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1 Introduction

Topological defects are known to offer a way to encode symmetries and dualities of a physical
system. Studying symmetry and duality-encoding defects opens an alternative path to
explore and understand symmetries in a universal way, see [1] for many references on the
subject. Topological defects have been extensively studied as objects living on the worldsheet
of conformal field theories, see e.g. [2–4]. The monicker “topological” refers to their distin-
guishing feature: the defect line on the worldsheet can be deformed continuously. Indeed, the
defining property of a topological defect is that the energy-momentum tensors of the models
on both sides continuously connect at the location of the defect. As a consequence, since
the energy-momentum tensor is the generator of diffeomorphisms, topological defects have
the remarkable property that they can be moved freely on the worldsheet and superimposed
either with another defect or a boundary condition on the worldsheet. This composition1

1In fact, in the conformal field theories fusion at the level of the corresponding operators corresponds to
composing the associated defect operators, see e.g. [5] for additional details.
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operation of topological defects (and boundary conditions) is known as “fusion” [6, 7]. The
fusion algebra induced by topological defects is well-understood as the tensor product of
bimodules in the representation category of the chiral symmetry algebra of the CFT.

In this article, we will however consider a target space picture of topological defects. We
will specialise to topological defects dividing two theories that are captured by non-linear
sigma-model actions. We thus have two maps X : Σ → M and X̃ : Σ̃ → M̃ from the
worldsheets Σ and Σ̃, that we will take to be separated by a defect line D, to the target
spaces M and M̃ . As mentioned earlier, topological defects are objects living on the
worldsheets where they can be moved and fused with other defects or boundary conditions
on the worldsheet. Whatever happens on the worldsheet should translate to an object
or operation on the target space. A line defect on the worldsheet is thus mapped by the
product map X = X × X̃ to a submanifold Y of the product space M × M̃ . As is the
case for D-branes, fields in the bulk couple to the defect via a line bundle determined by a
connection living on the defect and the associated field strength F . Demanding the defect
line to be topological then translates into constrains on the possible pairs (Y,F) on M × M̃ .

The target space picture of topological defects was first considered in the context of
WZW models in [8], see also [9], and later in the context of generalised geometry in [10].
In [8], by computing the scattering of closed string in a WZW model with D-branes, so-called
biconjugacy classes were identified as the submanifolds Y realising the target space picture
of the topological line defect on the worldsheet. Due to the similarity with the D-branes in
WZW models, these topological defects were dubbed “bibranes”. In what follows we will
also at times use the term “bibrane” for any pair (Y,F) defining a topological defect on
the target space of a non-linear sigma-model.

Although it is considered a general fact that dualities and symmetries can be encoded
by topological defects, it is not clear how much the notion of duality or symmetry can be
stretched or weakened before this common lore breaks down. In string theory, Abelian
T-duality is a prime example of a duality that can be encoded by a topological defect,
see [5] for a worldsheet perspective and [11, 12] for a target space derivation. Although very
different in nature, non-Abelian T-duality [13], was also shown to admit a description as a
topological defect living on the target space of the dual models.

More recently, a more general form of T-duality has gained more and more attention.
This duality takes a step back by no longer hinging on the existence of isometric directions in
the background, instead demanding a weaker condition known as Poisson-Lie symmetry [14,
15]. Although featuring many similarities with Abelian T-duality, it still remains unclear if
Poisson-Lie models can be considered as a symmetry between conformal systems. Indeed
Poisson-Lie symmetric models generically do not produce solution to the conventional
supergravity equations but a weaker set of equations, dubbed modified or generalised
supergravity [16]. This new set of equations still enjoys scale invariance, but is however
likely to be plagued by a Weyl anomaly.2 In addition, whilst conventional T-duality is a

2A proposal to counter this problem involves considering the contribution of a modified Fradkin-Tseytlin
term, see [17–20]. Note also that this problem can be circumvented by constructing the backgrounds using
supergroups, where a non-unimodular r-matrix can always be chosen such that the background solves the
un modified supergravity equations [21, 22].
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quantum symmetry of string theory, it is still unclear if Poisson-Lie T-duality can be lifted to
a quantum duality. Some initial steps towards addressing this questions for the Poisson-Lie
case were made in [23, 24]. The quantum aspects of Poisson-Lie symmetry have also been
addressed more recently in [25, 26]. These observations raise the question of whether
Poisson-Lie T-duality is “enough of a duality” to be described by a topological defect. In
what follows, we will answer this question by the affirmative and we will unravel their
properties under fusion. Let us first summarise the novel results presented in this article.

Summary of the results and overview.

. We show, by direct construction, that Poisson-Lie T-duality can be represented, by
using a target space formulation, as a topological defect. The line-bundle of this defect
is controlled by the so-called Semenov-Tian-Shansky symplectic form on the Drinfel’d
double associated to the Poisson-Lie T-dual models. We establish the existence of a
Poisson-Lie T-duality inducing topological defect when the model includes spectator
fields.

. Using the previous result, we provide further evidence that the Fourier-Mukai trans-
form for Poisson-Lie T-duality has a kernel that is essentially captured by the Semenov-
Tian-Shansky symplectic form of the Drinfel’d double, as was proposed recently in [27].

. We show how the known transformation rules for the gluing conditions of open strings
under generalised T-duality can be derived by fusing the Poisson-Lie T-duality defect
with a boundary condition.

. In the last section, no longer specialising to Poisson-Lie symmetric backgrounds, we
investigate the result of fusing topological defects and boundary conditions in terms of
the associated target space data. To do so, we first underline the universal description
of D-branes and defects in terms of Dirac geometry and subsequently exploit this
observation to formulate a notion of fusion at the level of target space.

In section 2, we first show how to construct Poisson-Lie T-duality as a topological defect.
This can be established in two ways, either in terms of the Lagrangian and its equations of
motion or by lifting the discussion to the associated product space. We will establish the
existence of the duality defect in both formalisms. Whilst the former is the most prevalent
approach for Lagrangian theories, the latter method will act as a stepping stone for the
later discussion of fusion. Section 3 discusses the process of fusion of topological defects at
the level of the target space. With the generalised T-duality topological defect at hand, in
section 3.1, we show how fusing the generalised T-duality defect with boundary conditions
characterised by gluing conditions yields the known duality transformations. Finally, in
section 3.2, we will take a step back from generalised T-duality. There, we consider the
problem of understanding the well-established notion of worldsheet fusion of topological
defects on the target space. We combine the expectation that the fusion process should
mirror a Fourier-Mukai transformation together with the insight that Dirac structures are
the fitting objects to describe the worldvolume of D-branes and topological defects. We
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then propose a fusion operation that uses the language of generalised and Dirac geometry.
In section 4, we draw some final conclusions and future perspectives. We complement the
discussion in the main text with a number of appendices.

2 Poisson-Lie T-duality as a topological defect

In this section, we establish Poisson-Lie T-duality as a space-filling topological defect
carrying a line bundle with curvature given by the so-called Semenov-Tian-Shansky (STS)
symplectic structure, both with and without spectator directions. After showing this first
at the Lagrangian level, and anticipating on our discussion on fusion in the second part of
this paper, we will also show this fact directly at the level of the product space. This will
allow us, following [10], to later formulate the defects in terms of Dirac structures.

Before introducing the topological defect relevant to Poisson-Lie T-duality, we first
review some necessary facts on this generalised notion of the T-duality as well its associated
algebraic objects. See [14, 15] or the reviews [28–30] for a more detailed and thorough
discussion of Poisson-Lie T-duality. In what follows, we will consider sigma-models that
are Poisson-Lie symmetric. This “symmetry” can be seen as a weaker requirement than
demanding to have Abelian or non-Abelian directions in Abelian, resp. non-Abelian, T-
duality. The general form of a sigma-model admitting Poisson-Lie symmetry is as follows.
We have a map g(X) : Σ→M , where we assume a Lie group G acts on M , together with
the action [14]

SPL =
∫

Σ
La(E−1

0 + Π[g])−1
ab L

b , (2.1)

where we have denoted by X a set of coordinates on a local patch of M , the left-invariant
Maurer-Cartan form are denoted by L = LaTa = lai dXiTa = g−1dg for g ∈M and Ta are
a set of generators for the Lie algebra Lie(G) = g (and likewise for the tilde variables)
with a = 1, · · · , dimG, E0 is a dimM × dimM -dimensional constant matrix and Π[g] is a
Poisson-Lie structure obtained by solving the (modified) classical Yang-Baxter equation
for the Lie algebra Lie(G) = g. The underlying reason to why such models naturally
generalise the conventional form of T-duality is that its underlying symmetry group is a
Poisson-Lie group, that comes with a natural notion of “dual object” baked in. Indeed,
the Poisson-structure Π[g] associated to G does not only define a (multiplicative) Poisson
structure on G it determines in fact a second Lie bracket on the algebra g. Denote by g̃ the
algebra defined by this second bracket on the vector space g. The associated Lie group G̃
also admits a Poisson-Lie structure Π̃. The relation is symmetric: the Poisson-Lie dual of g̃
is again g. One can write an action with target space G̃; the Poisson-Lie T-dual action,

S̃PL =
∫

Σ̃
L̃a[(E0 + Π̃[g̃])−1]abL̃b , (2.2)

where Π̃[g̃] is the Poisson-Lie structure on the Lie group G̃ associated to the double D = GG̃
and l̃ are now the components of the left-invariant Maurer-Cartan form L̃ = l̃aidX̃iT̃ awith
respect to an element g̃ ∈ G̃. Remarkably, as was shown in [14, 15], the actions in eqs. (2.1)
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and (2.2) naturally generalise the notion of T-dual models by taking D = U(1)2 dimG for
Abelian T-duality and D = G ×U(1)dimG for non-Abelian T-duality.

There is a last but crucial fact left to introduce. The direct sum of the Lie algebra g

with its Poisson-Lie T-dual algebra g̃ leads to a so-called Drinfel’d double d = g⊕ g̃. See
appendix A for definitions and details. An element g of the exponentiation D of this algebra,
which is also called the Drinfel’d double of (G,Π), has by construction, locally, two possible
decompositions

g = h̃g or g = hg̃ , with g, h ∈ G , g̃, h̃ ∈ G̃ , (2.3)

where the Drinfel’d double is assumed to be perfect, such that these decompositions are
unique. In addition, this Lie group D can be naturally endowed with a symplectic structure,
called the Semenov-Tian-Shansky (STS) symplectic form [31, 32]

ωSTS = 1
2(ra(g) ∧ l̃a(h̃)− r̃a(g̃) ∧ la(h)) , (2.4)

where we have used the components of the right-invariant Maurer-Cartan form R =
rai dXiTa = dgg−1 for g ∈ G. The Drinfel’d double together with the Semenov-Tian-Shansky
symplectic form will play a crucial role in what follows.

