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1 Introduction

Since the discovery that the Maximally Helicity Violating (MHV) tree amplitudes [1] can
be utilized to build other amplitudes [2], there has been a tremendous progress in our
understanding of what might be the most appropriate and effective building blocks of
amplitudes. These definitely are not the ordinary Feynman diagrams — their number
grows dramatically, they are not gauge invariant and — at loop level — they often posses
singularities that cancel in a sum of diagrams. Currently, the most effective methods of
amplitude calculation are commonly referred to as the “on-shell methods”. The basic idea
is to use on-shell amplitudes themselves as the building blocks. This has a realization
either in unitarity methods for loop calculations [3–7], or as the so-called Britto-Cachazo-
Feng-Witten (BCFW) method [8–10], which utilizes on-shell amplitudes with momenta
deformed into complex plane as the building blocks. Moreover, it has been recognized,
that the on-shell diagrams are part of a yet more general approach to scattering theory,
that can be formulated purely in geometrical terms [11].
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Despite the fact that the Cachazo-Svrcek-Witten (CSW) method [2] does not give the
fewest number of diagrams, its great advantage is that all the building blocks are simply
the MHV amplitudes with spinor products continued off-shell; as is known they have an
extremely simple form for any number of gluons (see [12] for a recent proof). It was
shown [13], that it is possible to formulate a classical action that incorporates the MHV
vertices by applying a canonical field transformation to the light-cone gauge Yang-Mills
action (see also [14–19] for further developments). It was also recognized, that the field
transformations can be expressed by straight infinite Wilson lines lying on the so-called
self-dual plane [20, 21].

Due to the presence of only the MHV-type vertices (+ · · ·+−−), amplitudes that have
less then two minus helicity are zero in this approach. While at tree level (+ · · ·+) and
(+ · · · + −) on-shell amplitudes are indeed zero, this is not the case at loop level [22, 23].
Indeed, these amplitudes necessarily involve the self-dual vertex (+ + −) that has been
removed by the field redefinition (see eg. [24–28] for discussion of the amplitudes in the self-
dual sector). There have been successful attempts to promote the classical MHV action to
the quantum level, focusing however only on the all-plus helicity amplitudes. In particular,
in [15] the dimensional regularization and careful analysis of the S-matrix equivalence
theorem has been used to show the presence of the all-plus amplitudes. Unfortunately, the
simple form of the MHV vertices and the field transformation is the feature of the four
dimensional theory only. In [17], on the other hand, a fully 4D regularization scheme has
been used, which requires special counter-terms at one loop. The Authors showed that the
self-energy counterterm (++) leads to all-plus one loop amplitudes in the MHV action,
after the field transformation is applied.

In the present work, we suggest another, more general, path to promote the classical
MHV theory to the quantum level. The method can be summarized as follows. First, we
derive the one loop effective action for the light cone Yang-Mills theory, which therefore
accounts for all one loop diagrams of any helicity. Then, we apply the field transforma-
tion [13], to obtain not only the classical MHV action, but also all one loop contributions
including the non-MHV one loop diagrams, by construction.

The significance of our work is that the method can be rather readily generalized to
other formulations of gluodynamics, obtained by nonlinear transformation of the classical
Yang-Mills fields. For example, in [29] an extension of the MHV action was formulated,
that has no triple gluon interactions at all, reducing further the number of diagrams at
the tree level as compared to the MHV theory. This new action has also missing loop
contributions, similar to the MHV theory. We expect, that the approach we developed in
the present work can be applied to retrieve the missing loop contribution in the new action
as well, as the one-loop effective action approach seems the universal approach to define
such theories at loop level.

Our paper is organized as follows. In section 2 we review, using the self-dual Yang-
Mills theory, the approach of effective action to develop quantum correction. In section 3
we use this approach to develop one-loop quantum corrections to the MHV action, which
is the primary result of the present work. In section 4 we use the one-loop effective MHV
action to compute (+ + ++) and (+ + +−) one-loop amplitudes validating the method.
In section 5 we summarize the work and discuss future directions.
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2 One-loop effective action for self-dual Yang-Mills theory

Let us start with a brief review of the approach that will be used to develop quantum
corrections to the MHV action. Let us begin with a simple case of the self-dual (SD)
Yang-Mills theory. The gauge field in this theory satisfies the self-duality condition F̂µν =
?F̂µν , where F̂µν = Fµνa ta, with ta being generators of the SU(N) in the fundamental
representation.1 It is known that, such a theory can be obtained by a truncation of the
light-cone formulation of the Yang-Mills theory [25], which contains only “physical” vertices
with an on-shell helicity assignment connected by scalar propagators [30] (see also a modern
re-derivation in [31]). More precisely, the full Yang-Mills light-cone action contains (++−),
(−−+) and (+ +−−) helicity vertices (see section 3.1 for the full action); the SD action
is obtained by retaining only the first vertex:

SSD[A•, A?] =
∫
dx+d3x

[
−Tr Â•�Â? − 2igTr ∂−1

− ∂•Â
•
[
∂−Â

?, Â•
]]
, (2.1)

where we introduced the following double-null coordinates (see [20]):

v+ = vµη
µ , v− = vµη̃

µ , (2.2)
v• = vµε

+µ
⊥ , v? = vµε

−µ
⊥ , (2.3)

with basis vectors given by

ηµ = 1√
2

(1, 0, 0,−1) , η̃µ = 1√
2

(1, 0, 0, 1) , (2.4)

ε±µ⊥ = 1√
2

(0, 1,±i, 0) . (2.5)

We also introduced a notation for three-vectors in these coordinates:

x ≡
(
x−, x•, x?

)
(position space) , (2.6)

p ≡
(
p+, p•, p?

)
(momentum space) . (2.7)

In these coordinates, the scalar product of two four-vectors reads u ·w = u+w−+ u−w+−
u•w?−u?w• and, in particular, � = 2(∂+∂−−∂•∂?). Notice, that the action (2.1) contains
just two transverse fields

Â• = − 1√
2

(
Âx + iÂy

)
, (2.8)

Â? = − 1√
2

(
Âx − iÂy

)
, (2.9)

that in the on-shell limit correspond to the two transverse helicity projections. The Â+

field has been set to zero owing to the light-cone gauge choice, whereas Â− is integrated
out, or, equivalently, eliminated using the equation of motion (EOM).

1We use the following normalization of the color generators:
[
ta, tb

]
= i
√

2fabctc and Tr(tatb) = δab.
To account for the additional factors of

√
2 in this normalization, we re-scale the coupling constant as

g → g/
√

2.
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The generating functional for the Green’s functions is given as

Z[J ] =
∫

[dA] ei(SSD[A]+
∫
d4xTrĴj(x)Âj(x)) , (2.10)

where the index j runs over transverse components j = •, ?; the lower index coordinates
are defined as v• = −v? and similar for v?. In order to derive the one loop-effective action,
we shall expand the action around a classical solution Âc[J ] = (Â•c [J ], Â?c [J ]) of the EOM:

δSSD[A]
δÂj(x)

∣∣∣∣∣
Â=Âc

+ Ĵj(x) = 0 . (2.11)

Out of the two equations above, only the equation for Â• field is dynamical and is often
called the self-dual equation:

�Â• + 2ig∂−
[
(∂−1
− ∂•Â

•), Â•
]

+ Ĵ• = 0 . (2.12)

If we take the external currents to be supported on the light cone, the solution Â•c [J ]
provides a generating functional for the Berends-Giele type tree-level off-shell currents [32],
with all gluons having positive helicity, see for example [26]. It also turns out [20, 21], that
the solution Â•c [J ] is actually an inverse functional to the following, direction-integrated,
straight infinite Wilson line

−�−1J•a [A] (x) =
∫ ∞
−∞

dαTr
{ 1

2πg t
a∂− P exp

[
ig

∫ ∞
−∞

ds ε+
α · Â

(
x+ sε+

α

)]}
, (2.13)

where
ε±µα = ε±µ⊥ − αη

µ . (2.14)

This fact is related to the integrability of the self-dual theory.
Up to the second order in fields, the expansion of the action around the classical

solution Âc[J ] reads

SSD[A] +
∫
d4xTrĴi(x)Âi(x) = SSD[Ac] +

∫
d4xTrĴi(x)Âic(x)

+
∫
d4xTr

(
Âi(x)− Âic(x)

)(δSSD[Ac]
δÂi(x)

+ Ĵi(x)
)

+ 1
2

∫
d4xd4yTr

(
Âi(x)− Âic(x)

) δ2SSD[Ac]
δÂi(x)δÂj(y)

(
Âj(y)− Âjc(y)

)
+ . . .

