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1 Introduction and summary

1.1 Holographic duals of Argyres-Douglas SCFTs

Infinite families of non-trivial 4d superconformal field theories (SCFTs) can be realized by
reducing a 6d (2,0) SCFT on a Riemann surface, implementing a partial topological twist
to preserve supersymmetry. This idea dates back to the original class S constructions of
4d N = 2 SCFTs [1, 2], as well as their generalizations to 4d N = 1 theories [3–7].

One of the key ingredients in the class S constructions is a rich spectrum of allowed
punctures on the Riemann surface [1, 2]. This includes so-called irregular punctures, which
can be used to realize 4d SCFTs of Argyres-Douglas type [8–10]. The latter exhibit re-
markable features: they possess Coulomb branch operators of fractional dimensions; they
are intrinsically strongly coupled; they can be regarded as describing the interactions of
massless, mutually non-local BPS dyons, as in the original paper [11].

In this work, we investigate 4d N = 2 SCFTs that originate from the reduction of the
6d (2,0) SCFT of type AN−1, which is realized on the worldvolume of a stack of N M5-
branes. Working at large N , we may access non-trivial aspects of these 4d N = 2 SCFTs
by studying the dual AdS5 supersymmetric geometries in 11d supergravity. For the cases
in which the Riemann surface has no punctures, or only regular punctures, the dual AdS5
solutions have been known for quite some time [12, 13]. More recently, holographic duals
for a family of class S constructions with irregular punctures have been proposed [14–16].

Building on [15], in this paper we find new AdS5 supersymmetric solutions in M-
theory. Our analysis is based on a direct study of the BPS conditions in eleven dimensions
(as opposed to uplift on S4 from 7d gauged supergravity). The explicit, closed analytic
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forms of the new solutions allow us to compute exactly several holographic observables of
interest. In particular, we identify a class of BPS M2-brane operators that have fractional
conformal dimensions, together with the correct charges to be mapped to Coulomb branch
operators on the field theory side: these prompt an interpretation in terms of putative dual
SCFTs of Argyres-Douglas type.

Our geometries exhibit singularities that are interpreted in terms of internal M5-brane
sources, along the lines of [15]. Previous results in the literature, see e.g. [17–24], show
that internal sources in holography can be a powerful ingredient in the construction of non-
trivial holographic pairs. This work makes further steps in the program of characterizing
internal sources in gauge/gravity duality.

1.2 Summary of main results

We begin with an overview of the key steps in our analysis, and a summary of our findings.

The role of an additional U(1) isometry. Our starting point is the canonical form
of AdS5 solutions in 11d supergravity preserving 4d N = 2 supersymmetry [25]. The 11d
metric takes the form

ds2
11 = e2λ̃

m2

[
ds2
AdS5 + y2 e−6λ̃

4 ds2
S2 + Dχ2

1− y ∂yD
+ −∂yD4 y

(
dy2 + eD (dx2

1 + dx2
2)
)]

. (1.1)

In particular, the 6d internal space is an S2 × S1
χ fibration over a 3d base space spanned

by the coordinates x1, x2, y. A more complete review of this class of solutions, and
the definition of all quantities entering (1.1), is given in section 2.1. For the purposes of
this introduction, it suffices to recall that the warp factor λ̃ and all metric functions are
determined in terms of a single function D = D(x1, x2, y), satisfying the continual Toda
equation

∂2
x1D + ∂2

x2D + ∂2
ye
D = 0 . (1.2)

Our primary goal is to construct and analyze new solutions that may admit an inter-
pretation in terms of a 4d SCFT of Argyres-Douglas type. The search for such solutions
may be refined from the following considerations. In the geometric class S construction
of the Argyres-Douglas type SCFTs, the Riemann surface is a sphere with an irregular
puncture at one pole, and possibly a regular puncture at the opposite pole. In this setup,
two U(1) symmetries play an important role. The first is the U(1)φ symmetry that rotates
the phase of the fiber in the cotangent bundle to the Riemann surface. The second is the
U(1)z isometry of the Riemann surface (rotation along the axis connecting the two poles
of the punctured sphere). In the absence of an irregular puncture, the superconformal
U(1)r R-symmetry would simply be identified with U(1)φ. In the presence of the irregular
puncture, however, the U(1)r symmetry is a linear combination of U(1)φ and U(1)z [8–10],

∂χ = ∂φ + α∂z . (1.3)

The mixing coefficient α depends on the specific Argyres-Douglas SCFT under considera-
tion; for the cases relevant to this paper, α = N

N+k , where N is the number of M5-branes
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wrapping the Riemann surface, and k is an integer determined by the choice of irregular
puncture. As indicated on the l.h.s. of (1.3), the superconformal R-symmetry is associated
to the angle χ in (1.1).

In the search for new M-theory solutions, we would like the geometry to reflect the U(1)
mixing in field theory recalled above. In order to see this manifestly, the line element (1.1)
should admit a second U(1) isometry besides ∂χ. We thus input an additional requirement
in our construction: a U(1) isometry in the 3d base space spanned by x1, x2, y, which has
to be compatible with the Toda equation (1.2). This leads to introduce polar coordinates

x1 = r cosβ , x2 = r sin β , (1.4)

and restricts the Toda potential D to be independent of the angular coordinate β.1 This
angular coordinate is associated to a linear combination of ∂φ, ∂z that is independent to
the superconformal R-symmetry generator (1.3).

Before proceeding, it is worth clarifying an important physical point related to the
∂β symmetry. Naïvely, the fact that the solution admits a ∂β isometry seems to imply
an additional global flavor U(1) symmetry in the 4d field theory. Crucially, however, this
conclusion may be invalidated after a more careful analysis of the background 4-flux G4.
In the solutions of [14, 15], the Kaluza-Klein vector associated to ∂β is massive by virtue
of a Stückelberg coupling. This phenomenon originates from the fact that the background
4-flux G4 is invariant under ∂β , but cannot be completed to an U(1)β-equivariant closed
4-form. We will observe the same phenomenon in all new solutions discussed in this work:
even though ∂β is a symmetry of the supergravity solution, the associated Kaluza-Klein
vector is always massive via a Stückelberg mechanism of the same kind as in [14, 15].

Separable solutions to the Toda equation. At this stage, our task is to study so-
lutions to the Toda equation that are invariant under β rotations. To keep the analysis
tractable, at present we restrict our search to exact, analytic solutions. Building on previ-
ous experience in [15], we make a change of coordinates from r, y to a new pair of variables
t, u, and impose the following separability condition,

y = tu , r = r1(t)r2(u) . (1.5)

(1.5) is a technical assumption that results in a remarkable simplification: we achieve full
separation of variables in the Toda equation, thus yielding new analytic solutions.2

The 11d geometries and flux configurations given by these new solutions to the Toda
equation are studied in detail in section 3. Metric regularity and positivity dictate the
allowed region for the coordinates t, u. The solutions can be grouped accordingly into two
main classes. The first class consists of solutions in which we have a rectangular domain

1Another possible way to implement the additional U(1) isometry is to work with the x1, x2 coordinates,
demand that D be independent of x2, and periodically identify the x2 coordinate. It may be verified,
however, that this procedure is equivalent to the introduction of the polar coordinates (r, β), up to a
conformal scaling of dx2

1 + dx2
2 and a redefinition of D.

2The physics of the ansatz (1.5) is an interesting question which we reserve for the discussion section,
since our comments rely on intuition gained from a closer analysis of the solutions.
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in the (t, u) plane. The second class consists instead of solutions with a non-rectangular
domain. We perform a classification of solutions in the first class: three possibilities arise,
as depicted in figure 1, with Case II reducing to the solutions previously analyzed in [15].
We refrain from a classification of solutions in the second class, instead studying some
representative examples, depicted in figure 2.

The solutions of the first class (with rectangular domains) are singled out on physical
grounds by the structure of singularities in the 11d metric and warp factor. Indeed, for all
cases in figure 1 we can furnish an interpretation of the singularities in the 11d solution in
terms of smeared M5-brane sources of the same kind as in [15]. While the physical implica-
tions of these singularities are difficult to ascertain purely from a supergravity perspective,
the analysis of [15] has demonstrated that they can be consistently utilized as ingredients
in the construction of meaningful, non-trivial holographic pairs. This gives us confidence
that the new solutions of this paper can also be interpreted as duals to some 4d SCFTs.
We then proceed to compute various holographic observables: central charge; flavor central
charges; dimensions of some BPS operators from wrapped M2-branes. A subclass of these
BPS operators may be identified in the putative N = 2 field theory duals as Coulomb
branch operators of fractional scaling dimension, reinforcing our classification of the dual
SCFTs as of Argyres-Douglas type.

Map to an electrostatic problem: more geometries. The solutions to the axisym-
metric Toda equation can be analyzed by means of the Bäcklund transformation, a func-
tional transform that maps the Toda equation with rotational symmetry in the x1x2 plane
to the Laplace equation in R3 with axial symmetry (see e.g. [13]). In this electrostatic
picture, a solution is specified by a choice of charge density along the axis of cylindrical
symmetry in R3. From the perspective of this frame, our task is to identify those charge
densities that correspond to solution s that have an interpretation in terms of 4d SCFTs
of Argyres-Douglas type.

The next step in our analysis is to determine explicitly the Bäcklund transformation
of the analytic Toda solutions found via the separation of variables (1.5). This task is
addressed in section 4, where in particular, we identify the charge densities associated to
our new Toda solutions. These charge densities are piecewise linear continuous functions,
determined by a finite number of slope and intercept parameters. The latter are related
in a non-trivial way to the flux quanta and geometry of the solutions in the Toda frame.
Once the charge densities are identified, they can be generalized systematically, thereby
furnishing solutions which do not necessarily originate from a separable Toda potential.

We apply this circle of ideas to the solutions first discussed in [15], corresponding to
Case II in figure 1. Upon identifying and generalizing the associated charge density in
the electrostatic frame, we find solutions dual to class S constructions with one irregular
puncture, and one puncture labeled by an arbitrary Young diagram. Our analysis confirms
and extends results first reported in [16].

Comparison with field theory: central charges and Higgs operators. In the final
part of this paper, we perform a systematic comparison with 4d SCFTs of Argyres-Douglas
type. More precisely, we consider class S constructions in which the irregular puncture
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is of type A(N)
N−1[k] in the notation of [9, 10], while the regular puncture is specified by a

partition of N , or equivalently a Young diagram Y . Building on previous results in the
literature [9, 26–29] (see also [16]), we compute a closed-form expression for the large-N
behavior of the central charge of the theory with labels (A(N)

N−1[k], Y ), for arbitrary Young
diagram Y . We similarly derive general expressions for the central charge of the flavor
symmetry associated to the regular puncture, and for the Coulomb branch operators. All
the solutions constructed here have Coulomb branch operators of fractional dimensions —
one of the hallmarks of N = 2 SCFTs of Argyres-Douglas type. In the special case in which
N/k is an integer, and the regular puncture is either maximal (full) or minimal (simple),
a 4d N = 1 Lagrangian description is available [30, 31]. In these cases, the Lagrangian
description is especially useful to access Higgs branch operators across the duality.

We identify the Case II solutions of figure 1 with the Argyres-Douglas SCFTs with la-
bels (A(N)

N−1[k], Y ), for Y a regular puncture labeled by a general partition of N — these are
the same solutions that were identified in [16], and that generalize the more restrictive class
of regular puncture geometries described in [15]. The Case I solutions are a one parame-
ter generalization of these SCFTs which include an additional smeared M5-brane source,
leading to additional Higgs branch operators and larger flavor symmetry. A hypothesis for
the field theory duals of the Case I solutions is that they correspond to Argyres-Douglas
theory realized with one regular puncture and one irregular puncture which is labeled by
more refined data compared to A(N)

N−1[k]. We check that in a certain limit, this extra data
is consistent with that of a nested Young tableaux structure of the irregular puncture, as
in [9, 10]. The determination of the precise irregular puncture data and more refined tests
of this proposal are left for future work.

Plan of the paper. The rest of this paper is organized as follows. Section 2 is devoted
to the analysis of the Toda equation and its solutions obtained via separation of variables.
In Section 3 we study the geometry and flux configurations of the M-theory solutions
determined from the Toda solutions of section 2. In Section 4 we perform the Bäcklund
transform, while Section 5 is devoted to generalizations of the charge density profiles, and
their implications on the M-theory solutions. In Section 6 we perform a detailed comparison
with various large-N quantities for 4d SCFTs of Argyres-Douglas type. We conclude with
a brief discussion. The appendices collect some derivations and technical material.

Reference [16] appeared while this work was being completed, which has some overlap with
a class of solutions we present.

2 Supergravity solutions

In this section we briefly review the canonical form of AdS5 solution of 11d supergravity
preserving 4d N = 2 superconformal symmetry. These solutions are specified by a choice
of Toda potential D satisfying (2.3) below. We proceed with a construction of analytic
solutions to (2.3) based on a suitable separation of variables.
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2.1 Canonical form of AdS5 solutions in 11d supergravity

The most general AdS5 solution of 11d supergravity preserving 4d N = 2 superconformal
symmetry was characterized in Lin-Lunin-Maldacena (LLM) [25]. The 11d metric and flux
are given as [13]

ds2
11 = e2λ̃

m2

[
ds2(AdS5) + y2 e−6λ̃

4 ds2(S2) + Dχ2

1− y ∂yD
+ −∂yD4 y

(
dy2 + eD (dx2

1 + dx2
2)
)]
,

G4 = 1
4m3 volS2 ∧

[
Dχ ∧ d(y3 e−6λ̃) + y (1− y2 e−6λ̃) dv − 1

2 ∂ye
D dx1 ∧ dx2

]
. (2.1)

The line elements on AdS5 and S2 have unit radius. The quantity m is a mass scale. The
warp factor λ̃ and the function D depend on y, x1, x2 and are related by

e−6λ̃ = −∂yD
y (1− y ∂yD) . (2.2)

The function D satisfies the Toda equation

∂2
x1D + ∂2

x2D + ∂2
ye
D = 0 . (2.3)

The coordinate χ is an angular coordinate with period 2π. The 1-form Dχ is defined as

Dχ = dχ+ v , v = −1
2
(
∂x1Ddx2 − ∂x2Ddx1

)
. (2.4)

The 2-form volS2 is the volume form on a unit-radius round S2. The Killing vector ∂χ
is dual to the U(1)r R-symmetry of the 4d N = 2 SCFT, while the isometries of S2 are
mapped to the SU(2)R R-symmetry.

It is convenient to introduce polar coordinates (r, β) in the (x1, x2) plane,

x1 + i x2 = r eiβ . (2.5)

In particular, the angle β has period 2π. If the Toda potential D is independent of β, (2.3)
can be rewritten as 1

r
∂r(r ∂rD) + ∂2

ye
D = 0 . (2.6)

Convenient choice for the mass scale m. The value of the mass scale m is not
physical. It can be set to any positive value by a rescaling of the x1, x2, y coordinates and
the Toda potential, of the form x1 = ax̂1, x2 = ax̂2, y = aŷ, D(x1, x2, y) = D̂(x̂1, x̂2, ŷ),
where a > 0 is a constant. In later sections, we shall find it convenient to set

4πm3`3p = 1 , (2.7)

where `p denotes the 11d Planck length. In our conventions, G4-flux is quantized as∫
C4

G4
(2π`p)3 ∈ Z , (2.8)

where C4 is a 4-cycle in spacetime.
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2.2 Toda equation and separation of variables

We can analyze the Toda equation (2.6) by taking the coordinates y and r to be separable
functions. That is, we write

y = tu, r = r1(t)r2(u) , (2.9)

in terms of new coordinates t, u. Inserting (2.9) into the metric given in (2.1), we find a
cross term of the form

ds2
11 ⊃ −

∂yD

2y
e2λ̃

m2

(
tu+ eDr1r

′
1r2r

′
2

)
dtdu . (2.10)

Here and in the rest of this section, a prime on a function of one variable denotes differen-
tiation with respect to that variable. Imposing that this cross term vanish, we obtain an
expression for the Toda potential in terms of t, u, r1(t), r2(u),

eD = − tu

r1r′1r2r′2
. (2.11)

Plugging this back into the Toda equation (2.6), we find a pair of decoupled ODEs for r1(t)
and r2(u),

1
t

(
r1r
′′
1

(r′1)2 t
2
)′

= 1
u

(
r2r
′′
2

(r′2)2u
2
)′

⇒ r′1
r1

= − t

K1(t) ,
r′2
r2

= u

K2(u) . (2.12)

In the previous expression we have introduced the quadratic polynomials

K1(t) = −σ(t− t1)(t− t2) , K2(u) = σ(u− u1)(u− u2) , (2.13)

where σ, t1, t2, u1, u2 are constant parameters. In order to have real K1, K2, the parameter
σ must be real. The roots t1, t2 of K1 are either both real, or both complex and complex
conjugate of each other. Similar remarks apply to the roots u1, u2 of K2.

Combining (2.11) and (2.12) we may write

eD = K1K2
r2

1r
2
2
. (2.14)

If desired, the first order ODEs in (2.12) are readily integrated, yielding closed form ex-
pressions for r1(t) and r2(u), and hence for the Toda potential as a function of t, u. For
the purposes of computing the 11d metric and flux, however, the explicit expressions for
r1(t) and r2(u) are not needed: when r′1 or r′2 are encountered, they can be eliminated
using the ODEs (2.12). In conclusion, we can express the metric and flux in terms of u, t,
K1, and K2,

ds2
11 = e2λ̃

m2

[
ds2(AdS5) + t2u2e−6λ̃

4 ds2(S2) + Dχ2

1− tu∂yD

− ∂yD
K1u

2 +K2t
2

4tu

(
dt2

K1
+ du2

K2
+ K1K2
K1u2 +K2t2

dβ2
)]

,

G4 = 1
4m3volS2 ∧ d

[
−t3u3e−6λ̃Dχ+ tuv + 1

2Fdβ
]
, (2.15)
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where the quantities v, −∂yD, e−6λ̃, and F are given by

v ≡ vβdβ = −1
2r∂rDdβ =

[
1− σ

2 + σ

2
u1u2K1 + t1t2K2
K1u2 +K2t2

]
dβ

−∂yD = (u1 + u2)t− (t1 + t2)u
K1u2 +K2t2

σ

e−6λ̃ = (u1 + u2)t− (t1 + t2)u
tu(u1u2t2 − t1t2u2)

F = 2(σ − 1)ut− σ(t1 + t2)u− σ(u1 + u2)t . (2.16)

We observe that all quantities written above are real, even if we allow for complex roots of
K1 and/or K2.