2.1 Sigma-model approach

At the level of the target space, a topological defect can be described by a total Lagrangian
involving the sigma-model actions of the neighbouring theories together with a term
specifying the coupling of the line bundle on the defect worldvolume to the bulk fields. We
thus consider a pair of target space maps X : Σ→M and X̃ : Σ̃→ M̃ . We glue these two
theories together by combining the worldsheets Σ ∪ Σ̃ along a defect line D, located at
σ = 0, so that the target space map X(τ, σ) is now defined for σ ≥ 0 and X̃(τ, σ) for σ ≤ 0.
It is thus convenient to define the product target space map

X = X × X̃ : Σ ∪ Σ̃→M × M̃ : (τ, σ) 7→ XI = (Xi, X̃i) . (2.5)

The pushforward of the product map X restricted to the defect line D will then span a
submanifold Y in product space M × M̃ . In analogy with D-branes, the bulk fields will
couple to a line bundle whose pullbacked connection A lives on the worldvolume of the
submanifold Y corresponding to the defect. The curvature of the line bundle connection will
be denoted by F = dA. That is, from the perspective of the target space, a defect between
two theories with target spaces M and M̃ is a pair (Y,F) consisting of a submanifold Y in
the product space M × M̃ together with a two-form F . We thus have a total worldsheet
action of the form [8, 11]

S = 1
2

∫
Σ

d2σ
(
G(X)ij∂µXi∂µXi +B(X)ijεµν∂µXi∂νX

j
)

+ 1
2

∫
Σ̃

d2σ
(
G̃(X)ij∂µX̃i∂µX̃i + B̃(X)ijεµν∂µX̃i∂νX̃

j
)

+
∫
D

dτ AI(X)∂τXI .
(2.6)
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Locally, the three-form fluxes H and H̃ in each model are identified with the exterior
derivative of the Kalb-Ramond two-forms Bij and B̃ij , i.e. H = dB and H̃ = dB̃. The
geometric data associated to the defect can be encoded into a two-form field F defined on
the topological defect by F = −(p∗B − p̃∗B̃ + F), where the overall minus sign is chosen
for later convenience and where p and p̃ are the projections from the product space onto
M , respectively M̃ and the Kalb-Ramond fields are evaluated at the location of the defect.
Note that by definition we have that the corresponding exterior product is the difference
of the three-form fluxes of the theories on the left and on the right dF = H − H̃, when
evaluated at the location of the defect.

It is clear that not all pairs of submanifolds and line bundle curvatures (Y,F) realise
the worldvolume of a topological defect. Indeed the topological property given in eq. (2.8),
that requires the energy momentum tensors of the two neighbouring models to continuously
connect along the defect line, is highly constraining. The energy momentum tensor of a
sigma-model is given by

Tµν = Gij(X)∂µXi∂νX
j − 1

2gµνg
γδGij(X)∂γXi∂δX

j ,

where gµν is the worldsheet metric, or in terms of the coordinates z = τ + σ and z̄ = τ − σ
one has

T = Gij∂X
i∂Xj , T̄ = Gij ∂̄X

i∂̄Xj , (2.7)

were the derivatives are given by ∂ = 1
2(∂τ + ∂σ) and ∂̄ = 1

2(∂τ − ∂σ). A defect is called
topological when it continuously connects holomorphic and anti-holomorphic components
of the left- and right energy-momentum tensors3

T = T̃ , T̄ = ¯̃T , (2.8)

at the location of the defect. The constraint in eq. (2.8) has striking implications. Indeed,
the topological defect condition in eq. (2.8) implies that, since the energy-momentum is
the generator of diffeomorphisms, the total system given by the action in eq. (2.6), remains
invariant under continuous deformations of the defect at values σ 6= 0. This observation
leads to one of the most striking features of this class of defects: the process of fusion.
Topological defects can be continuously deformed away from their initial location on the
worldsheet. When two defects are superimposed, they fuse into one or multiple new defects.
In a like manner, when the sigma-models describe open strings, a topological defect can
be moved to the boundary of the worldsheet and fused with the boundary conditions

3A weaker notion of defect is that of conformal defects for which we require the conservation of the
worldsheet energy. This translates into the requirement that the off-diagonal components of the stress-energy
tensors glue continuously T 1

0 − T̂ 1
0 = 0, at the location of the defect D. Topological defects are a stronger

concept, by additionally demanding that the worldsheet momentum is also conserved. That is guaranteed
when at the defect the diagonal components of the stress-energy tensor glue continuously T 1

1 − T̂ 1
1 = 0.

Topological defects in contrast to conformal defects can be, as long as the defect does not cross the location
of a local operator insertion, deformed smoothly without affecting the values of correlators. For conformal
defects, one has to be more careful as the fusion operation might lead to singularities and corresponding
divergences.
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resulting in a new boundary condition. On a general basis, invertible4 topological defects
are expected to implement dualities between theories. Indeed, in [11, 13], it was shown
how, at the level of the target space formulation, particular topological defects can encode
T-duality and even non-Abelian T-duality. In the following section we will prove that one
can also construct a topological defect encoding the most general form of T-duality on
group manifolds; Poisson-Lie T-duality.

2.1.1 Poisson-Lie T-duality topological defect

To show that the pair (D, ωSTS) realises the worldvolume of a topological defect encoding
Poisson-Lie T-duality, the starting point is the total action in eq. (2.6), i.e.

Stot = S + S̃ + Sdefect = 2
∫

Σ
LaEabL

b + 2
∫

Σ̃
L̃aẼ

abL̃b +
∫
D

X∗A , (2.9)

where E = G+B is the background field consisting of metric G and B the antisymmetric
Kalb-Ramond field and likewise for the tilde variables. The left-invariant Maurer-Cartan
form is denoted, as above, by L = lai dXiTa = g−1dg for g ∈M and Ta are a set of generators
for the Lie algebra Lie(G) = g (and likewise for the tilde variables) with a = 1, · · · , dimG.
The map X = X × X̃|D is the product target space map defined in eq. (2.5). The first
action, given by S, is taken to be a Poisson-Lie symmetric model on a Lie group manifold,
as given in eq. (2.1) and the second action S̃ is left unspecified. We will make the Ansatz
that the defect is given by the pair (D, ωSTS). That is we take dA(X, X̃) = F = ωSTS(X, X̃),
where the Semenov-Tian-Shansky symplectic form was defined in eq. (2.4). We will see that
by picking a particular solution of the equation of motion in the presence of the defect, the
background fields of the target space G̃ will be precisely the Poisson-Lie T-dual action S̃PL
given in eq. (2.2). In addition, we show that this defect is topological.

First, it will be more convenient to use a rewriting of this symplectic form

2ωSTS = 2lb(g) ∧ C e
b l̃e(g̃) + lb(g) ∧ C m

b Π̃me[g̃]le(g)− l̃b(g̃) ∧ C̃bmΠme[g]l̃e(g̃) , (2.10)

where we have introduced C = (1− Π̃Π) and similarly for C̃ with the order of Π, Π̃ switched.
This expression for the STS symplectic form is derived in the appendix A or see also [27]
for an equivalent but slightly different form. Varying now the action with respect to Xi

and keeping only terms localized at σ = 0 we get∫
D

dτ
(
Eabl

b
j ∂̄X

j − Ebalbj∂Xj
)∣∣∣
σ=0

lakδX
k = − δXi

(∫
D

X∗A
)∣∣∣∣
σ=0

, (2.11)

and similarly for δX̃i . Taking the variation of the boundary term

δXi

∫
D

X∗A =
∫
D

dτ
(
C b
a Π̃bc[g̃]lcj∂τXj + C b

a l̃bj∂τ X̃
j
)
lai δX

i .

4A topological defect is called invertible if there exists a second defect such that their composition or
fusion yield the invisible defect. In conformal field theories, where defects can be associated to operators,
invertibility means a trivial null space. As a result theories separated by an invertible defect share the same
spectrum. See e.g. [33] for a more rigorous treatment.
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From these variations the following equations of motion on the defect line σ = 0 follow:

Ebal
b
j∂X

j − Eablbj ∂̄Xj = C b
a Π̃bc[g̃]lcj∂τXj + C b

a l̃bj∂τ X̃
j ,

Ẽba l̃bj∂X̃
j − Ẽab l̃bj ∂̄X̃j = C̃abΠbc[g]l̃cj∂τ X̃j + lbjC

a
b ∂τX

j .
(2.12)

To solve these equations of motion, we pick a particular solution which, as we will see in
the next section, singles out the topological defect encoding Poisson-Lie T-duality. We set(

Eab+C c
a Π̃cb[g̃]

)
lbj ∂̄X

j =−C b
a l̃bj ∂̄X̃

j ,
(
Eba−C c

a Π̃cb[g̃]
)
lbj∂X

j =C b
a l̃bj∂X̃

j(
Ẽab+C̃acΠcb[g]

)
l̃bj ∂̄X̃

j =−C a
b l

b
j ∂̄X

j ,
(
Ẽba−C̃acΠcb[g]

)
l̃bj∂X̃

j =C a
b l

b
j∂X

j .
(2.13)

One can readily check that these relations, if satisfied, solve the equations of motion at the
location of the defect line. Let us now show that the relations in eq. (2.13) are nothing
but the canonical relations for Poisson-Lie T-duality [34] which we review in appendix B.
Indeed, one can rewrite the eqs. in eq. (2.13) as

C̃L̄ = −C̃(E + CΠ̃)−1CL̃ , C̃L = C̃(ET − CΠ̃)−1CL̃ ,

C ¯̃L = −C(Ẽ + C̃Π)−1C̃L , CL̃ = C(ẼT − C̃Π)−1C̃L ,
(2.14)

where we have suppressed the indices for ease of notation. Consistency of the equations in
eq. (2.14) with respect to those in eq. (2.13) forces us to identify

Ẽab + C̃acΠcb[g] ≡ C̃ad
(
(E + CΠ̃[g̃])−1

)dc
C b
c , (2.15)

and similarly for the other equations. These equations are however nothing but the canonical
transformation rules for the background fields of Poisson-Lie T-dual models [34]

C−1(E + CΠ̃)C̃−1(Ẽ + C̃Π) = 1 , C−1(ET − CΠ̃)C̃−1(ẼT − C̃Π) = 1 . (2.16)

That is, we have shown that defect (Y,F) = (D, ωSTS) encodes the Poisson-Lie T-duality
transformation.

