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1 Introduction

An approach to understanding closed universes with big-bang/big-crunch cosmologies
holographically was proposed in [1] (and further developed in [2–7]). The idea is to consider
an asymptotically AdSd+1 black hole spacetime with a d-dimensional dynamical end of the
world (ETW) brane behind the horizon providing an inner boundary of the spacetime, as
depicted in figure 1. Starting from the t = 0 surface, the ETW brane falls into the black
hole and terminates at the singularity, so its worldvolume geometry is a big-bang/big-crunch
cosmology. The state in the bulk on the t = 0 surface is dual to some state in the dual
d-dimensional CFT on the asymptotic boundary on the right in figure 1, which therefore
includes a description of the cosmology on the ETW brane worldvolume.

An appealing feature of this model is that the state in the bulk on the t = 0 surface can
be constructed from a Euclidean path integral. In the Euclidean section, the ETW brane
moves outward away from t = 0, and eventually meets the asymptotic boundary. Such
solutions were proposed in [8, 9] as duals of boundary conformal field theories (BCFTs).
The state in the d-dimensional CFT dual to the t = 0 slice in the bulk is then constructed
by starting with a (d− 1)-dimensional boundary state specified by the BCFT and evolving
through some period of Euclidean time. Such states have been extensively discussed in
recent investigations of black holes, see e.g. [10–13].

To have a controlled description of the cosmology on the ETW brane, we want to have
a separation of scales between the scale that controls the curvature of the ETW brane and
the bulk curvature, such that there is a good effective description of the dynamics in terms
of ordinary Einstein gravity localised on the ETW brane. This can be achieved by taking
the radial position r0 of the brane at t = 0 to be much larger than the horizon scale rH ,
which can be achieved by increasing the tension T of the ETW brane [14–16].

However, in simple examples of this construction this separation of scales is incompatible
with the path integral construction of the state. If we are in d > 2, and we take the bulk
solution to be an uncharged black hole with flat spatial slices, when we increase T for
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Figure 1. Penrose diagram of an AdS black hole with the left asymptotic region terminating in
an ETW brane (shown in red). The worldvolume geometry of the ETW brane is a big-bang/big-
crunch cosmology.

fixed bulk black hole geometry, there is a critical value T = T∗ at which the ETW brane
intersects the asymptotic boundary at t = 0. Increasing T beyond T∗, the ETW brane will
self-intersect before it reaches the asymptotic boundary. Thus, for T > T∗, we lose the
Euclidean path integral construction of the state dual to the t = 0 slice.1 One resolution of
this problem, proposed in [2], is to take the bulk solution to be a charged black hole. In [5],
it was suggested that the problem could be avoided by introducing an additional interface
brane, but in [18] (see also [19]) we found that the self-intersection problem persists in the
presence of the interface brane.

In this paper, we will see that another way to avoid this problem is to consider hyperbolic
spatial slices, with constant negative curvature. Bulk black hole solutions with hyperbolic
horizons were obtained in [20–22]; these include a locally-AdS solution, which is a natural
higher-dimensional analogue of the BTZ black hole. It is perhaps not surprising that
considering ETW branes behind the horizon of these hyperbolic black hole then gives us a
higher-dimensional scenario with behaviour similar to the d = 2 case.

Another way to see why considering hyperbolic spatial slices is helpful is to consider
the worldvolume of the ETW brane. In the Euclidean black hole this is a wormhole; for
hyperbolic spatial sections this is Σg ×R, and we will see that when we consider the locally-
AdS “topological” black hole, the worldvolume geometry is precisely the Maldacena-Maoz
wormhole of [23]. This is a solution of Einstein’s equations with a negative cosmological
constant. By contrast, there is no classical solution describing a wormhole with flat spatial
sections; the bulk spacetime thus plays a more essential role in the construction of the
solutions where the ETW brane is a wormhole with flat spatial sections, and it seems
natural that it’s harder to construct solutions in the limit where the effective dynamics is
approximated by Einstein gravity localised on the ETW brane.

