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1 Introduction

The conformal bootstrap is a powerful program used to highly constrain quantum field
theories starting from basic consistency conditions. In two dimensional conformal field
theory (CFT), one avatar of this program is the so-called modular bootstrap which uses
modular invariance of the genus one partition function to constrain possible allowed spectra
of 2d CFTs. This program started with the work of [1] and has led to many interesting
results (see e.g. [2–13] for a non-exhaustive list). This has several applications, including
constraining theories of quantum gravity in AdS3.

In many (but not all) cases, the spinless bootstrap equations are studied, in which
one throws away information about the spin of the original operators and only looks at
their energies. This is done by grading the partition function only by the energies of the
operators, and using S-invariance, rather than the full SL(2,Z)-invariance of the partition
function. In particular, we have

Z(y) :=
∑
O
e−2πy(∆O− c

12) = Z(y−1), (1.1)
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where the sum over O is a sum over all local operators in the theory, and ∆O is the scaling
dimension of operator O. Any bound derived from (1.1) will by definition be insensitive
to the spins of the operators O. For example, the current strongest bound on the lightest
nontrivial Virasoro primary operator at large central charge c is in [7], which showed at
large c,

∆Virasoro
gap .

c

9.1 . (1.2)

However it makes no claim on what the spin of that operator is, or what the lightest spin
j operator is. A similar result using the spinless bootstrap was found for a simpler class of
theories, those with a U(1)c chiral algebra, in [13]

∆U(1)c
gap .

c

9.869 . (1.3)

In this paper we derive a novel one-dimensional crossing equation using the technology
of harmonic analysis. In the case of CFTs with U(1)c symmetry, this crossing equation
acts only on the scalar primary operators of the theory (with respect to the U(1)c chiral
algebra). This allows us to place new bounds on the scalar gap of all U(1)c conformal field
theories for any integer c. This is more refined information than the bound in e.g. (1.3)
since it provides explicit information about the spin of the operator. Indeed the scalar gap
is a natural object to consider. Scalar operators can be added to the Lagrangian while
still preserving Lorentz invariance. The scalar gap is then related to questions about, for
instance, if the CFT has a relevant operator or not. Another application is in the study
of boundary conformal field theory. There, the bulk scalars show up in some crossing
equations rather than all bulk operators, which can lead to interesting bounds that are
conditional on the scalar gap [14].

Remarkably, our crossing equation has an intimate relation with the nontrivial zeros
of the Riemann zeta function. In a sense which we will explain, hidden inside the scalar
operators of any 2d CFT with U(1)c symmetry are the nontrivial zeros of the zeta function.
As a result, we can rephrase the Riemann hypothesis as a statement about the behavior of
scalar operators of any U(1)c CFT.

We also discuss a generalization to Virasoro CFTs. We derive a more complicated
one-dimensional crossing equation that involves operators of all spins. The nontrivial zeros
of the zeta function again play an important role. This leads to the Riemann hypothesis
being equivalent to a more complicated statement about the asymptotic density of a signed
count of all operators (of any spin) in any CFT. Unfortunately we run into some technical
obstacles in bounding physical quantities such as the scalar gap for Virasoro CFTs.

This paper is organized as follows. In section 2 we review harmonic analysis on the
fundamental domain of SL(2,Z), which will play an important role in deriving our scalar
crossing equation. In section 3 we apply this to the study of U(1)c CFTs and derive the
scalar crossing equation. We present the numerical results for the scalar gap of U(1)c
theories for various values of c. In section 4 we discuss generalizations to theories with only
Virasoro symmetry. In section 5 we study more explicitly the connections between 2d CFTs
and the Riemann hypothesis. We discuss various potentially interesting future directions
in section 6. Some detailed calculations and derivations are banished to the appendices.
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2 Review of harmonic analysis

In this section we will review harmonic analysis on the space H/SL(2,Z), where H is the
upper half plane. For much of this discussion, we refer to [15]. We will use the notation
of [16] in this section.

The main idea is to decompose square-integrable modular invariant functions into
eigenfunctions of the Laplacian on the space H/SL(2,Z). If τ ∈ H, with real and imaginary
parts x, y respectively, then there is a natural metric on H given by

ds2 = dx2 + dy2

y2 . (2.1)

The Laplacian on this space is given by

∆ = −y2(∂2
x + ∂2

y). (2.2)

Square-integrable modular-invariant functions f(τ) are those with finite L2 norm under
the measure (2.1), meaning ∫ 1/2

−1/2
dx

∫ ∞
√

1−x2

dy

y2 |f(τ)|2 <∞. (2.3)

If f(τ) is a square-integrable, modular-invariant function, it has a unique decomposi-
tion into eigenfunctions of the Laplacian (2.2). These eigenfunctions have been classified
and they come in three types:

• The constant function 1, with eigenvalue 0.

• An infinite, continuous family of eigenfunctions known as real analytic Eisenstein
series, Es(τ), with s = 1

2 + it, t real, with eigenvalue 1
4 + t2. Any real t is permissible.

• An infinite, discrete family of eigenfunctions known as Maass cups forms, denoted
ν±n (τ), n = 1, 2, · · · . These have sporadic eigenvalues, which we denote 1

4 + (R±n )2,
for R±n a positive real number. Both ν+

n and ν−n are ordered in increasing eigenvalue,
i.e. R+

1 < R+
2 < · · · , and likewise for R−n . The superscript ± refers to whether the

cusp form is even or odd under parity.

The decomposition of f(τ) is then given by:

f(τ) = (f, 1)
(1, 1) + 1

4πi

∫ 1
2 +i∞

1
2−i∞

dsEs(τ)(f,Es) +
∞∑
n=1

∑
ε=±

νεn(τ) (f, νεn)
(νεn, νεn) , (2.4)

where the overlap function is given by the Petersson inner product:

(f, g) :=
∫ 1/2

−1/2
dx

∫ ∞
√

1−x2

dy

y2 f(τ)g(τ). (2.5)

The decomposition (2.4) is known as the Roelcke-Selberg decomposition.

– 3 –
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Let us be more explicit about the eigenfunctions of the Laplacian. The real analytic
Eisenstein series Es(τ), s ∈ C are defined as a modular sum of ys:

Es(τ) =
∑

γ∈Γ∞\SL(2,Z)
ys|γ , (2.6)

where Γ∞ is the subgroup of SL(2,Z) generated by τ → τ + 1. The sum (2.6) converges if
Re(s) > 1. However, it admits an analytic continuation everywhere in the s plane:

Es(τ) = ys + Λ(1− s)
Λ(s) y1−s +

∞∑
j=1

4σ2s−1(j)√yKs− 1
2
(2πjy)

Λ(s)js− 1
2

cos(2πjx), (2.7)

where σ2s−1(j) is the divisor sigma function, K is the modified Bessel function of second
kind, and Λ is defined as

Λ(s) := π−sζ(2s)Γ(s). (2.8)

The function Λ(s) obeys a useful identity:

Λ(s) = Λ
(1

2 − s
)
. (2.9)

From (2.7) we also see that the real analytic Eisenstein series obey a useful identity:

Λ(s)Es(τ) = Λ(1− s)E1−s(τ). (2.10)

The remaining eigenfunctions, the Maass cusp forms, are more mysterious. They take
the following functional form:

ν+
n (τ) =

∞∑
j=1

a
(n,+)
j

√
yKiR+

n
(2πjy) cos(2πjx)

ν−n (τ) =
∞∑
j=1

a
(n,−)
j

√
yKiR−n

(2πjy) sin(2πjx), (2.11)

where R±n and a(n,±)
j are a set of sporadic real numbers. For example, we have the following

first few values of R±n :

R+
1 ≈ 13.77975, R−1 ≈ 9.53370

R+
2 ≈ 17.73856, R−2 ≈ 12.17301

R+
3 ≈ 19.42348, R−3 ≈ 14.35851. (2.12)

For more numerical data on the Maass cusp forms, see the online database [17]. One key
feature the Maass cusp forms have is, unlike the real analytic Eisenstein series, they all
lack a scalar piece: ∫ 1/2

−1/2
dxν±n (τ) = 0. (2.13)

– 4 –
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3 U(1)c CFTs

We begin with studying a family of particularly simple conformal field theories, with an
extended current algebra of U(1)c. Examples of such CFTs include Narain’s family of c
free bosons compactified on a c-dimensional lattice, parameterized by the moduli space
O(c, c,Z)\O(c, c)/O(c) × O(c). It is believed that this family of CFTs fully classifies all
theories with U(1)c current algebra. However this has not been proven. Our results in
this section will apply to all theories with U(1)c symmetry; we do not need to assume the
theory is a Narain CFT.

3.1 Harmonic decomposition

In [16], the harmonic decomposition of U(1)c CFT partition functions were calculated,
which we review here. The characters of the U(1)c chiral algebra are given by

χh(τ) = qh

η(τ)c , (3.1)

where η(τ) is the Dedekind eta function. Instead of decomposing the full partition function
Z(τ), we instead consider the primary-counting partition function

Ẑc(τ, µ) := yc/2|η(τ)|2cZ(τ)
= yc/2

∑
h,h̄

qhq̄h, (3.2)

where in (3.2) the sum over h, h̄ goes over the U(1)c primary operators. In (3.2), we
write Ẑc(τ, µ) to emphasize that the (reduced) partition function depends not only on the
worldsheet modulus τ , but also on an abstract target space coordinate µ.1

The function (3.2) is not yet square-integrable, but once we subtract out the Eisenstein
series Ec/2(τ) (defined in (2.7)), this yields a square-integrable function that admits a
unique spectral decomposition.2 In [16, 20, 21] the spectral decomposition was given as
follows:3

Ẑc(τ, µ) =Ec/2(τ) + 3π−
c
2 Γ
(
c

2 − 1
)
Ecc

2−1(µ) + 1
4πi

∫ 1
2 +i∞

1
2−i∞

dsπs−
c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)Es(τ)

+
∞∑
n=1

∑
ε=±

(Ẑc, νεn)(µ)
(νεn, νεn) νεn(τ). (3.3)

The coefficients Ecs(µ) were called constrained Epstein zeta series in [21], and are defined as:

Ecs(µ) :=
∑
∆∈S

(2∆)−s, (3.4)

1For Narain theories, we can view µ as a parameter µ ∈ O(c, c;Z)\O(c, c)/O(c)×O(c). The target space
of Narain theories is parametrized by a symmetric metric Gab and an antisymmetric B-field Bab, where a, b
indices run from 1, 2, · · · , c. Here, however, we can just view µ as some abstract coordinate.