(2.15)

The linear term is zero due to the EOM (2.11), while the integration over the quadratic
term in the partition function gives

ZSD[J ] ≈
[
det

(
δ2SSD[Ac]

δÂi(x)δÂj(y)

)]− 1
2

exp
{
i

(
SSD[Ac] +

∫
d4xTrĴi(x)Âic(x)

)}
. (2.16)

– 4 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
2

The functional determinant can be slightly simplified owing to the fact that the action is
linear in Â?: √√√√det

(
δ2SSD[Ac]

δÂi(x)δÂj(y)

)
= det

(
δ2SSD[Ac]

δÂ?(x)δÂ•(y)

)
. (2.17)

Using the known representation for a functional determinant in terms of an exponential of
a logarithm, we get

ZSD[J ] ≈ exp
{
iSSD[Ac] + i

∫
d4xTrĴi(x)Âic(x)− Tr ln

(
δ2SSD[Ac]

δÂ?(x)δÂ•(y)

)}
, (2.18)

where the second trace goes over all degrees of freedom of the matrix under the loga-
rithm, including the positions. In order to simplify the notation, in what follows, we shall
use a very convenient “collective index” convention. That is, we shall use a single index
I, J,K, . . . to collectively denote color indices, position, etc. summation over such an index
thus corresponds to both summation and integration. Using that notation, the argument
of the logarithm reads

δ2SSD[Ac]
δA?IδA•J

= −�IJ − (V−++)IJK A
•K
c . (2.19)

The vertex above is a shorthand notation for the (−++) helicity triple gluon vertex, which
in our normalization reads

V abc
−++(x, y, z) = 2gfabcδ4(x− y)δ4(x− z) (ωy − ωz) ∂−(x) , (2.20)

where the differential operator ωx is defined as

ωx = ∂−1
− (x)∂•(x) . (2.21)

In the brackets on the r.h.s. we denote variables on which the derivatives act.
Equation (2.18) provides an approximation to the full generating functional, taking

into account all one-loop contributions. Let us now briefly recall, how one makes this
fact explicit. First, we factor out the inverse propagator in (2.19), which together with
the logarithm constitutes an (inverse) determinant det(�), which we disregard from the
generating functional. Expanding the remaining logarithm and focusing on the generating
functional for the connected contributions, we have

WSD[J ] = SSD[Ac] + JIA
•I
c + iTr

∞∑
k=1

(−1)k+1

k

[
�−1
IJ (V−++)JKLA

•L
c

]k
. (2.22)

One should remember, that the Â• fields above are the classical solutions depending on
the external currents Ĵ , Âc = Âc[J ]. Since we are interested in one-loop contributions, we
make the Legendre transform

ΓSD[Ac] = WSD[J ]− JIA•Ic , (2.23)
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Figure 1. The diagrammatic content of the logarithm term in the one-loop effective action for the
self-dual Yang-Mills theory.

which renders the classical fields independent of external “currents” and introduces a new
generating functional Γ[Ac] called one-loop effective action, because it generates all contri-
butions up to one-loop:

ΓSD[Ac] = SSD[Ac] + iTr
∞∑
k=1

(−1)k+1

k

[
�−1
IJ (V−++)JKLA

•L
c

]k
=−A?Ic �IJA

•J
c −

1
2 (V−++)IJK A

?I
c A

•J
c A

•K
c

+ i�−1
IJ (V−++)JIK A

•K
c − i

1
2�
−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−++)J2I1K2
A•K1
c A•K2

c + . . . .

(2.24)

In the last line we explicitly show the tadpole and self energy-type diagram (see figure 1).
An immediate application of the one-loop effective action derived above is a direct and

simple proof of the method [16] for calculating one-loop all-plus-helicity amplitudes. In
that work, the Authors considered a holomorphic field transformation

Â• −→ B̂• = B̂•[A•] ,
Â? −→ B̂? = Â? , (2.25)

where the first transformation had exactly the same form as in [13]. In the latter work,
which we review in more detail later in section 3.2, field redefinitions have been applied to
the full Yang-Mills action to obtain the classical MHV action. There, the second transfor-
mation — for the ? field — was chosen in such a way that the transformation is canonical
and thus, effectively, there is no Jacobian for the field transformation. In [20] it has been
shown, that the transformation for the • field is actually given by the same Wilson line as
in (2.13):

B•a[A•] (x) =
∫ ∞
−∞

dαTr
{ 1

2πg t
a∂− P exp

[
ig

∫ ∞
−∞

ds Â•
(
x+ sε+

α

)]}
, (2.26)

where we used the fact that ε+
α · Â = Â• in light-cone gauge. Applying the transforma-

tion (2.25) to the generating functional we have

ZSD[J ] =
∫

[dB] det
(
δA•I

δB•J

)
exp

{
iSSD[B•, B?] + i A•I [B•]J•I + i B?KJ?K

}
, (2.27)

where Â•[B•] is an inverse functional to (2.26), which was first calculated in [14] and next
obtained in the Wilson-line-like form in [21]. Notice, that

Â•[B•] = Â•c [J ] . (2.28)

– 6 –
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with Ĵ• = −�B̂•. As demonstrated in [16], the Jacobian in (2.27) gives rise to the all-plus
helicity one-loop amplitudes. In order to see this from the one-loop effective action, let us
go back to eq. (2.18) and note that, from (2.11) we have

δ2S[Ac]
δÂ•(y)δÂ?(x)

= δĴ•[A•c ](x)
δÂ•(y)

, (2.29)

where we used Ĵ? = −Ĵ•. Thus, to one-loop,

ZSD[J ] ≈
[
det

(
δĴ•[A•c ](x)
δÂ•(y)

)]−1

exp
{
iSSD[Ac] + i

∫
d4xTrĴi(x)Âic(x)

}

= det
(
δÂ•c [J ](y)
δB̂•(x)

)
exp

{
iSSD[Ac] + i

∫
d4xTrĴi(x)Âic(x)

}
.

(2.30)

Above, we substituted Ĵ• = −�B̂• in the first line and discarded the det(�) factor to
obtain the second line. We see, that the equation following from the holomorphic field
redefinition (2.27) and the one above, which follows from the one-loop effective action,
generate exactly the same one loop amplitudes.

3 One-loop effective action for MHV vertices

In order to obtain the MHV action which includes all the ingredients necessary to obtain
one-loop amplitudes, we shall apply the following strategy. First, we derive the one-loop
effective action for the full Yang-Mills theory on the light cone. Next, we apply the field
transformations to obtain the MHV action and all the required one loop diagrams. Inter-
estingly, as we shall see, this procedure does not require evading the S-matrix equivalence
theorem in dimensional regularization, as in [15], or generating missing contributions from
the special Lorentz-restoring counter terms in 4D scheme, as in [17]. In the effective action
approach, the missing contributions are present regardless of the regularization procedure.
Obviously, in 4D scheme we shall still need the Lorentz-restoring counterterms to obtain
consistent results, but the missing contribution will be already present.

3.1 One-loop effective action for Yang-Mills theory on the light cone

The full Yang-Mill action on the light cone includes, in addition to the self-dual part, also
(− − +) and (− − ++) helicity vertices. Using the notation from the previous section it
reads

SYM [A•, A?] =
∫
dx+

∫
d3x

{
− Tr Â•�Â? − 2igTr ∂−1

− ∂•Â
•
[
∂−Â

?, Â•
]

− 2igTr ∂−1
− ∂?Â

?
[
∂−Â

•, Â?
]
− 2g2 Tr

[
∂−Â

•, Â?
]
∂−2
−

[
∂−Â

?, Â•
]}

.

(3.1)
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Applying similar steps as we did for the self-dual theory (i.e. expanding around a classical
solution and integrating the field fluctuations) we get

ZYM[J ] ≈
[
det

(
δ2SYM[Ac]
δÂi(x)δÂj(y)

)]− 1
2

exp
{
i

(
SYM[Ac] +

∫
d4xTrĴi(x)Âic(x)

)}
, (3.2)

where, using the collective indices introduced above, the functional determinant reads:

det
(

δ2SYM[Ac]
δÂi(x)δÂj(y)

)
= det

∣∣∣∣∣∣∣∣
δ2SYM[Ac]
δA?IδA•J

δ2SYM[Ac]
δA•IδA•J

δ2SYM[Ac]
δA?IδA?J

δ2SYM[Ac]
δA•IδA?J

∣∣∣∣∣∣∣∣ . (3.3)

Note, the operators in the block matrix above are non-commuting. Therefore the usual
definition for the determinant of 2×2 matrix does not hold. However, since the block sizes
are the same, the determinant can alternatively be expressed as

det

δ2SYM[Ac]
δA?IδA•K

δ2SYM[Ac]
δA?KδA•J

− δ2SYM[Ac]
δA?IδA•K

δ2SYM[Ac]
δA?KδA?L

(
δ2SYM[Ac]
δA•LδA?M

)−1
δ2SYM[Ac]
δA•MδA•J

 .
(3.4)

Above, the same indices are contracted. Since the collective indices consist of both the
discrete and continuous parameters, contracted indices result in a sum for the discrete
quantities and an integral for the continuous ones. The matrices in eq. (3.4) read:

δ2SYM[Ac]
δA?IδA•J

=−�IJ−(V−++)IJKA
•K
c −(V−−+)KIJ A

?K
c −(V−−++)LIJKA

?L
c A•Kc , (3.5)

δ2SYM[Ac]
δA•IδA•J

=−(V−++)KIJ A
?K
c −(V−−++)KLIJ A

?K
c A?Lc , (3.6)

δ2SYM[Ac]
δA?IδA?J

=−(V−−+)IJKA•Kc −(V−−++)IJKLA•Kc A•Lc , (3.7)

Substituting (3.4) in the partition function and replacing the determinant with an
exponential of a trace of a logarithm, we get:

ZYM[J ]≈ exp
{
iSYM[Ac]+i

∫
d4xTrĴi(x)Âic(x)

−1
2Trln

δ2SYM[Ac]
δA?IδA•K

δ2SYM[Ac]
δA?KδA•J

− δ
2SYM[Ac]
δA?IδA•K

δ2SYM[Ac]
δA?KδA?L

(
δ2SYM[Ac]
δA•LδA?M

)−1
δ2SYM[Ac]
δA•MδA•J

 .