Having established that the action in eq. (2.9) with sigma-models given by eqs. (2.1)
and (2.2) and with one-form field defined via dA = ωSTS describes a defect encoding
Poisson-Lie T-duality, we now show that the defect is in fact topological. That is, the defect
verifies the continuity of the energy-momentum tensors as give in eq. (2.8) across the defect
location. The holomorphic part of the energy-momentum tensors for the left Poisson-Lie
models, after using the relation in eq. (2.13) in the expression given in eq. (2.7), leads to

T = C c
b Π̃cal

a
i l
b
j∂X

i∂Xj + C a
b l̃ail

b
j∂X̃

i∂Xj ,

whilst the energy-momentum tensor for the dual right model takes on the form

T̃ = C̃bcΠca l̃ai l̃bj∂X̃
i∂X̃j + C a

b l
b
j l̃ai∂X

j∂X̃i .

Taking their difference we see that the last term from each energy momentum tensor cancel,
leading to

T − T̃ = ΠacC b
c l̃ai l̃bj∂X̃

i∂X̃j − Π̃acC̃
c
bl
a
i l
b
j∂X

i∂Xj = 0 , (2.17)
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where the left-over terms vanish identically by virtue of ΠC and Π̃C̃ being antisymmetric.5

One can verify in a very similar fashion that the condition on the antiholomorphic part
of the energy-momentum tensors on both theories is verified, showing that the defect
defined by the total system defined in eq. (2.15) with field strength dA = ωSTS given by the
Semenov-Tian-Shansky symplectic structure is indeed topological.

2.1.2 Other topological defects

In [35] and [1], the relation between the fusion algebra of topological defects in conformal
field theories and the duality group O(d, d) (and its semi-group extension) was studied. The
group O(d, d) is not only generated by (factorised) T-dualities but also linear transformations
and B-field transformations. As later highlighted in [11, 36], one can indeed also realise the
latter two, i.e the B-field transformations and linear transformations, using the target space
formulation of defects. B-field transformations between the background field E = G+B on
a target space M and the background field Ẽ on M̃ = G, are associated with a “diagonal
defect” determined by the choice Xi = X̃i in the product space G × G with the two-form
field B. On can show that this defect is again topological, we will not repeat the argument
in detail, which can be found in [11, 36]. What is relevant to remember for what is to come,
is that the worldvolume of this defect is realised by a pair (Gdiag, B), where Gdiag is a copy
of G diagonally embedded in the product space G × G.

Finally, let us remark that for a given Poisson-Lie symmetric target space G there
are, by construction, as many Poisson-Lie T-duality defects as there are solutions of the
(modified) classical Yang-Baxter equation for its algebra g, or equivalently so-called Manin
triples associated with g. To see this, we need yet another equivalent expression for the
Semenov-Tian-Shansky symplectic form. For each solution r of the modified classical
Yang-Baxter equation for the Lie algebra g, we obtain a different dual algebra g̃ or Drinfel’d
double d = g⊕ g̃.6 It turns out that the Drinfel’d double d is itself also a Poisson-Lie group
with r-matrix rd given by the expression

rd = pg − pg̃ ,

where pg is the projection into g seen as diagonally embedded into d and pg̃ is the projection
into the Poisson-Lie dual algebra g̃. In terms of the r-matrix rd of the double, the Semenov-
Tian-Shansky symplectic form, or equivalently the corresponding Poisson structure, can be
expressed by, see e.g. [31]:

{ · , · }STS = 1
2〈(rd −Adg−1rdAdg)∇·,∇·〉 , (2.18)

where the adjoint action are taken with respect to an element g ∈ D of the double and
∇ denotes the left gradient derivative, i.e. for a function f ∈ C∞(G) it takes the form

5This can be shown using the explicit form of C, C̃ in terms of adjoint actions given in the appendix A.
6Technically this means that we are looking at “split” type classical modified Yang-Baxter equation.

Indeed, solutions to the non-split classical modified Yang-Baxter equation for a fixed Lie algebra g is
essentially unique. We will not discuss solutions to the homogeneous classical Yang-Baxter equation. More
details and definitions can be found in [31, 37].
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〈∇f(x), X〉 = d
dtf(exp(tX)x)|t=0, for X ∈ g. That is, for each solution of the (modified)

classical Yang-Baxter associated to the Lie algebra g we also have a different Drinfel’d
double and associated Semenov-Tian-Shansky symplectic form is given in eq. (2.18).

2.1.3 Including spectators

When considering spectator fields, the Lie group G acts freely, but no longer transitively
on the target space M . We assume thus that the target space can be identified with
a space of the form M = G × N and is described by coordinates Xm = (Xi, Y µ) with
i = 1, · · · , dimG = n and N is the spectator manifold with coordinates Y . In this section,
we consider a topological defect lying between two Poisson-Lie T-dual models but including
the freedom of having spectator directions. We thus start from the same formal action

Stot,spect = S + S̃ + Sdefect , (2.19)

where we will first assume that the model on the left of the defect, given by the action S is
Poisson-Lie symmetric with spectator fields. In particular, this means that the first action
is a non-linear sigma-model taking the form

S = 2
∫

Σ
d2σ

(
lai ∂X

i ∂Y µ
)(Eab Eaν

Eµb Eµν

)(
lbi ∂̄X

i ∂̄Y ν
)
. (2.20)

The form of components of the background field Emn are fixed by imposing Poisson-Lie
symmetry and thus has to satisfy the condition

LlaEmn = −f̃ bcaEmplpblqcEqn ,

where f̃abc are the structure constants of the algebra of the Lie group manifold G̃ and one
can determine the total background field Emn as [14, 15, 34]

Eaµ = Eab((E0)−1)bcFcµ , Eµν = Fµν − FµaΠabEbc((E0)−1)cdFdν ,
Ẽaµ = ẼabFbµ , Ẽµν = Fµν − FµaẼabFbν .

(2.21)

Here Fµν , Faµ are arbitrary matrices depending on the choice of background configuration
chosen. These reduce to the conventional Poisson-Lie symmetric backgrounds upon setting
the spectators to zero. Crucially, the Poisson structure Π of this general solution for the
background field E in presence of spectator fields, only depends on the coordinates X on
G and not on the spectator directions Y . The matrix (E0)mn = (E0)mn(Y ) of coupling
constant can however have a Y -dependent, but no dependence on the coordinates of the
manifold G or G̃.

The last term Sdefect in the total action in eq. (2.19) accounts for the one-form A on
the defect line D ⊂ Σ, contributing with the usual term

Sdefect =
∫
D

X∗A ,

where X is the product map defined in eq. (2.5) from the union of the worldsheet Σ ∪ Σ̃ to
the product space G×G̃ ×N . Note that we do not take two copies of the spectator manifold
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N . We will show that taking the simplest Ansatz, that is taking dA(X, X̃) = ωSTS(X, X̃),
will give a topological defect that encoded Poisson-Lie T-duality with spectator fields. We
will see that taking again the STS symplectic structure to be the curvature of the line
bundle of the topological defect takes care of the presence of the spectator fields, and will
fix the model described by the action S̃ on the right to be the Poisson-Lie T-dual action,
taking on the same form as the Poisson-Lie action S in eq. (2.20), but defined by a set of
background fields Ẽ and (left-invariant) Maurer-Cartan forms L̃ = l̃aiT̃

adXi depending on
the coordinates (X̃, Y ), sharing the same Y -direction (the spectator fields).

Varying the total action given in eq. (2.19) and using again the alternative expression
for the STS form given in eq. (2.10), the equations with spectator directions become

Ebal
b
j∂X

j + Eµa∂Y
µ − Eablbj ∂̄Xj − Eaµ∂̄Y µ = C b

a Π̃bc[g̃]lcj∂τXj + C b
a l̃bj∂τ X̃

j ,

and similarly for the tilde variables

Ẽba l̃bj∂X̃
j + Ẽµa∂Y µ − Ẽab l̃bj ∂̄X̃j − Ẽµb∂̄Y µ = C̃abΠbc[g]l̃cj∂τ X̃j + lbjC

a
b ∂τX

j .

Finally varying with respect to the spectators Y µ we now get a third equation

Eµal
a
i ∂̄X

i − Eaµlai ∂X i + Eµν ∂̄Y
ν − Eνµ∂Y ν

= Ẽ a
µ l̃ai∂̄X̃

i − Ẽaµ l̃ai∂X i + Ẽµν ∂̄Y
ν − Ẽνµ∂Y ν . (2.22)

The first two equations can be solved by making an Ansatz similar to that of the non-
spectator case but taking now into account a contribution from the spectator fields. For
example the first line in the particular solution given in eq. (2.13) now becomes

Eaµ∂̄Y
µ +

(
Eab + C c

a Π̃cb[g̃]
)
lbj ∂̄X

j = −C b
a l̃bj ∂̄X̃

j , (2.23)

and mutatis mutandis for the three other equations. Again, by requiring consistency of
these particular solutions leads to the relation

Ẽab + C̃acΠcb[g] ≡ C̃ad
(
(E + CΠ̃[g̃])−1

)bc
C d
c , Ẽaµ ≡ C̃ad

(
(E + CΠ̃[g̃])−1

)bc
Ecµ ,

and similarly for the others. We are again lead to conclude that the defect implements the
canonical transformation for the Poisson-Lie T-duality, but this time including spectator
directions.

It remains to show that the third equation of motion coming from the spectators in
eq. (2.22) is also satisfied for the specific solution singled out by the Ansatz. To this purpose
we have to use the form of the background field imposed by the Poisson-Lie symmetry of the
model as given in eqs. (2.21). With these expressions at hand, the canonical transformation
relating the left-invariant forms of the Poisson-Lie T-duality backgrounds on M and M̃ can
be written as [38]

(E∓0 )−1E∓(L± ±ΠF∓∂±Y ) = ±Ẽ∓(L̃± ∓ F∓∂±Y ) . (2.24)

A little algebra shows that this is equivalent to the relation

Eaµl
a
i ∂X

i = Ẽaµ l̃ai∂X̃
i − FνaẼaµ∂Y ν + FνaΠabEaµ∂Y

ν . (2.25)
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Using the rewriting of the canonical transformation for Poisson-Lie T-duality in eq. (2.25)
together with the general expressions for the background fields in eq. (2.21) imposed by
Poisson-Lie symmetry, one can then easily show that the third equation of motion coming
from the variation of the spectators in eq. (2.22) is also satisfied. Note finally that in
this case the pair (Y,F) = (D, ωSTS) no longer defines a space-filling defect since the
corresponding worldvolume is again the Drinfel’d double D ⊂ G × G̃ ×N .

Lastly, we turn to the problem of showing that this defect is topological. Taking into
account the spectator directions, the energy momentum tensors featured in the topological
defect condition in eq. (2.8) can be written as (wlog, for the action on the left)

T = Gabl
a
i l
b
j∂X

i∂Xj + 2Gaµlai ∂X i∂Y µ +Gµν∂Y
µ∂Y ν .