2For Narain CFTs, Ec/2(τ) has the interpretation of the averaged partition function [18, 19].
3Note that due to the pole structure of Λ(s) and the real analytic Eisenstein series Es(τ), the decompo-

sitions of c = 1 and c = 2 are slightly different than other c, so we will assume c 6= 1, 2 for the rest of this
section. We revisit c = 1 and c = 2 in appendix C.
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where we define the set S to be the dimensions of all non-vacuum scalar primary operators
under the U(1)c chiral algebra (with multiplicity). This sum converges for Re(s) > c−1, but
like for the SL(2,Z) Eisenstein series (2.6), they admit an analytic continuation everywhere
in the complex s plane. They also obey a functional equation:

Ecc
2−s

(µ) =
Γ(s)Γ

(
s+ c

2 − 1
)
ζ(2s)

π2s− 1
2 Γ
(
c
2 − s

)
Γ
(
s− 1

2
)
ζ(2s− 1)

Ecc
2 +s−1(µ). (3.5)

This equation is inherited from the functional equation that the Eisenstein series
obey (2.10), combined with the definition of Ecs(µ) as an overlap of Ẑc(τ, µ) with the
Eisenstein series:

(Ẑc − E c
2
, Es) = πs−

c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ). (3.6)

For Narain CFTs, (3.4) can be rewritten as

Ecs(µ) =
∑′

~n,~m∈Zc

δ~n·~w,0
M~n,~w(µ)2s , (3.7)

with
M~n,~w(µ)2 := Gab(na +Bacw

c)(nb +Bbdw
d) +Gcdw

cwd, (3.8)

and the prime over the summation indicating we should not sum over the vacuum state
(with ~n = ~w = ~0).

3.2 Crossing equation

Since the Maass cusp forms have no scalar piece (i.e. (2.13)), the scalar part of (3.3) is
particularly simple:

∫ 1/2

−1/2
dxẐc(τ, µ) = y

c
2 +

Λ
(
c−1

2

)
Λ
(
c
2
) y1− c2 + 3π−

c
2 Γ
(
c

2 − 1
)
Ecc

2−1(µ)

+ 1
4πi

∫ 1
2 +i∞

1
2−i∞

dsπs−
c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)

(
ys + Λ(1− s)

Λ(s) y1−s
)
, (3.9)

where as usual τ = x+ iy, and Λ(s) is defined as in (2.8).
As a reminder, the set S is the set of conformal weights of all non-vacuum scalar

primaries under the U(1)c chiral algebra (with multiplicity). We can rewrite the l.h.s.
of (3.9) as ∫ 1/2

−1/2
dxẐc(τ, µ) = y

c
2

1 +
∑
∆∈S

e−2π∆y

 . (3.10)

This gives

∑
∆∈S

e−2π∆y =
Λ
(
c−1

2

)
Λ
(
c
2
) y1−c + εc(µ)y−

c
2 + 1

2πi

∫ 1
2 +i∞

1
2−i∞

dsπs−
c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)ys−

c
2 ,

(3.11)

– 6 –
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where we have defined εc(µ) := 3π− c2 Γ
(
c
2 − 1

)
Ecc

2−1(µ), and used the symmetry between
s↔ 1− s in the integral over s.

The remaining task is to do the integral in (3.11). We will do the integral over s by
moving the contour to the right of s = c

2 . It turns out the only poles we enclose after moving
the contour are at s = c

2 ,
1+zn

2 , 1+z∗n
2 , where zn are the nontrivial zeros of the Riemann zeta

function with positive imaginary part (i.e. z1 ≈ 1
2 + 14.135i, z2 ≈ 1

2 + 21.022i, etc.). See
figure 1 for a picture of the pole structure (shown for c = 3). We derive the pole structure
in appendix A. After moving the contour, (3.11) becomes

1 +
∑
∆∈S

e−2π∆y =
Λ
(
c−1

2

)
Λ
(
c
2
) y1−c + εc(µ)y−

c
2 +

∞∑
k=1

Re
(
δk,c(µ)y−

c
2 +1− zk2

)
+ 1

2πi

∫ γ+i∞

γ−i∞
dsπs−

c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)ys−

c
2 , (3.12)

where γ > c
2 . The terms εc(µ) and δk,c(µ) are moduli-dependent constants, which have an

explicit formula as

εc(µ) = 3
π

∫
F

dxdy

y2 (Ẑc(τ, µ)− Ec/2(τ))

δk,c(µ) =
∫
F

dxdy

y2 (Ẑc(τ, µ)− Ec/2(τ))Ress=zk/2Es(τ), (3.13)

where

Ress=zk/2Es(τ)=
√
πζ(zk−1)Γ

(
zk−1

2

)
2ζ ′(zk)Γ

( zk
2
) y1− zk2 +

∞∑
j=1

2π
zk
2 cos(2πjx)σzk−1(j)√yK zk−1

2
(2πjy)

j
zk−1

2 ζ ′(zk)Γ( zk2 )
.

(3.14)
Now let us consider the integral in (3.12). We first rewrite the integral using the

functional identity (3.5):∫ γ+i∞

γ−i∞
dsπs−

c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)ys−

c
2 =

∫ γ+i∞

γ−i∞
ds

Γ(s)Γ
(
s+ c

2 − 1
)
ζ(2s)

πs+
c−1

2 Γ
(
s− 1

2

)
ζ(2s− 1)

Ecc
2 +s−1(µ)ys−

c
2 .

(3.15)
Because we take γ > c

2 , this means that Re( c2 + s− 1) > c− 1, which means we can write
this as the following convergent sum:

Ecc
2 +s−1(µ) =

∑
∆∈S

(2∆)−
c
2−s+1. (3.16)

Moreover we will expand the ratio of zeta functions

ζ(2s)
ζ(2s− 1) =

∞∑
n=1

b(n)n−2s, (3.17)

where b(n) is a number-theoretic function defined as

b(n) :=
∑
k|n

kµ(k). (3.18)

– 7 –
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Figure 1. (a) Pole structure of the integral in (3.11) in the complex s plane. The poles are located
at s = c

2 ,
1+zn

2 ,
1+z∗

n

2 (shown here for c = 3), where zn are the nontrivial zeros of the Riemann zeta
function with positive imaginary part. If the Riemann hypothesis is true, the tower of poles in the
figure all occur at real part 3

4 , except for the pole at s = c
2 . (b) Contour deformation of the integral

to Re(s) > c
2 .

where µ(n) is the Möbius function:

µ(n) :=

(−1)number of prime factors of n n is square-free
0 n is divisible by a prime squared.

(3.19)

We can then rewrite (3.15) as∫ γ+i∞

γ−i∞
dsπs−

c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)ys−

c
2

=
∑
∆∈S

∞∑
n=1

b(n)
∫ γ+i∞

γ−i∞
ds

Γ(s)Γ
(
s+ c

2 − 1
)

πs+
c−1

2 Γ
(
s− 1

2

) (2∆)−
c
2−s+1ys−

c
2n−2s. (3.20)

The integral in (3.20) is related to a confluent hypergeometric function of the second
kind (see 13.4.18 of [22]), which we denote as U (and is given by HypergeometricU in
Mathematica):

1
2πi

∫ γ+i∞

γ−i∞
ds

Γ(s)Γ
(
s+ c

2−1
)

πs+
c−1

2 Γ
(
s− 1

2

)(2∆)−
c
2−s+1ys−

c
2n−2s = y1−c

√
π
nc−2U

(
−1

2 ,
c

2 ,
2πn2∆
y

)
e
− 2πn2∆

y .

(3.21)
Thus we get a final crossing equation of:

1 +
∑
∆∈S

e−2π∆y =
Λ
(
c−1

2

)
Λ
(
c
2
) y1−c + εc(µ)y−

c
2 +

∞∑
k=1

Re
(
δk,c(µ)y−

c
2 +1− zk2

)

+ y1−c
√
π

∑
∆∈S

∞∑
n=1

b(n)nc−2U

(
−1

2 ,
c

2 ,
2πn2∆
y

)
e
− 2πn2∆

y .

(3.22)
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In addition to a rigorous derivation we have also numerically checked (3.22) for various
values of c, y to a precision of 1 part in 1070.

Another consistency check of (3.22) one can perform analytically is to consider the
large y limit. In this limit, the l.h.s. is dominated by 1 from the identity, but each term
on the r.h.s. is perturbatively small at large y. Similar to the lightcone bootstrap of four-
point functions [23, 24], it turns out that the leading term on the l.h.s. is reproduced by
the infinite sum over ∆ in the r.h.s. . More precisely, one can show that

y1−c
√
π

∞∑
n=0

b(n)nc−2
∫ ∞

0
d∆2πcζ(c− 1)∆c−2

ζ(c)Γ( c2)2 U

(
−1

2 ,
c

2 ,
2πn2∆
y

)
e
− 2πn2∆

y = 1 (3.23)

where 2πcζ(c−1)∆c−2

ζ(c)Γ( c2 )2 is the leading large ∆ behavior of the spectral density (and which is
the average spectral density for Narain theories; see [18, 19]). It might also be interesting
to understand how the perturbatively small terms at large y on the r.h.s. of (3.22) cancel
among each other to give the non-perturbatively small corrections on the l.h.s. .