(3.8)

The one-loop term here is much more complicated then in the self-dual case. Let us
start with factoring out the det(�). At first sight it may appear that we get (�)2 as evident
from the first term in the log. But the factor of one-half outside the log takes care of that.
With a bit of algebra one can see that a similar factor arises from the second term in
the log.
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Figure 2. The diagrammatic content, up to 3-point, of the logarithm term in one-loop effective
action for the Yang-Mills theory. For simplicity, we suppressed the symmetry factors and signs
associated with each diagram. The external lines with blobs represent Â•

c or Â?
c field attachments.

After factoring out the inverse propagator, the explicit expansion of the logarithm term
up to 2-point reads:

i

2

[
2�−1

IJ (V−++)JIKA
•K
c +2�−1

IJ (V−+−)JIKA
?K
c +2�−1

IJ (V−++−)JIKLA
•K
c A?Lc

+�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−++)J2I1K2
A•K1
c A•K2

c

+�−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
A?K1
c A?K2

c

+�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
A•K1
c A?K2

c

+�−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−++)J2I1K2
A?K1
c A•K2

c

−�−1
I1J1

(V++−)J1I2K1
�−1
I2J2

(V−−+)J2I1K2
A?K1
c A•K2

c +. . .

− 1
2
{

4�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−++)J2I1K2
A•K1
c A•K2

c

+4�−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
A?K1
c A?K2

c

+4 �−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
A•K1
c A?K2

c

+4 �−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−++)J2I1K2
A?K1
c A•K2

c +. . .
}]
. (3.9)

The terms above include tadpoles and bubbles with varying helicities. The expansion
produces appropriate combinatorial factors necessary to compute the amplitudes. This is
considered in detail in section 4, where we compute amplitudes. In figure 2, the expansion
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up to 3-point is displayed omitting the symmetry factors and signs associated with each
contribution for brevity. Notice, each contraction happens over opposite helicities due to
the kinetic term of the action.

The one-loop effective action, via the Legendre transform of the generating functional
for the connected Green’s function, reads

ΓYM[Ac] =SYM[Ac]

+ i

2Trln

δ2SYM[Ac]
δA?IδA•K

δ2SYM[Ac]
δA?KδA•J

− δ
2SYM[Ac]
δA?IδA•K

δ2SYM[Ac]
δA?KδA?L

(
δ2SYM[Ac]
δA•LδA?M

)−1
δ2SYM[Ac]
δA•MδA•J

 .
(3.10)

Above, it is understood that the inverse propagator was factored out.
One can see, from figure 2, that the effective action does consist of terms necessary

to compute one-loop amplitudes. However, computing them using the effective action is
not as straightforward as using the action itself. Therefore for the sake of completeness we
recall the rules for computing amplitudes starting with the effective action in appendix A.
This will also be useful later in section 4.

3.2 MHV action

Before we derive the one-loop effective action for the MHV theory, let us briefly recall it’s
structure at classical level. The MHV action is derived by applying the canonical field
transformation to the Yang-Mills light cone action (3.1) [13]. In particular, the transfor-
mation is such that the self-dual part of the Yang-Mills action is mapped onto the free
theory:

TrÂ•�Â?+2igTr∂−1
− ∂•Â

•
[
∂−Â

?, Â•
]
−→ TrB̂•�B̂? , (3.11)

where B̂• and B̂? are some new fields. The above requirement, together with the restriction
that the transformation is canonical allows to obtain the expansions of the Yang-Mills fields
in terms of the new fields. In momentum space, the solution for Â• and Â? read [20]

Ã•a(x+;P) =
∞∑
n=1

∫
d3p1 . . .d

3pn Ψ̃a{b1...bn}
n (P;{p1, . . . ,pn})

n∏
i=1

B̃•bi(x
+;pi) , (3.12)

Ã?a(x+;P) =
∞∑
n=1

∫
d3p1 . . .d

3pn Ω̃ab1{b2···bn}
n (P;p1,{p2, . . . ,pn})B̃?

b1(x+;p1)
n∏
i=2

B̃•bi(x
+;pi) ,

(3.13)

where Ã•a and Ã?a represent fields in momentum space at fixed light-cone time. The kernels
read

Ψ̃a{b1···bn}
n (P;{p1, . . . ,pn}) =−(−g)n−1 ṽ

?
(1···n)1
ṽ?1(1···n)

δ3(p1+· · ·+pn−P) Tr(tatb1 · · · tbn)
ṽ?21ṽ

?
32 · · · ṽ?n(n−1)

,

(3.14)

Ω̃ab1{b2···bn}
n (P;p1,{p2, . . . ,pn}) =n

(
p+

1
p+

1···n

)2

Ψ̃ab1···bn
n (P;p1, . . . ,pn) . (3.15)
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...

B̂•
1

B̂•
2

B̂•
3

B̂•
n

Â•
c Ψ̃n

...

B̂⋆
1

B̂•
2

B̂•
3

B̂•
n

Â⋆
c Ω̃n

Figure 3. Graphical representation for the currents that give the Yang-Mills field expansion into
the new fields B, see eqs. (3.12), (3.13).

Above, we use p1+· · ·+pn≡ p1...n and the curly braces represent the symmetrization with
respect to the interchange of the color and momentum variables. Furthermore, the ṽij , ṽ?ij
are quantities similar to spinor products 〈ij〉, [ij], with the following explicit definitions:

ṽij = p+
i

(
p?j

p+
j

− p
?
i

p+
i

)
, ṽ∗ij = p+

i

(
p•j

p+
j

− p
•
i

p+
i

)
. (3.16)

The kernels correspond to the Berends-Giele currents that encode a set of diagrams for
on-shell external legs. It will be convenient to use diagrammatic representation for those
currents, see figure 3.

Let us point out, that it is also possible to express the new fields in terms of the Yang-
Mills fields. This is interesting, because it turns out that they are given by the straight
infinite Wilson lines, integrated over all slopes [20, 21] — see eq. (2.13).

Substituting the above solutions in eq. (3.1) results in the MHV action

S
(LC)
YM [B•,B?] =

∫
dx+

(
−
∫
d3xTrB̂•�B̂?+L(LC)

−−++· · ·+L(LC)
−−+···++. . .

)
, (3.17)

where L(LC)
−−+···+ represents a generic n-point MHV vertex in the action, which in our con-

ventions has the following form

L(LC)
−−+···+ =

∫
d3p1 . . .d

3pnδ3 (p1+· · ·+pn) Ṽb1...bn
−−+···+ (p1, . . . ,pn)

B̃?
b1

(
x+;p1

)
B̃?
b2

(
x+;p2

)
B̃•b3

(
x+;p3

)
. . . B̃•bn

(
x+;pn

)
,

(3.18)

where

Ṽb1...bn
−−+···+ (p1, . . . ,pn) =

∑
noncyclic

permutations

Tr
(
tb1 . . . tbn

)
V
(
1−,2−,3+, . . . ,n+

)
, (3.19)

with the color ordered MHV vertex given by

V
(
1−,2−,3+, . . . ,n+

)
= (−g)n−2

(n−2)!

(
p+

1
p+

2

)2
ṽ∗421

ṽ∗1nṽ
∗
n(n−1)ṽ

∗
(n−1)(n−2) . . . ṽ

∗
21
. (3.20)
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3.3 One-loop effective MHV action

The idea is to start with the partition function for the light-cone Yang-Mills action eq. (3.8),
which has all the necessary ingredients to obtain one-loop amplitudes, and apply the Mans-
field’s transformation to the classical fields:

TrÂ•c�Â?c+2igTr∂−1
− ∂•Â

•
c

[
∂−Â

?
c , Â

•
c

]
−→ TrB̂•c�B̂?

c . (3.21)

The solutions to this transformation were given in the previous section. Note, there is no
Jacobian, even though it is trivial for the canonical transformation, as the field fluctuations
around classical solutions have been already integrated out. Upon substitution, the classical
light-cone Yang-Mills action becomes the MHV action, thus the partition function up to
one loop becomes:

ZMHV[J ]≈ exp
{
iSMHV[B]+i

∫
d4xTrĴi(x)Âic[B](x)− 1

2Trln
(
δ2SYM[Ac[B]]
δÂi(x)δÂj(y)

)}
, (3.22)

Above, we explicitly denoted that the Âc fields in the two last terms are functionals of the
B̂c fields, Âic = Âic[B]. These are the inverse Wilson lines discussed earlier in eqs. (3.12)
and (3.13). This has interesting consequences. Take for example the (++−) triangle
one-loop term generated by eq. (3.10) (there are two contributing diagrams with different
helicity routing in the loop with two Â•c and one Â?c fields, see in figure 2). Consider the
first term shown in the last line of figure 2. Each field Âic in this term will be replaced
by inverse Wilson lines that can be expanded to any order after transformation. This
substitution takes care of all the tree-level connections that would develop in Yang-Mills
if the (++−) vertex in the action were combined with the loop terms in eq. (3.10) (use
of the effective action to obtain scattering amplitudes is recalled in appendix A). We show
this pictorially in figure 4. Because the inverse Wilson lines already resum a subset of
diagrams for (+ · · ·+) and (−+· · ·+) helicity configurations, the number of contributions
to one loop scattering amplitude in (3.22) is reduced when compared with the number of
terms obtained via the Yang-Mills partition function eq. (3.8).