Reflections in t and u. Let us consider a simultaneous flip in the signs of t, t1,2, and
the angular coordinates,

t 7→ −t , t1,2 7→ −t1,2 , χ 7→ −χ , β 7→ −β . (2.17)

The expressions (2.15) for the 11d metric and flux are invariant under these redefinitions.
By a similar token, one verifies invariance under the sign flips

u 7→ −u , u1,2 7→ −u1,2 , χ 7→ −χ , β 7→ −β . (2.18)

From (2.15), (2.16) we see that the radius squared of the S2, given by 1
4 t

2u2e−6λ̃, changes
sign as we cross t = 0 or u = 0. It follows that the allowed range for the (t, u) coordinates
is necessarily contained in one of the four quadrants of the (t, u) plane. Performing the
sign flips (2.17) or (2.18) if necessary, we can assume without loss of generality that the
allowed region in the (t, u) plane lies in the first quadrant,

t ≥ 0 , u ≥ 0 . (2.19)

Positivity of metric functions. From (2.14) we observe that K1 and K2 must either
be both positive, or both negative. As a result, K1u

2 + K2t
2 is positive or negative,

respectively. In either case, we see from (2.15) that the metric in the directions t, u, β
is non-negative definite if and only if tu(−∂yD) ≥ 0. This condition also automatically
guarantees the non-negativity of the coefficient of Dχ2 in the line element.

Without loss of generality we can assume σ < 0. Indeed, σ = 0 would give eD ≡ 0,
and σ > 0 is equivalent up to exchanging the roles of t and u. Let us define

f1(t, u) = t1t2u
2 − u1u2t

2 , f2(t, u) = (t1 + t2)u− (u1 + u2)t . (2.20)

We proceed assuming (2.19). From the expressions of (−∂yD) and e−6λ̃, we infer that we
have two possibilities to ensure non-negativity of the warp factor and metric functions,

option (a) option (b)
t ≥ 0, u ≥ 0 t ≥ 0, u ≥ 0

(t− t1)(t− t2) ≥ 0 (t− t1)(t− t2) ≤ 0
(u− u1)(u− u2) ≤ 0 (u− u1)(u− u2) ≥ 0

f1 ≥ 0, f2 ≥ 0 f1 ≤ 0, f2 ≤ 0

(2.21)
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These two sets of inequalities are the starting point for a systematic discussion of the
allowed domains in the (t, u) plane.

3 Geometries, fluxes, and observables

3.1 Rectangular domains in the (t, u) plane

Our next task is to identify possible choices for the parameters t1,2, u1,2 for which the
inequalities (2.21) define a compact region in the (t, u) plane. In what follows, we focus
on option (a) in (2.21), since option (b) gives analogous results with the roles of t and u
exchanged.

Depending on the values of u1,2, t1,2, the allowed region in the (t, u) plane, if compact,
is a polygon delimited by vertical, horizontal, and oblique lines. The latter (if present)
originate from f1 ≥ 0 and/or f2 ≥ 0. In this subsection, we provide a complete classification
of the choices of u1,2, t1,2 that yield rectangular domains in the (t, u) plane, as opposed
to polygons admitting oblique sides. The physical motivation for this restriction on the
shape of the allowed domain originates from the analysis of singularities in the supergravity
solutions. For rectangular domains, all singularities that emerge can be interpreted in terms
of smeared M5-branes sources of the same kind as in [15]. For non-rectangular domains, in
contrast, novel singularities emerge, which are interpreted in terms of M5-brane sources that
are smeared in more directions. While we refrain from a classification of non-rectangular
domains, we discuss some examples in detail in section 3.3.

Inspection of the first column of (2.21) reveals that a necessary condition for having a
rectangular, compact domain in the (t, u) plane is that all roots t1,2, u1,2 be real and such
that 0 < t1 ≤ t2, u1 < u2. As we vary u1,2 we obtain different allowed regions. Restricting
to rectangular domains, we find three cases, labeled I, II, III, and summarized in figure 1.

3.2 Flux quantization and holographic quantities

While the geometries of Cases I, II, III are different, they share some common features. In
particular, we observe that the β component vβ of the 1-form v in (2.15), (2.16) is piecewise
constant along vertical and horizontal segments in the (t, u) plane of the form t = ti or
u = ui (i = 1, 2). This implies that, along such segments, a constant linear combination of
the Killing vectors ∂χ, ∂β has vanishing norm, with different linear combinations for each
segment.

In order to elucidate the geometry in each case, we find it convenient to introduce new
angular variables φ, z. They are related to the Toda angular variables β, χ by a change of
coordinates of the form

χ =
(

1 + 1
C

)
φ− z , β = − 1

C
φ+ z , (3.1)

where C is a constant, which is given in terms of the value of the component vβ along the
horizontal segment u = u2, for each case in figure 1. The new angular coordinates are
engineered in such a way that, along the segment u = u2, the Killing vector whose norm
vanishes is simply ∂φ.
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<latexit sha1_base64="iGVsWmVvfVo1N65iBCuFxhvi8y8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK3XRQI32hcFCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni3hm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzJ8nQ6E5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXqt5VtX5frzRqeRxFOINzuAQPrqEBd9CEFjCQ8Ayv8OY8Oi/Ou/OxbC04+cwp/IHz+QN5F4+Q</latexit>

u2

Z

<latexit sha1_base64="CZz8Ln3cSslIr6IRK3GWiopln0U=">AAAB+3icbVBNT8JAEJ3iF+JXxaOXjcTEE2kJUY9ELx4xykcClWy3W9iw3ZbdrZEQ/ooXDxrj1T/izX/jAj0o+JJJXt6bycw8P+FMacf5tnJr6xubW/ntws7u3v6BfVhsqjiVhDZIzGPZ9rGinAna0Exz2k4kxZHPacsfXs/81iOVisXiXo8T6kW4L1jICNZG6tnFu4cK6o5GKQ5QlwldQKhnl5yyMwdaJW5GSpCh3rO/ukFM0ogKTThWquM6ifYmWGpGOJ0WuqmiCSZD3KcdQwWOqPIm89un6NQoAQpjaUpoNFd/T0xwpNQ48k1nhPVALXsz8T+vk+rw0pswkaSaCrJYFKYc6RjNgkABk5RoPjYEE8nMrYgMsMREm7gKJgR3+eVV0qyU3fNy9bZaql1lceThGE7gDFy4gBrcQB0aQOAJnuEV3qyp9WK9Wx+L1pyVzRzBH1ifP7q+kvQ=</latexit>

S2

Z

<latexit sha1_base64="9QXRGEyghu7JVF4AQ0dvaZLJGok=">AAACAHicbVC7TsNAEDzzDOFloKCgOREhUUU2ioAygoYyCPKQYhOdz+fklPPZuVsjRVYafoWGAoRo+Qw6/obLo4CEkVYazexqdydIBdfgON/W0vLK6tp6YaO4ubW9s2vv7Td0kinK6jQRiWoFRDPBJasDB8FaqWIkDgRrBv3rsd98ZErzRN7DMGV+TLqSR5wSMFLHPrx7cDte2uPYGwwyEmKPSyhi3LFLTtmZAC8Sd0ZKaIZax/7ywoRmMZNABdG67Top+DlRwKlgo6KXaZYS2idd1jZUkphpP588MMInRglxlChTEvBE/T2Rk1jrYRyYzphAT897Y/E/r51BdOnnXKYZMEmni6JMYEjwOA0ccsUoiKEhhCpubsW0RxShYDIrmhDc+ZcXSeOs7J6XK7eVUvVqFkcBHaFjdIpcdIGq6AbVUB1RNELP6BW9WU/Wi/VufUxbl6zZzAH6A+vzB5sqlSE=</latexit>

S1
�

Z

<latexit sha1_base64="9QXRGEyghu7JVF4AQ0dvaZLJGok=">AAACAHicbVC7TsNAEDzzDOFloKCgOREhUUU2ioAygoYyCPKQYhOdz+fklPPZuVsjRVYafoWGAoRo+Qw6/obLo4CEkVYazexqdydIBdfgON/W0vLK6tp6YaO4ubW9s2vv7Td0kinK6jQRiWoFRDPBJasDB8FaqWIkDgRrBv3rsd98ZErzRN7DMGV+TLqSR5wSMFLHPrx7cDte2uPYGwwyEmKPSyhi3LFLTtmZAC8Sd0ZKaIZax/7ywoRmMZNABdG67Top+DlRwKlgo6KXaZYS2idd1jZUkphpP588MMInRglxlChTEvBE/T2Rk1jrYRyYzphAT897Y/E/r51BdOnnXKYZMEmni6JMYEjwOA0ccsUoiKEhhCpubsW0RxShYDIrmhDc+ZcXSeOs7J6XK7eVUvVqFkcBHaFjdIpcdIGq6AbVUB1RNELP6BW9WU/Wi/VufUxbl6zZzAH6A+vzB5sqlSE=</latexit>

S1
�

Z

<latexit sha1_base64="HYAg3Gr1F8dg2UVBlzDGDs0K5Og=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRSH8uiGzdCBfuAJpTJZNoOnUzSmRuxhOLGX3HjQhG3foU7/8bpY6GtBy4czrmXe+8JEsE1OM63tbC4tLyymlvLr29sbm3bO7s1HaeKsiqNRawaAdFMcMmqwEGwRqIYiQLB6kHvauTX75nSPJZ3MEiYH5GO5G1OCRipZe97wB4g0zenQ+z1+ykJsccl5DFu2QWn6IyB54k7JQU0RaVlf3lhTNOISaCCaN10nQT8jCjgVLBh3ks1SwjtkQ5rGipJxLSfjV8Y4iOjhLgdK1MS8Fj9PZGRSOtBFJjOiEBXz3oj8T+vmUL7ws+4TFJgkk4WtVOBIcajPHDIFaMgBoYQqri5FdMuUYSCSS1vQnBnX54ntZOie1Ys3ZYK5ctpHDl0gA7RMXLROSqja1RBVUTRI3pGr+jNerJerHfrY9K6YE1n9tAfWJ8/zbmWZQ==</latexit>

sM5

Z
<latexit sha1_base64="wuSmHFKuIrr0hbfQhT4pz+ChWWU=">AAACJXicbVDJSgNBEO1xjeMW9eilMCiCGGY0qIcIghePEcwCmWHo6XRik+6ZsRchhPyMF3/FiwdFBE/+ip0F0WhB04/3XlFVL844U9rzPpyZ2bn5hcXckru8srq2nt/YrKnUSEKrJOWpbMRYUc4SWtVMc9rIJMUi5rQedy+Hev2eSsXS5Eb3MhoK3ElYmxGsLRXlyyby4QBMdAR7cA4eQHB3Z3Dr+2OJhiBoHh4LEbpD89ha9lyAKF/wit6o4C/wJ6CAJlWJ8q9BKyVG0EQTjpVq+l6mwz6WmhFOB25gFM0w6eIObVqYYEFV2B9dOYBdy7SgnUr77FIj9mdHHwuleiK2ToH1rZrWhuR/WtPo9lnYZ0lmNE3IeFDbcNApDCODFpOUaN6zABPJ7K5AbrHERNtgXRuCP33yX1A7KvonxdJ1qXDhTeLIoW20g/aRj07RBbpCFVRFBD2gJ/SCXp1H59l5c97H1hln0rOFfpXz+QVe2J+V</latexit>

u1 + u2 = 0

Z

u1u2 < 0

<latexit sha1_base64="leJ2I/Q3+hqYfIsKI9s8UF9eMQo=">AAACB3icbVDLSgMxFM3UV62vqktBgkVwVWakVJeFbuyugn1Ap5RMmmlDM5lpckcsQ3du/BU3LhRx6y+4829M21lo64ELh3PuTe49XiS4Btv+tjJr6xubW9nt3M7u3v5B/vCoqcNYUdagoQhV2yOaCS5ZAzgI1o4UI4EnWMsbVWd+654pzUN5B5OIdQMykNznlICRevlTF9gDJFXzBK7ValPsjscx6WOXS8hh3MsX7KI9B14lTkoKKEW9l/9y+yGNAyaBCqJ1x7Ej6CZEAaeCTXNurFlE6IgMWMdQSQKmu8n8jik+N0of+6EyJQHP1d8TCQm0ngSe6QwIDPWyNxP/8zox+NfdhMsoBibp4iM/FhhCPAsF97liFMTEEEIVN7tiOiSKUDDR5UwIzvLJq6R5WXTKxdJtqVApp3Fk0Qk6QxfIQVeogm5QHTUQRY/oGb2iN+vJerHerY9Fa8ZKZ47RH1ifP/qHmA0=</latexit>

Case III

Z
<latexit sha1_base64="BhOOQk27AS0eLjtqfaM9SDKMMSI="></latexit>

u1 + u2 > 0

Z

u1u2 > 0
t1u2 � u1t2 < 0

<latexit sha1_base64="mLgSf9UAEgf1I4MOHEAFv/6VK7k=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9gPaErZbDbt0s0m3Z0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8RHANjvNtldbWNza3ytuVnd29/QP78Kit41RR1qKxiFXXJ5oJLlkLOAjWTRQjkS9Yxx/f5n7nkSnNY/kA04T1IzKUPOSUgJEG9okXERj5IW4OXOxNJikJsMclDOyqU3PmwKvELUgVFWgO7C8viGkaMQlUEK17rpNAPyMKOBVsVvFSzRJCx2TIeoZKEjHdz+YPzPC5UQIcxsqUBDxXf09kJNJ6GvmmMz9XL3u5+J/XSyG86WdcJikwSReLwlRgiHGeBg64YhTE1BBCFTe3YjoiilAwmVVMCO7yy6ukfVlzr2r1+3q1US/iKKNTdIYukIuuUQPdoSZqIYpm6Bm9ojfryXqx3q2PRWvJKmaO0R9Ynz+TnJW5</latexit>

P1

Z

<latexit sha1_base64="mvjWcnqLDKonkRr1mMBzqvMzR/4=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9gPaErZbDbt0s0m3Z0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8RHANjvNtldbWNza3ytuVnd29/QP78Kit41RR1qKxiFXXJ5oJLlkLOAjWTRQjkS9Yxx/f5n7nkSnNY/kA04T1IzKUPOSUgJEG9okXERj5IW4O6tibTFISYI9LGNhVp+bMgVeJW5AqKtAc2F9eENM0YhKoIFr3XCeBfkYUcCrYrOKlmiWEjsmQ9QyVJGK6n80fmOFzowQ4jJUpCXiu/p7ISKT1NPJNZ36uXvZy8T+vl0J408+4TFJgki4WhanAEOM8DRxwxSiIqSGEKm5uxXREFKFgMquYENzll1dJ+7LmXtXq9/Vqo17EUUan6AxdIBddowa6Q03UQhTN0DN6RW/Wk/VivVsfi9aSVcwcoz+wPn8AmEyVvA==</latexit>

P4

Z

<latexit sha1_base64="mLgSf9UAEgf1I4MOHEAFv/6VK7k=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9gPaErZbDbt0s0m3Z0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8RHANjvNtldbWNza3ytuVnd29/QP78Kit41RR1qKxiFXXJ5oJLlkLOAjWTRQjkS9Yxx/f5n7nkSnNY/kA04T1IzKUPOSUgJEG9okXERj5IW4OXOxNJikJsMclDOyqU3PmwKvELUgVFWgO7C8viGkaMQlUEK17rpNAPyMKOBVsVvFSzRJCx2TIeoZKEjHdz+YPzPC5UQIcxsqUBDxXf09kJNJ6GvmmMz9XL3u5+J/XSyG86WdcJikwSReLwlRgiHGeBg64YhTE1BBCFTe3YjoiilAwmVVMCO7yy6ukfVlzr2r1+3q1US/iKKNTdIYukIuuUQPdoSZqIYpm6Bm9ojfryXqx3q2PRWvJKmaO0R9Ynz+TnJW5</latexit>

P1

Z

<latexit sha1_base64="mLgSf9UAEgf1I4MOHEAFv/6VK7k=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9gPaErZbDbt0s0m3Z0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8RHANjvNtldbWNza3ytuVnd29/QP78Kit41RR1qKxiFXXJ5oJLlkLOAjWTRQjkS9Yxx/f5n7nkSnNY/kA04T1IzKUPOSUgJEG9okXERj5IW4OXOxNJikJsMclDOyqU3PmwKvELUgVFWgO7C8viGkaMQlUEK17rpNAPyMKOBVsVvFSzRJCx2TIeoZKEjHdz+YPzPC5UQIcxsqUBDxXf09kJNJ6GvmmMz9XL3u5+J/XSyG86WdcJikwSReLwlRgiHGeBg64YhTE1BBCFTe3YjoiilAwmVVMCO7yy6ukfVlzr2r1+3q1US/iKKNTdIYukIuuUQPdoSZqIYpm6Bm9ojfryXqx3q2PRWvJKmaO0R9Ynz+TnJW5</latexit>

P1

Z

<latexit sha1_base64="R2nGdiew45KuEY1KWoVTtmY47Is=">AAACAHicbVBNS8NAEJ34WetX1IMHL4tF8FSSUtRjwYvHCvYDmhA22027dLNJdzdCKb34V7x4UMSrP8Ob/8ZNm4O2Phh4vDfDzLww5Uxpx/m21tY3Nre2Szvl3b39g0P76LitkkwS2iIJT2Q3xIpyJmhLM81pN5UUxyGnnXB0m/udRyoVS8SDnqTUj/FAsIgRrI0U2KdejPUwjFAzqCFvPM5wH3lM6MCuOFVnDrRK3IJUoEAzsL+8fkKymApNOFaq5zqp9qdYakY4nZW9TNEUkxEe0J6hAsdU+dP5AzN0YZQ+ihJpSmg0V39PTHGs1CQOTWd+rlr2cvE/r5fp6MafMpFmmgqyWBRlHOkE5WmgPpOUaD4xBBPJzK2IDLHERJvMyiYEd/nlVdKuVd2rav2+XmnUizhKcAbncAkuXEMD7qAJLSAwg2d4hTfryXqx3q2PReuaVcycwB9Ynz+VLJW6</latexit>