As in the charged black hole case, these hyperbolic black holes have an extremal limit,
where the temperature goes to zero for fixed horizon area. But the more important effect

1The d = 2 case, where the bulk black hole is a BTZ solution [17], is special; there the ETW brane always
intersects the boundary at a quarter the period of the Euclidean solution.
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from the ETW brane perspective is that the curvature term dominates over the mass term
in the metric at large distances. As a result, in the limit of interest, the mass term is
negligible and the dynamics of the ETW brane is as in the locally-AdS case, which gives a
finite time for the ETW brane to reach the Euclidean boundary, as in the d = 2 BTZ black
hole example.

In the next section, we review some of the previous work on these models. In section 3,
we introduce the generalization to consider hyperbolic spatial sections. Section 4 presents
some concluding remarks. In appendix A, I include some speculations on the existence of
other bulk saddle-points with the same boundary conditions as the hyperbolic black hole;
this is a side comment independent of the main discussion.

2 End of the world brane cosmology

The holographic model of cosmology we consider was first proposed in [1]. The model
consists of an AdS black hole bulk with one asymptotic region, with a dynamical constant-
tension ETW brane behind the horizon, as pictured in figure 1. The induced geometry on
the ETW brane worldvolume is that of a closed FRW universe, with the radial position
playing the role of the scale factor. The bulk action is

I = 1
16πG

[∫
M
dd+1x

√
−g (R− 2Λ) + 2

∫
∂M

ddy
√
−hK − 2(d− 1)

∫
Q
ddy
√
−hT

]
, (2.1)

where Λ = −d(d−1)
2L2 is a cosmological constant, K is the trace of the extrinsic curvature

and T is the tension of the ETW brane with worldvolume Q, which we take to be one
component of the boundary ∂M of the spacetime, the other component corresponding
to the asymptotically AdS conformal boundary. We consider a (d+ 1)-dimensional bulk
spacetime, dual to a d-dimensional CFT on the boundary. Previous work considered an
AdS-Schwarzchild black hole bulk solution

ds2 = −f(r)dt2 + dr2

f(r) + r2

L2dx
adxa, f(r) ≡ r2

L2 −
µ

rd−2 , (2.2)

where a = 1, . . . , d − 1. This has a horizon at r = rH , where rdH = µL2. The brane has
stress-energy tensor 8πGTab = (1 − d)Thab, and the action implies that the boundary
condition for the bulk metric at Q is

Kab −Khab = (1− d)Thab (2.3)

The tt component of this equation leads to the brane equation of motion(
dr

dt

)2
= f2(r)
T 2r2

(
T 2r2 − f(r)

)
. (2.4)

In the Lorentzian black hole geometry, the brane will reach a maximum radius r0, with
(r0)d = rd

H
1−T 2L2 , which we take to occur at t = 0. Note r0 > rH for T > 0, and r0 →∞ as

T → L−1. To the future and past of this, r(t) decreases, as pictured in figure 1. The brane
worldvolume geometry is thus a closed FRW big-bang/big-crunch cosmology, where the
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brane radius r(t) plays the role of the scale factor, and the brane equation of motion (2.4)
corresponds to the Friedmann equation in this worldvolume cosmology.

The state on the t = 0 slice can be obtained by a Euclidean path integral. In the
Euclidean black hole, the motion of the ETW brane is(

dr

dτ

)2
= f2(r)
T 2r2

(
f(r)− T 2r2

)
. (2.5)

This now has a minimum at r = r0. Since the ETW brane is inside the black hole in the
Lorentzian geometry, it is at its minimum radius in the Euclidean solution at τ = β/2,
where β = 2πL2/rH is the periodicity in Euclidean time τ . It reaches the AdS boundary at
a time

τETW = β

2 −
∫ ∞
r0

dr

f(r)
Tr√

f(r)− T 2r2 . (2.6)

To avoid self-intersections in the Euclidean solution, we need τETW > 0. However, setting
r = r0x, we have

σETW = 2τETW

β
= 1− d

2πTL(y0)
d−2

2

∫ ∞
1

dx

x2(1− (y0)−dx−d)
√

1− x−d
, (2.7)

where y0 = r0/rH , so (y0)−d = 1− T 2L2. It is clear that for d > 2 we can’t take r0 →∞
while keeping τETW > 0. There must then be some critical value T = T∗ < L−1 such that
τETW = 0, and if we consider T > T∗ we will have self-intersecting branes in the Euclidean
solution.