We will now show that demanding again that the curvature of the one-form field A living on
the defect line is the Semenov-Tian-Shansky symplectic form, guarantees the cancelation of
the holomorphic and anti-holomorphic parts of the energy-momentum tensors. Using the
expressions for the background fields in eq. (2.21), the difference of the holomorphic parts
of the energy momentum tensors on both sides reads

T − T̃ = Eaµl
a
i ∂X

i∂Y µ − Ẽaµ l̃ai∂X̃i∂Y µ − FµaΠabEbν∂Y
µ∂Y ν + FµaẼ

a
ν∂Y

µ∂Y ν ,

where the antisymmetry of the combinations CΠ and C̃Π̃ was used to cancel a number
of terms contributing to the left- and right-energy momentum tensors. But this last line
however is nothing but the canonical transformation for Poisson-Lie T-duality in presence
of spectator directions as derived in eq. (2.25). An identical computation shows that the
anti-holomorphic components of energy momentum tensors of the theories on the left and
the right of the defect cancel as well, concluding that the defect does not only encode
Poisson-Lie T-duality with spectators but is in fact topological. In what follows, we will
often refer to this topological defect (D,F) encoding Poisson-Lie T-duality by the shorter
nomicker “Poisson-Lie defects”.

2.1.4 Relation to Fourier-Mukai-like transforms

One of our motivations to study whether or not Poisson-Lie T-duality could also be realised
by a topological defect was to better understand if this generalised form of T-duality can
be associated to a Fourier-Mukai-like transform. It has been known since [39] that the
T-duality transformation of the Ramond-Ramond fields is encoded through a Fourier-
Mukai transform. The latter is an integral transform defining an isomorphism of, possibly
H-twisted, cohomologies for the manifolds M1 and M2 and takes the formal form

Λ•T ∗M1 → Λ•T ∗M2 : α 7→ (p2)∗(K · p∗1α) , (2.26)

here pi : M1 ×M2 →Mi is the projection map onto Mi and K is called the kernel of the
integral transform. That is, differential forms on the manifold M1 are first transported to
the product space M1×M2 by the pull-back of the projection map p1 : M1×M2 →M1. In
the product spaceM1×M2 the pull-backed object is then “convoluted” with a specific kernel
K encoding the duality transformation or isomorphism. The result is then pushed forward
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via the projection p2 : M1 ×M2 →M2 onto the second factor, to a “dual” differential form
defined on the manifold M2. Schematically:

M1 ×M2

M1 M2

p1 p2
(2.27)

The question to whether generalisations of T-duality might also admit a representation as a
Fourier-Mukai transform is a challenging task. Foremost, since Fourier-Mukai transforma-
tions between spaces that are not associated to abelian varieties7 are not well-understood.
Remarkably, topological defects associated to dualities offer a way around this technical
and conceptual hurdle.

In [1, 2, 11, 35], it was noticed that the Fourier-Mukai transform naturally surfaces when
studying the worldsheet topological defects encoding Abelian T-duality. Later, using the
target space formulation of topological defects, the kernels of the Fourier-Mukai transforms
for non-Abelian [13] and fermionic T-duality [36] were shown to again be essentially captured
by the data defining the duality defect. This relation between topological defects and a
Fourier-Mukai like operation is not coincidental and is a direct consequence of the existence
of a fusion operation of T-duality inducing topological defects. Applying a T-duality to a
D-brane should intuitively equate to fusing the pertinent defect together with the boundary
condition. As such, the objects defining the duality defect have to also contain the necessary
information to understand how the Ramond-Ramond fields, which are charged under the
D-brane, transform under T-duality. More precisely, the authors in [11, 13] showed how
the two-form F living on the worldvolume of the topological defect encoding Abelian
(and later for non-Abelian) T-duality determines the kernel K of a Fourier-Mukai-like
integral transform acting on the Ramond-Ramond fields via

∫
M1

exp(Fkernel · p∗1α) where
Fkernel = −(p∗B − p̃∗B̃ + F), where we recall that F is the curvature of the line bundle on
the topological defect encoding the duality.

In addition, in [1], see also [35], the authors argued that fusion turns out to match the
composition of the associated geometric integral transformations in all studied examples.
The authors also argue that the fusion of a defect with two-form curvature F with any
D-brane Y1 determines a transformation that maps D-branes Y1 in M1 to D-branes given by

(p2)∗(F · p∗1Y1) (2.28)

on M2. This observation, which was first suggested in [2] and later studied in e.g. [1, 8],
will return later when we consider the notion of fusion.

The discussion in the previous sections suggests, following the same logic, that one
should identify the kernel of the integral transform associated to Poisson-Lie T-duality with

7In fact, a Fourier-Mukai transform is an equivalence of derived category of coherent sheaves. This is
realised in topological string theory, where B-branes are modelled by coherent sheaves and the relevant
kernel to encode Abelian T-duality is given by the curvature of the Poincaré bundle. Whether such a neat
picture could also arise for the non-Abelian or Poisson-Lie generalisations of T-duality is at present unclear
to the authors.
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the Semenov-Tian-Shansky symplectic structure of the double D. This observation nicely
supports8 the results of [27], where, by studying the global aspects of Poisson-Lie T-duality,
the Semenov-Tian-Shansky symplectic structure was also proposed as the relevant kernel of
the Fourier-Mukai transform for Poisson-Lie T-duality. In [27], an expression for the kernel
of Poisson-Lie T-duality with spectator fields was also derived by studying global aspects of
the generalised T-duality and imposing the Bianchi identity on the result of the associated
Fourier-Mukai transformation. This new kernel describing the duality with spectators
displays additional terms that account for the non-trivial fibration of spectator direction
across the manifold. This information can only be detected when considering the global
and topological aspects of Poisson-Lie T-duality. In the present context however, since
the topological defect encodes a local version of the generalised T-duality transformations,
these terms remain invisible. This explains why, for our purposes, the additional terms do
not play a role in the construction of the associated defect.

2.2 Product space and generalised geometry approach

As was already mentioned in the introduction, topological defects have the distinguishing
feature that they can be deformed continuously from their initial location. When this defect
line is superimposed with another defect line (or a boundary condition), they “fuse” and
one obtains a new configuration: either a new defect (or new boundary condition) or a
superposition of multiple defects (or boundary conditions). How worldsheet fusion translate
at the level of the target space will be subject of section 3. To prepare the ground to
understand how to realise “target space fusion”, i.e. an operation on the set of submanifolds
with two-form field (Y,F) on the product space M × M̃ that defines topological defects,
it turns out to be instrumental to reformulate the notion of bibranes in the setting of
generalised geometry.

Indeed, topological defects, using the language of generalised geometry, can be equally
characterised directly in terms of the background fields and the pair (Y,F) capturing the
relevant defect [10]. We will first review here some of their results useful for our purposes.
As was already stressed in the previous section, on the target space the defect is described
through the corresponding submanifolds in the doubled space M × M̃ which carries a
two-form F . The condition for the defect to be topological, see eqs. (2.8), can however be
directly expressed in terms of conditions on the submanifold Y and its two-form F . To do
so, one first introduces a neutral signature metric GAB and B-field BAB on the product
space M × M̃ given by

GAB =
(
Gab 0
0 −G̃ab

)
, BAB =

(
Bab 0
0 −B̃ab

)
,

where (G,B), respectively (G̃, B̃), are the background fields of the sigma-models on the
left, respectively right, of the defect, implicitly restricted to the boundary Y where they are
well-defined. The capital index A runs form 1 to 2n with the first n indices belonging to

8Note however that, at least naively, this form for the kernel of the Fourier-Mukai transform encoding
Poisson-Lie T-duality differs from the one proposed in [40].
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the target space G and the latter n to the space G̃, for n = dimG = dim G̃. Furthermore we
define a two-form F to be the combination

F = −dA− ι∗B = −F − ι∗B (2.29)

with ι : Y ↪→ G × G̃ is the embedding map and F is the field strength of the one-form A
living on the defect worldvolume Y . Kapustin and Setter showed in [10] that, the condition
on the energy momentum tensor can be translated to a condition on the geometry of the
induced target space worldvolume together with the background fields. In order to define
allowed pairs (Y,F) one has to verify the relation9(

G|−1
SY F|SY

)2
= 1 and ker F = (TY)⊥ , (2.30)

where SY is the so-called screen distribution since we are working in a non-Riemannian
signature.10 This equation provides an equivalent way to characterise topological defects
at the level of the product space M × M̃ purely in terms of background and target space
data. In what follows we will refer to the topological defect condition given as in eq. (2.30),
as the “target space condition”. When the submanifold Y corresponding to the defect is
space-filling, i.e Y = G × G̃ we have (TY)⊥ = 0 and the condition simplifies to ker F = 0 and
(G−1F)2 = 1. Note that in this case, this also implies that F is a symplectic structure on the
product space G × G̃. Before reviewing how this condition can be expressed in generalised
geometry, let us show again that the space-filling defect with two-form field given by the
Semenov-Tian-Shansky symplectic form induces Poisson-Lie T-duality and is topological,
however using this time the target space condition above.

2.2.1 Poisson-Lie T-duality topological defect — revisited

Having introduced the target space condition, given in eq. (2.30), which warrants that
a defect pair (Y,F) is topological, we give an alternative way to show that the pair
(Y,F) = (D, ωSTS) defines in fact a topological defect inducing Poisson-Lie T-duality. From
the Semenov-Tian-Shansky symplectic structure, using the expression given in eq. (2.10),
we can read off the matrix representation of dA. The associated two-form field F is then
given, as in section 2.1, by

F = −dA− ι∗B =
(
−CΠ̃−B −C

C̃ C̃Π + B̃

)
. (2.31)

9In [10], pairs determining defects are chosen to be characterised by the curvature plus the B-field
contribution. Note that in the present paper, we have picked a slightly different convention having chosen to
characterise the pair by (Y,F) where F is the curvature of the line bundle, without the B-fields.

10See [10, 41]. Since we work in a pseudo-Riemannian manifold, one can no longer simply split the
generalised tangent space in the usual way ι∗TM = TY ⊕ (TY)⊥. When Y is a coisotropic submanifold, i.e.
TY ⊃ (TY)⊥, however, one can show that there still exists a canonical spitting, albeit by introducing a new
object. Indeed, in this case the tangent space has to be complemented by the so-called screen distribution
S(TY), TY = S(TY)⊕ (TY)⊥, where here the direct sum is between transverse spaces. The (pull-back) of
the manifold M is then decomposed as [41]

ι∗TM = TY ⊕NY = S(TY)⊕ (TY)⊥ ⊕NY ,

where NY is a complementary transverse distribution to TY in ι∗TM .
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We can now directly compute (G−1F)2 using the definition for F in eq. (2.29), yielding the
(1,1)- and (1,2)-block components respectively

[(G−1F)2]11 =
(
G−1(CΠ̃ +B)

)2
+G−1CG̃−1C̃ ,

[(G−1F)2]12 = G−1(CΠ̃ +B)G−1C +G−1CG̃−1(C̃Π + B̃) .