P2

Z

<latexit sha1_base64="R2nGdiew45KuEY1KWoVTtmY47Is=">AAACAHicbVBNS8NAEJ34WetX1IMHL4tF8FSSUtRjwYvHCvYDmhA22027dLNJdzdCKb34V7x4UMSrP8Ob/8ZNm4O2Phh4vDfDzLww5Uxpx/m21tY3Nre2Szvl3b39g0P76LitkkwS2iIJT2Q3xIpyJmhLM81pN5UUxyGnnXB0m/udRyoVS8SDnqTUj/FAsIgRrI0U2KdejPUwjFAzqCFvPM5wH3lM6MCuOFVnDrRK3IJUoEAzsL+8fkKymApNOFaq5zqp9qdYakY4nZW9TNEUkxEe0J6hAsdU+dP5AzN0YZQ+ihJpSmg0V39PTHGs1CQOTWd+rlr2cvE/r5fp6MafMpFmmgqyWBRlHOkE5WmgPpOUaD4xBBPJzK2IDLHERJvMyiYEd/nlVdKuVd2rav2+XmnUizhKcAbncAkuXEMD7qAJLSAwg2d4hTfryXqx3q2PReuaVcycwB9Ynz+VLJW6</latexit>

P2

Z

<latexit sha1_base64="R2nGdiew45KuEY1KWoVTtmY47Is=">AAACAHicbVBNS8NAEJ34WetX1IMHL4tF8FSSUtRjwYvHCvYDmhA22027dLNJdzdCKb34V7x4UMSrP8Ob/8ZNm4O2Phh4vDfDzLww5Uxpx/m21tY3Nre2Szvl3b39g0P76LitkkwS2iIJT2Q3xIpyJmhLM81pN5UUxyGnnXB0m/udRyoVS8SDnqTUj/FAsIgRrI0U2KdejPUwjFAzqCFvPM5wH3lM6MCuOFVnDrRK3IJUoEAzsL+8fkKymApNOFaq5zqp9qdYakY4nZW9TNEUkxEe0J6hAsdU+dP5AzN0YZQ+ihJpSmg0V39PTHGs1CQOTWd+rlr2cvE/r5fp6MafMpFmmgqyWBRlHOkE5WmgPpOUaD4xBBPJzK2IDLHERJvMyiYEd/nlVdKuVd2rav2+XmnUizhKcAbncAkuXEMD7qAJLSAwg2d4hTfryXqx3q2PReuaVcycwB9Ynz+VLJW6</latexit>

P2

Z

<latexit sha1_base64="/W3qdK0MhZHqNJxrBDPX9kKzjig=">AAACAHicbVBNS8NAEJ3Ur1q/oh48eFksgqeSaFGPBS8eK9haaELZbDft0s0m3d0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/OChDOlHefbKq2srq1vlDcrW9s7u3v2/kFbxakktEViHstOgBXlTNCWZprTTiIpjgJOH4LRTe4/PFKpWCzu9SShfoQHgoWMYG2knn3kRVgPgxA1exfIG49T3EceE7pnV52aMwNaJm5BqlCg2bO/vH5M0ogKTThWqus6ifYzLDUjnE4rXqpogskID2jXUIEjqvxs9sAUnRqlj8JYmhIazdTfExmOlJpEgenMz1WLXi7+53VTHV77GRNJqqkg80VhypGOUZ4G6jNJieYTQzCRzNyKyBBLTLTJrGJCcBdfXibt85p7Wavf1auNehFHGY7hBM7AhStowC00oQUEpvAMr/BmPVkv1rv1MW8tWcXMIfyB9fkDlryVuw==</latexit>

P3

Z
<latexit sha1_base64="/W3qdK0MhZHqNJxrBDPX9kKzjig=">AAACAHicbVBNS8NAEJ3Ur1q/oh48eFksgqeSaFGPBS8eK9haaELZbDft0s0m3d0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/OChDOlHefbKq2srq1vlDcrW9s7u3v2/kFbxakktEViHstOgBXlTNCWZprTTiIpjgJOH4LRTe4/PFKpWCzu9SShfoQHgoWMYG2knn3kRVgPgxA1exfIG49T3EceE7pnV52aMwNaJm5BqlCg2bO/vH5M0ogKTThWqus6ifYzLDUjnE4rXqpogskID2jXUIEjqvxs9sAUnRqlj8JYmhIazdTfExmOlJpEgenMz1WLXi7+53VTHV77GRNJqqkg80VhypGOUZ4G6jNJieYTQzCRzNyKyBBLTLTJrGJCcBdfXibt85p7Wavf1auNehFHGY7hBM7AhStowC00oQUEpvAMr/BmPVkv1rv1MW8tWcXMIfyB9fkDlryVuw==</latexit>

P3

Z

<latexit sha1_base64="/W3qdK0MhZHqNJxrBDPX9kKzjig=">AAACAHicbVBNS8NAEJ3Ur1q/oh48eFksgqeSaFGPBS8eK9haaELZbDft0s0m3d0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/OChDOlHefbKq2srq1vlDcrW9s7u3v2/kFbxakktEViHstOgBXlTNCWZprTTiIpjgJOH4LRTe4/PFKpWCzu9SShfoQHgoWMYG2knn3kRVgPgxA1exfIG49T3EceE7pnV52aMwNaJm5BqlCg2bO/vH5M0ogKTThWqus6ifYzLDUjnE4rXqpogskID2jXUIEjqvxs9sAUnRqlj8JYmhIazdTfExmOlJpEgenMz1WLXi7+53VTHV77GRNJqqkg80VhypGOUZ4G6jNJieYTQzCRzNyKyBBLTLTJrGJCcBdfXibt85p7Wavf1auNehFHGY7hBM7AhStowC00oQUEpvAMr/BmPVkv1rv1MW8tWcXMIfyB9fkDlryVuw==</latexit>

P3

Z

<latexit sha1_base64="mvjWcnqLDKonkRr1mMBzqvMzR/4=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9gPaErZbDbt0s0m3Z0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8RHANjvNtldbWNza3ytuVnd29/QP78Kit41RR1qKxiFXXJ5oJLlkLOAjWTRQjkS9Yxx/f5n7nkSnNY/kA04T1IzKUPOSUgJEG9okXERj5IW4O6tibTFISYI9LGNhVp+bMgVeJW5AqKtAc2F9eENM0YhKoIFr3XCeBfkYUcCrYrOKlmiWEjsmQ9QyVJGK6n80fmOFzowQ4jJUpCXiu/p7ISKT1NPJNZ36uXvZy8T+vl0J408+4TFJgki4WhanAEOM8DRxwxSiIqSGEKm5uxXREFKFgMquYENzll1dJ+7LmXtXq9/Vqo17EUUan6AxdIBddowa6Q03UQhTN0DN6RW/Wk/VivVsfi9aSVcwcoz+wPn8AmEyVvA==</latexit>

P4

Z
<latexit sha1_base64="mvjWcnqLDKonkRr1mMBzqvMzR/4=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9gPaErZbDbt0s0m3Z0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8RHANjvNtldbWNza3ytuVnd29/QP78Kit41RR1qKxiFXXJ5oJLlkLOAjWTRQjkS9Yxx/f5n7nkSnNY/kA04T1IzKUPOSUgJEG9okXERj5IW4O6tibTFISYI9LGNhVp+bMgVeJW5AqKtAc2F9eENM0YhKoIFr3XCeBfkYUcCrYrOKlmiWEjsmQ9QyVJGK6n80fmOFzowQ4jJUpCXiu/p7ISKT1NPJNZ36uXvZy8T+vl0J408+4TFJgki4WhanAEOM8DRxwxSiIqSGEKm5uxXREFKFgMquYENzll1dJ+7LmXtXq9/Vqo17EUUan6AxdIBddowa6Q03UQhTN0DN6RW/Wk/VivVsfi9aSVcwcoz+wPn8AmEyVvA==</latexit>

P4

Z

Figure 1. Cases that yield a rectangular domain in the (t, u) plane, as determined by the
inequalities (2.21) option (a). In all cases, 0 < t1 ≤ t2 and u1 < u2. The label S1

φ indicates that
the φ circle in the base of the Dz fibration (3.2) shrinks smoothly along that component of the
boundary of the allowed region. Similarly, the label S2 indicates a smooth shrinking of the S2. The
label sM5 stands for smeared M5-brane sources. Case III is understood to include the limiting case
t1u2 − u1t2 = 0, in which the lines defined by f1 and f2 coincide, and touch the lower right corner
of the shaded rectangle.

In terms of the new variables φ, z, it is convenient to group the coordinates t, u, φ into
a 3d base space, with the S2 and the z circle being fibered on top. The 11d line element
and flux take the form

ds2
11 = e2λ̃

m2

[
ds2(AdS5)+ t2u2e−6λ̃

4 ds2(S2)+R2
zDz

2+R2
φdφ

2−∂yD
K1u

2+K2t
2

4tu

(
dt2

K1
+ du2

K2

)]
,

G4 :=− G4
(2π`p)3 = volS2

4π ∧d
[
Y
dφ

2π−W
Dz

2π

]
, Dz= dz−Ldφ. (3.2)

In the previous expressions, the fibration of the z circle over the 3d base space is encoded in
the 1-form Dz. We have introduced a rescaled version G4 of G4, which has the advantage
of having integral periods, see (2.8) (the minus sign is for convenience). The quantities L,
Rz, Rφ, Y , W are functions of t, u. We refer the reader to appendix A for further details
on the change of coordinates (3.1) and for the expressions of C, L, Rz, Rφ, Y , W .

We now consider Cases I, II, III in turn. The results of the remainder of this subsection
are summarized in table 1.
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I II III

flux quanta {q,K,M,NW, NS}
Neff := qM

{q,K,M,N}
.

{q1, q2,K,M,NW}
Neff := q1M̃ + q2K, M̃ := M +K

relations
among fluxes Neff = NW − MNS

K N = qM Neff = NW − (q1+q2)(M̃+K)(q2M̃+q1K)
(q1−q2)(M̃−K)

∂χ = ∂φ + (. . .)∂z Neff
M+K

N
M+K

Neff
M̃+K

chol
1
12
K2N2

eff
M+K

1
12
K2N2

M+K
1
12
K2
(
N2
eff+q2(q1+q2)(M̃2−K2)

)
M̃+K(

∆(O1),∆(Oi2)
)

(KNeff
M+K ,K) ( KN

M+K ,K) (KNeff
M̃+K

,K)

other operators ∆(Oj3) = M − ∆(P1) = K
(
Neff−(q1−q2)(M̃−K)

)
M̃+K

∆(Pj2) = K

Table 1. The flux quanta, U(1)r isometry generator, holographic c-central charge, and operator
dimensions of the Case I, II, III holographic SCFTs, presented in variables most amenable to
comparison. Note that Case II is recovered from the limit of Case I for which NS → 0, in which
case NW → N . In section 5, the geometries with a monopole of charge q are generalized to monopole
profiles corresponding to general Young tableaux.

3.2.1 Case I

Geometry. The allowed region in the (t, u) plane is [0, t1]× [0, u2] as depicted in figure 1.
We observe that, in this case, the inequalities f1 ≥ 0, f2 ≥ 0 are automatically satisfied
once the other inequalities in (2.21) option (a) are satisfied. The radius Rφ of the φ circle
in the 3d base space spanned by (t, u, φ) goes to zero along the segments u = u2 and t = t1.
Along these segments, the function L in the 1-form Dz is piecewise constant,

L(t, u2) = 0, L(t1, u) = − 2(t2u2 − t1u1)
σ(t2 − t1)(u2 − u1) ≡ q . (3.3)

The jump in L at the corner (t, u) = (t1, u2) signals the presence of a monopole source for
the Dz fibration over the 3d base space (t, u, φ). The charge of the monopole source is the
quantity q in (3.3), which is automatically positive for the ranges of the parameters that
yield Case I. In order to have a well-defined geometry, the charge q must be an integer,

q ∈ N . (3.4)

The radius Rz of the S1
z fiber over (t, u, φ) has an isolated zero at the location of the

monopole point. Indeed, near the monopole the 4d geometry spanned by (t, u, φ, z) is
locally R4/Zq. Thus, for q ≥ 2, the space develops an orbifold singularity.

Along the segment P1P2, the warp factor goes to zero. In terms of the Toda angular
variables χ, β, in the limit u→ 0, the line element takes the form

ds2
11 ≈

u1/3

m2

[
u1u2t

2/3

(u1 + u2)1/3ds
2(AdS5) + u1u2t

2/3

(u1 + u2)1/3Dχ
2
]

(3.5)

+ u−2/3

m2

[
(u1 + u2)2/3

4
(
du2 + u2ds2(S2)

)
− u1u2(u1 + u2)2/3

4(t− t1)(t− t2)

(
dt2 + K2

1
t2
dβ2

)]
.
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Thus, we have M5-brane sources smeared along the t and β directions, with harmonic
function H ∝ 1/u. More precisely, the M5-branes are extended along the AdS5 and χ

directions, while they are smeared in two directions, t and β. The geometry near the
segment P4P1 is completely analogous, with a harmonic function H ∝ 1/t. These smeared
M5-branes sources are denoted with the label sM5 in figure 1. They are the same sort of
sources considered in [15].

Flux quantization. The geometry of Case I admits non-trivial 4-cycles, constructed as
follows. The 4-cycle A4,N is obtained combining the segment P3P4 with the S2 and the
Dz fiber. Notice that the S2 shrinks at P4, while the Dz fiber shrinks at the monopole
point P3. By a similar token, we define the 4-cycle A4,E by combining the segment P2P3
with the S2 and the Dz fiber. The periods of G4 over A4,N, A4,E are determined by the
values of W in (3.2) at the points P2,3,4. With the expressions recorded in appendix A, we
find∫

A4,N
G4 = −σ2 (u2 − u1)t1 ≡ K ∈ N ,

∫
A4,E

G4 = −σ2 (t2 − t1)u2 ≡M ∈ N . (3.6)

In these expressions we have fixed the mass scale m as in (2.7).
We also have 4-cycles that measure the charges of the smeared M5-brane loci, in the

spirit of a “Gaussian pillbox” from electrostatics. We take two 4-cycles,3 A4,S and A4,W,
to measure the charges of the brane stacks along the South and West edges respectively.
These are comprised of the relevant interval, the S2, and the φ circle. The associated
periods of G4 are determined by the values of Y in (3.2) at P2,3,4. The result reads

∫
A4,W

G4 = (t1 + t2)u2
2

u2 − u1
≡ NW ∈ N ,

∫
A4,S

G4 = (u1 + u2)t21
t2 − t1

≡ NS ∈ N . (3.7)

The expressions of the flux quanta K, M , NW, NS and the monopole charge q imply

M = NW

q + NS
K

. (3.8)

In particular, integrality of M imposes a constraint on the possible values for NW, NS, K,
q: Kq+NS must divide KNW. An analogous constraint was found in the solutions of [15].

With the flux quanta computed above, the χ Killing vector can be written as

∂χ = ∂φ + qM

K +M
∂z = ∂φ + Neff

K +M
∂z , Neff := qM . (3.9)

In the second step, we have defined an “effective brane charge” Neff , which will prove to
be useful in discussing the dual field theory interpretation of these solutions.

3To be proper, we construct these using intervals away from the edge, then consider the limit as we take
either t or u to zero.
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Central charge. For an AdS5 solution in 11d supergravity of the form

ds2
11 = e2λ̃

m2

[
ds2(AdS5) + ds2(M6)

]
, (3.10)

the holographic central charge is computed via the relation [32]

c = 1
27π6(m`p)9

∫
M6

e9λ̃ volM6 . (3.11)

Using our metric in (2.15), for values of the parameters yielding Case I, we can compute
c as

cI = −σ(t1u2)2(t2u2 − t1u1)
293π3(m`p)9 = 1

12
(qKM)2

K +M
= 1

12
qK2N2

eff
qK +Neff

. (3.12)

In the second step, we have fixed m according to (2.7) and we have expressed the result in
terms of the monopole charge q in (3.3) and the flux quanta defined in (3.6), (3.9).

M2-brane operators. An M2-brane wrapping a calibrated 2d submanifold C2 in the
internal space yields a BPS operator. The calibration condition reads

Y ′
∣∣
C2

= volM6(C2) , (3.13)

where the right hand side is the induced volume form from M6. The calibration 2-form
Y ′ is a bilinear in the Killing spinors [32]. For a solution in canonical LLM form (2.1), it
reads [15]

Y ′ = 1
4y

3e−9λ̃volS2 + 1
2ye

−3λ̃(1− y2e−6λ̃)dτ ∧Dχ

− 1
2τe

−3λ̃Dχ ∧ dy − 1
4
ye−9λ̃τeD

1− y2e−6λ̃
dx1 ∧ dx2 . (3.14)

In the previous expression, the quantity τ is a coordinate on the S2, which is parametrized as

ds2(S2) = dτ2

1− τ2 + (1− τ2)dϕ2. (3.15)

The explicit expression of Y ′ for the metric in (3.2) is reported in appendix A.
Let us take C2 to be the S2 on top of the monopole point P3 (at which both ∂φ and

∂z shrink). The calibration 2-form restricted on C2 reads

Y ′
∣∣
C2

= 1
4(t1u2)3

((t1 + t2)u2 − (u1 + u2)t1
(t1u2)(t1t2u2

2 − u1u2t21)

)3/2
volS2 = 1

4volS2 . (3.16)

On the other hand, the induced volume form on C2 is

ds2(C2) = 1
4
t21u

2
2

t21u
2
2
ds2(S2) = 1

4ds
2(S2) . (3.17)
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The calibration condition (3.13) is then satisfied. We can compute the conformal dimension
of an M2-brane operator O via [32]

∆(O) = 1
4π2(m`p)3

∫
C2
e3λ̃volM6(C2). (3.18)

If O1 denotes the BPS operator associated to C2 as above, we find

∆(O1) = t1u2 = qKM

M +K
= qKNeff
qK +Neff

. (3.19)

We can define another submanifold B2 by considering the interval P3P4 and the linear
combination of the z and φ circles that does not vanish along this interval. That is, we
choose the Dz fiber. This 2-manifold sits at a single point on the S2. We notice that B2
is not a 2-cycle, but rather describes an open M2-brane ending on a smeared M5-brane
source. The form Y ′ can be computed as

Y ′
∣∣
B2

= τ∗(2 + λ)(u1 − u2)
8

√
u1t+ u2(t− t1 − t2)
u2

2t(u1t2 − t1t2u2) dt ∧Dz , (3.20)

while the induced metric is

ds2(B2) = R2
z(t, u2)Dz2 + (t1 + t2)u2 − (u1 + u2)t

4tu2(t− t1)(t− t2) dt2 . (3.21)

One can readily check that the calibration condition is satisfied, provided we choose τ∗ = 1.
Let O2 denote the operator associated to B2. Since B2 is an open M2-brane, we expect
O2 to admit a degeneracy due to possible choice of boundary conditions for the M2-brane
ending on the M5-branes. Specifically, we expect O2 to not describe a single operator
but several operators Oi2 indexed by the 2NW − 1 choices of boundary conditions.4 The
dimension of each Oi2 is

∆(Oi2) = −σ2 t1(u2 − u1) = K . (3.22)

We can construct yet another submanifold D2 using the interval P3P2 and the Dz
fiber. We find that Y ′ takes the form

Y ′
∣∣
D2

= τ∗σ(t2 − t1)
4

√
t2u+ t1(u− u1 − u2)
t21u(t2u2 − t1u1u2) du ∧Dz , (3.23)

and the induced metric becomes

ds2(D2) = R2
z(t1, u)Dz2 − (t1 + t2)u− (u1 + u2)t1

4t1u(u− u1)(u− u2) dt2. (3.24)

The calibration condition is satisfied provided τ∗ = 1, and we again have a collection of
BPS operators, denoted collectively Oj3, with conformal dimension

∆(Oj3) = −σ2u2(t2 − t1) = M = Neff
q

. (3.25)

The degeneracy of these operators follows the same argument above, giving us that the
index j runs from 1 to 2NS − 1.