More crucially, when these solutions are substituted into the one-loop Yang-Mills ef-
fective action, in addition to the MHV vertices, we also obtain non-MHV vertices required
at one loop. Let us discuss this aspect in more details.

The terms originating from the Yang-Mills’ kinetic portion (+−), upon substitution of
the inverse Wilson lines eq. (3.12)–(3.13), are canceled out by the similar terms originating
from the (++−) vertex, leaving only the propagator (as shown in eq. (3.21)). This cancel-
lation, however, will not occur in the logarithm term in eq. (3.22), since it contains double
differentiated action with respect to fields. Consequently, after the field substitution

−�IJ−(V−++)IJKA•Kc 6=⇒ −�IJ . (3.23)

The propagator term will not give any contributions that can cancel those created by the
(++−) vertex in the logarithm term. As a result, when the Âic[B(x)] is substituted, the
vertex not only survives but also produces contributions. In other words, after factoring
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Ψ̃i B̂•

B̂•
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B̂•

B̂•
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B̂⋆

...

...

Ψ̃j

Ω̃k

Figure 4. Expansion of the Yang-Mills fields in the B fields in the loop terms of the effective action
generates tree-level connections encoded in the field transformation kernels.

out det(�) as an infinite constant, the substitution of Âic = Âic[B] will result in a non-zero
loop contribution from the self-dual part of the Yang-Mills action. These contribution
would be missing if one derived the one-loop effective action starting with the MHV action
itself.

Let us illustrate the above considerations with an example. For simplicity, consider
the one-loop two point (+−) amputated connected Green’s function. We will not discard
tadpoles in the argument below (we shall do so, however, in the practical computations
later on). Expanding the logarithm term in eq. (3.22) up to two point we get:

i

2

[
2�−1

IJ (V−++)JIKB•Kc +2�−1
IJ (V−++)JIK ΨKK1K2

2 B•K1
c B•K2

c +2�−1
IJ (V−+−)JIKB?K

c

+2�−1
IJ (V−+−)JIK ΩKK1K2

2 B?K1
c B•K2

c +2�−1
IJ (V−++−)JIKLB•Kc B?L

c

+�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−++)J2I1K2
B•K1
c B•K2

c

+�−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
B?K1
c B?K2

c

+�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
B•K1
c B?K2

c

+�−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−++)J2I1K2
B?K1
c B•K2

c

−�−1
I1J1

(V++−)J1I2K1
�−1
I2J2

(V−−+)J2I1K2
B?K1
c B•K2

c +. . .

− 1
2
{

4�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−++)J2I1K2
B•K1
c B•K2

c

+4�−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
B?K1
c B?K2

c

+4 �−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−+−)J2I1K2
B•K1
c B?K2

c

+4 �−1
I1J1

(V−+−)J1I2K1
�−1
I2J2

(V−++)J2I1K2
B?K1
c B•K2

c +. . .
}]
, (3.24)

where ΨKK1...Kn
2 and ΩKK1...Kn

2 represent position space version of the kernels eq. (3.14),
(3.15) respectively, written in the collective index notation. The terms in the expression
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eq. (3.24) above are essentially those in eq. (3.9) with the Âic[B] fields expanded up to
second order. The rules of how to use the effective action to calculate amplitude are
reminded in appendix A. For the two-point case, however, it is simpler to expand back the
classical fields Bc into external sources J . There are two kinds of contributions:

i) The first set of contributions comes from the first order expansion of B fields into
sources, which is equivalent to

i

2

[
δ2

δB•K1
c δB?K2

c

{
Trln

(
δ2SYM[Ac[B]]
δÂi(x)δÂj(y)

)}]
Bc=0

. (3.25)

Substituting eq. (3.24) we get:

i

2

[
2�−1

IJ (V−+−)JIK ΩKK2K1
2 +2�−1

IJ (V−++−)JIK1K2

+�−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−+−)J2I1K2

+�−1
I1J1

(V−+−)J1I2K2
�−1
I2J2

(V−++)J2I1K1

−�−1
I1J1

(V++−)J1I2K2
�−1
I2J2

(V−−+)J2I1K1

− 1
2
{

4 �−1
I1J1

(V−++)J1I2K1
�−1
I2J2

(V−+−)J2I1K2

+4 �−1
I1J1

(V−+−)J1I2K2
�−1
I2J2

(V−++)J2I1K1

}]
.

(3.26)

In terms of diagrams the contributing terms are:

2
− +− +

+ −+ − 2
− ++ −

− +−
+−

Ω2

+−
+

+−

−
2

ii) The tree-level connection between the classical SMHV[B] and the logarithm term.
This contribution appears due to expansion of the Bc fields in the external sources to
second order. There is only one contribution of this type to the one-loop (+−) case

− i2

[
2�−1

IJ (V−++)JIL �−1
LK

(
V MHV
−−+

)
KK1K2

]
. (3.27)

This corresponds to the following diagram:

−+
+−

− +

−2
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+
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−

+
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−
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Tr

a

hgf

ed
cb

Figure 5. Diagrams contributing to one-loop (+−) self energy diagram. For the discussion purpose,
we show the diagrams as un-traced, i.e. the loop diagrams result in connecting the x-circles. The
double line indicates a propagator.

− +

− +

− +

+

−

− +

− +

− +

−

− +

Ω̃2

−
−

−

+
−

+

+

=

− +

− +

MHV4

Figure 6. Combination of un-traced diagrams, that leads to the MHV vertex under the logarithm
term in the one-loop effective action.

Now, in order to show that the MHV vertices appear inside the loops, let us un-trace the
above contributions, i.e. cut open the loops — see figure 5. These un-traced diagrams be-
come the normal loop diagrams, shown above, after connecting the crossed circles, which
represent the differentiated leg of the action, cf. eq. (3.22). Note, that one of the differen-
tiated legs contains the propagator (denoted as double line). Contributions b) and c) arise
from the (++−) and (+−−) un-traced tadpole terms. The former involves tree level con-
nection with the 3 point MHV vertex in SMHV[B] and the latter involves expansion of Â?c [B]
to second order. It turns out, that the sum of terms a), b), c) and h) is equal to 4-point
un-traced MHV, see figure 6. The details of this identity are discussed in appendix B. We
have thus generated a loop diagram with the MHV vertex inside a loop. This is precisely
the only diagram one would obtain from the classical MHV action, applying the standard
Feynman rules. However, we see, that there are diagrams left, namely contributions d), e),
f) and g). These are precisely the terms missing in the MHV action. Notice, that these
contribution arise from the inter mixing of the self-dual part (++−) with the 3 point MHV
vertex (+−−).

The result can be further generalized. MHV action misses one-loop contributions that
originate either from the self-dual part of the Yang-Mills action alone or from the inter-
mixing of the self-dual part (++−) with the MHV vertices. This is summarized in figure 7
where we explicitly show the type of vertices entering the loops. In general, in addition
to loop diagrams involving only the MHV vertices (the top contribution in figure 7), we
naturally generate diagrams involving the non-MHV vertices in the loop.
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... MHV MHV

· · ·

... (pure MHV contributions)

...

· · ·

... (pure Self-Dual contributions)SD SD

... MHV

· · ·

... (mixed contributions)SD

Figure 7. Types of one-loop diagrams originating in the effective action for the MHV theory. The
first class (top) are diagrams that involve only MHV vertices in the loop. These are the diagrams
that would follow from classical MHV action. In addition to that, the one-loop effective action
generates diagrams which involve pure Self-Dual interactions in the loop (middle), as well as the
mixed contributions (bottom).

Let us consider the implications of the presence of the two types of loops that are
missing in the pure MHV theory (the second and third row in figure 7). It is known that the
pure MHV contributions in four dimensions generate the cut-constructible part of the loop
amplitudes [33]; the rational parts of the loop amplitudes are missing in the MHV theory.
Here, the rational parts will arise from the remaining two types of contributions in figure 7.
Although, a full proof of this claim is left for future work, let us give some general arguments
this is the case. The pure Self-Dual contributions in figure 7 involve only the self-dual vertex
(++−) in the loop. Therefore, a contribution of this type yields a purely rational all-plus
one-loop contribution, possibly convoluted with other vertices via a tree connection. This
contributes to the rational part of other one-loop amplitudes. The third type in figure 7
can yield both rational and divergent components, but when all contributions of these type
are summed over, the divergent components must cancel out yielding a rational result.
This is a direct outcome of the fact that the cut-constructible parts of the loop amplitudes
are generated by exclusively MHV contributions. In fact, in section 4.3, where we compute
the (+++−) one-loop amplitude, one can see a demonstration of such a cancellation.