3.3 Functionals

We would now like to apply linear functionals to (3.22) to obtain sum rules that can
constrain the possible sets S. In particular we would like to put a bound on the scalar gap,
meaning the lightest operator present in S. One immediate problem is that not every term
in (3.22) is sign-definite. The term εc(µ) is not sign-definite, and the infinite terms δk,c(µ)
are also not sign-definite for any k. To remove the εc(µ) term is straightforward. Let us
start by rewriting (3.22) as:∑

∆∈S

[
y
c
2 e−2π∆y − y1− c2

√
π

∞∑
n=1

b(n)nc−2U

(
−1

2 ,
c

2 ,
2πn2∆
y

)
e
− 2πn2∆

y

]

= −y
c
2 +

Λ
(
c−1

2

)
Λ
(
c
2
) y1− c2 + εc(µ) +

∞∑
k=1

Re
(
δk,c(µ)y1− zk2

)
. (3.24)

Taking a derivative with respect to y removes the εc(µ) term. If we then redefine t2 := y−1

we get:∑
∆∈S

[
t−c(4π∆− ct2)e−

2π∆
t2 − tc√

π

∞∑
n=1

b(n)nc−2e−2π∆n2t2×

(
(c− 2− 4πn2t2∆)U

(
−1

2 ,
c

2 , 2πn
2t2∆

)
+ 2πn2∆t2U

(1
2 ,
c

2 + 1, 2πn2t2∆
))]

= ct2−c +
Λ
(
c−1

2

)
Λ
(
c
2
) (c− 2)tc +

∞∑
k=1

Re (δk,c(µ)(zk − 2)tzk) . (3.25)

Now we need a functional acting on (3.25) to remove terms of the form tzk where zk
is a nontrivial zero of the Riemann zeta function. To accomplish this we use the following
family of functionals.4

4We are extremely grateful to Danylo Radchenko for explaining this strategy to us. See [25] for further
generalizations of this. The construction of the functionals in [25] seems to be reminiscent of the analytic
functionals in [26]. It might be interesting to explore the connection further.
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Consider an even function ϕ(t) that satisfies the following properties:

• ϕ(t) and ϕ̂(t) both decay rapidly (faster than any polynomial) at infinity

• ϕ(t) and ϕ̂(t) have no singularities at finite t

• ϕ(0) = ϕ̂(0) = 0

•
∫∞

0
dt
t ϕ(t)ts admits an analytic continuation to all s ∈ C (which we will call Mϕ(s)),

where ϕ̂ is the Fourier transform of ϕ:

ϕ̂(p) :=
∫ ∞
−∞

dx e−2πipxϕ(x). (3.26)

We define
Φ(t) :=

∞∑
n=1

ϕ(nt). (3.27)

The function Φ(t) can also be rewritten via the Poisson resummation formula as

Φ(t) = −1
2ϕ(0) + 1

2t ϕ̂(0) + 1
t

∞∑
n=1

ϕ̂

(
n

t

)

= 1
t

∞∑
n=1

ϕ̂

(
n

t

)
. (3.28)

Combining (3.27) and (3.28) and the properties listed above, we see that Φ(t) decays faster
than any polynomial at both small t and large t.

Now, we define a functional Fϕ[h(t)] by

Fϕ[h(t)] :=
∫ ∞

0

dt

t
h(t)Φ(t). (3.29)

Let us first consider the action of the functional on a power of t:

Fϕ[ts] =
∫ ∞

0

dt

t
tsΦ(t). (3.30)

Because of the properties of Φ(t) discussed above, Fϕ[ts] is an analytic function on the
entire complex s plane. Moreover, for Re(s) > 1, we can exchange the integration and the
summation, which gives

Fϕ[ts] =
∫ ∞

0
dt ts−1Φ(t)

=
∫ ∞

0
dt ts−1

∞∑
n=1

ϕ(nt)

=
∞∑
n=1

n−s
∫ ∞

0
dt ts−1ϕ(t)

= ζ(s)
∫ ∞

0
dt ts−1ϕ(t), Re(s) > 1. (3.31)
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Properties of analytic continuation then imply that for all s ∈ C,

Fϕ[ts] = ζ(s)Mϕ(s). (3.32)

From (3.32) we see that the functional Fϕ will remove the final sign-indefinite terms
δk,ct

zk in our crossing equation (3.25). We can then apply the functional Fϕ to (3.25) to get
a positive sum rule the scalar operators must satisfy. Let us consider the situation where
ϕ(t) is a (finite) linear combination of Gaussians, for which Mϕ(s) is a sum of Gamma
functions. In particular we consider the following family of ϕ(t) defining the functionals:

ϕ(t) =
N∑
i=1

αie
−πkit2 , (3.33)

where ki, αi are an arbitrary set of N real numbers. In order for ϕ(t) to satisfy ϕ(0) =
ϕ̂(0) = 0, we choose ki, αi subject to the constraints

N∑
i=1

αi = 0,

N∑
i=1

αik
−1/2
i = 0. (3.34)

With this definition of ϕ, we can define Φ and the action of the functional F by using (3.27)
and (3.29). If we then apply this functional to our crossing equation (3.25), we get a positive
sum rule for the operators ∆. In appendix B, we write down explicit formulas for the action
of this functional on (3.25) with a single Gaussian ϕ(t) = e−πkt

2 as a function of ∆ and k.
Although in principle we could choose any functional via (3.33) obeying (3.34), for

numerical calculations it will be more convenient to use functionals consisting of derivatives
with respect to k, evaluated at k = 1 instead. To be more explicit, the sum rule we get
after applying the functional from (3.33) is given by

N∑
i=1

αivac(ki) +
N∑
i=1

∑
∆
αif(ki,∆) = 0, (3.35)

subject to the constraints (3.34). f(k,∆) and −vac(k) are the actions of the functional on
the l.h.s. and r.h.s. respectively of (3.25) (with explicit formulas given in appendix B, see
e.g. (B.4)). Let us consider the action of a single Gaussian of width k (i.e not yet obeying
the constraints above):

vac(k) +
∑
∆
f(k,∆). (3.36)

The expression (3.36) is not equal to 0 because we have not obeyed the constraints (3.34).
However, the only functions of k that it can be equal to are a constant term and a term
proportional to k−1/2. Any other term would allow some combination of functionals obey-
ing (3.34) to not vanish, and thus contradict (3.35). Therefore we have

vac(k) +
∑
∆
f(k,∆) = c0 + c1k

−1/2, (3.37)
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where c0, c1 are k-independent constants (they could be theory-dependent however). From
an explicit calculation of vac(k) and f(k,∆) in appendix B, we see that

vac′(1) = ∂kf(k,∆)|k=1 = 0, (3.38)

which implies c1 = 0.5 Thus we have

vac(n)(1) +
∑
∆

(∂k)nf(k,∆)|k=1 = 0, n ≥ 2 (3.39)

which will be the basis for our functionals. (Only even values of n will provide independent
equations, however.)

Notice that
vac(n)(1) = lim

∆→0
(∂k)nf(k,∆)|k=1, n ≥ 2 (3.40)

so indeed the vac term in (3.39) is precisely the contribution of the vacuum (∆ = 0) to the
sum rule (and the same is true in (3.35)).

3.4 Numerical results

In this section, we present the numerical results for bounds on the scalar gap of U(1)c CFTs
for various values of c obtained from using the basis of functionals (3.39). Note that the
hypergeometric function in (3.22) for odd values of c reduces to an elementary function,
which greatly simplifies the technical calculations. We therefore focus on odd values of c
(although there is nothing in principle stopping the following from working for even c). We
first consider the functional obtained from taking 2 and 4 derivatives of (3.39), and obtain
a bound on ∆scalar gap from these two sum rules, following the approach in [1]. Since we
take at most 4 derivatives, we denote this bound as ∆(4)

scalar gap (and more generally define
a bound from at most n derivatives as ∆(n)

scalar gap). Note that ∆(n)
scalar gap is obtained from

n
2 functionals.

We have computed ∆(4)
scalar gap for odd central charge up to 251.6 The results are plotted

in figure 2. The bound at large c numerically appears to grow quadratically with c. Fitting
it to a quadratic function gives

∆(4)
scalar gap(c) ∼ 0.0253303c2 + 0.13506c+ 0.400. (3.41)

The coefficient of the leading term is very close to 1
4π2 ≈ 0.0253302959. It may be possible

to analytically prove that ∆(4)
scalar gap(c) ∼ c2

4π2 at large c. Note that in this analysis we only
considered 4 derivatives of (3.39), but it may be the case that if we take c→∞ with fixed
number of derivatives, the leading asymptotics for the bound is independent of the number
of derivatives. This is indeed what happens in the spinless modular bootstrap, where the
large c bound at any fixed number of derivatives scales as c

6 [3].
5In fact it turns out that c0 is related to εc(µ) (defined in (3.13)) via c0 = πεc(µ)

6 . This in principle leads
to a stronger crossing equation but we find that numerically it gives very similar bounds on the scalar gap,
so we will not explore it further in this paper.

6At c = 1 the crossing equation we use is slightly different due to a divergence of the zeta function at 1;
see appendix C.1 for discussion.
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Figure 2. Plot of a bound on the scalar gap for U(1)c CFTs with 4 derivatives, up to central
charge c = 251. The numerical data seems to be well-approximated by a quadratic function with
leading coefficient 1

4π2 (see (3.41)).

It would be better to do the analysis with the opposite order of limits, where we take
the number of derivatives to large before taking c large (as in [5]) and then extrapolate in
c. We can obtain bounds from including a larger number of derivatives in (3.39) by using
the semidefinite program solver SDPB [27, 28]. More precisely, we consider the sum rule∑

n=2,4,...,nmax

αnvac(n)(1) +
∑

n=2,4,...,nmax

αn
∑
∆

(∂k)nf(k,∆)|k=1 = 0. (3.42)

Unfortunately, the function (∂k)nf(k,∆)|k=1 in (3.39) does not have a good approximation
as a product of a positive function of ∆ and a polynomial in ∆. Therefore, we discretize in
∆-space and sample the function (∂k)nf(k,∆)|k=1 at various points ∆1,∆2, . . . ,∆M above
the scalar gap assumption, and use SDPB as a linear programming solver to look for a
functional that satisfies ∑

n=2,4,...,nmax

αnvac(n)(1) = 1,

∑
n=2,4,...,nmax

αn(∂k)nf(k,∆)|k=1 ≥ 0, ∆ = ∆1, . . . ,∆M . (3.43)

Finally, we check the positivity of the obtained functional for all ∆ ≥ ∆(nmax)
scalar gap by hand.

If there is a negative region, we sample more points there and rerun SDPB, and repeat this
procedure until the functional is positive or SDPB gives a primal feasible solution.7

Using the method described above, we have computed ∆(n)
scalar gap for n = 10, 20, · · · , 60

for central charge odd c ≤ 27. Our bounds are summarized in table 1 and plotted in
7We are extremely grateful to David Simmons-Duffin for explaining this approach to us.
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c ∆(10)
scalar gap ∆(20)

scalar gap ∆(30)
scalar gap ∆(40)

scalar gap ∆(50)
scalar gap ∆(60)

scalar gap ∆avg sgap

1 0.507 1
2 + 7× 10−5 1

2 + 2× 10−6 ≈ 1
2 ≈ 1

2 ≈ 1
2 ill-defined

3 0.910 0.864 0.863 0.863 0.863 0.863 0.136
5 1.444 1.310 1.304 1.303 1.302 1.302 0.324
7 2.129 1.843 1.820 1.814 1.813 1.813 0.471
9 2.972 2.476 2.419 2.400 2.397 2.396 0.606
11 3.980 3.219 3.110 3.063 3.055 3.051 0.736
13 5.155 4.078 3.897 3.808 3.789 3.779 0.863
15 6.500 5.058 4.788 4.638 4.602 4.581 0.989
17 8.018 6.614 5.786 5.558 5.497 5.458 1.113
19 9.709 7.399 6.895 6.570 6.477 6.412 1.237
21 11.576 8.765 8.118 7.680 7.545 7.445 1.360
23 13.619 10.266 9.460 8.890 8.705 8.561 1.482
25 15.839 11.903 10.922 10.202 9.959 9.762 1.604
27 18.238 13.679 12.506 11.620 11.310 11.049 1.725

Table 1. Upper bounds on the scalar gap from U(1)c CFTs with odd c ≤ 27 after taking up to
10, 20, · · · , 60 derivatives of our crossing equation (i.e. the maximum value of n in (3.39)) computed
to three decimal places. We also compare it to the average Narain scalar gap, defined in (3.44)
(though note that the optimal bound is different from the average). See figure 3 for a plot.

figure 3.8 We were not able to go to high enough central charge to do a reliable extrapolation
to large c. There are two obstacles in going to large central charge. The first is that the
convergence of the bound as the derivative order n→∞ becomes slower for larger c. The
second obstacle is that the number of terms in the sum rule (3.39) grows as c4 (see the
sum in (B.9)), which makes evaluating derivatives with respect to k very slow. It would
be good if there were a more efficient way to compute the derivatives.