4This degeneracy can be argued by considering how the M2-brane ends on the stack of M5-branes. For
each M5-brane in the stack, we are free to decide whether the M2-brane ends on it or not. Taking into
account that the M2-brane must end on a least one M5-brane, we arrive at 2NW − 1 possible choices for
boundary conditions.
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3.2.2 Case II

The allowed domain in Case II is [0, t1]× [0, u2], the same as in Case I, see figure 1. Case
II can be regarded as a limiting case of Case I, in which u1 + u2 > 0 is sent to zero. The
salient new feature of Case II is the behavior of the metric near the segment P1P2. One
can verify that in this case the S2 shrinks smoothly, while the warp factor remains finite.
Compared with Case I, we still have a monopole source for Dz at P3, and a smeared
M5-branes source along P4P1.

The solutions of Case II are the same as the solutions discussed in [15]. We refer the
reader to appendix A for the explicit change of coordinates that makes the correspondence
manifest. Since these solutions have already been studied in detail in [15], we will be brief.

Flux quanta K, M can be defined for Case II, in complete analogy with (3.6). We
also have the analog of the flux quantum NW, while NS is absent, since we no longer have
a smeared M5-brane source along P1P2. The flux quanta K, M , NW satisfy the same
constraint as (3.8) with NS set to zero.

The expression of the holographic central charge is

cII = 1
12

qK2N2

qK +N
, N := qM . (3.26)

We have the direct analogs of the O1 operators associated to M2-branes wrapping the S2

on top of the monopole point, as well as analogs of the operators Oi2 associated to open
M2-branes ending on the M5-brane source along P1P4. We do not have, however, the
analog of the Oj3 operators, because we only have one set of smeared M5-branes. The
dimensions of O1, Oi2 are

∆(O1) = qKN

qK +N
, ∆(Oi2) = K . (3.27)

3.2.3 Case III

Geometry. The allowed domain in Case III is the rectangle [0, t1]× [u1, u2], see figure 1.
In this case, we find that the φ circle in the 3d base spanned by (t, u, φ) shrinks along the
three segments P1P2, P2P3, and P3P4. The function L is piecewise constant along these
segments,

L(t, u2) = 0, L(t1, u) = − 2(t2u2 − t1u1)
σ(t2 − t1)(u2 − u1) , L(t, u1) = − 2(u2 + u1)

σ(u2 − u1) . (3.28)

We see that L jumps both at P2 and at P3. It follows that the Dz fibration has two
monopole sources, located at P3, P2, with charges q1, q2 respectively,

at P3: q1 = − 2(t2u2 − t1u1)
σ(t2 − t1)(u2 − u1) ∈ N , at P2: q2 = − 2(t2u1 − t1u2)

σ(t2 − t1)(u2 − u1) ∈ N .

(3.29)
Along the segment P4P1 we have a smeared M5-brane source of the same kind as explained
in Case I.
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Flux quantization. A first class of 4-cycles is associated to the three components along
the boundary of the allowed region, in which the φ circle in the base shrinks. Let us define

B4,N : segment P3P4 combined with the Dz fiber and the S2 ,

B4,E : segment P2P3 combined with the Dz fiber and the S2 , (3.30)
B4,S : segment P1P2 combined with the Dz fiber and the S2 .

As before, we can compute the flux through these cycles in terms of the values of the
function W at P1,2,3,4. The result reads∫

B4,N
G4 =

∫
B4,S

G4 = −σ2 t1(u2 − u1) ≡ K ∈ N ,∫
B4,E

G4 = −σ2 (t2 − t1)(u2 − u1) ≡M ∈ N . (3.31)

Interestingly we find that the fluxes through B4,N and B4,S are equal.
Next, we can construct a 4-cycle to measure the flux from the M5-branes source along

P4P1. To this end, we consider the S2 combined with the u interval and the φ circle,
yielding a 4-cycle denoted A4,W. The associated flux quantum is∫

A4,W
G4 = (t1 + t2)(u2

2 + u2
1)

u2 − u1
≡ NW ∈ N.

We find it convenient to define

M̃ = M +K , Neff = q1M̃ + q2K . (3.32)

We may then write

∂χ = ∂φ + Mq1 +K(q1 + q2)
M + 2K ∂z = ∂φ + Neff

M̃ +K
∂z . (3.33)

The quanta found above satisfy the relation

NW = M2(q2
1 + q2

2) + 2K(K +M)(q1 + q2)2

M(q1 − q2) , (3.34)

which in terms of Neff and M̃ can be written

Neff = NW −
(q1 + q2)(M̃ +K)
(q1 − q2)(M̃ −K)

(q1K + q2M̃). (3.35)

Central charge. Applying formula (3.11), we arrive at

cIII = −σ
293π3(m`p)9 t

2
1

(
t1u1u2(u1 − u2) + t2(u3

2 − u3
1)
)

= 1
12
K2 ((K +M)2(q1 + q2)2 −M2q1q2

)
M + 2K

= 1
12
K2(M̃2(q1 + q2)2 − (M̃ −K)2q1q2)

M̃ +K
. (3.36)
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Case V

Z

Figure 2. Non-rectangular domains arising from the inequalities (2.21) option (a), under the
assumptions 0 < t1 ≤ t2 and u1 < u2. The label S1

φ indicates that the φ circle in the base of the
Dz fibration (3.2) shrinks smoothly along that component of the boundary of the allowed region.
The labels sM5 and sM5′ stand for two different kinds of smeared M5-brane sources.

M2-brane operators. We still have the direct analogs of the calibrated submanifolds
C2 and B2 constructed in Case I, associated to operators O1, Oi2, respectively. In the case
at hand, their dimensions are

∆(O1) = K

M + 2K
(
Mq1 +K(q1 + q2)

)
= KNeff

M̃ +K
, ∆(Oi2) = K . (3.37)

We also have a new calibrated 2-cycle, analogous to C2, given by the S2 on top of the new
monopole point P2. If we denote the corresponding operator as P1, we find

∆(P1) = t1u1 = K

M + 2K
(
Mq2 +K(q1 + q2)

)
= KNeff

M̃ +K
− M̃ −K
M̃ +K

(q1 − q2)K . (3.38)

Moreover, we also have a new open calibrated submanifold, analogous to B2, constructed
using P1P2 and the Dz fiber. We thus obtain a family of BPS operators, denoted collec-
tively Pj2 , with dimension

∆(Pj2) = −σ2 t1(u2 − u1) = K. (3.39)

Finally, we can combine the P2P3 segment connecting the two monopoles and the Dz fiber
to obtain a closed calibrated submanifold. We denote the associated BPS operator as Q
and we compute its dimension to be

∆(Q) = −σ2 (t2 − t1)(u2 − u1) = M . (3.40)

3.3 Examples of non-rectangular domains

In the previous section, we have assumed 0 < t1 ≤ t2, u1 < u2, as these are necessary
conditions for having a rectangular domain. These conditions, however, are not sufficient.
Indeed, if we let u1,2 vary, we obtain two more cases, with non-rectangular domains, denoted
IV and V and summarized in figure 2.

Let us remark that Cases IV and V do not provide a full classification of all non-
rectangular, compact domains. Further domains (including triangular domains) can be
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obtained by relaxing some of the assumptions t1,2 ∈ R, 0 < t1 ≤ t2, u1 < u2. In this
section, we provide some details on Cases IV and V as representative examples of non-
rectangular domains, but we refrain from a full classification.

Cases IV and V are conveniently described in terms of the same angular coordinates
φ, z introduced above in (3.1) and entering (3.2).

3.3.1 Case IV

Geometry. The main novel feature of Case IV is the presence of a boundary component
with positive slope, which is determined by the inequality f2 ≥ 0, see figure 2. Near the
vertical and horizontal segments along the boundary of the allowed region, we have similar
features as the Cases I, II, III.

Let us look closer at the geometry along the diagonal line defined by f2 = 0. For
convenience, and in analogy with (3.5), we work with the Toda angular variables χ, β. We
rearrange the coordinates (t, u) into linear combinations x‖, x⊥, where x‖ runs parallel to
the diagonal line, and x⊥ runs perpendicular. More precisely, we can set

t = t̄x‖ − ūx⊥ , u = ūx‖ + t̄x⊥ , t̄ := t1 + t2 , ū := u1 + u2 . (3.41)

In the limit x⊥ → 0, the line element takes the form

ds2
11 ≈

x
−1/3
⊥
m2

[
x

4/3
‖

(
t̄ū
(
t1t2ū

2 − u1u2t̄
2)(

t̄2 + ū2)2
)1/3 (

ds2(AdS5) +Dχ2
) ]

(3.42)

+ x
2/3
⊥
m2

[
1
4

( (
t1t2ū

2 − u1u2t̄
2)

(t̄ūx‖)2 (t̄2 + ū2)2
)1/3( (t̄ūx‖)2(

t1t2ū2 − u1u2t̄2
)ds2(S2) +

(
t̄2 + ū2

)2
ds2(M3)

)]
.

Here ds2(M3) denotes the metric on the space described by (x⊥, x‖, β), whose explicit
expression is omitted for brevity. We interpret (3.42) in terms of a smeared M5-brane
source with harmonic function H ∝ x⊥. The linear behavior of H is indicative of a
smearing to effective codimension 1. Indeed, the M5-branes are now smeared over more
directions, compared to (3.5). More precisely, they are extended along AdS5 and χ, and
smeared in all other directions, except x⊥. In Figure 2 we use the label sM5′ to signal this
new kind of source.

Flux quantization. The analysis of G4-flux quantization is closely analogous to Case I.
The role of the segment P1P2 of Case I is now played by the diagonal line determined by
f2 = 0. We can define the analog of the flux quanta M , K, NS, and NW and verify that
they satisfy the same relation as in Case I.

Central charge. Application of (3.11) yields the result

cIV = − σ

15
1

29π3(m`p)9 t
2
1

(
5u2

2(t2u2 − t1u1) + t31(u1 + u2)3

(t1 + t2)2

)

= 1
120

qKM

M +K

(
5qKM + N3

SM
3

N2
WK

2

)
. (3.43)
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3.3.2 Case V

The salient features of the geometry of Case V are a combination of the ingredients already
introduced above, as can be seen from figure 2. The charge of the monopole at (t1, u2) is

q = 2(t1u1 − t2u2)
σ(t1 − t2)(u1 − u2) . (3.44)

We can define the analog of the flux quanta K and M , given by differences of the values
of W at the points (t1, u2) and (0, u2), (t1, (u1 + u2)t1/(t1 + t2)),

K = −σ2 t1(u2 − u1) , M = −σ2u2(t2 − t1) . (3.45)

We observe that the analogous flux constructed with the horizontal segment at u = u1 is
vanishing. We can also define the analog of the flux NW, which measures the charge of
the sM5 smeared source, and a new flux Nd which measures the sM5′ charge along the
diagonal component of the boundary of the allowed region. These fluxes are determined
by the values of Y , and are given by

NW = −(t1 + t2)
(
u2

1 + u2
2
)

u1 − u2
, Nd = u2

1(t1 + t2)
u1 − u2

− t21(u1 + u2)
t1 − t2

. (3.46)

The flux quanta and the monopole charge satisfy the following identity,

0 = 2q(Nd +NW)
(
K2NW −KM(Nd +NW) +M2(2Nd +NW)

)
− 2KMq3

(
K2 +M2

)
+ q2(K −M)2(KNW −M(2Nd +NW))

+ (Nd +NW)2(KNW −M(2Nd +NW)) . (3.47)

Let us define

Ñ = Nd +NW . (3.48)

We can use (3.47) to express NW in terms of q, K, M , Ñ ,

NW =
2M(Kq + Ñ)

(
q2 (K2 +M2)− 2MÑq + Ñ2

)
(K +M)(q(K −M) + Ñ)2

. (3.49)

The expression of the central charge in terms of the parameters σ, t1,2, u1,2 is

cV = − σ

15
1

29π3(m`p)9

(
t51(u1 + u2)3

(t1 + t2)2 − u5
1(t1 + t2)3

(u1 + u2)2 + 5t21u2
2(t2u2 − t1u1)

)
. (3.50)
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We may also express this quantity in terms of the flux quanta and monopole charge,

cV = K2M2q2

60(K +M)2(Kq + Ñ)2(Ñ −Mq)2(q(K −M) + Ñ)5
×

×
[
5K7q6

(
19M2Ñq2 − 2M3q3 − 22MÑ2q + 7Ñ3

)
+ 5K6q5

(
68M2Ñ2q2 − 27M3Ñq3 + 6M4q4 − 69MÑ3q + 23Ñ4

)
+K5Ñq4

(
765M2Ñ2q2 − 470M3Ñq3 + 125M4q4 − 595MÑ3q + 176Ñ4

)
+ 5K4q3(Ñ −Mq)

(
104M2Ñ3q2−31M3Ñ2q3−11M4Ñq4+4M5q5−101MÑ4q+34Ñ5

)
+ 5K3q2(Ñ −Mq)2

(
24M2Ñ3q2 + 22M3Ñ2q3 − 15M4Ñq4 + 2M5q5 − 54MÑ4q + 23Ñ5

)
+ 5K2q(Mq − Ñ)3(Mq + Ñ)

(
−14M2Ñ2q2 +M3Ñq3 +M4q4 + 23MÑ3q − 10Ñ4

)
+ 5K8Mq8(3Mq − Ñ) + 5K9Mq9 +K10q9

+ 5K(Ñ −Mq)4
(
−3M2Ñ3q2 + 3M4Ñq4 −M5q5 + 2Ñ5

)
+M3q2(Mq − Ñ)5

(
M2q2 − 5MÑq + 5Ñ2

) ]
. (3.51)

4 Electrostatic picture

In this section we review the map from the axisymmetric Toda system to an electrostatic
problem, and we describe the electrostatic interpretation of the solutions discussed in sec-
tion 3.

4.1 Review of the Bäcklund transform

In this work, we study solutions for which the Toda function D is independent of the angular
coordinate β in the x1, x2 plane. For such solutions, it is possible to perform a Bäcklund
transform, which furnishes an electrostatic interpretation for the BPS conditions [13].

The Bäcklund transform takes the coordinates (r, y) and the function D(r, y) of the
canonical LLM form to new coordinates (ρ, η) and a new function V (ρ, η). The Bäcklund
transform is defined implicitly by the relations

ρ2 = r2 eD , y = ρ ∂ρV , log r = ∂ηV . (4.1)

The 11d metric and flux can be written as

ds2
11 = 1

m2

[
V̇ ∆̃
2V ′′

]1/3[
ds2
AdS5 + V ′′ V̇

2 ∆̃
ds2
S2 + V ′′

2 V̇

(
dρ2 + dη2 + 2 V̇

2 V̇ − V̈
ρ2 dχ2

B

)
+ V̇ − V̈

2 V̇ ∆̃

(
dβ − 2 V̇ V̇ ′

2 V̇ − V̈
dχB

)2]
,

G4 = 1
4m3 volS2 ∧ d

[
− 2 V̇ 2 V ′′

∆̃
dχB +

(
η − V̇ V̇ ′

∆̃

)
dβ

]
, (4.2)
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where we used the notation V̇ = ρ ∂ρV , V ′ = ∂ηV , and so on, and we introduced

∆̃ = (2 V̇ − V̈ )V ′′ + (V̇ ′)2 . (4.3)

The angle χB after the Bäcklund transform is related to the angle χ in the canonical LLM
form as [33]

χB = χ+ β . (4.4)
The function V obeys the 3d Laplace equation in cylindrical coordinates: away from
sources,

∂2
ηV + 1

ρ
∂ρ(ρ ∂ρV ) = 0 . (4.5)

This equation motivates the interpretation of V as an electrostatic potential in three di-
mensions. We allow for electric charges localized along the η axis, with a charge density
λ(η). The charge density can be extracted from the potential V via

λ(η) = lim
ρ→0+

ρ ∂ρ V . (4.6)

Some redundancies in the parametrization. We have already observed that the
mass scale m can be fixed according to (2.7) without loss of generality. We also notice
that the 11d metric and flux depend on V ′′, V̇ , V̈ , V̇ ′, but not on V ′. It follows that a
replacement of the form

V (ρ, η) 7→ V (ρ, η) + k η , (4.7)
where k is an arbitrary constant, has no effect on the 11d metric and flux.

Line element and flux in terms of V , z, φ. In what follows, it will be convenient to
rewrite the metric and flux in (4.2) by trading the angular variables χB, β with the angular
variables z, φ first introduced in section 3.2 and discussed in greater detail in appendix A.
The change of coordinates that related the Toda angular variables χ, β to the new variables
z, φ is of the form

χ =
(

1 + 1
C

)
φ− z , β = − 1

C
φ+ z , (4.8)

where C is a positive constant. Below, we demonstrate that C can be identified with a ratio
of G4-flux quanta. Combining (4.4) and (4.8), we can recast (4.2) in the following form

ds2
11 = (4π)2/3 `2p

[
V̇ ∆̃
2V ′′

]1/3[
ds2
AdS5 + V ′′ V̇

2 ∆̃
ds2
S2 + V ′′

2 V̇
(dρ2 + dη2) +R2

φ dφ
2 +R2

zDz
2
]
,

G4 := − G4
(2π`p)3 = volS2

4π ∧ d
[
Y
dφ

2π −W
Dz

2π

]
, (4.9)

where we have introduced

R2
φ = V ′′

2 V̇ − V̈
ρ2 , R2

z = 2 V̇ − V̈
2 V̇ ∆̃

,

Dz = dz − Ldφ , L = 1
C

+ 2 V̇ V̇ ′

2 V̇ − V̈
,

W = η − V̇ V̇ ′

∆̃
, Y = 2 V̇ (V̇ − V̇ ′ η)

2 V̇ − V̈
. (4.10)

Notice that we have fixed the mass scale m according to (2.7).
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4.2 Electrostatic potential from Toda solutions

Let us study the Bäcklund transform reviewed above in the cases discussed in section 3.
The expressions in this subsection apply to all cases.