In the following section we use eq. (3.22) to explicitly compute some pure gluonic
one-loop amplitudes.

4 Applications

An example of an amplitude that cannot be computed with just the MHV vertices (and thus
the classical MHV action) are one-loop all-plus helicity amplitudes (+ · · ·+) [15–17, 34–36].
This amplitude is zero at the tree level but non-zero in general [37]. At one loop it is given
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by a rational function of the spinor products, which, in our conventions reads (modulo
normalization):

Aone−loop
n (++· · ·+) = gn

∑
1≤i<j<k<l≤n

ṽ∗ij ṽjkṽ
∗
klṽli

ṽ∗1nṽ
∗
n(n−1)ṽ

∗
(n−1)(n−2) . . . ṽ

∗
21
. (4.1)

Similarly, (++· · ·+−) one-loop helicity configuration cannot be calculated from the clas-
sical MHV action and similarly is a rational function of spinor products.

In order to validate our quantum MHV action and demonstrate how it is applied, we
compute these two amplitudes for the four point case. Our strategy is the following:

i) determine the complete one-loop contributions using eq. (3.22) and rules from ap-
pendix A; these contributions will contain the inverse Wilson line kernels that include
tree-level self-dual interactions,

ii) determine the one-loop bubble, triangle and box off-shell sub-diagrams in the 4D
world-sheet regularization scheme using calculations of [38, 39]; we recalculate some
of the sub-diagrams in appendix C,

iii) convolute the sub-diagrams with the inverse Wilson line kernels to obtain the full
amplitude.

Before we discuss the amplitudes, in the next section we motivate and briefly review
the world-sheet regularization scheme.

4.1 The CQT world-sheet regularization

In order to preserve the simple form of the MHV vertices it is crucial to work in four space-
time dimensions. As discussed in [15], the dimensionally regulated MHV theory does not
preserve the simple structure of the MHV vertices eq. (3.20); indeed, the single-term holo-
morphic MHV vertices are inherently a feature of the four dimensional space. In addition,
the compact holomorphic form for the kernels eqs. (3.12) and (3.13) is no longer preserved.
Therefore to regularize the divergent integrals we use the world-sheet regularization of
Chakrabarti, Qiu, and Thorn (CQT) [38, 39] which is entirely four dimensional scheme.

A critical element of this technique is that the loop integrals are expressed in terms of
the so-called “region momenta”, instead of the line momenta, which are dual in the sense
that they provide the world-sheet description of the planar scattering process [40, 41].
Although, originally the motivation of this technique was to study the connection between
string theories and quantum field theories, it can be also used as a computational scheme
in light cone variables in four dimensions.

Consider for example a one loop planar diagram shown in figure 8. The plane gets di-
vided into regions by the internal and external lines. External lines bound regions stretching
to infinity, while loops bound confined regions in the plane. In the world-sheet represen-
tation of planar diagrams one assigns the region (or dual) momentum variables qi for the
finite regions and kj for the exterior regions. The difference of the dual momentum vari-
ables of the two regions represents the actual momentum carried by the line separating
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Figure 8. An example diagram illustrating the “region momenta” assignment. The diagram divides
the plane into regions; the momentum associated with the confined region enclosed by the loop is
q, whereas for the regions extending to infinity it is ki. The line momenta are pi for the external
lines and l for the loop momentum. The arrows denote the orientation of the line momenta.

them. We adopt the following convention:

Line Momentum = Region Momentum on right−Region Momentum on left , (4.2)

where, “right” and “left” are defined with respect to the direction of the line momentum.
Thus for the line momenta shown in figure 8, we get:

p1 = ki−kj , p2 = kl−kj , p3 = kl−ki , l= q−kj . (4.3)

The above mapping converts the loop integration to integration over the dual momentum q.
The region momenta prescription is, undeniably, applicable solely to planar diagrams.

This, however, is adequate because in the present work only the leading single-trace part
of the one-loop amplitude is calculated.

The CQT approach uses a simple exponential factor to cutoff integrals in the transverse
directions and a discretization of the “plus” light cone component of the dual momentum.
Using the notation considered above, for a generic n-loop diagram, one inserts:

exp
(
−δ

n∑
i=1

q2
i

)
(4.4)

in the loop integrand. The parameter δ is positive, and in the end it is put to zero.
Since, q2

i = 2q•q? involves only the transverse components of the loop dual-momenta, it
explicitly violates Lorentz invariance. This results in non-zero values for certain processes
violating Lorentz invariance, which in turn must be canceled by introducing appropriate
counterterms. These counterterms, and also the ones used to cancel divergences can be
systematically introduced in the effective action.

Consider for instance a generic one-loop counterterm in the CQT scheme. The exact
one-loop counterterms in this scheme are discussed in the following sub-sections where we
consider the one-loop amplitudes. These counterterms can be introduces in the Yang-Mills
partition function (3.8) as follows:

ZYM[J ]≈ exp
{
iSYM[Ac]+i

∫
d4xTrĴi(x)Âic(x)− 1

2Trln
(

δ2SYM[Ac]
δÂi(x)δÂj(y)

)
+i∆SCQT

YM [Ac]
}
,

(4.5)
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Figure 9. The first three diagrams from the left represent types of contributions to the (++++)
one-loop amplitude obtained from eq. (3.22). Inclusion of the last diagram (with external bubble)
makes the sum of all diagrams zero, what is useful to evaluate amplitude — see the main text.
Notice, that there is no propagator between the Ψn kernels and the rest of the diagram — it is
included inside the kernel, which resums the tree-level connections.

where ∆SCQT
YM are counterterms. Applying the Mansfield’s transformation that maps the

Yang-Mills theory to the MHV theory we get:

ZMHV[J ]≈ exp
{
iSMHV[B]+i

∫
d4xTrĴi(x)Âic[B](x)− 1

2Trln
(
δ2SYM[Ac[B]]
δÂi(x)δÂj(y)

)

+i∆SCQT
YM [Ac[B]]

}
,

(4.6)

where ∆SCQT
YM [Ac[B]] represents a series of counterterms originating via the substitution

of the inverse Wilson lines eq. (3.12)–(3.13). These terms explicitly cancel similar contri-
butions coming from the logarithm term.

In the following sub-sections we consider (++++) and (+++−) one loop amplitudes
using eq. (3.22).

4.2 (++++) one-loop amplitude

As discussed, the all-plus helicity one-loop amplitude is one of the amplitudes which cannot
be computed from the classical MHV action given by eq. (3.17). This is because it gets
contribution solely from the self-dual part of the Yang-Mills action eq. (3.1), which via the
Mansfield’s transformation has been mapped to a free theory. The contributions to the all-
plus amplitude arise only from the logarithm term in eq. (3.22). Using the rules reviewed
in appendix A, we obtain the three first terms depicted in figure 9 (we drop the symmetry
factors here for brevity). Interestingly, when diagrams with bubble on external leg (the last
diagram) are included with appropriate symmetry factor the sum turns out to be zero.2
Thus, one can use the bubble diagrams, which in CQT scheme have very simple form, to
obtain the triangle and box diagrams. This identity has been also explicitly demonstrated
in [38] for ordinary diagrams; here we repeated this for the diagrams from figure 9 that
contain the inverse Wilson line kernels Ψ2, Ψ3 and got the same result. Indeed, those
kernels just resum the tree-level connections and include an appropriate propagator.

The helicity non-conserving gluon self energy (++) does not vanish in CQT scheme
even on-shell. It is a consequence of worldsheet-friendly but Lorentz-violating regulariza-
tion scheme. It turns out to be a quadratic polynomial in the dual momenta [38] (see also

2This observation is attributed to Zvi Bern.
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Figure 10. The contributing terms to the all-plus (++++) helicity one-loop amplitude with
explicit region momenta assignments and symmetry factors. q is the region momentum associated
with the loop and ki with the external region. Ψ̃2 represents the inverse Wilson line kernel eq. (3.14)
expanded to second order.

appendix C):

Π++ = g2

12π2

[
k?2

0 +k?2
1 +k?0k?1

]
. (4.7)

According to the CQT procedure, such a term has to be removed from the action by an
explicit counterterm:

+ CT = 0+ + + +

generated by the ∆SCQT
YM [Ac[B]] terms in (4.6).

Once the counterterms have been introduced, we have therefore only the initial two
contribution illustrated in figure 9, which are equal to the (negative) of the sum of last
two diagrams. Both ways can be used to obtain the amplitude. Let us focus on evaluating
the first two diagrams in the CQT scheme. The box diagram and the triangle sub-diagram
have been calculated in [38]. In appendix C we review some of the calculations and cite
necessary formulae. Here we discuss the assembly of the final result.