It is instructive to first examine the simpler case of Abelian T-duality. Specialising to
Abelian T-duality means that we have that Π = 0, Π̃ = 0 and the transformation rules
relating the background fields and their T-dual are known to take on the form [42]

G̃ = (G−BG−1G) , G̃−1B̃ = −BG−1 . (2.32)

One can readily see that in this case we indeed have that (G−1F)2 = 1, and the defect
describes Abelian T-duality and is in addition topological. In a very similar way, using the
eqs. (B.4) derived from the Poisson-Lie canonical transformation in the appendix B relating
the Poisson-Lie background fields E = G+ B and its dual background field Ẽ = G̃+ B̃,
one can verify after a little algebra that the defect (D, ωSTS) that captures now generalised
T-duality is again topological, consistent with what was established already in section 2.1.1
at the level of the action.

2.2.2 Topological defects as Dirac structures

We now turn to the generalised geometry formulation of topological defects for non-linear
sigma-models as was originally given in [10]. Before reviewing the generalised geometry
condition for topological defect, we would like to anticipate on our discussion about fusion
in section 3 and introduce the notion of Dirac structure in generalised geometry. To do so,
we will explain how D-branes and the worldvolume of topological defects can be described
using the same objects. This can be achieved precisely by promoting their description
to generalised geometry, or rather Dirac geometry. As we will shortly review, Dirac
geometry unifies symplectic structures, Poisson structures and foliations in the framework
of generalised geometry.

The crucial observation is to note that the worldvolume of topological defects and
D-branes are both determined not only by a submanifold but have to be supplemented by a
line-bundle with curvature F on its worldvolume. As we will now review, this information
is exactly encoded by Dirac structures. A Dirac structure is a Lagrangian subspace L of a
Courant algebroid11 E over a manifold M that is involutive with respect to the Courant
bracket on E. The latter condition guarantees that the projection of the Dirac structure
onto the tangent space at each point of the manifold M defines an integrable distribution.
That is, the Dirac structure L on M defines a stratification of M =

∑
i Yi, where each leaf

Yi inherit a two-form field Fi, see e.g. [43].
A basic example is well-known. A Poisson-structure Π on a manifold M determines

a foliation of M into symplectic leaves on which the Poisson-structure Π is invertible.
11We refer the reader to appendix C for definitions and a short introduction to topics in generalised

geometry relevant to this section.
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Each such leaf Y of the symplectic foliation thus carries a two-form field ω = (π|Y)−1;
the inverse of the Poisson structure restricted to that leaf. When the Poisson structure is
non-degenerate on M , the foliation consists of just one leaf, the whole manifold M and
it is equivalent to a symplectic structure. The Dirac structure in these examples coincide
with the graph of Poisson structure or the symplectic structure in the generalised tangent
space, see appendix C. A general Dirac structure L can in fact always be identified with a
subbundle that corresponds to the graph of a two-form F whose projection to the tangent
bundle is an integrable distribution for a submanifold Y. That is we have that any Dirac
structure L can be identified with a subbundle

L(Y,F) = {(X, ξ) : X ∈ TY, ξ ∈ T ∗M such that FX = ι∗ξ} , (2.33)

where ι again denotes the inclusion map of Y into M . Conversely, a couple (Y,F) of a sub-
manifold Y ⊂M and a two-form F can be shown to define a Dirac structure L of E = TM .

We can now give some notable examples of Dirac structure describing D-branes. In
WZW models, (twisted) D-branes correspond to so-called Cartan-Dirac structure carrying
the GKHJW-structure [44] and whose leafs are conjugacy classes. More generally, D-branes
described by a particular subset of Dirac structures have also been studied in [45, 46].
In [47], D-branes in Poisson-Lie models were identified with the symplectic leaves of the
Poisson structure associated to the Lie group M = G. In [48], by realising that variational
problems associated to two-dimensional sigma-models are associated to exact (equivariant)
Courant algebroids, boundary conditions translate into the choice of a Dirac structure L in
that Courant algebroid E over M .

For topological defects, it was shown in [10], although not explicitly coined as such,
that topological defects can be described as Dirac structures L now living in a Courant
algebroid E over the product space M ×M̃ , satisfying an additional compatibility condition.
Let us review the argument. Define a new “generalised metric” RG for the product space
M = M × M̃ given by

RG =
(

0 G−1

G 0

)
, (2.34)

defining a generalised almost product structure, i.e an endomorphism RG : TM⊕ T ∗M→
TM⊕ T ∗M such that R2

G = id. As we remarked earlier, the choice of a foliation together
with the associated two-form is equivalent to having a Dirac structure of the form given in
eq. (2.33). Then the pair (Y,F), consisting of a two-form F on Y ⊆M × M̃ a submanifold,
is a topological defect if and only if12 the following holds

RG(L(Y,F)) = L(Y,F) .

That is topological defects correspond to Dirac structures of a Courant algebroid over
M × M̃ that are stable under the product structure RG. This formulation is indeed

12Its not hard to see that this equivalence: first let (Y,F) such that RG(L(Y,F)) = L(Y,F) and let
(X, ξ) ∈ L(Y,F) arbitrary. Then FX = ι∗ξ and there exists some Z ∈ ι∗TM such that ι∗ξ = GZ. Therefore
RG(X, ξ) = (G−1GZ,G) = (Z,GX) ∈ L(Y,F), which implies FZ = GX and Z ∈ TY and therefore (Y,F)
is a topological bibrane. The converse direction requires bit more work, see [10] for details.
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reminiscent of how D-brane compatible with extended supersymmetry [49], D-branes in
para-Hermitian geometry [50] or complex submanifolds in generalised complex geometry [43]
are characterised.

3 Worldvolume fusion of generalised T-duality defects

In this section we turn to the question of how the fusion of topological defects can be
understood as an operation on the target space. In contrast to worldsheet fusion, very little
is known on how to consistently define fusion in target space. First insights came from
studying the particular case of fusing topological defects (or also called bibranes) in WZW
models [8]. As can be expected from the study of worldsheet fusion, target space fusion of
two topological defects or bibranes (Yi,Fi)i=1,2 results in single or possibly a superposition
of multiple defects, schematically

(Y1,F1) ? (Y2,F2) =
∑
α

N12
α(Yα,Fα) , (3.1)

where N12
α are some constant coefficients for a collection of bibranes (Yα,Fα). The

transparent or invisible defect, which separates M with itself, acts as the unit element of
the fusion operation. Then a defect is invertible for the operation of fusion when it can be
fused with a second to yield the invisible defect. Remarkably, it turns out that for WZW
models the fusion operation was suggested to yield the Verlinde algebra [8]. In general
however, the fusion operation ? will not define a group operation as some elements might
fail to have an inverse or the algebra might not even close.

In what follows, we first set out to understand the fusion properties of the Poisson-
Lie T-duality defect derived earlier. We provide a fusion realisation of the generalised
T-duality transformations of boundary conditions characterised in terms of a gluing matrix.
Subsequently, we will address the effect of fusion at the level of the target space. Combining
a Fourier-Mukai like operation and the observation that Dirac structures both encode the
worldvolume data of defects and D-brane, we write down a target space fusion operation
encoding the D-brane resulting from the fusion of defect and D-brane.

3.1 Lagrangian fusion and gluing conditions

In this section, we first examine the result of fusing a generalised T-duality defect with a
boundary condition at the Lagrangian level. We first remind the reader of how boundary
conditions can be encoded using a gluing matrix. We then show how fusing the Poisson-Lie
topological defect in this way correctly predicts the transformation rules under Poisson-Lie
T-duality for the boundary conditions of open strings in terms of a gluing matrix.

3.1.1 Gluing matrices and Dirac structures

A convenient way to encode boundary conditions for open strings is by using so-called gluing
matrices [51]. The boundary condition for open strings are then imposed by demanding
that the left- and right-moving worldsheet fields are related on the boundary by a gluing
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operator R:

∂−X|σ=0,π = R|σ=0,π · ∂+X|σ=0,π . (3.2)

The matrix R cannot be arbitrary and has to satisfy a number of conditions reflecting the
consistency of the underlying boundary conditions. In particular, conformal invariance
requires the matrix R to preserve the metric. The Dirichlet directions, those normal to the
D-brane, correspond to the −1 eigenspace of the matrix R. These can be singled out by
the projector RP‖ = P‖R = −P‖. In addition, to warrant for the existence of a smooth
underlying submanifold modelling the D-brane on the target space, the direction along the
orthogonal directions obtained from the projector P⊥ = 1 − P‖, encoding the Neumann
directions, should generate an integrable distribution and a corresponding foliation of the
manifold M . On each such leaf Y ⊂M of the foliation, there exists a two-form F such that
dF = H|Y .

Under a T-duality transformation, the gluing matrix R capturing the specific boundary
conditions is mapped to a new, dual, gluing matrix R̃ for the boundary conditions in the
dual space. How the gluing matrix transforms under the action of Poisson-Lie T-duality
was derived in [52, 53]. We will show in this section that the fusion operation of the
Poisson-Lie T-duality defect (D, ωSTS) with a boundary condition encoded by a gluing
matrix R consistently yields the expected Poisson-Lie T-dual gluing matrix.

For later use, let us however first review how boundary conditions arising from this
type of gluing conditions can be formulated within generalised geometry. As pointed out
in [49], the gluing condition can be reformulated in an O(d, d) covariant way. Introduce a
“doubled” gluing matrix on the generalised tangent space R : TM → TM which is taken
to be an O(d, d) element. This O(d, d)-valued gluing matrix R is defined in terms of the
projectors induced by the gluing matrix R acting on the tangent space via

R =
(

P∆ 0
FP∆ + P T∆F −P T∆

)
,

where P∆ = (P‖−P⊥) and the two-form dF = H|Y on a leaf Y of the foliation. This gluing
matrix is unipotent R2 = 1 and has to be compatible with the generalised metric. From
the consistency condition of the conventional gluing matrix R above, one should have that
the +1-eigenspace generate the integrable distribution of the worldvolume of the D-brane
when restricted to the tangent space. In particular, the projector 1

2(1−R) can be used to
define a Dirac structure L(Y,F) ⊂ TM given by the expression

L(Y,F) =
{1

2(1−R)(X + ξ) = (X + ξ) | X + ξ ∈ TD ⊕ T ∗M |D , ξ|D = ιXF
}
. (3.3)

That is, the boundary condition characterised by the gluing matrix in eq. (3.2) can be, on
the target space, equivalently be described in terms of the Dirac structure in eq. (3.3).