From (2.11) and (4.1), we can immediately find the expression for ρ(t, u),

ρ =
√
K1K2 =

√
−σ2(t− t1)(t− t2)(u− u1)(u− u2) . (4.11)

The function η(t, u) can be found in the following way. Let us treat VT as function of t and
u, where we have included the subscript ‘T’ to remind ourselves that this is the electrostatic
potential as inferred from the Toda coordinates via the Backlünd transformation. We can
use the chain rule, equation (4.1), and the unspecified η(t, u) to write

∂tVT = ∂tη (log r1 + log r2) + tu

2K1
∂tK1 , (4.12)

∂uVT = ∂uη (log r1 + log r2) + tu

2K2
∂uK2 .

Imposing the integrability condition ∂t∂uVT = ∂u∂tVT yields

K2t∂tK1 −K1u∂uK2 = 2 (K2t∂uη +K1u∂tη) , (4.13)

while the condition that VT is a solution to Laplace’s equation gives

1
ρ

(ρ∂ρVT) + ∂2
ηVT = 0 ⇒ 2 (u∂uη − t∂tη)− (t∂uK2 + u∂tK1) = 0 . (4.14)

By combining (4.13) and (4.14), we can solve for ∂tη, ∂uη and find the simple relations

∂tη = 1
2
∂K2
∂u

and ∂uη = −1
2
∂K1
∂t

. (4.15)

We can use these to solve for the total η(t, u) as

η(t, u) = σ

(
tu− (u1 + u2)t+ (t1 + t2)u

2

)
+A . (4.16)

where A is an integration constant.
Now that we have expressions for both ρ and η in the (t, u) coordinates, we can

use (4.12) to find an expression for the potential in (t, u) coordinates. After rearranging
we find

VT(t, u) = (η −A) log(r1r2) + t

(
u1 + u2

2

)
+ u

(
t1 + t2

2

)
(4.17)

− 1
2

(
u1 + u2
t2 − t1

(
t21 log(t1 − t)− t22 log(t2 − t)

)

+ t1 + t2
u2 − u1

(
u2

1 log(u− u1)− u2
2 log(u2 − u)

))
+ V0 ,
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where V0 is another integration constant. We have used the fact that, for all Cases I through
V, in the interior of the allowed region in the (t, u) plane we have we have 0 < t < t1 < t2
and u1 < u < u2.

Having determined the explicit change of coordinates from (ρ, η) to (t, u), for each
Case I through V we can map the allowed region in the (t, u) plane to the allowed region
in the (ρ, η) plane, up to a constant shift in η related to the integration constant A, see
figure 4. In particular, we observe that, in each case, the components of the boundary in
the (t, u) plane where the φ circle in the base shrinks are mapped to segments along the η
axis.

4.3 Electrostatic interpretation of Cases I and II

We now analyze the electrostatic interpretation of Case I. The interpretation for Case II
follows by taking the limit u2 → −u1, or equivalently NS → 0.

Charge density profile. The electrostatic potential VT satisfies the Laplace equation
for any ρ > 0, but there are localized electric sources on the η axis. We can find their
charge density using the formula

λT = lim
ρ→0

ρ∂ρVT. (4.18)

Firstly, we have the segments on the η axis that correspond to the edges P3P4 and P2P3
in figure 1. For these segments we find

λT(t) = u2t , λT(u) = t1u , (4.19)

respectively. The charge density is piecewise linear. At the monopole the charge density
takes the form

λ1 := λT(P4) = t1u2 = qKM

K +M
. (4.20)

Using this and the expression (4.16) for η, we can write the charge density as a piecewise
linear function in η,

λT(η) =


t1

t2 − t1

(
− 2
σ

(η −A)− t1(u1 + u2)
)
, η̃min ≤ (η −A) < η̃1 ,

− u2
u2 − u1

(
− 2
σ

(η −A)− u2(t1 + t2)
)
, η̃1 ≤ (η −A) < η̃2 .

(4.21)

We have defined the special η positions as

η̃min = −σ2 t1(u1 + u2), η̃1 = −σ2 (t2u2 + t1u1), η̃2 = −σ2u2(t1 + t2) . (4.22)

We find it convenient to fix the integration constant A to the value A = −η̃min, that is

A = σ

2 t1(u1 + u2) . (4.23)

With this choice, the linear charge density takes the form

λT(η) =


λ1
η1
η, 0 ≤ η < η1 ,

− λ1
η2 − η1

(η − η2) , η1 ≤ η < η2 ,

(4.24)
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where we have defined

η1 = −σ2u2(t2 − t1) = M , η2 = −σ2 (t2u2 − t1u1) = (K +M) . (4.25)

This charge density λ(η) is depicted as a solid line in figure 3.

Improved Form for V . The expression for VT in (4.17) suffers from some drawbacks:
it is not a closed form expression in the (ρ, η) coordinates, and it is only determined within
the region in the (ρ, η) plane that corresponds to the allowed region in the (t, u) plane.
The charge density profile λT(η) is thus similarly confined.

To fix these issues, we replace VT with a new electrostatic potential V , defined through-
out the entire (ρ, η) plane. We observe that V and VT need not be identical: if they differ
by a transformation of the form (4.7), they yield the same 11d metric and flux.

We write the new electrostatic potential V using the standard Green’s function for the
Laplace operator in R3,

V (ρ, η) = −1
2

∫ +∞

−∞

λ(η′)√
ρ2 + (η − η′)2dη

′ . (4.26)

Notice that the charge density profile is now extended to be a function on the whole η axis.
The new λ(η) must necessarily agree with λT(η) computed above for values of η within the
allowed region. Outside this region, we need an educated guess for the form of λ(η).

With the benefit of hindsight, we choose λ(t) to be the piecewise linear function

λ(η) =



− λ2
η−2 − η−1

(η + η−2) , −η−2 ≤ η < −η−1 ,

λ1 + λ2
η1 + η−1

(
η − η1 + η1 + η−1

λ1 + λ2
λ1

)
, −η−1 ≤ η < η1 ,

− λ1
η2 − η1

(η − η2) , η1 ≤ η < η2 .

(4.27)

This charge density profile is depicted in figure 3. It agrees with λT in (4.24) for 0 ≤ η ≤ η2.
It extends λT including a second monopole, i.e. a location on the η axis where the slope
changes. The extension is governed by the parameters η−2, η−1, λ2, which will be fixed
below.

We may now insert λ(η) from (4.27) into (4.26) to compute the improved electrostatic
potential V . Due to the linear growth of λ as η → +∞ and η → −∞, the η′ integral
in (4.26) is divergent. We treat it by regularization and “minimal subtraction”. More
explicilty, we write

V = lim
ηL→∞
ηR→∞

[
V̂ (ηL, ηR) + λ2[ηL − (η + η−2) log(2ηL)]

2(η−2 − η−1) − λ1[ηR + (η − η2) log(2ηR)]
2(η2 − η1)

]
.

(4.28)
In the previous expression, V̂ (ηL, ηR) is the same as V in (4.26), but with region of integra-
tion [−ηL, ηR]. We add two “counterterms” to V̂ (ηL, ηR) to remove all divergences. Notice
that the counterterms are independent of ρ and at most linear in η, of the same form as
the transformation (4.7).
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Figure 4: The Ansatz for the extended charge density profile �(⌘) for Case I, featuring a
“mirror monopole” located at �⌘�1 paired with the known monopole located at ⌘1.

(4.34) is divergent. We treat it by regularization and “minimal subtraction”. More explicilty,
we write

V = lim
⌘L!1
⌘R!1


Vreg(⌘L, ⌘R) +

�2

⌘�2 � ⌘�1

⇣
2⌘L � (⌘ + ⌘�2) log(2⌘L)

⌘
� �1

⌘2 � ⌘1

⇣
2⌘R + 2(⌘ � ⌘2) log(2⌘R)

⌘�
.

(4.36)
In the previous expression, Vreg(⌘L, ⌘R) is the same as V in (4.34), but with region of integra-
tion [�⌘L, ⌘R]. We add two “counterterms” to Vreg(⌘L, ⌘R) to remove all divergences. Notice
that the counterterms are independent of ⇢ and at most linear in ⌘, of the same form as the
transformation (4.7).

Allowed regions. Now that we have an expression for V (⇢, ⌘) coming from our ansatz for
the linear charge density �(⌘), we can look at the regularity conditions coming from the metric
and find our allowed regions in the (⇢, ⌘) plane. Looking at the 11d line element, we see that
we must satisfy

⇢ � 0 , @⇢V � 0 , @2
⌘V � 0. (4.37)

These inequalities determine a region in the (⇢, ⌘) plane, which depends on the unfixed pa-
rameters ⌘�1, ⌘�2, �2 in the extended charge density profile (4.35). On the other hand, we
know what the allowed region in the (⇢, ⌘) plane must be, since it can be deduced from the
allowed region in the (t, u) plane using (4.11), (B.6). By comparison, we determine the unfixed
parameters to be

⌘�1 =
�

2
u1(t2 � t1) , ⌘�2 =

�

2
(t2u1 � t1u2) , �2 = �t1u1 , (4.38)

A similar strategy applies to all Cases I–V. The allowed regions of Cases I, III, and IV can be
seen in Figure 5.

FB It might be worth including the analog of Figure 4 for Case III, which I imagine will
feature two mirror monopoles
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Figure 4: The extended charge density profile �(⌘) for Case I, featuring a “mirror monopole”
located at �⌘�1 paired with the known monopole located at ⌘1. The extended charge density
for Case II can be obtained by considering the limit NS ! 0, which implies ⌘�1,�2 = ⌘1,2,
�2 = �1 and gives an odd function of ⌘.

We may now insert �(⌘) from (4.28) into (4.27) to compute the improved electrostatic
potential V . Due to the linear growth of � as ⌘ ! +1 and ⌘ ! �1, the ⌘0 integral in
(4.27) is divergent. We treat it by regularization and “minimal subtraction”. More explicilty,
we write

V = lim
⌘L!1
⌘R!1


bV (⌘L, ⌘R) +

�2[⌘L � (⌘ + ⌘�2) log(2⌘L)]

2(⌘�2 � ⌘�1)
� �1[⌘R + (⌘ � ⌘2) log(2⌘R)]

2(⌘2 � ⌘1)

�
. (4.29)

In the previous expression, bV (⌘L, ⌘R) is the same as V in (4.27), but with region of integration
[�⌘L, ⌘R]. We add two “counterterms” to bV (⌘L, ⌘R) to remove all divergences. Notice that
the counterterms are independent of ⇢ and at most linear in ⌘, of the same form as the
transformation (4.7).

Allowed regions. Now that we have an expression for V (⇢, ⌘) coming from our ansatz for
the linear charge density �(⌘), we can look at the regularity conditions coming from the metric
and find our allowed regions in the (⇢, ⌘) plane. Looking at the 11d line element, we see that
we must satisfy

⇢ � 0 , @⇢V � 0 , @2
⌘V � 0. (4.30)

These inequalities determine a region in the (⇢, ⌘) plane, which depends on the unfixed pa-
rameters ⌘�1, ⌘�2, �2 in the extended charge density profile (4.28). On the other hand, we
know what the allowed region in the (⇢, ⌘) plane must be, since it can be deduced from the
allowed region in the (t, u) plane using (4.11), (C.6). By comparison, we determine the unfixed
parameters to be

⌘�1 =
�

2
u1(t2 � t1) , ⌘�2 =

�

2
(t2u1 � t1u2) , �2 = �t1u1 , (4.31)

The allowed region can be seen in Figure 5.
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Figure 4: The Ansatz for the extended charge density profile �(⌘) for Case I, featuring a
“mirror monopole” located at �⌘�1 paired with the known monopole located at ⌘1.

(4.34) is divergent. We treat it by regularization and “minimal subtraction”. More explicilty,
we write

V = lim
⌘L!1
⌘R!1


Vreg(⌘L, ⌘R) +

�2

⌘�2 � ⌘�1

⇣
2⌘L � (⌘ + ⌘�2) log(2⌘L)

⌘
� �1

⌘2 � ⌘1

⇣
2⌘R + 2(⌘ � ⌘2) log(2⌘R)

⌘�
.

(4.36)
In the previous expression, Vreg(⌘L, ⌘R) is the same as V in (4.34), but with region of integra-
tion [�⌘L, ⌘R]. We add two “counterterms” to Vreg(⌘L, ⌘R) to remove all divergences. Notice
that the counterterms are independent of ⇢ and at most linear in ⌘, of the same form as the
transformation (4.7).

Allowed regions. Now that we have an expression for V (⇢, ⌘) coming from our ansatz for
the linear charge density �(⌘), we can look at the regularity conditions coming from the metric
and find our allowed regions in the (⇢, ⌘) plane. Looking at the 11d line element, we see that
we must satisfy

⇢ � 0 , @⇢V � 0 , @2
⌘V � 0. (4.37)

These inequalities determine a region in the (⇢, ⌘) plane, which depends on the unfixed pa-
rameters ⌘�1, ⌘�2, �2 in the extended charge density profile (4.35). On the other hand, we
know what the allowed region in the (⇢, ⌘) plane must be, since it can be deduced from the
allowed region in the (t, u) plane using (4.11), (B.6). By comparison, we determine the unfixed
parameters to be

⌘�1 =
�

2
u1(t2 � t1) , ⌘�2 =

�

2
(t2u1 � t1u2) , �2 = �t1u1 , (4.38)

A similar strategy applies to all Cases I–V. The allowed regions of Cases I, III, and IV can be
seen in Figure 5.

FB It might be worth including the analog of Figure 4 for Case III, which I imagine will
feature two mirror monopoles
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located at �⌘�1 paired with the known monopole located at ⌘1. The extended charge density
for Case II can be obtained by considering the limit NS ! 0, which implies ⌘�1,�2 = ⌘1,2,
�2 = �1 and gives an odd function of ⌘.

We may now insert �(⌘) from (4.28) into (4.27) to compute the improved electrostatic
potential V . Due to the linear growth of � as ⌘ ! +1 and ⌘ ! �1, the ⌘0 integral in
(4.27) is divergent. We treat it by regularization and “minimal subtraction”. More explicilty,
we write

V = lim
⌘L!1
⌘R!1


bV (⌘L, ⌘R) +

�2[⌘L � (⌘ + ⌘�2) log(2⌘L)]

2(⌘�2 � ⌘�1)
� �1[⌘R + (⌘ � ⌘2) log(2⌘R)]

2(⌘2 � ⌘1)

�
. (4.29)

In the previous expression, bV (⌘L, ⌘R) is the same as V in (4.27), but with region of integration
[�⌘L, ⌘R]. We add two “counterterms” to bV (⌘L, ⌘R) to remove all divergences. Notice that
the counterterms are independent of ⇢ and at most linear in ⌘, of the same form as the
transformation (4.7).

Allowed regions. Now that we have an expression for V (⇢, ⌘) coming from our ansatz for
the linear charge density �(⌘), we can look at the regularity conditions coming from the metric
and find our allowed regions in the (⇢, ⌘) plane. Looking at the 11d line element, we see that
we must satisfy

⇢ � 0 , @⇢V � 0 , @2
⌘V � 0. (4.30)

These inequalities determine a region in the (⇢, ⌘) plane, which depends on the unfixed pa-
rameters ⌘�1, ⌘�2, �2 in the extended charge density profile (4.28). On the other hand, we
know what the allowed region in the (⇢, ⌘) plane must be, since it can be deduced from the
allowed region in the (t, u) plane using (4.11), (C.6). By comparison, we determine the unfixed
parameters to be

⌘�1 =
�

2
u1(t2 � t1) , ⌘�2 =

�

2
(t2u1 � t1u2) , �2 = �t1u1 , (4.31)

The allowed region can be seen in Figure 5.
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Figure 3. The extended charge density profile λ(η) for Case I, featuring a “mirror monopole”
located at −η−1 paired with the known monopole located at η1. The labels P2, . . . , P4 refer to
figure 1. The extended charge density for Case II can be obtained by considering the limit NS → 0,
which implies η−1,−2 = η1,2, λ2 = λ1 and gives an odd function of η.

Allowed regions. Now that we have an expression for V (ρ, η) coming from our ansatz
for the linear charge density λ(η), we can look at the regularity conditions coming from the
metric and find our allowed regions in the (ρ, η) plane. Looking at the 11d line element,
we see that we must satisfy

ρ ≥ 0 , ∂ρV ≥ 0 , ∂2
ηV ≥ 0. (4.29)

These inequalities determine a region in the (ρ, η) plane, which depends on the unfixed
parameters η−1, η−2, λ2 in the extended charge density profile (4.27). On the other hand,
we know what the allowed region in the (ρ, η) plane must be, since it can be deduced from
the allowed region in the (t, u) plane using (4.11), (C.6). By comparison, we determine the
unfixed parameters to be

η−1 = σ

2u1(t2 − t1) , η−2 = σ

2 (t2u1 − t1u2) , λ2 = −t1u1 , (4.30)

The allowed region can be seen in figure 4.