It is interesting to compare the bounds on the U(1)c scalar gap we get to the average
Narain scalar gap. In [18] an expression for the average scalar gap of Narain theories was
computed, by first calculating the average density of states for all Narain theories (under
the Zamolodchikov measure), and determining when the integral of the average density of
states is 1. By looking at the average density of scalars, [18] got an average scalar gap of9

∆avg sgap =
(
ζ(c)Γ

(
c
2
)2 (c− 1)

ζ(c− 1)2πc

) 1
c−1

= c

2πe + log c
2πe + O(1). (3.44)

8In table 1 of [18], a bound on the gap (of any spin) was computed using the spinless modular bootstrap.
Our results in table 1 are specifically for scalars, and so in general are orthogonal. However, for c = 3, the
bound in [18] is less than 1 and so must be a scalar, and is stronger than the bound we found at c = 3.

9Note that choosing the integrated average to be 1, as opposed to any other O(1) number less than 1,
is somewhat of a convention. However, if we choose another cutoff, the result (3.44) changes very little.
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Figure 3. Plot of a bound on the scalar gap for U(1)c CFTs at odd c ≤ 27. The colors blue, orange,
green, red, brown, and purple represent the bound we get at 10, 20, · · · , 60 derivatives respectively.
The color black represents the average Narain scalar gap, for comparison. (However, there is no a
priori reason the average Narain scalar gap and the optimal U(1)c scalar gap should be similar.)
See table 1 for the numerical data.

Our numerical bounds at large c (including our bounds with four derivatives extrapolated
to large c) appear to be very far from both the average Narain scalar gap and the bound on
the gap of the lightest operator of any spin (see (1.3)). It would be interesting to explore
further if our bounds on the scalar gap can be substantially improved by considering other
crossing equations. Of course, it is possible that the optimal scalar gap behaves differently
from both the average Narain scalar gap and the optimal gap at large c.

4 General 2d CFTs

So far our discussion has been restricted to a very special class of CFTs, namely those with
U(1)c chiral algebra. In this section we generalize to generic 2d CFTs, which only have
Virasoro symmetry and no extended chiral algebra (though we pause to note that we do
not have any explicit examples of such theories, even numerically [5]).

The main obstacle to repeating our analysis to general 2d CFTs is that the partition
function is not square-integrable, due to the Casimir energy of the theory on a cylinder.
For theories with U(1)c chiral algebra, when we factored out the characters of the theory
and considered the primary counting partition function Ẑ, the resulting function grew only
polynomially (∼ yc/2) at the cusp (see (3.2)). For theories with only Virasoro symmetry,
however, the (Virasoro) primary counting partition function will grow as ∼ e2π c−1

12 y at large
y. Although there are various ways we can get around this (see section 4 of [16] for some
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discussions of other approaches), in this section we will simply take the partition function
multiply by the same cusp form as we did for theories with U(1)c symmetry, and bound
the resulting function we get. This will not give us a crossing equation acting only on the
Virasoro scalar operators, but instead will give us an equation acting on a more complicated
combination of operators of all spin.

To be more precise, let us consider any compact 2d CFT with c > 1 and only Virasoro
symmetry as its maximal chiral algebra (although generalizations to other chiral algebras
are simple). Suppose the partition function of this theory is Z(τ). We define the “fake
scalars” of this theory as

Z fake scalars(y) =
∫ 1/2

−1/2
dx|η(τ)|2cZ(τ). (4.1)

Note that the central charge c is not necessarily an integer in this analysis. We call this
function “fake scalars” because if this theory were to have a U(1)c chiral algebra, then (4.1)
would be a count of the scalars (under the U(1)c algebra). However, since the theory only
has Virasoro symmetry, then Z fake scalars(y) does not in general have a positive q-expansion.

Even without the full U(1)c chiral algebra, the logic in deriving the crossing equa-
tion (3.22) in section 3 will apply to Z fake scalars(y). We can still apply harmonic analysis
to yc/2|η(τ)|2cZ(τ)−Ec/2(τ) and derive an analogous crossing equation for Z fake scalars(y).
To be precise, the equation we derive is the following.

Let ac(n) be defined as10

∞∑
n=0

ac(n)qn =
∞∏
n=1

(1− qn)c−1. (4.2)

Then we have the following crossing equation in terms of the Virasoro primary operators
of any c > 1 compact CFT:
∞∑
n=0

e−4πynac(n)2 +
∑

∆,j∈S∪Snull

∞∑
n=0

e−2πy(∆+j+2n)ac(n)ac(n+ j) =

Λ
(
c−1

2

)
Λ
(
c
2
) y1−c + εy−

c
2 +

∞∑
n=1

Re
[
δny
− c2 +1− zn2

]
+ y1−c
√
π

∑
∆,j∈S∪Snull

∞∑
n=0

∞∑
k=1

b(k)kc−2U

(
−1

2 ,
c

2 ,
2πk2(∆+j+2n)

y

)
e
− 2πk2(∆+j+2n)

y ac(n)ac(n+j)

+ y1−c
√
π

∞∑
n=1

∞∑
k=1

b(k)kc−2U

(
−1

2 ,
c

2 ,
4πk2n

y

)
e
− 4πk2n

y ac(n)2. (4.3)

In (4.3), S is the set of all non-vacuum Virasoro primary operators, labeled by their di-
mension ∆ = h+ h̄ and their spin j = |h− h̄|. Moreover we define Snull formally as a set
containing −2 operators of weight 1, spin 1 and 1 operator of weight 2, spin 0. This is simply
to take into account the level 1 null state in the Virasoro vacuum block (i.e. that L−1 and

10At central charge 25, ac=25(n) is the Ramanujan tau function (up to a shift of the argument by 1).
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L−1 annihilate the vacuum). The l.h.s. of (4.3) is precisely what we called Z fake scalars(y)
above, written in terms of the Virasoro primary operators of the theory, which we denoted
by the set S. For convenience we have assumed the theory has no additional conserved
currents, but it is simple to generalize (4.3) to allow for them.

We have tested (4.3) numerically on the pure gravity partition function of [29, 30],
which we will denote as ZMWK(τ), at various values of the central charge. For simplicity we
have ignored the null state at level 1 (even though this leads to a inconsistent chiral algebra
due to the lack of charged twist zero states [31], the resulting function is still modular
invariant with a gap to the first primary operator, so it will obey (4.3), without including
the contribution from Snull). Strictly speaking we glossed over a subtlety in deriving (4.3).
When we derived (3.22) we used the fact that Ecs = ∑

∆∈S ∆−2s for Re(s) > c− 1 because
the sum converges for those values of s. However if we define Ecs analogously for the “fake
scalars,” it could potentially be the case that there is no s such that the sum converges, due
to the Cardy growth of the Virasoro primary operators. Nonetheless, we numerically find
that (4.3) is still satisfied. It might be interesting to present a more rigorous derivation of
this step.

We can then apply the same functionals on (4.3) as discussed in section 3.3 to remove
the sign-indefinite terms related to the nontrivial zeros of the zeta function. This gives sum
rules the CFT must satisfy, where now all operators (instead of just scalars) participate.
For example, at c = 3, and taking two derivatives in (3.39), we get

∑
∆,j∈S∪Snull

∞∑
n=0

ac=3(n)ac=3(n+ j)f(∆ + j + 2n) +
∞∑
n=1

ac=3(n)2f(2n) = π

4 , (4.4)

where

f(∆) :=
π
(
−3 + 8π2∆ + (3 + 4π2∆) cosh(2

√
2π
√

∆)− 6
√

2π
√

∆ sinh(2
√

2π
√

∆)
)

8 sinh4
(√

2π
√

∆
) .

(4.5)

(This comes from evaluating ∂2
k |k=1 on (B.6).) We can apply the same family of functionals

discussed in section 3.3 to (4.3) more generally and try to derive bounds on the various
quantities (e.g. scalar gap, gap, etc.) from this crossing equation. Unfortunately we run
into two distinct issues that stop us from bounding generic theories.

First, we see that at large ∆, (4.5) falls off as ∼ e−2π
√

2∆. In fact from appendix B
we see that regardless of the central charge or derivative order, the functionals used in
section 3.3 fall off with the same leading asymptotics. However, the asymptotic growth of

operators in S comes from the Cardy formula [32] and is ∼ e
2π
√

∆(c−1)
3 . We thus see that

if c ≥ 7, the sum rule does not obviously converge. Note that for U(1)c CFTs this was not
an issue because there, the asymptotic density of primary operators grew polynomially in
∆ (∼ ∆c−2). As a check we have verified (4.4) for ZMWK(τ) at c = 3, but the analogous
computation at c = 9 diverges (even though both obey (4.3)). We have also verified (4.4)
for various rational CFTs with c < 7 where we only decompose into Virasoro characters.
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It is unfortunate that we only get a falloff in e−#
√

∆ in our sum rules. This only
happened after we integrated against the function Φ(t) in (3.29). Before this integral (e.g.
in (3.22) and (4.3)), we had a falloff as e−#∆, which will always overwhelm the Cardy
growth at any central charge. It would be interesting to see if there were another choice of
functional that would both remove the sign-indefinite terms related to nontrivial zeros of
the zeta function, but still preserve the faster falloff in dimension.

Second, the asymptotically large ∆ behavior of
∞∑
n=0

ac(n)ac(n+ j)f(∆ + j + 2n) (4.6)

does not have fixed sign: for some spins the asymptotic ∆ value is positive and for some
spins it is negative. (This is true when one takes any number of derivatives of the crossing
equation, not just two.) The root of this problem is that ac(n)ac(n + j) does not have a
definite sign. Thus there is no obvious way to construct functionals that have fixed sign
for all spin and all dimensions larger than some cutoff.