3 Hyperbolic spatial sections

The previous discussion was for branes with flat spatial sections. Consider now the
generalization to hyperbolic spatial sections. This changes relatively little in the previous
analysis; the relevant black hole solution is now [20–22]

ds2 = −f(r)dt2 + dr2

f(r) + r2

L2ds
2
Σg
, f(r) = r2

L2 − 1− µ

rd−2 , (3.1)

where Σg is a (d− 1)-dimensional compact manifold of constant negative curvature. For
µ ∈ (µmin,∞), where

µmin = −2
d

(
d− 2
d

) d−2
2
Ld−2, (3.2)

the black hole has a horizon at r = rH > 0 where f(rH) = 0; we can write

µ = rd−2
H

(
r2
H

L2 − 1
)
. (3.3)

The inverse temperature of the black hole is

β = 4πrHL2

dr2
H − (d− 2)L2 . (3.4)
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As µ → µmin, r2
H → d−2

d L2, and f(r) develops a double root. The temperature goes to
zero.2

For µ = 0, the solution is locally AdSd+1. The metric with Σg replaced by a non-
compact hyperbolic space Hd−1 is simply AdS written in a Rindler-like coordinate system
(the coordinate transformation between these coordinates and Poincaré coordinates basically
reduces to the relation between Rindler coordinates and hyperbolic coordinates on the
conformal boundary). The geometry of interest here is then obtained by quotienting by
a discrete isometry group Γ such that Hd−1/Γ = Σg. This µ = 0 solution is therefore
referred to as the topological black hole. The µ = 0 solution has a finite temperature, which
is related to the Rindler acceleration temperature in the boundary theory if we don’t do
the quotient.

We consider an ETW brane inside this black hole, with a turnaround at r = r0 at
t = 0. Considering the Euclidean continuation, the brane equation of motion is (2.5), and
the brane reaches the AdS boundary at

τETW = β

2 −
∫ ∞
r0

dr

f(r)
Tr√

f(r)− T 2r2 . (3.5)

The key difference from the previous flat case is the behaviour of the square root factor
in the denominator: if we set r = r0x, in both cases, we pull out a factor of 1/

√
r2

0(1− T 2L2),

but whereas in the flat case we had 1− T 2L2 ∼ 1/rd0 , so this factor goes like r
d−2

2
0 , which

blows up as r0 →∞, for the hyperbolic black hole, r2
0(1− T 2L2) = L2 − µ L2

rd−2
0

. The last

term becomes negligible if µ remains finite as r0 → ∞, so 1/
√
r2

0(1− T 2L2) has a finite
limit as r0 →∞.

This can be simply illustrated by considering the case µ = 0. As noted above, we still
have a finite temperature at µ = 0: (3.4) gives β = 2πL. Setting r = r0x, we have

τETW = πL− TL2
∫ ∞

1

xdx(
x2 − L2

r2
0

)√
x2 − 1

. (3.6)

As TL→ 1, r0 →∞, and we can do the integral exactly; it’s equal to π
2 , so τ

ETW → πL
2 .

Thus, there’s no self-intersection problem here; we can freely take the ETW brane to large
radius in arbitrary dimensions.3 It is interesting to note that for µ = 0, the bulk geometry
is locally AdSd+1, and the brane is locally AdSd, so the solution we are considering here is
just a quotient of the sub-critical braneworld introduced in [16].

Generalizing to µ 6= 0, so long as we hold µ fixed as we take the limit as r0 →∞ the
µ

rd−2 term in f(r) becomes negligible in the limit, so the integral will converge to the above
µ = 0 expression. The only difference for µ 6= 0 is then that the black hole has a different
temperature, so

τETW = β

2 −
πL

2 . (3.7)

2The possibility of having a vanishing temperature seems like it would be useful in constructing ETW
brane solutions, but as we will see, the more important effect is the −1 in f(r), which dominates over the
mass term at large radial distances.