The exact diagrams and the associated symmetry factors are shown in figure 10. Each
3-point vertex in momentum space has an associated factor of (−2g) (see eq. (2.20)).
The additional −1/2 for the box contribution �++++ comes from the sum of all such
contributions acquired by expanding the logarithm term to four points. The symmetry
factor for the triangular graph via the logarithmic expansion is 2/3. The g/2 is from the
second-order expansion of the inverse Wilson line eq. (3.12) substituted to a given leg. The
other two legs contribute similarly, resulting in the overall factor of 3.
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The triangular contributions in figure 10, which we denote as ∆++++
ij with i,j external

on-shell legs in a triangle, have been re-derived in appendix C, following [38]. They read:

∆++++
12 = −g

4

12π2

(
ṽ12p

+
2

)3
p+

3

p+
1 p

+
2 p

+
3 p

+
4 p

2
34ṽ
∗
34
, (4.8)

∆++++
41 = −g

4

12π2

(
ṽ41p

+
1

)3
p+

2

p+
1 p

+
2 p

+
3 p

+
4 p

2
14ṽ
∗
23
, (4.9)

∆++++
23 = −g

4

12π2

(
ṽ23p

+
3

)3
p+

4

p+
1 p

+
2 p

+
3 p

+
4 p

2
14ṽ
∗
41
. (4.10)

It turns out, that the box diagram �++++ can be reduced to the triangular contribu-
tions [38]. For the box term in figure 10 this reduction gives −∆++++

34 , which essentially is
the negative of the last term in figure 10, plus additional contributions. The sum of both
diagrams read

�++++ + ∆++++
34 = −g

4

12π2
p+

1
p+

1 p
+
2 p

+
3 p

+
4 ṽ
∗
12p

2
14[

ṽ41p
+
1 ṽ23p

+
3

(
ṽ41p

+
1 +ṽ23p

+
3

)
+ṽ34p

+
4

(
ṽ2

41p
+2
1 +ṽ2

23p
+2
3

)]
.

(4.11)

With a bit of algebra, one can show that the sum of all contributions in the on-shell
limit is

A++++
one−loop = g4

24π2
ṽ21ṽ43
ṽ?21ṽ

?
43
. (4.12)

The above result is consistent with the known result [22, 23], eq. (4.1) (modulo a normal-
ization).

4.3 (+++−) one-loop amplitude

The contributions generated from the effective action eq. (3.22) are shown in figure 11.
We name the legs +++−, respectively, as 1, 2 , 3 and 4 with corresponding line momenta
pi anti-clockwise. Furthermore, we consider the color ordered case and suppress the color
factors for simplicity. These diagrams, unlike in the previous case, are both ultraviolet
and infrared divergent. The strategy we use to compute the amplitude is the following.
The one-loop 1PI contributions coming from the log term in eq. (3.22), prior to the inverse
Wilson line substitution, are determined using the explicit calculation done in [38, 42],
with appropriate symmetry factors. These are then convoluted with the inverse Wilson
line kernels eq. (3.12), (3.13). Below, we describe how the final result is assembled, quoting
necessary results from [38].

The (++) gluon self-energy, as stated previously, is non-zero and will be explicitly
canceled by an appropriated counter term. The (+−) gluon self-energy is calculated in
the same way as the (++) gluon self-energy (see appendix C for a review of CQT scheme
calculations). In this case we get terms with two types of divergences. A quadratic di-
vergence, manifesting itself as a pole 1/δ, and a logarithmic divergence. The procedure of
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Figure 11. The contributions to (+++−) one-loop amplitude originating from (3.22) via the rules
discussed in appendix A. For simplicity we suppressed the symmetry factors and the line momenta
associated with each term. The kernels Ψ̃2 and Ω̃2 result from the substitution of inverse Wilson
line eq. (3.12)–(3.13). The • in the last term of line 3 represents the (+−−) three point MHV
vertex connected with the ∆+++ via a propagator.

dealing with these divergence was described in detail in [38]. The result reads [38]:

Π+−= g2

4π2 p
2

∑
q+

[ 1
q+ + 1

p+−q+

]
ln
{
q+ (p+−q+)

p+2 p2δeγ
}
− 11

6 ln
(
p2δeγ

)
+ 67

18

 , (4.13)

where γ is the Euler’s constant. Above, q is the region momenta associated with the loop
and p is the external line momentum. In CQT scheme, the q+ = 0 singularity is regulated
by the discretization procedure, as each world-sheet is parametrized by the momentum
plus component. In discretized space q+ = lP+, where l= 1,2, . . . ,N , with N being the
discretized total plus momentum entering the self-energy diagram p+ =NP+ (here P+

sets the mass scale). Thus, the summation over the discrete momentum is defined as∑
q+ =P+∑N−1

l=1 . The q+ = 0 divergence is related to the light-cone gauge choice and will
be explicitly canceled by similar contributions arising from other diagrams. Substituting
the inverse Wilson lines eq. (3.12), (3.13) to the (+−) gluon self-energy gives rise to the first
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two terms in figure 11. These contributions, with appropriate symmetry factors, arising
via the rules discussed in appendix A, read:

A+++−
SE = −g4p+

4
2π2p+

1 p
+
2 p

+
3

[
ṽ34p

+
4 p

+
2

ṽ∗21{∑
q+

[
1
q+ + 1

p+
12−q+

]
ln
(
q+
(
p+

12−q+
)

p+2
12

p2
12e

γδ

)
− 11

6 ln
(
p2

12e
γδ
)

+ 67
18

}

+ ṽ41p
+
3 p

+
1

ṽ∗32

{ ∑
q++p+

4

[
1

q++p+
4

+ 1
p+

1 −q+

]
ln
((q++p+

4 )
(
p+

1 −q+
)

p+2
14

p2
14e

γδ

)

− 11
6 ln

(
p2

14e
γδ
)

+ 67
18

}]
.

(4.14)

Above, the subscript SE stands for “Self-Energy”.
Next, we consider the diagrams involving the triangle and sword fish diagrams. In

figure 11, the last two diagrams in line 1 and the whole line 2 represents the sword fish
terms, whereas the line 3 and first 3 diagrams in line 4 represents the triangular contri-
butions. For triangle diagrams, the contributing diagrams consist in the one-loop triangle
∆+++ combined with the tree level 3-point MHV (−−+) vertex from the classical ac-
tion SMHV[B] in eq. (3.22). The remaining contributions, i.e. those involving the one-loop
triangle ∆++− and the sword fish type terms, result in the Lorentz invariance violating con-
tributions, which is again an artifact of the regularization and must therefore be canceled
by a counterterm. The counterterm has the following form [38]:

CT

−

+
+

ki

kj

kk = g3

12π2

(

k⋆i + k⋆j + k⋆k
)

.

Substitution of the inverse Wilson lines eq. (3.12)–(3.13) recovers the result of [38], which
reads:

A+++−
TS = −g4p+

4
4π2p+

1 p
+
2 p

+
3

[
ṽ34p

+
4 p

+
2

ṽ∗21

{
22
3 ln

(
p2

12e
γδ
)
− 140

9 −S
q+

3 (p1,p2)−Sq
+

3 (−p4,−p3)

+ p+
1 p

+
2

3p+2
12

}
+ ṽ41p

+
3 p

+
1

ṽ∗32

{
22
3 ln

(
p2

14e
γδ
)
− 140

9 −S
q+

2 (−p4,−p23)−Sq
++p+

4
1 (p14,p2)+ p+

2 p
+
3

3p+2
14

}]

+ g4p+
3 p

+2
2

3π2p+
1 p

+2
12

ṽ3
12ṽ
∗
34

p4
12

+ g4p+2
1 p+2

3
3π2p+

2 p
+
4 p

+2
14

ṽ3
23ṽ
∗
41

p4
14

,

(4.15)

where Sq
+

l (pi,pj) is an infrared sensitive term whose explicit form is given in appendix D.
Above, the subscript TS stands for “Triangle+Swordfish”.
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Finally, we have the box and the quartic diagrams. The quartic terms are the ones
that involve the four point vertex and two triple gluon vertices in the loop (the last term in
line 4 and first term in the line 5 in figure 11). The box diagrams, can be decomposed again
in terms of triangle like diagrams, similar to the case discussed in the previous section for
reducing �++++. The box and quartic contributions do not get contributions from the
inverse Wilson lines, thus we simply use the result of [38]:

A+++−
BQ = g4

2π2

[
−
{
p+

1 p
+
23−3p+

3 p
+
23

6p+
12p

+
23p

+
4 ṽ14ṽ∗41

+
p+

3 (−3p+
1 p

+
12+p+

3 p
+
12)

6p+
1 p

+2
12 p

+
4 ṽ12ṽ∗21

}
ṽ2

12p
+
2

+
{

p+
1 p

+
23+p+

3 p
+
23

6p+
1 p

+
3 p

+2
23 ṽ12ṽ∗21

−
p+

1 p
+
23+3p+

3 p
+
23

6p+
12p

+
3 p

+
23p

+
4 ṽ14ṽ∗41

}
ṽ12ṽ34p

+
2 p

+
4

+ p+
4

2p+
1 p

+
2 p

+
3

ṽ34p
+
4 p

+
2

ṽ∗21

{
11
3 ln

(
δeγp2

12

)
− 11

3 ln
(
δeγp2

14

)
−Sq

+

3 (p1,p2)−Sq
+

3 (−p4,−p3)+Sq
+

2 (−p4,−p23)+Sq
++p+

4
1 (p14,p2)

−2
∑
q+

[
1
q+ + 1

p+
12−q+

]
ln
(
q+
(
p+

12−q+
)

p+2
12

p2
12e

γδ

)

+2
∑

q++p+
4

[
1

q++p+
4

+ 1
p+

1 −q+

]
ln
((q++p+

4 )
(
p+

1 −q+
)

p+2
14

p2
14e

γδ

)}]
,

(4.16)

where we used the notation p+
ij = p+

i +p+
j and p+

ij
= p+

i −p
+
j . Above, the subscript BQ stands

for ′′Box+Quartic′′.
The one-loop amplitude is give by the sum of all contributions:

A+++−
one−loop =A+++−

SE +A+++−
TS +A+++−

BQ . (4.17)

Upon substitution of the above expressions, the divergent pieces explicitly cancel out and
the final simplified expression after a bit of algebra reads

A+++−
one−loop = −g

4

24π2
p+

3 ṽ
2
13

p+
1 ṽ14ṽ43ṽ?21ṽ

?
32

(p2
12+p2

14) . (4.18)

The above result is consistent with [22, 23] (modulo normalisation).