4.4 Electrostatic interpretation of Case III and beyond

Case III. Case III can be studied in an analogous way. Compared to Case I, we also
have the edge P1P2 with charge density

λT(t) = u1t, (4.31)

with another monopole at P2 such that

λ2 := λT(P2) = t1u1 = K(Mq2 +K(q1 + q2))
M + 2K . (4.32)
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Figure 4: The allowed regions in the (⇢, ⌘) plane for Cases I, IV, and V respectively. The
solid red arcs signify the loci where @⇢V = 0, while the dashed red lines represent the loci
where @2

⌘V = 0. The similarity with Figures 1, 2 is intentional, as the solid and dashed lines
in each figure correspond to one another. As the combination t1u2 � u1t2 goes from positive
to negative, we transition from Case V to Case III. The red dashed arc of Case V shrinks and
is replaced by the second monopole present in Case III. FB Put labels I, IV, V on the three
plots

The charge density, after fixing A as in (4.24), reads

�T(⌘) =

8
>>>>>><
>>>>>>:

�2

⌘0 � ⌘min
(⌘ � ⌘min) , ⌘min  ⌘ < ⌘0 ,

�1

⌘1
⌘, ⌘0  ⌘ < ⌘1 ,

� �1

⌘2 � ⌘1
(⌘ � ⌘2) , ⌘1  ⌘ < ⌘2 ,

(4.34)

where the ⌘i are given as

⌘min =
q2(M + 2K)

q1 � q2
, ⌘0 =

Mq2 +K(q1 + q2)

q1 � q2
, (4.35)

⌘1 =
Mq1 +K(q1 + q2))

q1 � q2
, ⌘2 =

q1(M + 2K)

q1 � q2
. (4.36)

The profile �T is depicted in Figure 5 as a solid line.
As before, we seek an extension of �T to the entire ⌘ axis, in such a way as to reproduce

the allowed region in the (⇢, ⌘) plane as determined via the Bäcklund transform. The outcome
of this analysis is that, in contrast with Case I, the extended charge density profile in Case
III does not feature any “mirror monopole”: the profile �T is extended to the whole ⌘ axis by
simply extending the outermost linear pieces with constant slopes.

Cases IV and V. These cases can be studied in a similar fashion. Overall, we observe that
for all Cases I through V the extended charge density profile has exactly two monopoles. We
refrain from giving explicit expressions for Cases IV and V, but we depict the allowed regions
in the (⇢, ⌘) plane in Figure 4.
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Case V
R

Figure 4. The allowed regions in the (ρ, η) plane for Cases I, IV, and V respectively. The solid red
arcs signify the loci where ∂ρV = 0, while the dashed red lines represent the loci where ∂2

ηV = 0.
The similarity with figures 1, 2 is intentional, as the solid and dashed lines in each figure correspond
to one another. As the combination t1u2 − u1t2 goes from positive to negative, we transition from
Case V to Case III. The red dashed arc of Case V shrinks and is replaced by the second monopole
present in Case III.

The charge density, after fixing A as in (4.23), reads

λT(η) =



λ2
η0 − ηmin

(η − ηmin) , ηmin ≤ η < η0 ,

λ1
η1
η, η0 ≤ η < η1 ,

− λ1
η2 − η1

(η − η2) , η1 ≤ η < η2 ,

(4.33)

where the ηi are given as

ηmin = q2(M + 2K)
q1 − q2

, η0 = Mq2 +K(q1 + q2)
q1 − q2

, (4.34)

η1 = Mq1 +K(q1 + q2))
q1 − q2

, η2 = q1(M + 2K)
q1 − q2

. (4.35)

The profile λT is depicted in figure 5 as a solid line.
As before, we seek an extension of λT to the entire η axis, in such a way as to reproduce

the allowed region in the (ρ, η) plane as determined via the Bäcklund transform. The
outcome of this analysis is that, in contrast with Case I, the extended charge density
profile in Case III does not feature any “mirror monopole”: the profile λT is extended to
the whole η axis by simply extending the outermost linear pieces with constant slopes.

Cases IV and V. These cases can be studied in a similar fashion. Overall, we ob-
serve that for all Cases I through V the extended charge density profile has exactly two
monopoles. We refrain from giving explicit expressions for Cases IV and V, but we depict
the allowed regions in the (ρ, η) plane in figure 4.

5 More monopoles

In the previous section, we have identified the extended charge density profiles associated
to Cases I through V. This allows us to consider natural generalizations of these solutions,
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Figure 5. The extended charge density profile λ(η) for Case III. We notice the absence of “mirror
monopoles”: the charge density outside the interval [ηmin, η2] is obtained by prolonging the outer-
most segments in a trivial way. The labels P1, . . . , P4 refer to figure 1.

obtained by decorating the extended charge density profiles with additional monopoles.
The explicit expression for the electrostatic potentials sourced by these multi-monopole
charge densities are reported in appendix B.

In this section we study in detail generalizations of Case II, for which the charge density
profile is an odd function of η. The solutions discussed here will be identified in section 6 as
gravity duals of class S constructions with one irregular puncture, and one regular puncture
associated to a Young diagram of arbitrary shape.

5.1 Charge density profile

The sought-for generalizations of Case II solutions are all of the form (4.9). They are
specified by a choice of the positive constant C, and a choice of electrostatic potential V .
The latter can in turn be written in terms of the standard Green’s function on R3 and a
charge density profile λ(η) along the η axis, see (4.26), repeated here for convenience,

V (ρ, η) = −1
2

∫ +∞

−∞

λ(η′)√
ρ2 + (η − η′)2dη

′ . (5.1)

Notice that the charge density λ(η) is defined along the entire η axis. The actual physical
range of the coordinate η is determined by the regularity and positivity of the metric
functions.

The total charge density profile λ that enters in (5.1) is conveniently written as the
sum of two contributions, see figure 6,

λ(η) = λYreg(η) + λ
(N,k)
irreg (η) . (5.2)

In the first term, Y denotes the Young diagram associated to the partition

N =
p∑
a=1

kawa , (5.3)

in which p ≥ 1 is an integer, {wa}pa=1 is an increasing sequence of positive integers, and
ka are positive integers. The function λYreg(η) is continuous and piecewise linear. It is also
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Figure 6. The total charge density λ(η) can be written as the sum of the contributions λYreg(η) and
λ

(N,k)
irreg (η). Both λYreg(η) and λ(N,k)

irreg (η) are odd functions of η. The plot depicts λ(η), λYreg(η), and
λ

(N,k)
irreg (η) on the semiaxis η ≥ 0 in the case N = 7, p = 3, w1 = 1, w2 = 2, w3 = 4, k1 = k2 = k3 = 1,
N + k = 11.

assumed to be odd in η,
λYreg(−η) = −λYreg(η) . (5.4)

It is sufficient to specify λYreg(η) for η ≥ 0: it is given as

λYreg(η) =



η
p∑
b=1

kb for 0 ≤ η < w1 ,

η
p∑

b=a+1
kb +

a∑
b=1

wbkb for wa ≤ η < wa+1, a = 1, 2, . . . , p− 1 ,

N for η ≥ wp .

(5.5)

The profile λYreg(η) is exactly the same charge density profile that enters the AdS5 solutions
that describe the local geometry near a regular puncture [13], hence the label “reg”.

The second term λ
(N,k)
irreg (η) in (5.2) is determined by two integer parameters N and k,

where N is the same as in the partition (5.3), and k satisfies

k > wp −N . (5.6)

The quantity λ(N,k)
irreg (η) is a simple linear function of η,

λ
(N,k)
irreg (η) = − N

k +N
η . (5.7)

The label “irreg” is motivated by the analysis of section 6, which shows that λ(N,k)
irreg (η) is

naturally associated to the irregular puncture in the dual class S field theory construction.
Notice that, due to the linear growth of λ(N,k)

irreg (η) as |η| → ∞, the formula (5.1)
for the electrostatic potential V is formally divergent. These divergences are treated by
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regularizing the η′ integral with a cutoff λmax, and performing a “minimal subtraction” of
divergent terms. We refer the reader to appendix B for further details, and for the explicit
expression for V .

Finally, the positive constant C is also determined by the parameters N , k,

C = N + k

N
. (5.8)

Having prescribed C and λ(η), we have fully specified the solution. For p = 1 we recover
precisely the electrostatic description of the solutions in Case II.

Notice that we have not justified the form (5.2) of the charge density or the value of
C. We refer the reader to appendix C for a detailed analysis of the problem, which demon-
strates that (5.2) and (5.8) can be inferred from metric regularity and flux quantization.

5.2 Geometry of the solutions

Allowed region in the (ρ, η) plane. Since we have chosen an odd profile for λ(η), the
electrostatic potential satisfies

V (ρ,−η) = −V (ρ, η) . (5.9)

In particular V (ρ, 0) = 0, signaling the presence of a conducting plane at η = 0. The radius
of the S2 shrinks there. As a result, we restrict to η ≥ 0.

Using the explicit expressions of the metric functions that can be obtained using (4.10),
we verify that all positivity requirements are satisfied, provided that we consider the region
in the (ρ, η) plane determined by the conditions

ρ ≥ 0 , η ≥ 0 , ∂ρV ≥ 0 . (5.10)

This domain is depicted in figure 7. The curve ∂ρV = 0 is given more explicitly as

− 2 η
C

+
p∑
a=1

ka
(√

(η + wa)2 + ρ2 −
√

(η − wa)2 + ρ2
)

= 0 . (5.11)

One can verify that this curve intersects the η axis at

wm = N + k , (5.12)

which is precisely the location of the positive zero of the function λ(η), see figure 6. The
curve (5.11) intersects the ρ axis at a point ρ∗, where ρ∗ is the positive solution to the
equation

p∑
a=1

kawa√
ρ2
∗ + w2

a

= 1
C
. (5.13)

We also observe that, in the case p = 1, the equation (5.11) can be equivalently written as

ρ2

w2
1 (k2

1C2 − 1) + η2

k2
1w

2
1C2 = 1 , (5.14)

which describes an ellipse in the (ρ, η) plane. For p ≥ 2, this is no longer the case, but the
locus ∂ρV = 0 has the same qualitative shape as for p = 1.
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Figure 7. A schematic depiction of the allowed region in the (ρ, η) plane, for a case with p = 3
monopoles along the η axis. The arc connecting wm and ρ∗ corresponds to ∂ρV = 0 and is defined
by the equation (5.11). On the right, we also include the plot of the charge density λ(η) on the
interval [0, wm].

Geometry of the internal space. The internal spaceM6 can be regarded as an S2×S1
z

fibration over the 3d space spanned by ρ, η, φ. The radius of the φ circle in the 3d base
goes to zero smoothly along the η axis.

The size of the S2 depends on ρ, η, but it is not twisted over the 3d base. In contrast,
the z circle is twisted over the φ circle, as prescribed by the metric function L in (4.10).
In particular, L is piecewise constant along the η axis, with jumps at the locations η = wa
where the slope of the charge density λ changes. It follows that the points (ρ, wa) are
monopole sources for the Dz fibration over (ρ, η, φ). Notice that the radius of Dz goes to
zero at the monopole points.

Behavior near the boundary of the allowed region. The boundary of the allowed
region depicted in figure 7 consists of several components, which we discuss in turn.

As mentioned above, along the segment [0, ρ∗] on ρ axis the S2 shrinks smoothly, and
caps off the internal space. This is the green horizontal line in figure 7.

Let us now consider the segment [wa, wa+1] (a = 0, 1 . . . , p−1) along the η axis. Here a
combination of the S1

z and S1
φ circles shrinks smoothly. More precisely, the following linear

combination of ∂z, ∂φ,

∂φ +
p∑

b=a+1
kb ∂z , (5.15)

has vanishing norm as we approach the [wa, wa+1] segment. By a similar token, it is the
Killing vector ∂φ that has vanishing norm along the [wp, wm] segment. We have thus
accounted for the whole vertical blue line in figure 7.

Finally, we have to discuss the arc ∂ρV = 0, depicted in red in figure 7. As shown
in appendix C, this locus corresponds to an M5-brane source, of total charge N , which is
extended along AdS5 and z, smeared along φ and the ∂ρV = 0 arc in the (ρ, η) plane, and
localized in the remaining directions.
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5.3 Holographic central charge

The general formula (3.11) is easily specialized to solutions of the form (4.9). It reads

c = 1
128 (πm3`3p)3

∫
B2
ρ V̇ V ′′ dρ dη , (5.16)

where we have reinstated the mass scale m and B2 denotes the allowed region for the ρ, η
coordinates, determined by the conditions (5.10). To proceed, we observe that

ρ V̇ V ′′ = ∂ρ

[
− 1

2 ρ
2 (∂ρV )2

]
+ ρ (ρ ∂ρV )

[
∂2
ηV + 1

ρ
∂ρ(ρ ∂ρV )

]
. (5.17)

We argue that the second term can be dropped. We know that the combination ∂2
ηV +

1
ρ ∂ρ(ρ ∂ρV ) is zero, except for terms localized on the η axis. The quantity ρ ∂ρV is finite
as we approach the η axis: it is given by the charge density λ(η). Because of the extra ρ
factor in front, we conclude that this term drops away in the limit ρ going to zero.

The quantity of interest can then be cast as∫
B2
∂ρ

[
− 1

2 ρ
2 (∂ρV )2

]
dρ dη =

∫
B2
d

[
− 1

2 ρ
2 (∂ρV )2 dη

]
=
∫
∂B2

[
− 1

2 (ρ ∂ρV )2 dη

]
. (5.18)

Recall that ∂B2 consists of three components: the segment [0, ρ∗] along the ρ axis, the arc
defined by the equation ∂ρV = 0, and the segment [0, wm] along the η axis. The 1-form
−1

2 (ρ ∂ρV )2 dη vanishes along the ρ axis (because it only has a leg along η), and it also
vanishes along the arc where ∂ρV = 0. It follows that the only non-trivial contribution
originates from the integral over the segment [0, wm] along the η axis. Along this seg-
ment, we can make the replacement ρ ∂ρV → λ. In conclusion, collecting all factors, the
holographic central charge can be written as

c = 1
256 (πm3`3p)3

∫ wm

0
λ(η)2 dη = 1

4

∫ wm

0
λ(η)2 dη . (5.19)

In the second step we have fixed the value of the mass scale m according to (2.7).
The integral in (5.19) is readily evaluated making use of the expression (5.2) for the

charge density. Let us introduce the notation

ya =
a∑
b=1

wbkb , ma = − N

N + k
+

p∑
b=a+1

kb , a = 0, 1, . . . , p . (5.20)

For a = p, the sum in the second expression is understood to be zero. We also use the
convention w0 := 0. We may then write

c = 1
4

p∑
a=0

[1
3 m

2
a (w3

a+1 − w3
a) +ma ya (w2

a+1 − w2
a) + y2

a (wa+1 − wa)
]
. (5.21)

We can also write c directly in terms of k and the partition N = ∑p
a=1 kawa,

c = 1
12(N + k)N2 + 1

12
N

N + k

p∑
a=1

kaw
3
a −

1
6

p∑
a=1

k2
a w

3
a −

1
12

p∑
a=1

p∑
b=a+1

(w3
a + 3waw2

b ) ka kb .

(5.22)
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5.4 ’t Hooft anomalies from inflow

The inflow methods of [34] (based on [35, 36]) provide a systematic way of extracting ’t
Hooft anomalies from a holographic solution in 11d supergravity. The key ingredient in this
approach is the construction of the 4-form E4, which is the closed equivariant completion
of the background flux G4 in (4.9). We refer the reader to appendix C for a discussion of
E4 and the derivation of the inflow anomaly polynomial. The results of our analysis are as
follows.

Symmetries from isometries. Even though the geometry possesses two U(1) isome-
tries, generated by ∂z and ∂φ, only one linear combination of these Killing vectors yields
a massless U(1) gauge field in the 5d low-energy effective theory that describes 11d su-
pergravity reduced on M6. The other linear combination of putative massless U(1) gauge
fields gets massive by a Stückelberg mechanism: it “eats” an axionic scalar, which comes
from the expansion of the M-theory 3-form onto a cohomologically non-trivial closed 3-
form in M6. In terms of the angular variables χ, β in the canonical LLM form, the linear
combination of Killing vectors that yields a massless U(1) gauge field is simply ∂χ. This
is to be expected, since this isometry corresponds to the superconformal U(1)r symmetry.
Using (4.8), we can also write

∂χ = ∂φ + 1
C
∂z = ∂φ + N

N + k
∂z . (5.23)

To summarize, the relevant isometries onM6 that correspond to massless 5d gauge fields are
U(1)χ, and the SO(3) isometry of the S2. Let c1(U(1)χ), p1(SO(3)) denote the first Chern
class and the first Pontryagin class constructed in terms of these massless gauge fields.
These quantities are identified on the field theory side with the Chern classes cr1 := c1(U(1)r)
and cR2 := c2(SU(2)R) constructed with the background fields for the U(1)r × SU(2)R R-
symmetry. More precisely, we have the relations

c1(U(1)χ) = −2 cr1 , p1(SO(3)) = −4 cR2 . (5.24)

Orbifold points and flavor symmetries. From the expressions recorded in (4.9), (4.10),
we verify that the monopole locations (ρ, η) = (0, wa), a = 1, . . . , p are orbifold points for
the internal space geometry M6, More precisely, near the ath monopole location (ρ, η) =
(0, wa), the internal spaceM6 is locally given as S2×(R4/Zka), where ka ∈ Z>0 is the charge
of the ath monopole. Following the same logic as in [13], we conclude that these orbifold
points correspond holographically to non-Abelian summands su(ka) in the global 0-form
symmetry algebra. Accordingly, in our inflow analysis we introduce background gauge
fields for these symmetries. We use c2(SU(ka)) for the second Chern class constructed with
these background fields.

Inflow anomaly polynomial. The anomaly inflow analysis in appendix C yields the
following expression for the leading terms in the inflow anomaly polynomial at large N ,

−I inflow
6 = Ar,R cr1 cR2 +

p∑
a=1

kSU(ka) c
r
1 c2(SU(ka)) . (5.25)
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The ’t Hooft anomaly coefficient Ar,R is given as

Ar,R =
p∑
a=0

[2
3 m

2
a (w3

a+1 − w3
a) +ma ya (w2

a+1 − w2
a)
]
, (5.26)

where ma, ya are as in (5.20). One can verify that

Ar,R = −4 c , (5.27)

where c is given by (5.22). This identification is the expected 4d N = 2 SCFT relation that
holds at large N between the central charges a = c and the mixed U(1)r SU(2)R anomaly.
It provides a consistency check of the result (5.22) for the holographic central charge.

More interestingly, the inflow analysis provides the following values for the flavor cen-
tral charges of the SU(ka) symmetries,

kSU(ka) = 2 (ya +mawa) , (5.28)

with ma, ya defined in (5.20).