3The integrand is larger, and hence τETW smaller, for finite r0; but we are mostly interested in the region
of large r0, so we will not analyse in detail the positivity of τETW for finite r0.
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There is thus a good solution in the r0 → ∞ limit for all µ such that β > πL. This
corresponds to µ < µmax where

µmax = (rmax
H )d−2

(
(rmax
H )2

L2 − 1
)
,

rmax
H

L
= 2 +

√
4 + d(d− 2)
d

. (3.8)

For fixed T, L, the boundary interval τETW is determined by µ; from the boundary per-
spective we would like to invert this relationship and fix τETW and determine µ. In the
limit as r0 → ∞, it is easy to calculate that τETW runs from +∞ to 0 monotonically as
µ ∈ (µmin, µmax). Thus, there is a one to one map from possible values of τETW to µ in this
range for large r0.

The black hole with hyperbolic spatial sections reduces to the previously-studied flat
case in the limit as µ→∞. This restriction to a finite range of µ indicates that the regime
where we can find solutions is disjoint from that limit, consistent with the previously seen
issues for flat spatial sections. From the ETW brane worldvolume perspective, we need to
be in a regime where the effect of the curvature of the spatial sections is comparable to
that of the energy density to resolve the previous issue.

It is useful to consider the induced geometry on the ETW brane: in general this is

ds2
b = dr2

f(r)− T 2r2 + r2dΣ2
g. (3.9)

If µ = 0, setting r = r0 cosh ρ, we have

ds2
b = r2

0(dρ2 + cosh2 ρdΣ2
g). (3.10)

Thus, for the topological black hole, the induced geometry on the brane is precisely the
Maldacena-Maoz wormhole [23]. In general, if we take r0 →∞ at fixed µ, the mass term
in f(r) is negligible at the brane position, and the induced geometry on the brane will be
approximately the same. This is natural, as the effective theory on the brane in this limit
reduces to Einstein gravity, and the Maldacena-Maoz wormhole is a classical solution of
this theory. This offers another perspective on the advantages of considering the brane with
hyperbolic cross-sections.

At finite r0, the induced geometry on the brane is modified for µ 6= 0; these modifications
can be interpreted from the brane effective theory prespective as due to the effective stress
tensor on the brane dual to the bulk geometry. Note that for µ < 0, this effective stress
tensor will have a negative energy density. This can be interpreted as a Casimir energy due
to putting the theory on a compact hyperbolic space. For µ = 0, the energy density on the
brane vanishes due to a cancellation between the negative Casimir energy and the positive
thermal energy associated with the finite temperature.

4 Discussion

We have seen that considering spatial manifolds with negative curvature provides a good
environment for implementing the holographic cosmology proposal of [1] in higher dimensions.

– 6 –



J
H
E
P
1
1
(
2
0
2
2
)
1
6
8

The bulk solution is a hyperbolic black hole, whose structure in higher dimensions is more
similar to the structure of the BTZ black hole in three dimensions. There are many questions
about the holographic cosmology which it will be interesting to investigate in this context
in the future: how the degrees of freedom on the brane are encoded in the boundary theory,
what predictions these models make for the cosmological evolution on the brane, the role of
the negative Casimir energy of the CFT, and others.

In top-down models, the CFT usually includes scalar fields; conformally invariant scalar
fields have a coupling to the curvature of the background which leads to an instability when
the background is negatively curved. In the bulk this is related to an instability for probe
branes at large radial position to run away towards the boundary [24]. This would seem to
be a significant issue with the models we are considering, and indeed if we consider the zero
temperature black hole the bulk solution is unstable; branes at any radial position run away
to the boundary. However, if we consider the finite temperature solutions (for example
in AdS5) there is a non-trivial radial potential for probe (D3)-branes, and branes close to
the horizon will collapse into the black hole [25]. Thus, branes must tunnel through this
potential barrier to escape to infinity, and the dual CFT at finite temperature is meta-stable.
The model should provide a useful way of describing the cosmology holographically on
timescales short compared to the decay time.

For flat spatial slices, the Euclidean ETW brane geometry can be analytically continued
in one of the spatial directions to obtain an eternal traversable wormhole geometry. The
relation between the problem of constructing ETW brane cosmologies with flat slices and
the challenges in constructing eternal traversable wormholes was explored in [5, 18, 19],
following [26].4 It is therefore interesting to ask if there is a connection between the
geometries with hyperbolic spatial slices studied here and Lorentzian wormholes. The
metric on Σg will not have a translation symmetry, but if it has a surface of time reflection
symmetry, we can define a Lorentzian solution by analytic continuation. This Lorentzian
geometry will be a quotient of AdS similar to those considered in [30], which gives again
a time-dependent cosmology with big bang big crunch “singularities” where the quotient
degenerates. The spatial slices of this brane geometry will be a wormhole; whether it
is traversable or not depends on the ratio of the time needed to cross the radial spatial
direction between the two boundaries and the finite lifetime of the cosmology. In the simple
µ = 0 case, both times should be of order one in units of the AdS scale, so understanding
whether these wormholes are traversable seems to require a detailed case by case analysis.