We note that we have chosen to multiply the partition function by the cusp form
yc/2|η(τ)|2c to render the partition function square-integrable. However any cusp form
with a gap to the first excited state and that falls off at least as fast as (qq̄)c/24 would
be sufficient and give a similar crossing equation as (4.3). It might be useful to explore
constraints one gets from other cusp forms.

Finally we end this section with an interesting observation. Our crossing equation (4.3)
for Virasoro theories involves operators of all spins, since multiplying by yc/2|η(τ)|2c does
not have an obvious physical interpretation for theories without a U(1)c extended current
algebra. It would be better to have a crossing equation or sum rule that only involved scalar
Virasoro primary operators. Surprisingly, we find strong hints that such a sum rule exists.

In order to get a sum rule acting only on scalar Virasoro primary operators, the natural
thing to do is to multiply the partition function by y1/2|η(τ)|2. This is the same object
that we multiply for U(1)c theories for c = 1. Recall that there, we derived the following
sum rule (see (B.12) and appendix C.1):

log k +
∑
∆∈S

[
h(k,∆)− h(k−1,∆)

]
= 0, (4.7)

where

h(k,∆) :=
√

2π
√
k∆(1− coth(

√
2π
√
k∆)) + 2π2k∆csch2(

√
2π
√
k∆) + log(1− e−2

√
2π
√
k∆).
(4.8)

(The expression (4.8) is just (B.11) at c = 1, where we multiplied through by a factor of
−4 for convenience.)

Remarkably, we numerically find that (4.7) also holds for general Virasoro CFTs, where
S is now the set of conformal dimensions of scalar Virasoro primary operators (minus c−1

12 )
subject the following constraints. First of all, due to the null state structure of the Virasoro
vacuum character, we introduce an additional term in S of ∆ − c−1

12 = − c−25
12 (assuming
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no spin 1 currents). Second of all, we do not include the log k term in the sum rule (since
there is not necessarily a state with ∆ − c−1

12 = 0 in the spectrum). Finally, and most
importantly, the sum rule does not converge for sufficiently large c. At large ∆, we have

h(k,∆)− h(k−1,∆) ∼ e−2
√

2π
√

∆×min(k,k−1), (4.9)

whereas

ρscalar primaries(∆) ∼ e2π
√

∆(c−1)
3 , (4.10)

so our sum rule only converges if

c < 1 + 6 min(k, k−1), (4.11)

which implies c < 7.11

For various theories obeying (4.11), we very surprisingly find that the sum rule∫ ∞
− c−1

12

d∆ρscalars(∆)
[
h(k,∆)− h(k−1,∆)

]
= 0 (4.12)

is obeyed to arbitrarily high precision. For c < 7 we can use this to bound the Virasoro
scalar gap. However, our bounds from this so far seem to be substantially weaker than
those found in [5]. It would be extremely interesting if there were a way to analytically
continue the sum in (4.12) to arbitrary central charge (and also to prove, or more honestly
derive, (4.12)). If so, this could be a way to derive a Virasoro scalar gap for all central
charge.12

5 2d CFTs and the Riemann hypothesis

One interesting feature of our crossing equation (3.22) is that in the small y (high temper-
ature) limit, the asymptotics are controlled by the real parts of the nontrivial zeros of the
Riemann zeta function. Let us rewrite (3.22), defining the temperature T := y−1, as

1+
∑
∆∈S

e−
2π∆
T =

Λ
(
c−1

2

)
Λ
(
c
2
) T c−1 + εcT

c
2

+
∞∑
k=1

T
c
2−1+ Re(zk)

2 [Re(δk,c) cos(Im(zk) log T )− Im(δk,c) sin(Im(zk) log T )]

+O
(
e−2π∆gapT

)
. (5.1)

11Note also h(k,∆)− h(k−1,∆) has poles at ∆ = −n
2

2k and ∆ = −n
2k
2 , n ∈ N, which may be problematic

for convergence. For example, if c = 1 + 6kn2 or c = 1 + 6k−1n2, with n ∈ N, then the vacuum term
contributes as a pole.

12In [5], it was shown that no bound on the Virasoro scalar gap could be derived for c ≥ 25 using
the traditional modular bootstrap. This was due to the existence of a “spurious solution” to crossing of
J(τ)+J̄(τ̄)√
τ2|η(τ)|2 , which lacks scalar primary operators (see discussion around Eqn (3.2) of [5]). However, if there

exists a convergent sum rule like (4.12) for all c that only acts on scalar primary operators, then by definition
it would vanish on the spurious solution found in [5], and one may be able to find a bound for c ≥ 25.
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At high temperature, second line of (5.1) behaves as a highly oscillatory function with an
overall envelope controlled by Re(zk). The Riemann hypothesis says that for all k,

Re(zk) = 1/2, (5.2)

which would fix the envelope to be T c
2−

3
4 . In other words, if the Riemann hypothesis is

true, (5.1) can be written as

1 +
∑
∆∈S

e−
2π∆
T =

Λ
(
c−1

2

)
Λ
(
c
2
) T c−1 + εcT

c
2

+
∞∑
k=1

T
c
2−

3
4 [Re(δk,c) cos(Im(zk) log T )− Im(δk,c) sin(Im(zk) log T )]

+O
(
e−2π∆gapT

)
. (5.3)

However, if the Riemann hypothesis is false, then there is at least one zk with real part
greater than 1/2,13 which changes the large temperature scaling in the second line of (5.3).14

Since the leading term of (5.1) is essentially the Cardy formula, then in some sense, the
Riemann hypothesis makes a claim about the overall size of the “subsubleading” corrections
to the Cardy formula.

We can illustrate this with an explicit example. Let us consider the SU(3)1 WZW
model, and decompose the theory under the U(1)2 chiral algebra (note that this is not the
maximal chiral algebra). The scalar partition function is given by

Zscalars
SU(3)1

(T ) := 1+
∑

∆∈SSU(3)1

e−
2π∆
T

= 1+
∞∑
n=1

48

∑
k|n

(−1)k sin
(
kπ

3

)2

e−
4πn
T + 24

 ∑
k|3n−2

(−1)k sin
(
kπ

3

)2

e−
4π(n− 2

3)
T

= 1+ 18e−
4π
3T + 36e−

4π
T + 18e−

16π
3T + 72e−

28π
3T + · · · . (5.4)

For c = 2 the crossing equation (5.3) is slightly modified due to a pole at Λ(1/2). As
derived in (C.21), the crossing equation we get for a c = 2 Narain theory is

1 +
∑
∆∈S

e−
2π∆
T = 3

π
T log T +

[
Ê1(ρ) + Ê1(σ) + 3

π

(
γE + log(4π) + 24ζ ′(−1)− 2

)]
T

+
∞∑
k=1

Re

4π
zk
2 Λ

(
1+zk

2

)2
E 1+zk

2
(ρ)E 1+zk

2
(σ)

2Γ
( zk

2
)
ζ ′(zk)

T
zk
2


+ T√

π

∑
∆∈S

∞∑
n=1

b(n)U
(
−1

2 , 1, 2π∆n2T

)
e−2π∆n2T , (5.5)

13By the functional equation (2.9) and meromorphicity, the Riemann hypothesis being false implies a
pair of zeros of the zeta function with identical imaginary part: one with real part greater than 1/2, one
with real part less than 1/2.

14Note that there is a possibility that the residue at that zero vanishes, meaning δk,c vanishes in (5.3).
However, this will only happen in a real codimension 2 subspace of the moduli space. Thus for a generic
theory the scaling will change at large temperature. We thank Per Kraus for raising this question to us.
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Figure 4. Scalar part of the SU(3)1 WZW model with first two leading terms subtracted, rescaled
by T 1/4, plotted up to T = 300. If the Riemann hypothesis is true, then at large temperature, this
function will remain bounded. However, if the Riemann hypothesis is false, at large temperatures the
oscillations will grow in size and become unbounded (modulo the subtlety explained in footnote 14).
In this plot, α := 2Ê1(e2πi/3) + 3

π (γE + log(4π) + 24ζ ′(−1)− 2) ≈ 0.975 (see (5.5)). By fitting this
plot with oscillating functions in log(T ), we can numerically recover the first few nontrivial zeros
of the zeta function. (A similar plot can be made for any c > 1 CFT.)

where Ê1 is defined in (C.18). From the explicit form of the sum over k in (5.5), we see
that the coefficient in front of T

zk
2 falls off exponentially in k, so the sum converges rapidly.

For the case of the SU(3)1 WZW model, we have ρ = σ = e2πi/3. At large temperature,
the last line of (5.5) becomes non-perturbatively small. Therefore if we subtract the first
two terms on the r.h.s. of (5.5) and go to large temperature, we should be able to probe the
real part of the nontrivial zeros of the Riemann zeta function. Indeed, by evaluating (5.4)
up to T = 300, we numerically are able to recover the first few nontrivial zeros of the
Riemann zeta function. We plot this in figure 4. Of course for any 2d CFT we could make
a similar plot using (4.3); here we picked this particular theory for concreteness.

We pause to note that we can only numerically go up to certain fixed temperature
(e.g. T = 300) because we only computed a finite number of terms in (5.4). Since the
residue falls off exponentially in Im(zk), this means we only numerically test the Riemann
hypothesis up to a fixed imaginary part. Since the Riemann hypothesis has already been
checked up to imaginary part 3 × 1012 [33], we emphasize that our numerics are not an
independent check of the Riemann hypothesis.

However, it would be extremely interesting if there were a physical reason why the
scalar partition function, with the first two leading terms subtracted off, had to scale as
T
c
2−

3
4 . This would give a “physics explanation” of the Riemann hypothesis. We leave this

problem as an exercise to the reader.
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6 Future directions

In this paper we have derived a crossing equation acting only on the scalar operators
of certain 2d CFTs. Rather curiously the crossing equation is intimately related to the
nontrivial zeros of the Riemann zeta function. This allows us to rephrase the Riemann
hypothesis purely in terms of the growth of states of scalar operators of U(1)c CFTs. By
applying clever choices of linear functionals, we are able to derive positive sum rules that
the scalar operators must satisfy, which lead to nontrivial bounds on the lightest non-
vacuum scalar operator in U(1)c CFTs. We discuss generalizations to theories with only
Virasoro symmetry. There are various future directions that may be interesting to pursue.

