bootstrap framework is unclear at
the moment.

• Given the fundamental importance of reflection positivity and the role it played in
showing various properties of the Ising model, it would be desirable to establish the precise
relation between the positivity of the Gibbs measure and reflection positivity. Even though
reflection positivity is a property of specific Hamiltonians, it is curious that it does not
imply probability bounds even in the presence of spin-flip equations in d = 1 statistical Ising
model. At least in this case, the nice inner product structure defined by reflection positivity
together with the equations of motions is not be enough to deduce that the candidate
moments originate from a valid probability measure. The question readily extends to any
reflection-symmetric Gibbs measures in other statistical mechanical systems.

• Needless to say, it is worth improving LP/SDP formulation itself. Indicator functions
played a central role in showing the convergence in this work. They also provide a complete
basis of Pn and make probability bound and spin-flip equations very simple by definition
(see for example (5.3)). The only drawback of this basis is that translation invariance
is not straightforward to impose. From the perspective of theorem 2, it may seem that
translation invariance is essential, but it is also known that the Gibbs measures of the
statistical Ising model are translation invariant. Therefore, one would expect to recover
translation invariance by imposing spin-flip equations even if translation invariance is not
imposed at the level of bootstrap.
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