Finally, as we have emphasized connections to the d = 2 case in this work, it is worth
noting that for d = 2 the Euclidean boundary conditions with an interval of Euclidean
time between two brane boundaries can be filled in in two different ways: we can have
a piece of the bulk BTZ black hole bounded by a connected ETW brane, or a piece of
vacuum AdS bounded by disconnected ETW branes [9]. We have discussed the analogue
of the connected solution; is there an analogue of the disconnected one? This requires an
analogue of thermal AdS for the hyperbolic black hole. No such solution is known, but

4The construction of wormholes using a coupling between theories was earlier explored in [27]. See
also [7, 28, 29] for more recent work on these wormholes.
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in the appendix I suggest such solutions may exist. They are more difficult to construct
analytically; it might be interesting to study them numerically.
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A Phase transitions for hyperbolic black holes

In the main body of the paper, we have considered adding ETW branes to the hyperbolic
black holes introduced in [20–22]. It is interesting to consider whether there might be other
bulk solutions for the same boundary conditions, which could lead to a non-trivial phase
structure analogous to the Hawking-Page phase transition [31].

The thermal partition function for a field theory on Sd is given by a path integral on
S1
β × Sd, where the size of the circle is fixed by the inverse temperature. There are two

possible bulk saddle-points in the holographic description of this path integral: Euclidean
Schwarzschild-AdS, and thermal AdS. In the first the S1 is contractible in the interior of the
spacetime, and in the second the Sd is. There is an exchange of dominance between these
two saddle-points which occurs at an order one value of the ratio of the size of the S1 to the
size of the Sd [31]. This corresponds to a phase transition in the thermal partition function,
the Hawking-Page phase transition, which is interpreted in the dual as a deconfinement
transition [32].

If we consider the field theory on Rd, there is no phase transition; the dominant
bulk saddle is the planar AdS black hole for all temperatures. However, if we consider
compactifying the space to T d, the story is more subtle. In supersymmetric theories, with
supersymmetry-preserving boundary conditions on the torus, there is no phase transition,
but if we consider antiperiodic boundary conditions on one or more cycles on the torus,
there is a non-trivial phase structure. With antiperiodic boundary conditions on a spatial
cycle, at zero temperature there is an AdS soliton solution [33], which reproduces the
expected negative Casimir energy of the field theory. At finite temperature we consider the
field theory path integral on S1

β × T d, and there are multiple bulk saddle-points: the planar
black hole and thermal AdS solitons for any circles with antiperiodic boundary conditions.
There is a phase transition when the ratio of the size of the thermal circle S1

β to the size of
the smallest circle which is contractible in an AdS soliton is equal to one.5

For the field theory on a compact hyperbolic space Σg, the finite temperature partition
function is given by a path integral on S1

β×Σg. The only known bulk saddle is the hyperbolic
black hole, and in the previous literature this has been taken as indicating the absence
of a phase transition in this case. However, this may simply reflect our ignorance. By

5There are also transitions between different AdS solitons if we vary the relative size of different circles
in the torus.
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analogy to the torus case discussed above, we might expect that (assuming we consider
antiperiodic boundary conditions for the fermions) there would be bulk solutions where
a non-contractible cycle in Σg becomes contractible in the bulk. Indeed, if we consider a
two-dimensional field theory on a Riemann surface Σg, such handlebody solutions have
been explicitly constructed [34]. Constructing such solutions in the higher-dimensional
case with S1

β × Σg boundary where Σg has two or more dimensions will be challenging, as
the solutions will only have a U(1) symmetry, corresponding to translations along the S1.
The explicit constructions of [34] were only possible because the bulk solution was locally
AdS3, and in higher dimensions bulk vacuum solutions are not required to be locally AdS.
But there is no obvious reason to expect such solutions not to exist. Indeed, given the
experience with the torus case and Riemann surface boundaries in AdS3, it would seem
more surprising if they did not than if they did.