Virasoro scalar crossing equation? In section 4 we derived a crossing equation acting
on all operators for theories with Virasoro symmetry. In order to make the partition
function square-integrable, we multiplied by a cusp form, namely yc/2|η(τ)|2c, which led to
the inclusion of all spins to the crossing equation. It would be nice if there exists a crossing
equation that does not rely on this, and acts only on the scalar Virasoro primary operators.
In order to derive such an equation (if it exists), it might be necessary to consider some
generalization of harmonic analysis to allow for exponential divergences as y →∞.

In the end of section 4, we guessed such a sum rule for Virasoro CFTs with c < 7. It
would be interesting to derive it more rigorously and somehow analytically continue the
sum rule so it makes sense for arbitrary central charge.

Crossing equation for spin j? In this paper we considered crossing equations acting
on scalar operators of U(1)c CFTs (or “fake scalars” for the case of Virasoro CFTs). This
was largely to avoid the Maass cusp forms in the spectral decomposition (which lack scalars
— see (2.13)). It would be interesting if there were a generalization of our crossing equation
to any fixed spin partition function.

In fact, the techniques we studied almost immediately generalize to any spin j 6= 0
crossing equation. Let us denote J as the set of spin j primary operators of a U(1)c CFT.
The spin j partition function is given by

∑
∆∈J

e−2π∆y =
2σc−1(j)y 1−c

2 K c−1
2

(2πjy)

Λ
(
c
2
)
j
c−1

2

+ 1
2πi

∫ 1
2 +i∞

1
2−i∞

dsπs−
c
2 Γ
(
c

2 − s
)
Ecc

2−s
σ2s−1(j)Ks− 1

2
(2πjy)y 1−c

2

Λ(s)js− 1
2

+
∞∑
n=1

∑
ε=±

a
(n,±)
j (Ẑ, ν±n )
2(ν±n , ν±n )

y
1−c

2 KiR±n
(2πjy). (6.1)

Unfortunately the last line in (6.1) seems very difficult to deal with analytically due to
the sporadic nature of the Maass cusp form eigenvalues, but we can in fact do the integral
in the second line using the same techniques as in section 3.2. We move the contour of
integration to the right, past Re(s) = c

2 , so that we can expand the function Ecc
2 +s−1 in

terms of the scalar primary operators and then change the order of the sum and integral.
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From the discussion in appendix A, we know the only poles in Ecc
2−s

to the right of the
contour occur at s = c

2 ,
1+zn

2 , 1+z∗n
2 (see figure 1). The additional terms do not introduce

any additional poles to the right of the contour. We thus get a crossing equation in terms
of the spin j operators on the l.h.s. and the scalars on the r.h.s. (as well as the cusp forms).
It may be interesting to analyze this equation further.

Better bounds on U(1)c theories? In table 1 our numerical bounds on the scalar
operators of U(1)c theories are quite far from the average Narain scalar gap. For instance
our numerical bounds seem to grow quadratically with c instead of linearly. This may be
an indication that our crossing equation is not strong enough to pinpoint the CFT with the
largest scalar gap. It would be interesting if we could modify the set of crossing equations
we consider to get better bounds. For instance we could include both our crossing and the
“traditional” modular invariance (or four-point function) crossing equations to see if we
can get better bounds. Other avenues to explore may be to consider different functionals
from the ones used in section 3.3 (for example not just considering ϕ(t) in (3.27) to be
Gaussians) or somehow incorporate the residues at the nontrivial zeros of the zeta function
into the crossing equation. It would also be nice to get numerical results for even c.

Four-point functions? There is a well-known relation between crossing symmetry act-
ing on a four-point functions of four scalar operators and modular covariance. For four
identical operators, under an appropriate coordinate transformation, the four-point func-
tion should be modular invariant. (For different operators, it will transform as some vector-
valued modular function.) It would be interesting if one could derive a crossing equation on
certain correlation functions where only a one-dimensional slice of operators are exchanged
(e.g. only scalar operators are exchanged instead of operators of all spin). It would be
especially interesting if this could generalize to higher dimensions.

Applications to N = 4 SYM? Besides in 2d CFT, another natural place that modular
invariance shows up in string theory is in S-duality of N = 4 super Yang-Mills theory.
In [34] (see also [35]), harmonic analysis was used extensively to study various integrated
correlators as a function of the complexified Yang-Mills coupling. It would be interesting
if there were some sort of crossing equation acting only on the zero-instanton sector (but
note that the pole structure of the overlap with Eisensteins is different because there is no
notion of a “scalar gap”; see [34] for discussions on this).
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A Pole structure of scalar crossing equation

In this appendix we will carefully derive the pole structure of the constrained Epstein zeta
series Ecs(µ). Much of this analysis is in section 3.2 of [16]. Let us look at the scalar sector
of (3.3):

y
c
2

1 +
∑
∆∈S

e−2π∆y

 :=
∫ 1/2

−1/2
dxẐc(τ, µ)

= y
c
2 +

Λ
(
c−1

2

)
Λ
(
c
2
) y1− c2 + 3π−

c
2 Γ
(
c

2 − 1
)
Ecc

2−1(µ)

+ 1
4πi

∫ 1
2 +i∞

1
2−i∞

dsπs−
c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)

ys +
Λ
(
s− 1

2

)
Λ(s) y1−s


= y

c
2 +

Λ
(
c−1

2

)
Λ
(
c
2
) y1− c2 + 3π−

c
2 Γ
(
c

2 − 1
)
Ecc

2−1(µ)

+ 1
2πi

∫ 1
2 +i∞

1
2−i∞

dsπs−
c
2 Γ
(
c

2 − s
)
Ecc

2−s
(µ)ys. (A.1)

In the last line of (A.1), we used the functional equation that Ecc
2−s

(µ) obeys, (3.5). We
would like to move the contour in (A.1) to the right, so we again need to classify all simple
poles of the integrand with Re(s) > 1

2 . As was argued in [16], there can only be poles we
cross at s = c

2 and s = 1+zn
2 , 1+z∗n

2 . Let us review the argument.
The idea is to take the inverse Laplace transform of (A.1) to get the scalar density

of states. We then integrate from 0 to some number ∆ (not including the vacuum), and
demand that this vanishes for sufficiently small ∆. This is due to the fact that the spectrum
for a compact CFT is discrete, so in general there is a gap between the vacuum and first
excited scalar state. A simple calculation shows the number of scalar operators (excluding
the vacuum) below ∆ is

N0(∆) = 2πcζ(c− 1)∆c−1

(c− 1)Γ
(
c
2
)2
ζ(c)

+ 12
2 c2 ∆ c

2Ecc
2−1(µ)

c(c− 2) − 1
2πi

∫ 1
2 +i∞

1
2−i∞

ds
2 c2−s∆ c

2−sEcc
2−s

(µ)
s− c

2

= 2πcζ(c− 1)∆c−1

(c− 1)Γ
(
c
2
)2
ζ(c)

+ 12
2 c2 ∆ c

2Ecc
2−1(µ)

c(c− 2)

+ 1
2πi

∫ 1
2 +i∞

1
2−i∞

ds
2 c2−s∆ c

2−sΓ(s)Γ
(
s+ c

2 − 1
)
ζ(2s)Ecc

2 +s−1(µ)

π2s− 1
2 Γ
(
c
2 + 1− s

)
Γ
(
s− 1

2

)
ζ(2s− 1)

(A.2)
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Let us look at the last line of (A.2). In the limit of small ∆, we must get 0 for the integrated
density of states, which means the integral must cancel the two power laws in ∆ coming
from the first two terms. In the integral in the last line of (A.2), we must close the contour
to the left in the s-plane since ∆ is small. This will tell us about the pole structure of
Ecc

2 +s−1(µ) for Re(s) < 1
2 (if we wanted to know the pole structure for Re(s) > 1

2 we would
look at the first line of (A.2) and again close the contour to the left). In order to cancel
the term that goes as ∆c−1, we need a pole at s = 1 − c

2 . This comes from the term
Γ
(
s+ c

2 − 1
)
in the numerator, with the others being finite. (Although the other gamma

and zeta functions naively contribute poles and zeros for integer c, their combination is
always finite.) Moreover in order for the residue to match, this fixes

Ec0(µ) = −1. (A.3)

We also need to cancel the second polynomial in (A.2). This comes from a pole at s = 0,
coming from the Γ(s) term. We see the residue already matches the coefficient in (A.2)
so we cannot constrain the value of Ecc

2−1(µ). Finally there can be no other poles with
Re(s) < 1

2 . Naively this tells us that Ecc
2 +s−1(µ) cannot have any poles for Re(s) < 1

2 , but
this is too fast — if the prefactor vanishes then Ecc

2 +s−1(µ) can have a pole. The only zeros
with Re(s) < 1

2 in the prefactor of the integrand are when s = zn
2 ,

z∗n
2 , coming from the

ζ(2s) term. Thus Ecc
2 +s−1(µ) can have a pole at s = zn

2 ,
z∗n
2 . We also know that Ecc

2 +s−1(µ)
must have zeros at s = − c

2 ,−
c
2 − 1, · · · to cancel the poles from Γ

(
s+ c

2 − 1
)
.

Thus, looking at the integrand in (A.1), we see the only poles to the right of the
contour of integration are at s = c

2 and s = 1− zn
2 , 1−

z∗n
2 . (Using the functional equation

for the zeta function, we can rewrite the last term as s = 1+zn
2 , 1+z∗n

2 .) The residue of the
pole at s = c

2 is given in (A.3) and the residue at s = 1+zn
2 , 1+z∗n

2 is just given by reading
off the pole from integrating the partition function against an Eisenstein series at s = zn

2
(see (3.13)).

This fully reproduces the pole structure which we used to derive (3.22).

B Functional action on crossing equation

Let us consider the functional

Fk[h(t)] :=
∫ ∞

0

dt

t
h(t)

∞∑
m=1

e−πkt
2m2

. (B.1)

We would like to apply this functional to each of the terms in (3.25). To do so let us first
compute:

Fk[tse−
A
t2 ] :=

∞∑
m=1

fkm(s,A)

Fk[tse−Bt
2
U(α, β,Bt2)] :=

∞∑
m=1

gα,β,km (s,B), (B.2)
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with fkm(s,A) and gα,β,km (s,B) defined as

fkm(s,A) =
∫ ∞

0
dt ts−1e−

A
t2
−πkt2m2

= As/4k−s/4m−s/2π−s/4Ks/2(2m
√
kπA)

gα,β,km (s,B) =
∫ ∞

0
dt ts−1e−Bt

2−πkt2m2
U(α, β,Bt2)

= 1
2
(
B + kπm2

)−s/2(Γ
(
s
2
)

Γ(1− β) 2F1
(
α, s2 , β; B

B+kπm2

)
Γ(1 + α− β)

+
Γ(β−1)(B+kπm2)β−1Γ

(
1−β+ s

2
)

2F1
(
1+α−β, 1−β+ s

2 , 2−β; B
B+kπm2

)
Γ(α)Bβ−1

)
.