5 Summary

In this work we used the approach of the one loop effective action to compute all the
quantum corrections to the MHV theory. In order to account for terms necessary to obtain
all one-loop amplitudes, the one-loop effective action cannot be derived from the ordinary
MHV action. Instead, it has to be derived by applying the Mansfield’s transformation (3.21)
to the one-loop effective action for the Yang-Mills theory (3.10). This way, the self-dual
interactions, instead of being completely removed, are “trapped” inside the functional de-
terminant and provide the necessary non-MHV contributions after the field transformation
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is applied. The side effect is that the MHV vertices appearing in a loop are not manifest;
they however appear quite naturally after properly combining the field transformed loop
contributions and the loop-tree connections.

As discussed in our previous works [20, 21] the Mansfield’s transformation of fields
can be simply expressed in terms of the straight infinite Wilson line integrated over the
slope, see (2.26). In momentum space the Wilson line (or, more precisely, it’s inverse)
simply resums tree-level self-dual interactions. Therefore, the presented procedure reduces
formally the number of diagrams, when compared with the Yang-Mills theory, because the
inverse Wilson line solution (3.12)–(3.13) takes care of tree level connections resulting from
(++−) triple gluon vertex.

Using the four-dimensional world-sheet regularization scheme we have explicitly checked
that the one loop effective action is sufficient to compute (++++) and (+++−) one-loop
amplitudes, which could not be computed in the MHV theory.

The one-loop effective action approach is well suited to develop quantum corrections
in approaches based on classical field transformations, as the loop corrections are clearly
separated from the classical part. In particular, recently we developed an action with
no triple gluon vertices [29], which is based on canonically transformed classical MHV
action, using Wilson line functionals. Similarly to the MHV theory this action has missing
loop contributions, nevertheless we expect that applying the field transformations to the
one-loop effective MHV action (3.22) one should be able to generate all the missing loop
contributions in that theory. This, however, is planned for future work.
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A Computing amplitudes from effective action

In the following appendix we review some basic facts about effective action. In particular,
we remind how scattering amplitudes are computed using an effective action. This short
review is similar to standard textbook expositions, see for example [43].

Let us start with a generic definition of an effective action through a Legendre trans-
formation:

Γ[Ac] =W [J ]−JIAIc , (A.1)

where we use the abstract index notation. Then, it follows that

δΓ[Ac]
δAIc

=−JI ,
δW [J ]
δJI

=AIc . (A.2)
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Figure 12. Each dark blob in this figure represents the sum of connected diagrams, whereas
the white blob on the right represents the third derivative of Γ[Ac] (A.1). We see that the third
derivative of Γ[Ac] is just the connected correlation function with all three full propagators removed,
i.e. the one-particle-irreducible three-point function.

The most basic object is the two point connected Green’s function, which is a second
derivative of W with respect to the sources. In order to relate it to the effective action, we
use the following relation:

δ

δAJc

(
δW [J ]
δJI

)
= δJK
δAJc

(
δ2W [J ]
δJKδJI

)
=− δ2Γ[Ac]

δAJc δA
K
c

(
δ2W [J ]
δJKδJI

)
= δIJ . (A.3)

It follows then, that the second order derivative of the effective action is the inverse of the
two point connected Green’s function. More precisely

δ2W [J ]
δJKδJI

=−
(
δ2Γ[Ac]
δAIcδA

K
c

)−1

. (A.4)

Thus, the second order derivative of the effective action is sometimes called an inverse
propagator. When tadpoles are nonzero, the relation above has to be modified either by
explicitly including tadpoles or by modifying the definition of a proper 2-point 1PI function.

Differentiating eq. (A.4) one more time, we get

δ3W [J ]
δJLδJKδJI

=−δA
M
c

δJL

δ

δAMc

( δ2Γ[Ac]
δAIcδA

K
c

)−1


=−
(
δ2Γ[Ac]
δAMc δA

L
c

)−1(
δ2Γ[Ac]
δANc δA

K
c

)−1(
δ2Γ[Ac]
δAPc δA

I
c

)−1
δ3Γ[Ac]

δAMc δA
N
c δA

P
c

.

(A.5)

Thus, the triple functional derivative of the effective action Γ[Ac] gives the amputated 3-
point connected Green’s function, i.e. two point connected Green’s function are removed
from each leg (see figure 12).
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Figure 13. Each dark blob in this figure represents the sum of connected diagrams, whereas the
white blobs on the right represents the fourth derivative of Γ[Ac] in the first term and the third
derivative of Γ[Ac] in the second. There are two more terms just like the second term in the right.
“2 Topologies” represent these terms.

Figure 14. The figure represents the geometries obtained via the fourth derivative of Γ[Ac]. The
first term is just the four point vertex. The remaining three are four point contributions obtained
from the log term. For simplicity we suppress the symmetry factors, sign etc.

In the similar fashion we can derive:
δ4W [J ]

δJQδJLδJKδJI
= δARc
δJQ

δ

δANc

(
δ3W [J ]

δJLδJKδJI

)

=−
(
δ2Γ[Ac]
δARc δA

Q
c

)−1(
δ2Γ[Ac]
δAMc δA

L
c

)−1
δ3Γ[Ac]

δARc δA
M
c δA

T
c

(
δ2Γ[Ac]
δASc δA

T
c

)−1(
δ2Γ[Ac]
δANc δA

K
c

)−1

× δ3Γ[Ac]
δASc δA

N
c δA

P
c

(
δ2Γ[Ac]
δAPc δA

I
c

)−1

+2 Topologies

−
(
δ2Γ[Ac]
δARc δA

Q
c

)−1(
δ2Γ[Ac]
δAMc δA

L
c

)−1
δ4Γ[Ac]

δARc δA
M
c δA

N
c δA

P
c

(
δ2Γ[Ac]
δANc δA

K
c

)−1(
δ2Γ[Ac]
δAPc δA

I
c

)−1

(A.6)

This is diagrammatically represented in figure 13. Relations for higher derivatives of Γ[Ac]
can be computed in a similar fashion. In summary, the derivatives of the effective ac-
tion (A.1) give the one-particle irreducible (1PI) contributions.

For example, consider 4-point amplitude up to one-loop, in a theory consisting of 3 and
4 point vertices. There are two types of contributions. First, consider 1PI contributions
obtained through the fourth derivative of Γ[Ac]. These are shown in figure 14 The second
type of contribution arises by combining the third derivative of Γ[Ac] via a propagator or
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Figure 15. The figure represents the geometries obtained via combining the third derivative of
Γ[Ac] via a propagator or bubble diagram. For simplicity we suppress the symmetry factors, sign etc.

bubble diagram. These are shown in figure 15. These diagrams exhaust the set of possible
geometries contributing to a four point amplitude up to one-loop.

Let us summarize the use of effective action to compute amplitudes:

• The functional derivative of the effective action represent the vertices.[
δnΓ[Ac]

δAIcδA
J
c . . . δA

K
c

]
Ac=0

. (A.7)

• The vertices can be connected together using the propagator as well as the bubbles
i.e two point connected Green’s function.

B Four point MHV

In this appendix we show the details that lead to the following result:

− +

− +

− +

+

−

− +

− +

− +

−

− +

Ω̃2

−
−

−

+
−

+

+

=

− +

− +

MHV4

As pointed out before, we keep the loop terms un-traced i.e. we cut open the loop. The
double line represents a propagator.

For simplicity, we name the legs (−−++) as 1, 2, 3 and 4 anti-clockwise. We associate
the color and momentum {bi,pi} respectively to each leg, where all the external momenta
are considered outgoing. Let us focus on the color ordered case.

The first term is the un-traced 4 point Yang-Mills vertex which, using eq. (3.1), in
momentum space reads:

D1 =−1
2

4
p2

1
g2 p

+
1 p

+
3 +p+

2 p
+
4

(p+
1 +p+

4 )2 Tr(tb1tb2tb3tb4) . (B.1)

The factor of 4 arises due to the second order functional derivative of this vertex. The
second term is a tree level connection of the un-traced (++−) tadpole from the logarithm
term in eq. (3.22) with the 3 point MHV (+−−) vertex from the classical action SMHV [B],
following the rules discussed in appendix A. This is given as:

D2 =− 1
p2

1
g22

(
p?

p+−
p?4
p+

4

)
p+

1
1
p2 2

(
p•

p+−
p•2
p+

2

)
p+

3 Tr(tb1tb2tb3tb4) , (B.2)
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Figure 16. The gluon (++) self-energy diagram. q is the region momentum associated with the
loop and ki with the external region. l is the loop momentum and p is the external line momentum.
These are related to the region momenta via: l= q−k0 and p= k0−k1 respectively.