3.1.2 Boundaries under Poisson-Lie T-duality via fusion

We will now show how to obtain the Poisson-Lie T-dual boundary conditions by fusing
boundary condition of the form given in eq. (3.2) with the topological defect encoding
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Poisson-Lie T-duality that was put forward in the first section. The set-up is the same as
in section 2.1.1, with the additional assumption that the system on, say the left, is subject
to boundary condition described by the gluing condition as in eq. (3.2) for a given gluing
matrix R.13 Since the Poisson-Lie T-duality defect is topological we can (formally) move
the defect line from its initial position at σ = 0 on the worldsheet to the boundary of the
left system. At the boundary we now both have to impose the boundary conditions and
the defect equations. Remembering the equations of motion taking into account the defect
contribution given in eq. (2.12), these relations however have to be supplemented with the
boundary conditions encoded by the gluing matrix, i.e. L− = RL+. Plugging this gluing
condition into the first equation of motion in eq. (2.12), leads to

l̃bj∂τ X̃
j = (C−1) a

b E
R
acl

c
j∂X

j − Π̃bc[g̃]lcj∂τXj ,

where we have defined the combination ER ≡ ET −ER. Substituting this last relation into
the equation of motion of the dual model in eq. (2.12) and taking into account the relation
ΠC−1 = C̃−1Π̃, leads to

laj ∂τX
j = Ẽba l̃bj∂X̃

j − Ẽab l̃bj ∂̄X̃j −ΠabERbcl
c
j∂X

j . (3.4)

Using the expression laj ∂τX
j = L+ + L− and enforcing that the Maurer-Cartan forms

on G and G̃ are related by the canonical transformation for Poisson-Lie T-duality given
in eq. (B.1) reviewed in appendix B, one obtains that the dual boundary conditions are
described by the “dual” gluing matrix R̃ given by

L̃− = R̃L̃+ , R̃ = −Ẽ−1E−1
− ER(ET )−1ET0 Ẽ

T . (3.5)

This expression for the dual gluing matrix is precisely the expression obtained in [52].

3.2 Dirac geometry fusion

As was already briefly mentioned in section 2.1.4, it is natural to postulate that the fusion
at the level of the target space emulates that of the integral transformation of the defect in
the worldsheet picture. The idea that a Fourier-Mukai like operation controls the fusion
of target space defects was already put forward for the fusion of topological defects (or
bibranes) and boundary conditions in WZW models by [8]. The authors proposed that the
submanifold that results from the fusion operation between a D-brane and a topological
defect separating two WZW models on a Lie group G is given by

YB ? YD ≡ p1
(
YB ∩ p−1

2 (YD)
)
, (3.6)

where YB is the worldvolume of the bibrane or topological defect in the product space
M1 ×M2 = G × G, YD is the worldvolume of the D-brane in M2 = G and pi are the
usual projections pi : M1 ×M2 → Mi. Note that this time the role of the kernel for this
Fourier-Mukai inspired operation is played by the worldvolume of the topological defect.

13Note that this R should not be confused with the right-invariant Maurer-Cartan of G. Since in this
section, we will solely work with the left-invariant form L = lidX

i, there should be no source of confusion.
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In general however, the object resulting from the formula in eq. (3.6) is ill-defined: the
operation in eq. (2.28) is in general just a subset and not a submanifold. A second drawback
is that this proposal for the fusion operation does not include an explicit expression for the
two-form F living on the fused boundary condition.

In the present article we will take, besides the Fourier-Mukai operation, a second guiding
principle to propose an Ansatz for the target space fusion. In previous sections, we stressed
that the target space data (Y,F) capturing both D-branes and defects in some manifold M
can be encoded in terms of Dirac structures L = L(Y,F) ⊂M . This observation strongly
suggest that generalised geometry is the right setting to define the operation of fusion at
the level of the target space. Using the Fourier-Mukai transformation as our blue print,
we will vindicate in this section a fusion operation of a topological defect with boundary
condition using the framework of generalised geometry.

In section 2.1.4, we reviewed the relation between the Fourier-Mukai type transformation
and the fusion of topological defects with boundary conditions. We would like to translate
this transformation as a pull-back of the boundary condition to the product space, its
“convolution” with the “kernel” of the topological defect and subsequence reduction to the
second space. In terms of generalised geometry that means we have to transport Dirac
structures from Courant algebroids over the different manifolds. In the present context it
will be relevant to restrict to a particular class of Courant algebroids to obtain a well-defined
notion of fusion. The following discussion relies on the results of [48, 54, 55] on Courant
algebroids and the related reductions.

We will first assume that all three Courant algebroids Ei over Mi for i = 1, 2 and E
over M = M1 ×M2 are so-called exact Courant algebroids. This class was discovered and
classified by Ševera in [56, 57]. These Courant algebroids have the distinguishing property
that they are locally isomorphic to the standard Courant algebroid TM⊕T ∗M , if one allows
for the Courant bracket to be twisted by a closed three-form H. Exact Courant algebroids
are then uniquely determined by a class in H3

dR(M,R). Making this choice essentially
specialises the theories on both sides of the defect to be determined by two-dimensional
sigma-models. Indeed one can show that an exact H-twisted Courant algebroid E over a
manifold M is equivalent to specifying the phase space of a two-dimensional sigma-model
where the Kalb-Ramond field has curvature H, see e.g. [58]. Schematically we now have a
Fourier-Mukai-like diagram transporting D-branes and defects as Dirac structure from one
Courant algebroid to the other

E ∼= T(M1 ×M2)H1−H2

E1 ∼= (TM1)H1E2 ∼= (TM2)H2

(3.7)

where the right, respectively left, arrows are understood to be the pull-back, resp. the
reduction of the Dirac structure via the associated pull-back/reduction of the Courant
algebroids. To warrant the reduction process to be well-defined, we will in addition demand
that these exact Courant algebroids admit the action of a Lie group G that is free and
transitive such that the associated 1st Pontraygin class vanishes. Such Courant algebroids
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are known as G-equivariant (exact) Courant algebroids. In addition, these assumptions
guarantee that any Dirac structure in the respective Courant algebroids remain Dirac in
the new pull-backed/reduced Courant algebroids [48].

We are left with the task of specifying the “convolution” operation, and the relevant
“kernel”, taking place in between the pull-back to the product space and the reduction in
eq. (3.7). A simple Ansatz is a natural product on the space of Dirac structures Dir(D), which
we will denote by ~ to distinguish it from the fusion operation ?. As we will see that the
product ~ on the space of Dirac structure over M , automatically reproduces the desired sub-
manifold resulting from fusion proposed by [8] and given in eq. (3.6). Indeed, take two Dirac
structures L1 ≡ L(Y1, ω1), L2 ≡ L(Y2, ω2) ⊂ TM , one can then define a pointwise product14

(L1 ~ L2)g ≡ L1,g ~ L2,g ⊂ TpM , ∀g ∈ M ,

given explicitly by

L(Y1, ω1) ~ L(Y2, ω2) = {X + η + ν : X + η ∈ L1, X + ν ∈ L2}
= L(Y ⊂ Y1 ∩ Y2, ω1|Y + ω2|Y) .

If the resulting subbundle is smooth, the product L1 ~ L2 is also a Dirac structure.
See e.g. [59] for more details. In addition, when Y1 ∩ Y2 is a connected submanifold,
we have that Y = Y1 ∩ Y2. In general this intersection will have different connected
components, possibly of different dimensions. Note finally that this Dirac structure prod-
uct ~ also naturally realises B-field shifts, since for a closed two-form B, we have that
L(Ddiag, B) ~ L(Y1,F) = L(Y1,F +B).

Summarising, we have the following diagram

L̄(YB,FB) ~ ι∗L(Y1,F1)

L(Yfus,Ffus) L(Y1,F1)
(3.8)

This proposed fusion operation really contains two pieces of data: on the one hand the
resulting submanifold, and on the other the expression for the induced two-form field

Yfus ≡ YB ? Y1 = p(YB ∩ ι(Y1)) ⊂M2 , Ffus ≡ (p)∗ (FB − ι∗(F1)) ∈ ∧2M2 ,

where (YB,FB) is the target space data characterising the topological defect in M1 ×M2
and (Y1,F1) the world-volume data of the D-brane in M1. The notation L̄, denoted the
Dirac structure with minus the two-form, i.e. L̄(YB,FB) ≡ L(YB,−FB). Looking now at
the two-form we have that dFB = H1|def.−H2|def., where we have restricted the three-forms
to the defect location, for the two-form on the worldvolume of the topological defect. First
note that this relation reproduces the fused submanifold given in eq. (3.6) of [8]. In addition,
by construction we have that dFfus = H2.

14Dually, we could represent a Dirac structure L = L(Y, π) where L(Y, π) = {X + π](η) + η : η ∈
TY◦ , X ∈ TY}, where the annihilator space if denoted by a ◦. For which we can in turn define a product
L1 ~ L2 = {X1 +X2 + η : X1 + η ∈ L1 , X2 + η ∈ L2}.
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Let us conclude this section with connecting back to the Poisson-Lie T-duality topolog-
ical defect. Defining the fusion in this way incidentally matches also exactly the procedure
described in [60] of how Dirac structure transform under T-duality. To see this in more
detail, we have the Poisson-Lie T-duality defects (YB,FB) = (D, ωSTS) and we take a
D-brane that is a symplectic leaf associated to the Lie group G [47]. To embed a symplectic
leaf Y ⊂ G in the Drinfel’d double, we can simply multiply every point g ∈ Y ⊂ G with a
constant element g ∈ D of the Drinfel’d double. The intersection for this particular case is
trivial: D ∩ ιY = ιY ⊂ D. The last step, the projection onto G̃, requires one to decompose
every point on the embedded surface ιY

p1(ιY) = {h̃ | gg = h̃h for g ∈ Y and h ∈ G, h̃ ∈ G̃} ,

yielding G-dressing orbits or equivalently the symplectic leaves in the dual Lie group G̃ for
the Poisson structure Π̃ associated to the double D, in accordance with [47]. In the special
case where element g = e is the identity element, the leaf is dual to a single point. Finally,
one can easily check that Ffus = (Π̃|p1(ιY))−1 which is well-defined since p1(ιY) is precisely
a symplectic leaf of the Poisson-Lie structure Π̃ on G̃.

4 Discussion

In this article, we showed how the most general notion of T-duality, despite its potential
disparities with more conventional notions of T-duality, can in fact be encoded as a
defect separating Poisson-Lie T-dual models. Using a target space formulation, we have
shown, by direct construction, that Poisson-Lie T-duality can be understood as a space-
filling topological defect. This Poisson-Lie T-duality defect is characterised by the natural
symplectic structure on the Drinfel’d double associated to the Poisson-Lie T-duality pair,
the so-called Semenov-Tian-Shanshy symplectic structure. In addition, we argued, along
the same line as [11], that the Fourier-Mukai transform associated to Poisson-Lie T-duality
should have the Semenov-Tian-Shansky symplectic structure as kernel. This nicely agrees
with the same result obtained by [27] from a very different perspective, that of QP-manifolds.
We subsequently demonstrated how the Poisson-Lie T-duality defect consistently yields the
correct transformation rules for the boundary condition given by a gluing matrix under
generalised T-duality.