(B.3)

Applying this term by term to (3.25) we then get:

∑
∆∈S

∑
k

αk

∞∑
m=1

[
4π∆fkm(−c, 2π∆)− cfkm(2− c, 2π∆)

−
∞∑
n=1

b(n)nc−2
√
π

(
(c− 2)g−

1
2 ,
c
2 ,k

m (c, 2πn2∆)− 4πn2∆g−
1
2 ,
c
2 ,k

m (c+ 2, 2πn2∆)

+ 2πn2∆g
1
2 ,
c+2

2 ,k
m (c+ 2, 2πn2∆)

)]

= ζ(c− 1)Γ
(
c− 1

2

)
π

1−c
2
∑
k

αk

(
c

2k
c
2−1 +

(
c

2 − 1
)
k−

c
2

)
. (B.4)

The above equation is summed over an arbitrary choice of k’s and αk’s, subject to the
constraints in (3.34).

Remarkably, for odd c ≥ 3, we can get closed form expressions for the sums over m
in (B.4). For c = 3, (B.4) reduces to

∑
∆∈S

∑
k

αk

√2− e2
√

2π
√
k∆(
√

2− 2π
√
k∆)

2(−1 + e2
√

2π
√
k∆)2
√

∆
+
∞∑
n=1

b(n)nπ cosh
(√

2nπ
√

∆
k

)
4k 3

2 sinh3
(√

2nπ
√

∆
k

)


= π

6
∑
k

αk

(3
2k

1
2 + 1

2k
− 3

2

)
. (B.5)

The sum over n can be simplified to give

∑
∆∈S

∑
k

αk

√2− e2
√

2π
√
k∆(
√

2− 2π
√
k∆)

2(−1 + e2
√

2π
√
k∆)2
√

∆
+ πe2

√
2π
√

∆
k(

− 1 + e2
√

2π
√

∆
k

)2
k3/2


= π

6
∑
k

αk

(3
2k

1
2 + 1

2k
− 3

2

)
. (B.6)
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To simplify (B.4) for c odd, c ≥ 5, we first define the auxiliary functions:

ν1(c, 0,m) := (−1) c+1
2 +mΓ(c)

(c− 2)Γ(m+ 1)Γ
(
c+1

2 −m
) ,

ν1(c, n,m) := (−1)n+ c−1
2 +m22n(n+ 1)(c− (n+ 1)(n+ 2)

2 )Γ(c− n− 2)

×
m−1∑
i=0

i+1∑
j=0

(−1)i+j(i− j + 1)n

Γ(j + 1)Γ(n− j + 2)Γ(m− i)Γ
(
c+3

2 − n−m+ i
) , n 6= 0

ν2(c, n,m) := 2−2m(c− 3− 2m)(c− 1− 2m)(c+ 1− 2m)(c+ 3− 2m)Γ
(
c− 3

2 +m

)

×
c−1

2 −m∑
i=0

i+1∑
j=0

(−1)m+n+i+j(i− j + 1) c+1
2 −m

Γ(j + 1)Γ
(
c+5

2 −m− j
)

Γ(n− i+ 1)Γ(m− n+ i+ 1)

ν3(c, n,m) := (−1)n+ c−1
2 +m22n(n+ 1)(n+ 2)(n+ 3)Γ(c− n− 4)

×
m∑
i=0

i+1∑
j=0

(−1)i+j(i− j + 1)n+2

Γ(j + 1)Γ(n− j + 4)Γ(m− i+ 1)Γ
(
c−3

2 − n−m+ i
) . (B.7)

Then (B.4) becomes:

∑
∆∈S

∑
k

αk

[
1

2 3c
2 −3π

c−3
2 ∆ c−2

2 (−1 + e2
√

2π
√
k∆) c+1

2

c−1
2∑
i=0

c−1
2∑
j=0

ν1(c, i, j)e2
√

2π
√
k∆j(
√

2k∆π)i

+
∞∑
n=1

b(n)e2
√

2πn
√

∆
k n

c−1
2 π

2 c+13
4 k

c+3
4 ∆ c−3

4
(
− 1 + e2

√
2πn
√

∆
k

) c+3
2

c−1
2∑
i=0

c−5
2∑
j=0

ν2(c, i, j)k
j
2 e2i

√
2nπ
√

∆
k

2
j
2njπj∆

j
2

]

= ζ(c− 1)Γ
(
c− 1

2

)
π

1−c
2
∑
k

αk

(
c

2k
c
2−1 +

(
c

2 − 1
)
k−

c
2

)
, c odd, c ≥ 5. (B.8)

The sum over n in (B.8) can be done exactly, which gives:

∑
∆∈S

∑
k

αk

[
1

2 3c
2 −3π

c−3
2 ∆ c−2

2 (−1 + e2
√

2π
√
k∆) c+1

2

c−1
2∑

n=0

c−1
2∑

m=0
ν1(c, n,m)e2

√
2π
√
k∆m(

√
2k∆π)n

+ e2
√

2π
√

∆
k

2 3c
2 −7π

c−7
2 k2∆ c−4

2
(
− 1 + e2

√
2π
√

∆
k

) c+1
2

c−5
2∑

n=0

c−3
2∑

m=0
ν3(c, n,m)e2

√
2π
√

∆
k
m
(√2∆

k
π

)n]

= ζ(c− 1)Γ
(
c− 1

2

)
π

1−c
2
∑
k

αk

(
c

2k
c
2−1 +

(
c

2 − 1
)
k−

c
2

)
, c odd, c ≥ 5. (B.9)

In the notation of (3.37),

vac(k) = −ζ(c− 1)Γ
(
c− 1

2

)
π

1−c
2

(
c

2k
c
2−1 +

(
c

2 − 1
)
k−

c
2

)
, (B.10)

and f(k,∆) is the term in the brackets of (B.9). Using these definitions, an explicit
calculation verifies the claim in (3.38).
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By examining the crossing equation (B.9), we notice something interesting. Acting
on the crossing equation with k3/2∂k gives us an expression that is antisymmetric under
k ↔ k−1. This gives us another way to rewrite the crossing equation that will turn out to
work for all c (not just odd c). Let us define the following function, using (B.3)

h(c, k,∆) :=
∞∑
m=1

k3/2∂k
(
4π∆fkm(−c, 2π∆)− cfkm(2− c, 2π∆)

)
=
∞∑
m=1

[
2−

c−4
4 k

c+2
4 m

c
2 ∆−

c−4
4 πcK c

2
(2
√

2mπ
√
k∆)

− 2−
c+2

4 k
c
4m

c−2
2 ∆−

c−2
4 (c(c− 2) + 8π2∆km2)K c−2

2
(2
√

2mπ
√
k∆)

]
. (B.11)

The sum can be evaluated exactly in closed form for odd c, but exists and converges for
any c. An equivalent formulation of our scalar crossing equation is:

k3/2vac′(k) +
∑
∆∈S

h(c, k,∆)− h(c, k−1,∆) = 0. (B.12)

The sum rules used in (3.39) are just the odd derivatives of k (evaluated at k = 1) of (B.12).
Finally, note that the term k3/2vac′(k) is simply the contribution of the vacuum state:

k3/2vac′(k) =
Λ
(
c−1

2

)
c(c− 2)

4
(
k

1−c
2 − k

c−1
2
)

= lim
∆→0

(
h(c, k,∆)− h(c, k−1,∆)

)
. (B.13)

C c = 1 and c = 2 revisited

In this appendix, we reconsider U(1)c theories at c = 1 and c = 2. Due to the pole
structure of the function Λ(s) := π−sΓ(s)ζ(2s), the spectral decomposition and scalar
crossing equation for these theories are slightly different than for c > 2. This is related
to the fact that the average genus 1 partition function for c = 1 and c = 2 Narain CFTs
diverges [18, 19]. For both c = 1 and c = 2 we will first consider Narain CFTs, and then
the potentially more general U(1)c theories. We will use the notation

Ẽs(τ) := Λ(s)Es(τ)

= Λ(s)ys + Λ(1− s)y1−s +
∞∑
j=1

4σ2s−1(j)√yKs− 1
2
(2πjy)

js−
1
2

cos(2πjx) (C.1)

which we can see obeys Ẽs(τ) = Ẽ1−s(τ). This will make s ↔ 1 − s crossing manifestly
invariant.

C.1 c = 1 reconsidered

The c = 1 free boson is labeled by a radius r. In our convention, we will take the self-dual
point (i.e. the SU(2)1 WZW model) to be r = 1 so that T -duality acts as r ↔ r−1. The
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spectral decomposition of the reduced c = 1 partition function is:

Ẑc=1(τ, r) = r + r−1 + 1
4πi

∫ 1
2 +i∞

1
2−i∞

ds2Ẽs(τ)(r2s−1 + r1−2s). (C.2)

(See e.g. section 3.1.1 of [16] for derivation.) Notice that there are no Maass cusp forms
in (C.2).

At c = 1, our scalar crossing equation (3.22) reduces to

1 +
∑
∆∈S

e−2π∆y = −1 + εc=1(µ)y−
1
2 +

∞∑
k=1

Re
(
δk,c=1(µ)y

zk
2
)

+
∑
∆∈S

∞∑
n=1

b(n)
√

2∆
y
e
− 2πn2∆

y ,

(C.3)

where as usual µ is some abstract coordinate that we include to emphasize which terms
are theory-dependent.

Let us verify (C.3) for a free boson at radius r. From the explicit spectral decomposi-
tion (C.2), we know that the free boson at radius r has εc=1(µ) = r+r−1 and δk,c=1(µ) = 0.
Moreover, the set of scalar operators S are simply operators with either zero momentum
or zero winding number (recall at c = 1, the spin of an operator is just the product of its
momentum and winding number). Thus the set S is simply operators of dimension m2

2r2

and m2r2

2 for m ∈ Z>0, each with degeneracy 2. Thus (C.3) reduces to

2y
1
2 +2

∞∑
m=1

(
e−πm

2r2y+e−πm2r−2y
)
y

1
2 = r+r−1+2

∞∑
n=1

∞∑
m=1

b(n)m
(
re
−πn

2m2r2
y +r−1e

−πn
2m2
yr2

)
.