Using p= p1+p4 =−(p2+p3), and p2 = 2(p+p−−p•p?), we get:

D2 = 4
p2

1
g2 1

2
(p+

1 )2p+
3 ṽ

?
2(23)

p+
14p

+
4 p

+
2 ṽ

?
14

Tr(tb1tb2tb3tb4) . (B.3)

The third term involves substitution of the second order expansion of the Â?c [B(x)] field to
the un-traced (+−−) tadpole from the logarithm term in eq. 3.22, resulting in the kernel
Ω̃ab2{b3}

2 (p;p2,{p3}). With a bit of algebra, we get:

D3 = 4
p2

1
g2 1

2
p+

2 p
+
4 ṽ

?
(14)1

p+
14p

+
23ṽ

?
32

Tr(tb1tb2tb3tb4) . (B.4)

The final is the un-traced (−+) bubble term from the logarithm term in eq. (3.22). This
term reads:

D4 =− 4
p2

1
g2 1

2
p+

12p
+
34ṽ

?
21

p+
2 p

+
3 ṽ

?
43

Tr(tb1tb2tb3tb4) . (B.5)

The sum of all these contributions, with a bit of algebra, reads:

D1+D2+D3+D4 = 4
p2

1

g2

2

(
p+

1
p+

2

)2
ṽ∗421

ṽ∗14ṽ
∗
43ṽ
∗
32ṽ
∗
21

Tr(tb1tb2tb3tb4) . (B.6)

The right hand side of the expression above is an un-traced 4-point MHV vertex with a
propagator attached to a leg.

C Gluon Self-Energy Π++ and Triangle contribution in CQT regularisa-
tion

In this appendix, we review how basic loop calculations are carried out in the CQT scheme.
Let us first discuss the details of the (++) gluon self-energy calculation. The con-

tributing diagram is shown in figure 16 where, p and l represent external line and loop
momentum respectively. In terms of the line momenta, the expression for Π++ reads:

Π++ = 8g2
∫ d4l

(2π)4

(
p?

p+−
l?

l+

)
(p+l)+ 1

l2
1

(p+l)2

(
p?

p+−
(p+l)?

(p+l)+

)
l+ , (C.1)

= g2

2π4

∫
d4l

1
(p+)2

(
p+l?−l+p?

)(
p+ (p?+l?)−

(
p++l+

)
p?
) 1
l2(p+l)2 , (C.2)
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where we suppress the color factors. Note that the 1/l+ singularity gets canceled and thus
we can keep the plus component continuous.

Using (4.2), the line momenta can be re-written in terms of the region momenta k0,
k1 and q as:

p= k0−k1 , l= q−k0 . (C.3)

Introducing the regulator and using the Schwinger representation for the propagators

e−δq
2

(q−k0)2 (q−k1)2 =
∫ ∞

0
dt1dt2e

−t1(q−k0)2−t2(q−k1)2−δq2
, (C.4)

we have:

Π++ = g2

2π4

∫ ∞
0

dt1 dt2
∫

d4q
1(
k+

0

)2 e
−t1(q−k0)2−t2(q−k1)2−δq2 (C.5)

×
[
k+

0 (q?−k?0)−
(
q+−k+

0

)
(k?0−k?1)

][
k+

0 (q?−k?1)−q+ (k?0−k?1)
]
, (C.6)

where we set k+
1 = 0 owing to the translational invariance along the + component of the

region momentum. The q− integration results in πδ
(
(t1+t2)q+−t2p+). This can be used to

integrate out q+. We are left with the integral over transverse momentum of the Gaussian
type. Integrating out the loop region momenta and performing the change of variable
T = t1+t2,α= t1/(t1+t2), we get

Π++ = g2

2π2

∫ 1

0
dα
∫ ∞

0
dT δ

2 [αk?1 +(1−α)k?0]2

(T+δ)3 e−Tα(1−α)p2− δT
T+δ (αk0+(1−α)k1)2

. (C.7)

Integrating out T , in the limit δ−→ 0 we get:

Π++ = g2

4π2

∫ 1

0
dα [αk?1 +(1−α)k?0]2 . (C.8)

Finally, the integration over α gives:

Π++ = g2

12π2

[
k?2

0 +k?2
1 +k?0k?1

]
. (C.9)

Next, let us consider the triangular contribution to the four point (++++) amplitude
shown in figure 17. We first start with just the triangle ∆+++ sub-diagram shown in
figure 18, where the arrows represent the orientation of the line momenta. In terms of the
line momenta, the expression for ∆+++ reads:

∆+++ =−g316
∫ d4l

(2π)4

(
p?1
p+

1
− l

?

l+

)
(−p1+l)+ 1

l2
1

(−p1+l)2
1

(p3+l)2(
p?3
p+

3
− (p3+l)?

(p3+l)+

)
l+
(
p?2
p+

2
− (−p1+l)?

(−p1+l)+

)
(l+p3)+ ,

(C.10)
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Figure 17. The ∆++++
12 triangular one-loop diagram. q is the region momentum associated with

the loop and ki with the external region. Ψ̃2 represents the inverse Wilson line kernel eq. (3.14)
expanded to second order.

+ +

+

k0

k1

k2
q

p1 p2

p3

l

Figure 18. The (+++) triangle one-loop diagram. q is the region momentum associated with the
loop and ki with the external region. l is the loop momentum and pi are the external line momenta.
These are related to the region momenta via: l= q−k0 and p1 = k1−k0, p2 = k2−k1, p3 = k0−k2
respectively.

where we suppress the color factors as before. The above expression simplifies to:

∆+++ =− g
3

π4

∫
d4l

1
p+

1 p
+
2 p

+
3

(
p∗1l

+−l∗p+
1

)(
p∗2

(
−p+

1 +l+
)
−(−p∗1+l∗)p+

2

)
(
p∗3

(
p+

3 +l+
)
−(p∗3+l∗)p+

3

) 1
l2(−p1+l)2(p3+l)2

.

(C.11)

Since the 1/l+ singularity cancels out, we can again keep the plus component continuous.
Following (4.2), the line momenta are expressed in terms of the region momenta as:

p1 = k1−k0 , p2 = k2−k1 , p3 = k0−k2 , l= q−k0 . (C.12)

Expressing the diagram in terms of the region momenta we get:

∆+++ =− g
3

π4

∫
d4q

1
p+

1 p
+
2 p

+
3

(
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)
(
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)
(
(k0−k2)∗ (q−k2)+−(q−k2)∗ (k0−k2)+

)
∫ ∞

0
dt1dt2dt3e

−t1(q−k0)2−t2(q−k1)2−t3(q−k2)2−δq2
.

(C.13)
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As previously shown, integrating out the loop momenta involves three steps: first integrate
out q− to get a delta function in q+, then use it to integrate out the q+. Finally, complete
the square in the exponential and perform the Gaussian integral in q. Following this we get:

∆+++ =− g
3

π2

∫ ∞
0

dt1dt2dt3

p+
1 p

+
2 p

+
3 t123 (t123+δ)

exp
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(
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2
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t123 (δ+t123)

)
, (C.14)

where t123 = t1+t2+t3.
In the δ→ 0 limit we get:

∆+++ =− g
3

π2
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0

dt1dt2dt3
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1 p

+
2 p

+
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5
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t123

)
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(C.15)

Performing the change of variables: T = t1+t2+t3, α= t1/(t1+t2+t3), β= t2/(t1+t2+t3),
and integrating out T , we get:

∆+++ =− g
3

π2

(
ṽ12p

+
2

)3

p+
1 p

+
2 p

+
3∫

α+β<1
dα dβ

αβ(1−α−β)
α(1−α−β)(k1−k0)2+αβ (k1−k2)2+β(1−α−β)(k2−k0)2 .

(C.16)

Since, we want to obtain the contribution of this triangle to on-shell scattering at one loop,
we put the legs 1,2 on-shell: p2

1 = 0, p2
2 = 0. With this we get:

∆+++ =− g3

6π2

(
ṽ12p

+
2

)3

p+
1 p

+
2 p

+
3 p

2
3
. (C.17)

Now, let us use this to get the triangular contribution shown in figure 17. For this
we need to substitute the inverse Wilson line kernel Ψ̃2 using eq. (3.12). Doing this we
finally get

∆++++
12 =− g4

12π2

(
ṽ12p

+
2

)3
p+

3

p+
1 p

+
2 p

+
3 p

+
4 p

2
34ṽ
∗
34
. (C.18)

D Expression for Sq+

l (pi,pj)

In this appendix, for completeness, we list expressions for Sq
+

l (pi,pj) with i= 1 and j= 2,
which are needed to obtain (+ · · ·+−) one loop amplitude. These expressions were derived
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in [38, 42] and they have the following form
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(D.1)
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(D.3)
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