5.5 Operators from wrapped M2-branes

The expression of the calibration 2-form Y ′ in terms of the electrostatic potential V is

Y ′ = 2
[
V ′′ V̇

2 ∆̃

]3/2
volS2 +

√
V ′′

2 V̇ ∆̃
(V̇ ′)2 + ρ2 (V ′′)2

(V̇ ′)2 − V̈ V ′′
τ Dz dη (5.29)

+
√

V ′′

2 V̇ ∆̃
(∆V ) V̇ ′ ρ

(V̇ ′)2 − V̈ V ′′
τ Dz dρ+

√
V ′′

2 V̇ ∆̃
V̇ V̇ ′

∆̃
Dz dτ −

√
V ′′

2 V̇ ∆̃
V̇ V̈

2 V̇ − V̈
dτ dφ

−
√

V ′′

2 V̇ ∆̃
V̇ ′ (V̈ ∆̃ + 2 ρ2 V̇ (V ′′)2)

(2 V̇ − V̈ ) ((V̇ ′)2 − V̈ V ′′)
τ dη dφ−

√
V ′′

2 V̇ ∆̃
V̈ 2∆̃ + 2 V̇ (V̇ ′)2 V ′′ ρ2

(2 V̇ − V̈ ) ((V̇ ′)2 − V̈ V ′′) ρ
τ dρ dφ .

In the previous expression, we have used the shorthand notation

∆V = V ′′ + 1
ρ2 V̈ , (5.30)

and we have used the coordinates τ , ϕ on S2 as in (3.15).

M2-branes located at monopoles. Let us consider an M2-brane wrapping the S2 and
located at one of the monopole points, ρ = 0, η = wa. The relevant terms in the calibration
2-form Y ′ and the 6d line element are

Y ′ ⊃ 2
[
V ′′ V̇

2 ∆̃

]3/2
volS2 , ds2(M6) ⊃ V ′′ V̇

2 ∆̃
ds2
S2 . (5.31)

In order to verify the calibration condition, we have to evaluate the limit of the quantity
V ′′ V̇

2 ∆̃
as we approach the monopole location. This can be done by setting

ρ = R
√

1− t2 , η = wa +R t , (5.32)
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and considering the limit R→ 0 at fixed t. With this prescription, we find that

V̇ =
a−1∑
b=1

kbwb + wa

p∑
b=a

kb −
N

N + k
wa +O(R) ,

V̈ = 0 +O(R) , V ′′ = O(1/R) ,
V̇ ′ = finite but t-dependent quantity +O(R) . (5.33)

Because of the 1/R pole in V ′′, near the ath monopole we can write

V ′′ V̇

2 ∆̃
= V ′′ V̇

2 (2 V̇ − V̈ )V ′′ + 2 (V̇ ′)2 = 1
4 +O(R) . (5.34)

Notice how the finite value of V̇ drops from the result. The calibration condition is then
satisfied by virtue of 2

(
1
4

)3/2
= 1

4 . Let us denote the BPS operator associated to an
M2-brane located at η = wa as Oa.

The dimension of wrapped M2-brane operators is computed with the formula (3.18),
which in the present context takes the form (temporarily reinstating the mass scale m)

∆ = 1
π (4πm3`3p)

∫
C2

[
V̇ ∆̃
2V ′′

]1/2
volC2 . (5.35)

Let us specialize to the operators Oa defined above. We have

volC2 = V ′′ V̇

2 ∆̃

∣∣∣∣
(ρ,η)=(0,ηa)

volS2 . (5.36)

The dimension of the operator Oa is then given by (volS2 gives a factor 4π)

∆(Oa) = 1
(4πm3`3p)

· 4
[
V̇ ∆̃
2V ′′

]1/2 V ′′ V̇

2 ∆̃

∣∣∣∣
(ρ,η)=(0,ηa)

. (5.37)

We have already observed that V ′′ V̇

2 ∆̃
approaches 1/4, for all monopoles. Near the ath

monopole, we also have

V̇ ∆̃
2V ′′ = V̇ (2 V̇ − V̈ )V ′′ + V̇ (V̇ ′)2

2V ′′ = V̇ 2 +O(R) . (5.38)

In conclusion, making use of (5.33) for the value of V̇ , we arrive at

∆(Oa) =
a−1∑
b=1

kbwb + wa

p∑
b=a

kb −
N

N + k
wa . (5.39)

M2-branes stretching along the interval [wp, wm]. These M2-branes wrap the 2d
submanifold obtained by considering the final segment [wp, wm] combined with the Dz
circle. Notice that this 2d submanifold is not closed: we are considering open M2-branes,
which end on the smeared M5-brane source. The relevant terms in Y ′ are

Y ′ ⊃
√

V ′′

2 V̇ ∆̃
(V̇ ′)2 + ρ2 (V ′′)2

(V̇ ′)2 − V̈ V ′′
τ Dz dη . (5.40)
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This quantity has to be evaluated in the limit ρ→ 0, for a generic η with wp < η < wm. In
this limit, V̇ is finite (it is given by the charge density), V̇ ′ → −N/(N + k) (independent
of wp < η < wm), V̈ goes to zero, V ′′ is finite. It follows that

(V̇ ′)2 + ρ2 (V ′′)2

(V̇ ′)2 − V̈ V ′′
→ 1 . (5.41)

The relevant parts of the M6 line element are

ds2(M6) ⊃ V ′′

2 V̇
dη2 + 2V̇ − V̈

2 V̇ ∆̃
Dz2 , (5.42)

which implies

volB2 = 1
2 V̇

√
V ′′ (2V̇ − V̈ )

∆̃
dη Dz =

√
V ′′

2 V̇ ∆̃
dη Dz , (5.43)

where in the second step we used the fact that V̈ vanishes as ρ goes to zero. Comparing
with Y ′, we see that the calibration condition is satisfied for τ = −1. We denote the BPS
operators associated to these wrapped M2-branes as O[wp,wm].

The dimension of these operators is computed from (5.35), The result reads

∆(O[wp,wm]) = 1
π (4πm3`3p)

∫
B2

1
2 dη Dz = 1

(4πm3`3p)

∫
[wp,wm]

dη = N + k − wp . (5.44)

M2-branes stretching along the intervals [wa, wa+1]. The discussion above gener-
alizes directly to M2-branes that wrap an interval [wa, wa+1] combined with the Dz circle
on that interval. In this case, this 2d submanifold is closed. The calibration condition
holds for the same reason as in the [wp, wm] case: V̈ goes to zero, with finite V̇ , V̇ ′, V ′′.
The dimensions of these operators are again computed from (5.35), with the result

∆(O[wa,wa+1]) = wa+1 − wa . (5.45)

6 Comparison with field theory

In this section, we present evidence that the supergravity solutions presented in section 5 are
dual to the four-dimensional N = 2 Argyres-Douglas SCFTs that arise from wrapping N
M5-branes on a sphere with one irregular puncture labeled by k, and one regular puncture
labeled by a partition of N . In particular, we identify Case II with the generalized monopole
profiles constructed in section 5 with the Argyres-Douglas SCFTs labeled by an irregular
puncture A(N)

N−1[k], for integer k > −N , and one regular puncture labeled by a partition of
N . This proposal is checked in detail in the remainder of this section. It also matches the
proposal of [16].

It is natural to propose that Cases I and III also correspond to SCFTs of this type,
with an irregular puncture with possibly more finely-grained structure, and one regular
puncture labeled by a partition of N . Indeed, the three solutions share key features, as we
briefly summarize below. In order to simplify this discussion, let us temporarily restrict the
regular puncture to be labeled by a single monopole of charge q. By inspection of table 1,
we then observe the following:
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• In all cases, an integer Neff may be identified which plays the role of an effective
number of M5-branes; and an integer M̃ may be identified which plays a similar role
to the integer M in the Case II solution.

• In terms of Neff, M̃ , and the other fluxes, we observe that the R-symmetry twist,
dimension of the Coulomb branch operator O1, and dimensions of the Higgs branch
operators Oi2 are identical between the three cases.

• Case I and Case II share more features. Case I represents a one-parameter general-
ization of the Case II solution labeled by the flux quantum NS, and which reproduces
the Case II geometry when NS → 0. In terms of the effective number of branes Neff,
the holographic central charge is identical in these two cases. The difference lies in
the additional stack of smeared M5-branes labeled by NS, and additional associated
Higgs branch operators Oj3. At the end of this section, we speculate on a possible
field theory interpretation of these features.

• By contrast, Case III is evidently not continuously connected to the other two by tun-
ing flux quanta. At present we refrain from further speculation as to the specific field
theory dual of Case III, but point out some intriguing features. The central charge
differs from that of Cases I and II by a term proportional to the new monopole charge
q2, and there are new operators in the spectrum. Furthermore, the two monopole
charges q1,2 are mixed by the relation Neff = q1M̃ + q2K. It would be interesting to
understand the mapping of these features to the field theory dual.

We now return to the proposed Case II duality, beginning with a summary of the
partition of N labeling the regular puncture is mapped to the electrostatic charge profile.

6.1 Map to the Young tableaux

As discussed in section 5, the geometry of the blue sides of the square depicted in figure 1 is
specified by a charge density profile λ(η). We now summarize the relationship between the
profile λ(η) and the data of a Young tableaux specifying a regular puncture in this region
of the geometry. Our notation for this mapping closely follows the discussion in [33].

There are p monopoles located on the η axis at locations ηa=1,...,p, with positive integer
charges ka given by

ka = `a − `a+1 , `a =
p∑
b=a

kb , `p+1 = 0 . (6.1)

The configuration is labeled by a partition of N ,

N =
p∑
a=1

kawa , (6.2)

where wa are an increasing series of positive integers. (We remind the reader that k without
a subscript labels the irregular puncture, and is not to be confused with the monopole
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charges ka!) This data is related to the data of a Young tableaux as follows. Rewriting the
partition of N as

N =
p∑
a=1

(wa − wa−1)`a , w0 = 0 , (6.3)

we identify a corresponding Young tableaux with distinct row lengths `a with multiplicities
(wa−wa−1). Changing variables, the lengths of all rows including repetitions are given by
the quantities

˜̀
i = `a for all i = wa−1 + 1, . . . , wa , (6.4)

with p̃ = wp the total number of rows. This reformulates the partition as N = ∑p̃
i=1

˜̀
i.

We furthermore define the quantities k̃i = ˜̀
i − ˜̀

i+1 (equivalently, ˜̀
i = ∑p̃

j=i k̃j) such that

k̃i = ka if i = wa , otherwise k̃i 6=wa = 0 . (6.5)

The flavor symmetry of the associated regular puncture is given in terms of the monopole
charges as

GF = S

[ p∏
a=1

U(ka)
]

= S

[ p̃∏
i=1

U(k̃i)
]
, (6.6)

where the product over i is understood to not include the cases k̃i = 0.
Other useful quantities related to the Young tableaux are as follows. We introduce the

notation

Na =
a∑
b=1

(wb − wb−1)`b =
a−1∑
b=1

wbkb + wa`a , Np = N . (6.7)

The corresponding variables Ñi in terms of the Young tableaux data are

Ñi =
i∑

j=1

˜̀
j =

i−1∑
j=1

jk̃j + i
p̃∑
j=i

k̃j , Ñp̃ = Ñp̃+1 = N , (6.8)

which satisfy ˜̀
i = Ñi − Ñi−1. We also will utilize the pole structure, a set of N integers

pi = i − (height of i’th box) labeling the i’th box in the diagram, starting with i = 1
and p1 = 0 in the bottom left corner and increasing from left to right across a row (in a
convention in which row lengths decrease from bottom to top). The pi are related to the
Ñi by

N∑
i=1

(2i− 1)pi = 1
6
(
4N3 − 3N2 −N

)
−

p̃∑
i=1

(N2 − Ñ2
i ) . (6.9)

For reference, these data for some special cases are as follows:
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Rectangular box puncture, with N/` rows of length `, and flavor symmetry GF =
SU(`). The case ` = N corresponds to the maximal puncture, while ` = 1 corresponds
to the “non-puncture”.

tableaux data: p̃ = N/` ; ˜̀1,...,p̃ = ` ; k̃p̃ = `, k̃1,...,p̃−1 = 0 ; Ñi = i`

geometric data: p = 1 ; `1 = ` ; k1 = `; N1 = N ; w1 = N/`

pole structure: pi=1+(m−1)`,...,m` = i−m , m = 1, . . . , N/`
(6.10)

Minimal puncture, with one row of length 2 and N − 2 rows of length 1, and flavor
symmetry GF = U(1).

tableaux data: p̃ = N − 1 ; ˜̀1 = 2, ˜̀2,...,N−1 = 1 ; k̃1 = k̃N−1 = 1,
k̃2,...,N−2 = 0 ; Ñi = i+ 1

geometric data: p = 2 ; `1 = 2, `2 = 1 ; k1 = k2 = 1 ;
N1 = 2, N2 = N ; w1 = 1, w2 = N − 1

pole structure: p1 = 0, p2,...,N = 1

(6.11)

These are drawn for the case N = 4 in figure 8.

6.2 Checks of the holographic duality

We now review some properties of the field theories (A(N)
N−1[k], Y ) which participate in

the proposed duality, and match these properties with those of the supergravity solutions
presented above. The (A(N)

N−1[k], Y ) field theories are 4d N = 2 SCFTs of Argyres-Douglas
type, engineered by wrapping N M5-branes on a sphere with one irregular puncture labeled
by the integer k denoted A(N)

N−1[k] [9, 10], and one regular puncture labeled by the Young
tableaux Y which is a partition of N . Since [15] includes a review of the classification of
irregular singularities, as well as a detailed review of the properties of the (A(N)

N−1[k], Y )
SCFTs when Y is a Young tableaux of rectangular box type (including the trivial case with
no regular puncture on the sphere), in this section we focus primarily on how the data of
the general Young tableaux enters the checks between properties of the SCFTs and the
holographic solutions.5

6.2.1 R-symmetry

The U(1)r superconformal R-symmetry of these N = 2 SCFTs is independent of the details
of the regular puncture. It is given by a linear combination of the global U(1)z isometry

5We note that most of the checks performed in this section are not sensitive to differences between
the irregular singularities A(b)

N−1[k] with b = N (Type I) versus b = N − 1 (Type II), although we explic-
itly perform checks for the former case. In particular, the central charges, R-symmetry twist, maximum
Coulomb-branch operator dimension, and rank of the flavor symmetry are all unchanged at leading order in
N between the Type I and Type II theories, differing only at subleading order. The Case II identification
of the holographic parameter K with the field theory parameter k would have an additional order 1 term
in matching to the Type II singularity, but this difference does not affect the leading order duality checks.
One difference is that we do not have access to a check of Higgs branch operator dimensions for the Type
II singularities, since these cases do not have a known quiver Lagrangian description.
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η
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N

(a) The maximal puncture with GF = SU(N), corresponding to the box diagram Y` with ` = N .
Here, p` = `− 1, such that p` = {0, 1, 2, 3} in the above diagram (allowing ` = 1, . . . , N).

η

λ

2

N

(b) The puncture with GF = SU(N/2), corresponding to the box diagram Y` with ` = N/2. Here,
p`=1,...,N/2 = `− 1 and p`=N/2+1,...,N = `− 2, such that in the diagram shown p` = {0, 1, 1, 2}.

η

λ

21

4
3

(c) The puncture with GF = S(U(2)×U(1)). Here, p` = {0, 1, 2, 2}.

η

λ

N − 11

N

2

(d) The minimal puncture with GF = U(1), correpsonding to the tableaux with one row of length 2
and N − 2 rows of length 1. Here, p` = {0, 1, . . . , 1}.

η

λ

N

N

(e) The non-puncture, corresponding to the box diagram Y` with ` = 1. Here, p` = 0 for all `.

Figure 8. The Young tableaux, Newton polygons, and charge density profiles λreg of the possible
regular punctures for N = 4. The blue dots represent deformation parameters of the Seiberg-Witten
curve. The red circled dots are the Coulomb branch operators Oa identified in (6.31).
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of the sphere and the would-be U(1)φ R-symmetry that would be preserved in the absence
of an irregular defect, as

r = Rφ + N

k +N
Rz . (6.12)

This matches the R-symmetry identified in (5.23).

6.2.2 Central charge

The central charge of the (A(N)
N−1[k], Y ) theories may be decomposed as the sum of the

central charge c(AN−1,Ak−1) for the SCFTs without the regular puncture, plus the additional
contribution ∆c,6

c = c(AN−1,Ak−1) + ∆c . (6.13)

The quantity c(AN−1,Ak−1) is given by [9]

c(AN−1,Ak−1) = k2(N2 − 1)− (k +N)(N − 2 + GCD(k,N))
12(k +N) (6.14)

N→∞= N2(M −N)2

12M , M = k +N (6.15)

where for later reference we also evaluated the large N limit of large N, k at fixed k/N ,
and are using M = k+N . ∆c depends on the details of the Young tableaux Y , and can be
derived by partial closure of the maximal puncture to an arbitrary regular puncture [29],

∆c = 1
12

(
nh(Y ) + 2nv(Y ) + 2N3 −N − 1 + N

(k +N)
(
6IρY −N3 +N

))
. (6.16)

This is given in terms of the quantities nv(Y ) and nh(Y ) which represent the effective
number of vector multiplets and hypermultiplets respectively contributed by the regular
puncture labeled by Y ,

nv(Y ) = −
p̃∑
i=1

(N2 − Ñ2
i )− 1

2N
2 + 1

2 , (6.17)

nh(Y ) = nv(Y ) + 1
2

p̃∑
i=1

Ñik̃i −
1
2 , (6.18)

as well as the embedding index IρY of su(2) into su(N) labeling the partial closure of the
full puncture,

IρY = 1
6

p̃∑
i=1

i(i2 − 1)k̃i . (6.19)

These are given in terms of the Young tableaux data (Ñi, k̃i, p̃) defined in section 6.1. For
example, using (6.10) one can verify that for the box diagram labeled by `, these evaluate

6Since we are interested in checks at large N where a = c, here we focus only on the c central charge.

– 40 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
1

to IρY` = 1
6N(N2

`2 − 1), nh(Y`) = 2N
3` (`2 −N2), and nv(Y`) = 1

6(3 + `N − 4N3

` ), which upon
substituting into (6.16) and (6.13) yield the c central charge evaluated in [14, 15]. One can
similarly verify that using (6.11) for the case of the minimal puncture, the resulting central
charge matches the result obtained in [27].