(C.4)
We can rewrite the r.h.s. with new variables m′ = nm, n′ = n (and dropping primes)

2y
1
2 +2

∞∑
m=1

(
e−πm

2r2y + e−πm
2r−2y

)
y

1
2 = r+r−1 +2

∞∑
m=1

∑
n|m

b(n)m
n

(
re
−πm

2r2
y +r−1e

−πm
2

yr2
)
.

(C.5)
It can be shown from properties of the Möbius µ function that∑

n|m
b(n)m

n
= 1 (C.6)

for all m. Our crossing equation is then equivalent to

2y
1
2 + 2

∞∑
m=1

(
e−πm

2r2y + e−πm
2r−2y

)
y

1
2 = r+ r−1 + 2

∞∑
m=1

(
re
−πm

2r2
y + r−1e

−πm
2

yr2
)
. (C.7)

This simply follows from the modular transformation properties of the Jacobi theta func-
tions.

We would now like to derive a more general bound for U(1)c CFTs at c = 1, without
assuming the theory is a free boson compactified on a circle. This means we cannot assume
that the δk,c=1 terms in (C.3) necessarily vanish, so we need to apply the same functionals
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that we considered in section 3.3. We first take a derivative with respect to y to remove
the εc=1(µ) term. This gives the analog of (3.25):

∑
∆∈S

[(4π∆
t
− t
)
e−

2π∆
t2 +

∞∑
n=1

b(n)4π
√

2n2t4∆
3
2 e−2π∆n2t2

]

= 2t+
∞∑
k=1

Re (δk,c=1(µ)(zk − 2)tzk) . (C.8)

We next would like to apply the functional (3.29) to (C.8), but there a slight subtlety.
Recall that (3.29) was designed so that

F [ts] ∝ ζ(s). (C.9)

The last line of (C.8) has a term 2t, which will naively give something proportional to
ζ(1) which diverges. However, it can be shown the integral (3.29) converges. The reason
is that Mϕ(s) in (3.32) vanishes at s = 1 which cancels the divergence of the zeta func-
tion. A careful analysis shows that if we choose ϕ(t) = ∑N

i=1 αie
−πkit2 (subject to the

constraints (3.34)), then

Fϕ[2t] =
N∑
i=1

αi

(
− log ki

2
√
ki

)
. (C.10)

We then apply the same functional Fϕ to the l.h.s. of (C.8). This gives

∑
k

αk

(
log k
2
√
k

+
∑
∆∈S

[
π
√

∆(coth(
√

2π
√
k∆)− 1)√

2
+ log(1− e−2

√
2π
√
k∆)

2
√
k

+
∞∑
n=1

b(n)
√
k coth

(√
2nπ

√
∆
k

)
+
√

2nπ
√

∆ csch2(√2nπ
√

∆
k

)
4kn

])
= 0. (C.11)

The sum over n in (C.11) formally diverges but we can replace coth
(√

2nπ
√

∆
k

)
with

coth
(√

2nπ
√

∆
k

)
− 1 since the term we add is multiplied by 0 from (3.34). This gives the

following convergent sum rule:

∑
k

αk

(
log k
2
√
k

+
∑
∆∈S

[
π
√

∆(coth(
√

2π
√
k∆)− 1)√

2
+ log(1− e−2

√
2π
√
k∆)

2
√
k

+
∞∑
n=1

b(n)
√
k
(
coth

(√
2nπ

√
∆
k

)
− 1

)
+
√

2nπ
√

∆ csch2(√2nπ
√

∆
k

)
4kn

])
= 0. (C.12)

The sum over n can be done exactly to give:

∑
k

αk

(
log k
2
√
k

+
∑
∆∈S

[
π
√

∆(coth(
√

2π
√
k∆)− 1)√

2
+ log(1− e−2

√
2π
√
k∆)

2
√
k

+
π
√

∆(coth(
√

2π
√

∆
k )− 1)

√
2k

− log(1− e−2
√

2π
√

∆
k )

2
√
k

])
= 0. (C.13)
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Again from the same arguments as used to derive (3.37) we know that the term in parenthe-
sis in (C.13) must be c0 + c1k

−1/2 for some (theory-dependent) constants c0, c1. Moreover
we see after evaluating ∂k|k=1 on each term, that c1 = −1. Therefore we can write our
crossing equation as

vac(n)(1) +
∑
∆∈S

(∂k)nf(k,∆)|k=1 = 0, n ≥ 2, n even, (C.14)

with

vac(k) = 2 + log k
2
√
k

f(k,∆) = π
√

∆(coth(
√

2π
√
k∆)− 1)√

2
+ log(1− e−2

√
2π
√
k∆)

2
√
k

+
π
√

∆
(
coth

(√
2π
√

∆
k

)
− 1

)
√

2k
− log(1− e−2

√
2π
√

∆
k )

2
√
k

. (C.15)

Note that the equations (C.14) are indeed equivalent to derivatives (with respect to k,
evaluated at k = 1) of (B.12) at c = 1.

C.2 c = 2 reconsidered

The c = 2 free boson is labeled by a metric and B field, which gives four real moduli in
total. These can be repackaged into two elements of the upper half plane as [36]:

ρ = B + i
√
det G, σ = G12

G11
+ i

√
det G
G11

. (C.16)

T -duality acts as two independent elements of SL(2,Z) acting on ρ and σ in the usual way.
In terms of these coordinates, the spectral decomposition of the reduced c = 2 partition
function is:

Ẑc=2(τ, ρ, σ) = Ê1(τ) + Ê1(ρ) + Ê1(σ)− 3
π

(
4− γE − 3 log(4π)− 48ζ ′(−1)

)
+ 1

4πi

∫ 1
2 +i∞

1
2−i∞

ds
Ẽs(τ)Ẽs(ρ)Ẽs(σ)

Λ(s)Λ(1− s)

+ 8
∞∑
n=1

ν+
n (τ)ν+

n (ρ)ν+
n (σ)

(ν+
n , ν

+
n )

− 8i
∞∑
n=1

ν−n (τ)ν−n (ρ)ν−n (σ)
(ν−n , ν−n )

. (C.17)

(See e.g. section 3.1.2 of [16] for derivation.) In (C.17), the function Ê1 is defined as

Ê1(τ) := lim
s→1

Es(τ)− 3/π
s− 1

= y − 3
π

log y + 6
π

(
1− 12ζ ′(−1)− log 4π

)
+
∞∑
j=1

12σ1(j)e−2πjy cos(2πjx)
j

. (C.18)

Let us derive the scalar crossing equation at c = 2. We first assume the theory is
a Narain CFT. As usual let us denote the set of scalar operators under the U(1)2 chiral
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algebra excluding the vacuum, as S. (Of course, S depends on the moduli of the theory,
which for c = 2 we denote by ρ, σ, but we will suppress that.) The partition function of
these scalars is given by

y

(
1 +

∑
∆∈S

e−2π∆y
)

:=
∫ 1/2

−1/2
dxẐc=2(τ, ρ, σ)

= y − 3
π

log y + Ê1(ρ) + Ê1(σ) + 3
π

(
−2 + 24ζ ′(−1) + γE + log 4π

)
+ 1

4πi

∫ 1
2 +i∞

1
2−i∞

ds
(Λ(s)ys + Λ(1− s)y1−s)Ẽs(ρ)Ẽs(σ)

Λ(s)Λ(1− s)

= y − 3
π

log y + Ê1(ρ) + Ê1(σ) + 3
π

(
−2 + 24ζ ′(−1) + γE + log 4π

)
+ 1

2πi

∫ 1
2 +i∞

1
2−i∞

ds
ysẼs(ρ)Ẽs(σ)

Λ(1− s) . (C.19)

Let us move the contour in s to the right past all the poles. The function Ẽs has simple poles
at s = 0, 1 (which can be seen from (C.1)). Moreover, Λ(1−s) = π

1
2−sΓ(s− 1

2)ζ(2s−1) has
zeros whenever 2s−1 is a nontrivial zero of the Riemann zeta function. Thus the integrand
has simple poles that we cross at s = 1, 1+zn

2 , 1+z∗n
2 , where zn is a nontrivial zero of the

Riemann zeta function (with positive imaginary part).15 A picture of the pole structure is
given in figure 1 (where we move the pole at s = c

2 to s = 1).
We then get the equation:

y

(
1 +

∑
∆∈S

e−2π∆y
)

=− 3
π

log y + 3
π

(
−2 + 24ζ ′(−1) + γE + log 4π

)
+ Ê1(ρ) + Ê1(σ)

+
∞∑
k=1

Re

4π
zk
2 Λ(1+zk

2 )2E 1+zk
2

(ρ)E 1+zk
2

(σ)

2Γ
( zk

2
)
ζ ′(zk)

y
1+zk

2


+ 1

2πi

∫ γ+i∞

γ−i∞
ds
ysẼs(ρ)Ẽs(σ)

Λ(1− s) , (C.20)

where γ > c
2 = 1. This integral is a special case of the one studied in (3.21), which can be

done exactly to give us:

1 +
∑
∆∈S

e−2π∆y =− 3
π

log y
y

+
3
π (−2 + 24ζ ′(−1) + γE + log 4π) + Ê1(ρ) + Ê1(σ)

y

+
∞∑
k=1

Re

4π
zk
2 Λ(1+zk

2 )2E 1+zk
2

(ρ)E 1+zk
2

(σ)

2Γ
( zk

2
)
ζ ′(zk)

y
−1+zk

2


+ 1
y
√
π

∑
∆∈S

∞∑
n=1

b(n)U
(
−1

2 , 1,
2π∆n2

y

)
e
− 2π∆n2

y . (C.21)

The sum over k in (C.21) falls off exponentially in k so the sum is indeed convergent.
15The double pole at s = 1 in the numerator of the integrand becomes a simple pole when canceled by

the simple pole at s = 1 in the denominator. There is also a pole at s = 0, but since we move the contour
to the right we can ignore it.
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The generalization to any U(1)2 CFT at c = 2 is straightforward. We again need to
subtract Ê1(τ) to render the reduced partition function square-integrable, and a gap to
the first excited state constrains the poles we cross in s to only be at s = 1, 1+zn

2 , 1+z∗n
2

(see appendix A). Finally, the same arguments as in section 3.2 let us compute the non-
perturbative corrections at high temperature to get:

1 +
∑
∆∈S

e−2π∆y =− 3
π

log y
y

+ εc=2(µ)
y

+
∞∑
k=1

Re
(
δk,c=2 y

−1+zk
2

)

+ 1
y
√
π

∑
∆∈S

∞∑
n=1

b(n)U
(
−1

2 , 1,
2π∆n2

y

)
e
− 2π∆n2

y . (C.22)
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