The final part of this paper took a more general look at the target space realisation of
fusion, without specialising to the above constructed generalised T-duality defect. Although
very well-understood at the level of the worldsheet, the target space realisation of fusion
is mired by a veil of mystery and remains largely ill-understood. A crucial step forwards
was made in [8, 35], by realising that the fusion process should be similar in spirit to the
Fourier-Mukai transform. In the present article, we put forward that a second crucial
ingredient is that the worldvolumes of both defects and D-branes can be described within
generalised geometry via Dirac structures. Exploiting both insights, we proposed a well-
defined operation for the worldvolume fusion using Dirac geometry. The resulting object
is always a submanifold carrying a well-defined two-form field whose exterior derivative
matches the three-form flux.
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Figure 1. When an algebra admits two Drinfel’d double one can fuse the associated Poisson-Lie
T-duality defects PLi separating the sigma-models Σ→ G with Σ̃i → G̃i, for i = 1, 2.

Let us conclude with some future directions and open questions. It is tempting to
believe that, in analogy with topological defects WZW models [8], the worldvolume of
topological defects separating Poisson-Lie symmetry models could be related, not as for
WZW models to conjugacy classes, but to dressing orbits of the associated Drinfel’d double.
Dressing orbits can be seen as a non-linear generalisation of conjugacy classes associated to
a natural action of Poisson-Lie dual pairs. The worldvolume of these bibranes would then
be some sort of “bi-dressing orbits”.

Integrable defects form a special subclass of topological defects. This then begs the
question of whether the integrable defects in Yang-Baxter models constructed in [61] admit
a notion of fusion. The fusion of integrable defects with boundary conditions was e.g.
already considered in [62] for Sinh-Gordon and Lee-Yang models. On the other hand,
it would be interesting to specialising the duality defects and the associated fusion to
particular instances of models which are related by Poisson-Lie T-duality, such as the η-or
λ-deformations [63–65] and their boundary conditions [66].

In view of the recent formulation of Poisson-Lie T-duality in terms of QP manifolds, let
us comment that Dirac structures on generalised geometry can straightforwardly be lifted
to QP geometry. In the supergeometric setting the Courant algebroid becomes a degree two
symplectic N-manifold with Courant bracket and anchor encoded by an Hamiltonian vector
field Θ, i.e. {Θ,Θ} = 0, and Dirac structures L of E become Lagrangian submanifolds L
along which Θ|L is constant [67].

Finally, in the present work, the resulting operation of fusion at the level of the target
space was restricted to fusion processes between a topological defect and a boundary
condition or D-brane. In fact, the fusion of two topological defects associated to generalised
T-dualities appear to be somewhat more subtle and has to be handled with care. To see
this, remember that a given Lie group G might admit two different Poisson-Lie structures
PLi, i = 1, 2, and thus two Poisson-Lie dual groups G̃i with corresponding doubles Di, see
figure 1. Assume that we place the worldsheets of Poisson-Lie symmetry on G between
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those with target spaces G̃1 (on the left) and G̃2 (on the right), with the worldsheets divided
by the respective generalised T-duality defects. Being topological, we can fuse these two
topological defects together. More often than not however, the resulting product space
G̃1 × G̃2 will not be a Drinfel’d double and this defect will not encode a (single) Poisson-Lie
T-duality. One could however imagine that the fused defect encodes a complicated solution
generating transformation that results from applying the two Poisson-Lie T-duality after one
another. It has been anticipated in [6] (see also [5]) that fusion of conformal defects could
lead to a solution generating algebra, similar to the role of Ehlers-Geroch transformations in
general relativity. This simple reasoning seems to suggest that studying the fusion algebra
generated by the Poisson-Lie defect on the target space can potentially enable us to pinpoint
crucial differences between Abelian and Poisson-Lie T-duality.
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A Drinfel’d double conventions and the ωSTS

In this appendix, we set our notation used in the main text as well as sketch the derivation
of an alternative expression for the Semenov-Tian-Shansky symplectic form.

A Drinfel’d double D is an even-dimensional Lie group with Lie algebra d (also referred
to as the Drinfel’d double) equipped with a non-degenerate symmetric bilinear form 〈·, ·〉d
such that the algebra can be written as d = g ⊕ g̃, with g and g̃ maximally isotropic
subalgebras with respect to 〈·, ·〉d. The generators of the Drinfel’d double d are denoted by
TA = (Ta, T̃ a) with Ta, T̃ a the generators of the maximally isotropic subalgebras g, g̃. The
triple (d, g, g̃) corresponding to this three quantities is called a Manin triple. The isotropy
condition means that

〈Ta, Tb〉d = 0 , 〈T̃ a, T̃ b〉d = 0 , 〈Ta, T̃ b〉d = δba ,

and the maximality conditions requires the Lie algebra to be half of the dimension of
the corresponding Drinfel’d double, i.e. dim d = 2 dim g = 2 dim g̃. The Lie groups G
and G̃ obtained after exponentiating the Lie algebras g and g̃ carry a natural Poisson-
Lie structure Π and Π̃ compatible with the group multiplication. For group elements
g ∈ G = exp g, g̃ ∈ G̃ = exp g̃, we define the adjoint action matrices by

g−1Tag = a b
a [g]Tb , g−1T̃ bg = bab[g]Tb + (a[g]−1) a

b T̃
b ,

g̃−1T̃ ag̃ = ãab[g̃]T̃ b , g̃−1Tag̃ = b̃ab[g̃]T̃ b + (ã[g̃]−1)baTb .
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In terms of these adjoint action matrices, the Poisson-Lie structures can easily be computed
using

Πab[g] = bca[g]a b
c [g] , Π̃ab[g̃] = b̃ca[g̃]ãcb[g̃] . (A.1)

One can show by direct computation that, as should be for Poisson structures, these
bivectors are antisymmetric ΠT [g] = −Π[g] and idem for the tilde object.

We show now how one can get the particular form of the Semenov-Tian-Shansky
symplectic form ωSTS we use in order to define the defect from its standard expression given
in [32, 68]

2ωSTS = ra(g) ∧ l̃a(h̃)− r̃a(g̃) ∧ la(h) . (A.2)

The expression for the Semenov-Tian-Shansky we need in the main text closely resembles
an expression first derived in [27]. In order to do so we first need to collect a number of
identities relating the different decompositions of the group element on the Drinfel’d double
D = GG̃. Recall that an element g on the double D can be written in two different ways

g = h̃g or g = hg̃ , with g, h ∈ G , g̃, h̃ ∈ G̃ .

First we compare the adjoint action on the double in these two different parameterisations

a[g = h̃g]Ta = (h̃g)−1Tah̃g = g−1
(
b̃ab[h̃]T̃ b + (ã−1)ba[h̃]Tb

)
g

= b̃ab[h̃]
(
bbc[g]Tc + (a−1) b

c [g]T̃ c
)

+ (ã−1)ba[g]a c
b [g]Tc ,

and for the alternative decomposition of the Drinfel’d double element

a[g = hg̃]Ta = a b
a [h]

(
b̃bc[g̃]T̃ c + (ã−1)c[g̃]Tc

)
.

Collecting the terms in valued in g, we get the identifications

a b
a [h](ã−1)cb[g̃] = b̃ab[h̃]bbc[g] + (ã−1)ba[h̃]a c

b [g] (A.3)
b̃ab[h̃](a−1) b

c [g] = a b
a [h]b̃bc[g̃] . (A.4)

Doing the same for the terms in valued in the dual algebra g, leads to

ãab[h̃](a−1)bc[g] = bab[h]b̃bc[g̃] + (a−1) a
b [h]ã b

c [g̃] (A.5)
ãab[h̃]bbc[g] = bab[h](ã−1)cb[g̃] . (A.6)

We proceed analogously with the invariant forms L = g−1dg and R = dgg−1.

L[g = h̃g] = g−1 l̃(h̃)g + l(g) = l̃a(h̃)(bab[g]Tb + (a−1) a
b [g]T̃ b) + lb(g)Tb

L[g = hg̃] = g̃−1l(h)g̃ + l̃(g̃) = la(h)(b̃ab[g̃]T̃ b + (a−1)ba[g̃]Tb + l̃b(g̃)T̃ b

Therefore we have

l̃a(h̃)bab[g] + la(g) = la(h)(a−1)[g̃] l̃a(h̃)(a−1) a
b [g] = la(h)b̃ab[g̃] + l̃a(g̃)
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as well as from R

rb(h) = ra(g)ãba[h̃]− r̃a(g̃)bab[h−1] , r̃b(h̃) = r̃a(g̃)a a
b [h]− ra(g)b̃ab[h̃−1] ,

which implies the following relation between left- and right-invariant Maurer-Cartan fields

la(h) = rd(g)ãbd[h̃]a a
b [h]− r̃d(g̃)bdb[h−1]a a

b [h] , (A.7)
l̃a(h̃) = r̃d(g̃)a d

b [h]ãba[h̃]− rd(g)b̃db[h̃−1]ãba[h̃] . (A.8)

Lastly we also need to find an expression for the matrix C featured in the Poisson-Lie
T-duality transformation rules. In order to do so, we start from equation (A.3) and apply
eq. (A.4) as well as Πab[g] = bca[g]a b

c [g], Π̃ab[g̃] = b̃ca[g̃]ãcb[g̃] to get

a b
a [h](ã−1)cb[g̃] = b̃ab[h̃]bbc[g] + (ã−1)ba[h̃]a c

b [g] .

This relation then allows one to write the following expression for the matrix C in terms of
the adjoint maps

C h
c ≡ (δch − Π̃hl[g̃]Πlc[g])−1 = (a−1) b

c [g](ã)ab[h̃]a e
a [h](ã−1)he[g̃] . (A.9)

Having collected all the necessary expressions at hand, we can finally compute the relevant
expression for the Semenov-Tian-Shansky symplectic form. Starting from the defining
expression for the symplectic form in equation (A.2) and recalling that r̃a = l̃b(ã−1)ba[g̃], ra =
lb(a−1) a

b , we can consecutively rewrite the symplectic structure as

2ωSTS = lb(g)(a−1) a
b [g] ∧

(
r̃d(g̃)a d

c [h]ãca[h̃]− rd(g)b̃dc[h̃−1]ãca[h̃]
)

− l̃b(g̃)(ã−1)ba[g̃] ∧
(
rd(g)ãcd[h̃]a a

c [h]− r̃d(g̃)bdc[h−1]a a
c [h]

)
= lb(g) ∧

(
(a−1) a

b [g]ãca[h̃]a d
c [h](ã−1)ed[g̃]

)
l̃e(g̃)

− lb(g) ∧
(
(a−1) a

b [g]ãca[h̃]a d
c [h]b̃de[g̃]

)
le(g)

− l̃b(g̃) ∧
(
(a−1) d

e [g]ãcd[h̃]a a
c [h](ã−1)ba[g̃]

)
le(g)

+ l̃b(g̃) ∧
(
ãcd[h̃]bde[g]a a

c [h](a−1)ba[g̃]
)
l̃e(g̃) .