If such solutions where a cycle in Σg is contractible exist, there would then be multiple
bulk saddle-points for the path integral on S1

β × Σg, and there could be phase transitions
due to the competition between them and the hyperbolic black hole, as a function of the
temperature and the moduli of Σg. There is however an interesting difference between this
case and the torus: for the torus, the lowest-energy black hole has zero energy, while we
expect the field theory to have a negative energy density (for antiperiodic fermions) at
sufficiently low temperature due to the Casimir energy, so there is a clear argument that a
different phase (the AdS soliton) must take over at low temperatures. For the theory on
Σg, the low temperature black hole has negative energy, so this could already reproduce the
Casimir energy in the field theory. Thus, even assuming that such solutions where a cycle
in Σg is contractible exist, the question of whether they dominate in the thermal partition
function at low temperatures would remain open. This seems a very interesting question
for future numerical investigation.

Returning to the solutions with ETW branes considered in the body of the paper, if
such solutions where a cycle in Σg is contractible exist, for a field theory on an interval
cross Σg ended by brane boundaries there might then be solutions with disconnected ETW
branes bounding a piece of such a solution.
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any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black
hole microstate cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601] [INSPIRE].

[2] S. Antonini and B. Swingle, Cosmology at the end of the world, Nature Phys. 16 (2020) 881
[arXiv:1907.06667] [INSPIRE].

[3] M. Van Raamsdonk, Comments on wormholes, ensembles, and cosmology, JHEP 12 (2021)
156 [arXiv:2008.02259] [INSPIRE].

– 9 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP07(2019)065
https://arxiv.org/abs/1810.10601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.10601
https://doi.org/10.1038/s41567-020-0909-6
https://arxiv.org/abs/1907.06667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.06667
https://doi.org/10.1007/JHEP12(2021)156
https://doi.org/10.1007/JHEP12(2021)156
https://arxiv.org/abs/2008.02259
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02259


J
H
E
P
1
1
(
2
0
2
2
)
1
6
8

[4] J. Sully, M. Van Raamsdonk and D. Wakeham, BCFT entanglement entropy at large central
charge and the black hole interior, JHEP 03 (2021) 167 [arXiv:2004.13088] [INSPIRE].

[5] M. Van Raamsdonk, Cosmology from confinement?, JHEP 03 (2022) 039 [arXiv:2102.05057]
[INSPIRE].

[6] S. Antonini, P. Simidzija, B. Swingle and M. Van Raamsdonk, Cosmology from the vacuum,
arXiv:2203.11220 [INSPIRE].

[7] S. Antonini, P. Simidzija, B. Swingle and M. Van Raamsdonk, Cosmology as a holographic
wormhole, arXiv:2206.14821 [INSPIRE].

[8] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602
[arXiv:1105.5165] [INSPIRE].

[9] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043
[arXiv:1108.5152] [INSPIRE].

[10] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity,
arXiv:1707.02325 [INSPIRE].

[11] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation
from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[12] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

[13] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared states,
JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[14] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev.
Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[15] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999)
4690 [hep-th/9906064] [INSPIRE].

[16] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156]
[INSPIRE].

[17] M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time,
Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[18] S. Fallows and S.F. Ross, Constraints on cosmologies inside black holes, JHEP 05 (2022) 094
[arXiv:2203.02523] [INSPIRE].

[19] C. Waddell, Bottom-up holographic models for cosmology, JHEP 09 (2022) 176
[arXiv:2203.03096] [INSPIRE].

[20] D. Birmingham, Topological black holes in Anti-de Sitter space, Class. Quant. Grav. 16 (1999)
1197 [hep-th/9808032] [INSPIRE].

[21] R. Emparan, AdS membranes wrapped on surfaces of arbitrary genus, Phys. Lett. B 432 (1998)
74 [hep-th/9804031] [INSPIRE].

[22] R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states,
JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].

[23] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]
[INSPIRE].