Here we used equations (A.7) and (A.8) to obtain the first line. The second equality results
from using (A.4) and (A.6). This last line, then finally leads, looking back at eq. (A.9), to
the expression relevant for the symplectic form on the double used in section 2.2.1:

2ωSTS = 2lb(g) ∧ C e
b l̃e(g̃) + lb(g) ∧ C m

b Π̃me[g̃]le(g)− l̃b(g̃) ∧ C̃bmΠme[g]l̃e(g̃) . (A.10)

Finally, note that here we have used a different decompositions of elements in the double as
compared to [27], where g = g̃g or g = g′g̃′. Substituting g̃ → h̃, g′ → h, g̃′ → g̃ and using
some of the above identities one can recover their parametrization, which they propose as a
kernel for the Fourier-Mukai transform.
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B Canonical transformations for Poisson-Lie T-duality

Poisson-Lie T-duality was identified as being a canonical transformations in [14, 15, 34, 38]
and when relating the left-invariant Maurer-Cartan form and its dual counterpart it takes
the form

(E∓0 )−1E∓L± = ±Ẽ∓L̃± (B.1)

with L+ = La+Ta = lai ∂X
iTa and L− = La−Ta = lai ∂̄X

iTa (mutatis mutandis for the tilde
variables L̃±), and the background fields are given by the usual

E± = ((E±0 )−1 ±Π)−1 , Ẽ± = (E±0 ± Π̃)−1 . (B.2)

Note that in this notation we have (E+
0 )T = E−0 .

Here we rewrite the canonical transformation for Poisson-Lie T-duality into a form
amenable to show the topological nature of the Poisson-Lie defect in section 2.1.1. The
canonical relations can be written as

C−1(E + CΠ̃)C̃−1(Ẽ + C̃Π) = 1 ,
C−1(ET − CΠ̃)C̃−1(ẼT − C̃Π) = 1 .

(B.3)

From these relations we want to extract the dual background fields G̃, B̃ in terms of the
original fields G,B. Take for example the first relation in eq. (2.16) which is equivalent to

(
C̃−1G̃C−1 + C̃−1(B̃ + C̃Π)C−1

)−1
= G+ (B + CΠ̃) .

Using that the first, respectively second, term (inside the brackets on the left-hand side) on
each side is symmetric, respectively antisymmetric, one obtains the relations15

C̃−1G̃C−1 =
(
G− (B + CΠ̃)G−1(B + CΠ̃)

)−1

CG̃−1(B + CΠ̃)C−1 = −(B + CΠ̃)G−1 .
(B.4)

When including spectator variables Y i, the canonical transformations read [34]

(E∓0 )−1E∓(L± ±ΠF∓∂±Y ) = ±Ẽ∓(L̃± ∓ F∓∂±Y ) , (B.5)

where again

E± = ((E±0 )−1 ±Π)−1 , Ẽ± = (E±0 ± Π̃)−1 , (B.6)

15For S, S̃ symmetric invertible matrices and A, Ã antisymmetric matrices (S̃ + Ã)−1 = (S +A) then

S̃−1Ã = −AS−1 , S̃ = (S +AS−1A)−1 ,

when A is also invertible one has also that Ã = (A+ SA−1S)−1. We will however not require the B-field B
to be invertible, since only the first two relations will be needed.
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and the background fields with spectator directions are restricted to be of the form [34]
(setting E ≡ E+ for the sake of clarity)

Eaµ = Eab((E0)−1)bcFcµ , Eµν = Fµν − FµaΠabEbc((E0)−1)cdFdν ,
Ẽaµ = ẼabFbµ , Ẽµν = Fµν − FµaẼabFbν ,

(B.7)

with Fµν , Faµ arbitrary matrices depending on the choice of background configuration
chosen. The canonical transformation for fields not involving any spectator direction are
still given by (2.16) while for mixed coordinates we have [34]

Ẽdµ = (C̃(E + CΠ̃)−1)dcEcµ , Ẽ d
µ = (C̃(ET − CΠ̃)−1)dcEcµ . (B.8)

C Reminder of generalised geometry

In this appendix, we collect a number of relevant definitions and results in generalised
geometry and Courant algebroid theory. See e.g. [43, 48] for a pedagogical or more complete
exposition.

Isotropic and Lagrangian subspaces. For V a real vector space equipped with a real
bilinear form 〈·, ·〉, a subspace L of V ⊗ V ∗, where V ∗ is linear vector space dual to V ,
is called isotropic if 〈X,Y 〉 = 0 for all X,Y ∈ L. It will become clear in the following
that so-called maximal isotropic subspace play a special role. Since the signature of the
bilinear form is (dim V, dim V ), a maximal isotropic subspace (or Lagrangian subspace) of
V is of dimension dim V . Lagrangian subspaces L ⊂ V ⊗ V ∗ for a linear vector space V
are equivalent to picking a subspace ∆ ⊂ V together with a two-form F ∈ ∧E∆∗ via the
identification

L = L(∆, ε) = {X + η ∈ ∆⊕ V ∗ : ι∗η = ıXF} ,

where ι : ∆ ↪→ V is the inclusion map. An important property of Lagrangian subspace of
linear vector spaces is that B-field transformations of such Lagrangian subspace L, i.e.

eBL(∆, F ) = L(∆, F + ι∗B) , B ∈ ∧2V ,

does not change the projection ∆ onto the vector space V . Note that using B-field
transformation any Lagrangian subspace L can be brought to the form L(∆, 0). Acting
with a β-transformation will in general modify ∆ and its dimension.

Courant algebroids. A Courant algebroid is a bundle E over an m-dimensional smooth
manifold M equipped with a bilinear form 〈·, ·〉 of signature (m,m). In addition it comes
with an anchor map a : E → TM , that allows to map any section on E to the more familiar
notion of vector fields on the tangent bundle TM of M and a bracket called the Courant
bracket J·, ·KC . Contrary to a Lie bracket, this bracket need not be skew-symmetric. Instead
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one requires the following axioms

Ju, Jv, wKK = JJu, vK, wK + Jv, Ju,wKK ,

[u, fv] = f [u, v] + (ρ(u)f)v ,
ρ(u)(v, w) = 〈[u, v], w〉+ 〈v, [u,w]〉 ,

[u, v] + [v, u] = ρTd〈u, v〉 ,

for section u, v, w of E, f ∈ C∞(M) a continuous function and ρT : T ∗M → E is the
transpose of the anchor map, using the non-degenerate innerproduct 〈·, ·〉 to identify E with
E?. The quadruple (E, 〈·, ·〉, a, J·, ·KC) is called a Courant algebroid over M . We will now
consider a smooth manifold M together with its generalised tangent bundle TM ⊕ T ∗M .

Exact Courant algebroids. Take E a Courant algebroid over a manifoldM with anchor
map a. One then has automatically that a ◦ aT = 0 leading to the chain complex

0→ T ∗M
aT

−→ E
a−→ TM → 0 .

When this sequence is exact, then E is called an exact Courant algebroid. The reason
why this forms a distinguished subclass amongst Courant algebroids is that exact Courant
algebroids are classified by closed three-forms H ∈ Ω3(M), which in the sigma-model setting
coincides with the three-form flux dB = H of the Kalb-Ramond two-form B. To extract
such three-from for a given exact Courant algebroid one uses that since the above sequence
is exact, for any Lagrangian subbundle L of E the map a|L : L→ TM is an isomorphism.
This allows us to make a choice for the embedding σ : TM → E in the Courant algebroid
by demanding that its image is the Lagrangian subbundle L. Then

H(X,Y, Z) ≡ 〈[σ(X), σ(Y )], σ(Z)〉 ,

defines a closed three-form on M . Exact Courant algebroids can be identified with the
canonical generalised tangent bundle TM ⊕T ∗M via the map σ⊕ aT at the cost of twisting
the Courant bracket by the three form field H:

J(X, ξ), (Y, η)KH = ([X,Y ], LXη − ıY dξ +H(X,Y, ·)) .

Conversely, for any closed three-form H ∈ Ω3(M), the above bracket turns the canonical
generalised tangent bundle TM ⊕ T ∗M into an exact Courant algebroid. Since changing
the choice of splitting map σ by a two-form ε ∈ Ω2(M), the three-form H is modified by
the shift H + dε, we have the exact Courant algebroids over a manifold M are uniquely
determined by H3(M,R).

G-equivariant Courant algebroids. Take g a Lie algebra equipped with an invariant
bilinear symmetric form and denote by G the corresponding Lie group. A g-equivariant
Courant algebroid over a manifold M is a Courant algebroid E together with an injective
linear map χ : g→ Γ(E) which verifies

[χ(X), χ(Y )] = [X,Y ] , 〈χ(X), χ(Y )〉 = 〈X,Y 〉 ,
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for all X,Y in g. This definition guarantees that the Courant algebroid E admits the action
of the algebra g, in turn inducing an action of g on the manifold M . When the action of
the Courant algebroid E integrates to an action of the associated connected Lie group G,
the algebroid E is called G-equivariant.

One can show that when a Lie group G acts freely and transitively over M , there exists
a G-equivariant exact Courant algebroid over M if and only if the first Pontryagin class
[〈F, F 〉g] of the bundle M →M/G vanishes.

Dirac structures. Dirac structures generalise (or unify) the notion of Poisson structures,
symplectic structures and foliations using the framework of generalised geometry. The crucial
observation is that these three examples can be equivalently described by a Lagrangian
subbundle that is closed with respect to the Courant bracket. Indeed, to each symplectic
structure ω or Poisson structure π define the associate bundle maps

ω] : TM → T ∗M : X 7→ ıXω or Π] : T ∗M → TM : α 7→ ıαΠ , (C.1)

then their respective graphs

LΠ = graph(π]) = {(π](ξ), ξ) | ξ ∈ T∗M} ,
Lω = graph(ω]) = {(X,ω](X)) | X ∈ TM} ,

generate Lagrangian subbundles of TM = TM ⊕ T ∗M . These subbundles are in addition
closed under the Courant bracket by virtue of Π satisfying the Schouten bracket, respectively
ω being closed.

More generally, a Dirac structure L on M is a subbundle L ⊂ TM such that

(i) L = L⊥ with respect to 〈·, ·〉 ,

ii) L is involutive with respect to the Courant bracket: JΓ(L),Γ(L)K ⊂ Γ(L).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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