– 10 –

https://doi.org/10.1007/JHEP03(2021)167
https://arxiv.org/abs/2004.13088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13088
https://doi.org/10.1007/JHEP03(2022)039
https://arxiv.org/abs/2102.05057
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.05057
https://arxiv.org/abs/2203.11220
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.11220
https://arxiv.org/abs/2206.14821
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2206.14821
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5165
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.5152
https://arxiv.org/abs/1707.02325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.02325
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10996
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11977
https://doi.org/10.1007/JHEP02(2021)009
https://arxiv.org/abs/2007.16091
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.16091
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905221
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://arxiv.org/abs/hep-th/9906064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906064
https://doi.org/10.1088/1126-6708/2001/05/008
https://arxiv.org/abs/hep-th/0011156
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0011156
https://doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9204099
https://doi.org/10.1007/JHEP05(2022)094
https://arxiv.org/abs/2203.02523
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.02523
https://doi.org/10.1007/JHEP09(2022)176
https://arxiv.org/abs/2203.03096
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.03096
https://doi.org/10.1088/0264-9381/16/4/009
https://doi.org/10.1088/0264-9381/16/4/009
https://arxiv.org/abs/hep-th/9808032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808032
https://doi.org/10.1016/S0370-2693(98)00625-X
https://doi.org/10.1016/S0370-2693(98)00625-X
https://arxiv.org/abs/hep-th/9804031
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804031
https://doi.org/10.1088/1126-6708/1999/06/036
https://arxiv.org/abs/hep-th/9906040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906040
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0401024


J
H
E
P
1
1
(
2
0
2
2
)
1
6
8

[24] N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017
[hep-th/9903224] [INSPIRE].

[25] K. Landsteiner and E. Lopez, Probing the strong coupling limit of large N SYM on curved
backgrounds, JHEP 09 (1999) 006 [hep-th/9908010] [INSPIRE].

[26] B. Freivogel, V. Godet, E. Morvan, J.F. Pedraza and A. Rotundo, Lessons on eternal
traversable wormholes in AdS, JHEP 07 (2019) 122 [arXiv:1903.05732] [INSPIRE].

[27] P. Betzios, E. Kiritsis and O. Papadoulaki, Euclidean Wormholes and Holography, JHEP 06
(2019) 042 [arXiv:1903.05658] [INSPIRE].

[28] P. Betzios, E. Kiritsis and O. Papadoulaki, Interacting systems and wormholes, JHEP 02
(2022) 126 [arXiv:2110.14655] [INSPIRE].

[29] S. Antonini, P. Simidzija, B. Swingle and M. Van Raamsdonk, Can one hear the shape of a
wormhole?, JHEP 09 (2022) 241 [arXiv:2207.02225] [INSPIRE].

[30] G.T. Horowitz and D. Marolf, A New approach to string cosmology, JHEP 07 (1998) 014
[hep-th/9805207] [INSPIRE].

[31] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space,
Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[32] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,
Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[33] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy
conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

[34] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,
arXiv:1303.7221 [INSPIRE].

– 11 –

https://doi.org/10.1088/1126-6708/1999/04/017
https://arxiv.org/abs/hep-th/9903224
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9903224
https://doi.org/10.1088/1126-6708/1999/09/006
https://arxiv.org/abs/hep-th/9908010
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908010
https://doi.org/10.1007/JHEP07(2019)122
https://arxiv.org/abs/1903.05732
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05732
https://doi.org/10.1007/JHEP06(2019)042
https://doi.org/10.1007/JHEP06(2019)042
https://arxiv.org/abs/1903.05658
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05658
https://doi.org/10.1007/JHEP02(2022)126
https://doi.org/10.1007/JHEP02(2022)126
https://arxiv.org/abs/2110.14655
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.14655
https://doi.org/10.1007/JHEP09(2022)241
https://arxiv.org/abs/2207.02225
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2207.02225
https://doi.org/10.1088/1126-6708/1998/07/014
https://arxiv.org/abs/hep-th/9805207
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805207
https://doi.org/10.1007/BF01208266
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C87%2C577%22
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://arxiv.org/abs/hep-th/9803131
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803131
https://doi.org/10.1103/PhysRevD.59.026005
https://arxiv.org/abs/hep-th/9808079
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808079
https://arxiv.org/abs/1303.7221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.7221

	Introduction
	End of the world brane cosmology
	Hyperbolic spatial sections
	Discussion
	Phase transitions for hyperbolic black holes