The field theory central charge (6.13) can be compared with the holographic central
charge, computed above in (5.22) as

chol = 1
12

MN2 +
p∑
a=1

N
M
kaw

3
a − 2k2

aw
3
a −

p∑
b=a+1

(w3
a + 3waw2

b )kakb

 . (6.20)

In order to check that these two quantities match at large N , we need to evaluate the large-
N limit of (6.16). First we change from Young tableaux variables (Ñi, k̃i, . . . , i = 1, . . . , p̃)
to variables (Na, ka, . . . , a = 1, . . . , p). Since k̃i is only nonzero at the location of a monopole
i = wa, at which point k̃i = ka and Ñi = Na, we can replace ∑i Ñkk̃i with

∑
aNaka in

nh(Y ), as well as ∑i i(i2 − 1)k̃i with
∑
awa(w2

a − 1)ka in IρY . We also make use of the
following identity (e.g. [33]),
p̃∑
i=1

(N2 − Ñ2
i ) =

p∑
a=1

(
2`2a
3 (w3

a − w3
a−1) + `a(Na − wa`a)(w2

a − w2
a−1)− Naka

6

)
− N2

2 + 1
2 .

(6.21)

Terms of O(N2) and less are subleading in the large N limit and can be dropped. These
include the sum ∑

aNaka, as well as the −1 part of the sum ∑
awa(w2

a − 1)ka. Putting
all this together, and adding ∆c to the large N limit of c(AN−1,Ak−1) given in (6.15), we
evaluate

c
N→∞= 1

12

(
MN2 +

p∑
a=1

(
Nw3

aka
M

− 2`2a(w3
a − w3

a−1)− 3`a(Na − wa`a)(w2
a − w2

a−1)
))

.

(6.22)
Substituting for Na and `a from (6.1) and (6.7), we evaluate

c
N→∞= 1

12

[
MN2 +

p∑
a=1

N

M
w3
aka

−
p∑
a=1

2
( p∑
b=a

kb

)2

(w3
a − w3

a−1) + 3
( p∑
b=a

kb

)(
a−1∑
b=1

wbkb

)
(w2

a − w2
a−1)

] (6.23)

= 1
12

MN2 +
p∑
a=1

N
M
kaw

3
a − 2k2

aw
3
a −

p∑
b=a+1

w3
akakb − 3

a−1∑
b=1

w2
awbkakb

 , (6.24)

where in the second equality we converted the sums over wa−1 to sums over wa, and then
expanded the remaining sums in order to cancel some terms. The final sum in (6.24) can
be recast as

p∑
a=1

a−1∑
b=1

w2
awbkakb =

p∑
a=1

p∑
b=a+1

waw
2
bkakb . (6.25)

Substituting into (6.24) and comparing with the holographic central charge (6.20), we find
agreement.
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6.2.3 Coulomb branch operators

The Seiberg-Witten curve of the SCFT takes the form

y2 = xN + zk + · · ·+ uabx
azb + . . . (6.26)

where uab are deformations of the curve with scaling dimension

∆(uab) = kN − ak − bN
k +N

. (6.27)

The regular puncture with associated Young tableaux Y contributes terms

y2 ⊃
N∑
l=2

pl∑
n=1

vl,nz
−nxN−l , ∆(vl,n) = l(M −N) + nN

M
, (6.28)

where pl is the pole structure defined above (6.9).
Coulomb branch operators are scalar primaries of protected N = 2 chiral multiplets

with superconformal SU(2)R×U(1)r R-charges satisfying r = 2∆, R = 0. These correspond
to deformation parameters uab with ∆(uab) > 1. These deformations are nicely encoded
in a Newton polygon, by plotting the (a, b) coordinates associated to operators uab on a
grid. In particular, the operators vl,n associated contributed by the addition of the regular
puncture on the sphere will correspond to points below the horizontal axis of this grid,
since the associated powers of x and z in (6.28) are negative. Examples of the quadrants of
the Newton polygon associated to the regular puncture deformations are shown in figure 8.

In (5.33), we identified Coulomb branch type operators associated to wrapping an M2-
brane on the S2 at each of the a = 1, . . . , p monopole locations, and computed their scaling
dimensions

∆(Oa) =
a−1∑
b=1

kbwb + wa

p∑
b=a

kb −
Nwa
M

= Na −
Nwa
M

. (6.29)

In the second equality we used the definition of Na from (6.7). We can match these onto
operators in the SCFT as follows. Firstly we note that these operators correspond to some
value of l and n = pl in (6.28), since at a given value of l we are interested in the largest
dimension Coulomb branch operator (which has n = pl). In the Newton polygon, these are
points bounding the lower edge of the triangle.

Since the Oa are associated with fluxes through the S2 surrounding the monopole
locations, we restrict attention to these points. The locations of the monopoles ηa coincide
with changes in the slope of the density profile λ(η), and correspondingly with changes
in the lengths between subsequent rows of the associated Young tableaux (or equivalently,
changes in the slope of the Newton polygon). Since the distinct lengths of rows of the Young
tableaux are given by the `a, with multiplicities (wa − wa−1), evidently these changes in
slope occur at box numbers la = ∑a

b=1(wb − wb−1)`b, which is none other than Na. Thus,
we identify the operators Oa with the vl,n for l = Na and n = pNa , with dimensions

∆(vl=Na,n=pNa ) = Na −
N

M
(Na − pNa) . (6.30)
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Finally, we evaluate pNa = Na−(height of Na’th box) by again appealing to the partition of
N . Since there are (wa−wa−1) rows of length `a in the tableaux, the height of the Na’th box
is equal to the number of rows that have already been surpassed, namely∑a

b=1(wb−wb−1) =
wa. Therefore,

∆(vl=Na,n=pNa ) = Na −
Nwa
M

, (6.31)

which exactly matches the dimensions of the holographic operators (6.29). These operators
are circled in red in the example Newton polygons drawn in figure 8.

6.2.4 Flavor central charge
The flavor central charges associated to the SU(ka) flavor symmetries at the monopole
locations were computed in (5.28) as

kSU(ka) = 2(ya +mawa) (6.32)

Using ma = `a+1− N
M , `a = ∑p

b=a kb (with `p+1 = 0), ya = ∑a
b=1wbkb, this can be rewritten

kSU(ka) = 2

 a∑
b=1

kbwb + wa

p∑
b=a+1

kb −
N

M
wa

 = 2∆(Oa) , (6.33)

where ∆(Oa) are the scaling dimensions given in (6.29), which we showed in that section
match the maximal-dimension Coulomb branch operators associated to the a’th monopole.
This confirms the conjecture that the flavor symmetry central charge of the associated
Argyres-Douglas SCFT is equal to twice the scaling dimension of the Coulomb branch
operator of maximal dimension [27].

6.2.5 Higgs branch operators for the minimal puncture
In the special case that Y corresponds to either a maximal puncture or a minimal puncture,
a Lagrangian quiver description of the Argyres-Douglas SCFT is known. In [15], a class of
Higgs branch operators are matched in the case of the maximal puncture between baryonic
operators in the quiver, and a class of M2-brane probes in the holographic solution. With
the generalized holographic solutions for any regular puncture, we can now perform a
similar check for the minimal puncture case.

The Lagrangian description for the theories with a simple puncture in addition to the
irregular puncture is known for the case that k = mN is an integer multiple of N . The
UV quiver and IR quiver are depicted in figure 9. They consists of N − 1 gauge nodes
SU(m` + 1), ` = 1, . . . , N − 1. Bifundamental hypermultiplets (Q`, Q̃`) connect the `’th
node to the ` + 1’th node. There is one fundamental hypermultiplet (q1, q̃1) at the first
node, and one (qN−1, q̃N−1) at the last node. There are adjoints φ` for each of the gauge
nodes. There are also singlets Mj , j = 1, . . . ,m(N − 1) (j = ĵ −m for ĵ the index in [30]).
The N = 1 R-charges of the quarks and adjoints are

RN=1(Q`) = RN=1(q1) = 3m+ 2
3(m+ 1) , RN=1(qN−1) = 3m+ 2−mN

3(m+ 1) ,

RN=1(φ`) = 2
3(m+ 1) ,

(6.34)

from which the dimensions can be computed ∆ = 3
2RN=1.
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1 m+ 1

φ1

2m+ 1

φ2

(N − 1)m
+1

φN−1

Nm

q1

q̃1

Q1

Q̃1

. . .

QN−1

Q̃N−1

y

1 m+ 1

φ1

2m+ 1

φ2

(N − 1)m
+1

φN−1

1

q1

q̃1

Q1

Q̃1

. . .

qN−1

q̃N−1

Figure 9. The upper figure is the UV quiver and the lower figure the IR quiver for the flow to the
(A(N)

N−1[k = mN ], S) SCFTs.

From the quivers, we can evidently construct sets of baryonic operators of the form

B1 = εi1...i(N−1)m+1(qN−1)i1(qN−1φ)i2 . . . (qN−1φ
(N−1)m)i(N−1)m+1 ,

B2 = q1Q1 . . . QN−2qN−1 ,
(6.35)

with dimensions
∆(B1) = k − k

N
+ 1 , ∆(B2) = N . (6.36)

On the gravity side, we computed the dimensions of M2-brane probes corresponding
to Higgs branch operators in (5.44) and (5.45). For the minimal puncture with data
summarized in (6.11), these correspond to operators with dimensions

∆(O[wp,wm]) = k +O(1) , ∆(O[w1,w2]) = N +O(1) . (6.37)

At large N , these operator dimensions match (6.36). We thus identify the M2-brane probes
O[wp,wm] and O[w1,w2] in the minimal puncture geometry with the baryons B1 and B2 in
the Lagrangian quiver of the proposed dual SCFT.

6.3 Speculations on nested Young tableaux

We end this section with some comments on another Argyres-Douglas SCFT, which we
speculate might be dual to the Case I geometries constructed in this work.

One generalization of the (A(N)
N−1[k], Y ) Argyres-Douglas SCFTs takes the Higgs field

in the Hitchin system to be specified by a series T1 ⊆ T2 ⊆ · · · ⊆ T2+ k
N

of semisimple
elements of su(N) that are not necessarily regular (e.g. see [9, 10]). Then, the data of the
irregular puncture is refined to depend on a sequence of Young tableaux Yn ⊆ Yn−1 · · · ⊆ Y1,
n = k

N + 2. The Young tableaux encode the degeneracies of the eigenvalues of the matrices
Ti. The “maximal” irregular singularity A(N)

N−1[k] is recovered in the limit that there is no
degeneration of the eigenvalues, so that all matrices are of maximal type.
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In this case, the Seiberg-Witten curve has additional parameters,

xN +
N∑
i=2

· · ·+ mi∑
j=1

u
(i)
j z

mi−j

xN−i = 0 , mi =
∑
l

p
(l)
i − 2i+ 1 . (6.38)

Here p(l)
i is the pole structure of the i’th box in the l’th Young tableaux of the sequence.

The independent Coulomb branch operators thus have dimensions

∆(u(i)
j ) = ik − (mi − j)N

k +N
. (6.39)

Suggestive example: {YQ, . . . , YQ}. Let us illustrate such a scenario with a sugges-
tive example. Suppose there is just one type of tableaux labeled by Q, which occurs with
multiplicity n = k

N + 2,

ρ = {YQ, . . . , YQ} , (6.40)

where we assume that k is an integer multiple of N . The limit Q = N reduces to the
“maximal” irregular puncture without the additional nested structure. For simplicity let
us take the regular puncture on the other pole of the sphere to be trivial, i.e. q = 1. Then,
the pole structure parameters are given by,

p
(l)
i = i−m, i = 1 + (m− 1)Q, . . . ,mQ , m = 1, . . . , N/Q , (6.41)

mi =
(
k

N
+ 2

)
pi − 2i+ 1 . (6.42)

For Q ∼ O(1), the quantities mi are negative, and we cannot use this description (6.38) to
enumerate the Coulomb branch operators. However for Q ∼ O(N), one may verify that
the mi are positive. In this case, we check that the Coulomb branch operator u(N)

mN has
dimension of order N , given by

∆(u(N)
mN

) = Nk

k +N
, (6.43)

and that the rank of the Coulomb branch is given by7

rank(CB) = kN

2 −
N

2Q(k + 2N) + 1 . (6.44)

We may compute the central charge at large N by summing over the Coulomb branch
operator dimensions [26], yielding

2a− c = 1
4
∑
i

(2∆(ui)− 1) = 1
2

N∑
i=2

mi∑
j=1

ik − (mi − j)N
k +N

− 1
4rank(CB)

= k2N2

12(k +N) +O(N2) . (6.45)

7One check on this formula is that it satisfies the expected relation rank(CB) = dimρ(CB)−dim(SU(N)),
where dimρ(CB) is equal to one half times the sum over the dimensions of the nilpotent orbits of su(N)
that appear in the sequence ρ.
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In particular, we note that at leading order for large N , these data – the large-N central
charge, maximal dimension Coulomb branch operator, and rank of the Coulomb branch –
are indistinguishable from the “maximal” irregular puncture theory, (AN−1, Ak−1). This is
not surprising, since this singularity labeled by Q ∼ O(N) is quite similar to the maximal
irregular puncture case. However, even for Q ∼ O(N) there is additional data contributed
by the nested structure: the flavor symmetry of the field theory is enhanced. The number
of mass parameters is equal to the number of distinguished eigenvalues of T1 [10], which in
this example contributes rankρ(F ) to the rank of the flavor symmetry as,

rankρ(F ) = N

Q
− 1 , rank(F ) = rankρ(F ) + rankρ(SU(N)) . (6.46)

Now, return to the Case I holographic solutions, again for simplicity taking q = 1 such
that there is no regular puncture on the sphere. Their data is summarized in table 1, where
since q = 1 we may replace M = Neff. If we identify the number of M5-branes N and the
irregular puncture parameter k with the holographic fluxes Neff and K in a way identical
to the Case II dictionary,

N = Neff , k = K +M −N = K , (6.47)

then evidently the R-symmetry, central charges, and dimensions of the operators O1 match
both data of the Argyres-Douglas SCFT labeled by “maximal” regular puncture A(N)

N−1[k],
and the Argyres-Douglas SCFT labeled by the nested Young tableaux ρ = {YQ, . . . , YQ}
with Q ∼ O(N).

In addition, both Case I and the ρ = {YQ, . . . , YQ} irregular puncture theory possess
enhanced flavor symmetry. Naively, we expect a flavor symmetry coming from the two
stacks of NW and NS smeared M5-branes in the geometry, where (again, naively) we
might expect that the maximal rank of this flavor symmetry is identified with the maximal
possible rank of the sources, equaling NW + NS − 1. This identification would provide
a proposed map between the flux quantum NS on the gravity side, and the field theory
parameters N, k, and q.

While a proposed duality along these lines seems promising, more precise checks would
be required to put it on firmer footing. In particular, a more precise understanding of the
flavor symmetry of the smeared M5-brane geometry would be necessary. We leave this
direction to future work. At present, we view this discussion as a hint that the dual to the
Case I geometry is consistent with Argyres-Douglas SCFT whose irregular puncture has
refined structure.

7 Discussion

The results of this work suggest several interesting directions for future research, some of
which are discussed below.

Exploring the geometry of irregular singularities. The separable Toda solutions of
Case I and II studied in this paper exhibit an interesting qualitative feature that sets them
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apart from the Maldacena-Nuñez [12] and Gaiotto-Maldacena [13] solutions. Recall that
the latter describe the holographic duals of class S setups without punctures, and with
regular punctures, respectively.

To elucidate the novel features of the solutions of Case I and II, let us examine in
closer detail the locus y = 0 in the standard form of the line element (2.1). Recall that
the internal space M6 can be regarded as an S2 × S1

χ fibration over a 3d base space B3,
with coordinates x1, x2, y. The line element (2.1) reveals that the locus y = 0 in B3
has an intrinsic geometric meaning, because it corresponds to the region where the S2

shrinks. Both in the Maldacena-Nuñez and in the Gaiotto-Maldacena solutions, the locus
y = 0 consists of a single component, at which the S2 shrinks smoothly, while the warp
factor remains non-singular. This should be contrasted with the solutions of Case I and
II, in which the locus y = 0 splits into two components, meeting transversally at a point.
This structure is made manifest by the introduction of the t, u coordinates, see (2.9). In
particular, the relation y = tu can be regarded as a way of parametrizing the split of the
locus y = 0 into two components, t = 0 and u = 0, intersecting transversally at u = t = 0.
In Case II, the splitting of the y = 0 locus is particularly important for the structure of the
internal geometry, because the behavior of the warp factor and line element along the two
components u = 0 and t = 0 exhibits clear qualitative differences: along the component
u = 0, the S2 shrinks but the warp factor remains non-singular, while along the component
t = 0 we find a smeared M5-brane source, see figure 1.

The considerations of the previous paragraphs suggest a more physical way of thinking
about the change of coordinates y = tu: it describes setups in which the y = 0 locus has
a non-trivial sub-structure. From this point of view, it is natural to wonder whether the
locus y = 0 might admit richer structures than those studied in this paper. For example,
one might ask whether y = 0 could split into three components, C1, C2, C3 say, with C1
and C2 meeting at a point, and similarly for C2 and C3. It is not clear whether such more
complicated setups would still allow for a separation of variables in the Toda equation; this
might pose a technical challenge to exploring such possibilities analytically in the Toda
frame.

A possible strategy to study a multi-component y = 0 locus might be inspired by the
methods of [37]. This reference studies the most general AdS5 M-theory solution preserving
4d N = 1 supersymmetry in which the internal space is a fibration of a compact 4-manifold
over a (punctured) Riemann surface. The internal geometry is assumed to preserve at least
a U(1)2 isometry. The 4-dimensional fiber over the Riemann surface can be described as
a U(1)2 fibration over a 2d base space. The latter is a region in R2 with a boundary
consisting of several segments, where on each segment, a different linear combination of
the two U(1) Killing vectors shrinks to zero size. These setups bear some formal analogies
to the multi-component y = 0 locus we would like to explore.

Alternatively, one might work in the electrostatic picture after the Bäcklund transform.
In this frame, the task is to identify those charge densities that give rise to a multi-
component y = 0 locus, and to study them systematically.
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Connections with Painlevé equations and integrable systems. In the Introduc-
tion, we have motivated our assumption that the internal geometry admits an additional
Killing vector ∂β , in addition to the Killing vector ∂χ dual to the superconformal U(1)r
symmetry. We have also noticed, however, how this ∂β isometry does not give rise to a con-
tinuous U(1) flavor symmetry on the field theory side. It is natural to wonder whether we
could relax the assumption of having the additional isometry ∂β , and search for solutions
that can be interpreted in terms of irregular punctures. In particular, one may wonder
whether, upon relaxing the ∂β isometry, non-singular (or less singular) solutions could be
found in which the smeared M5-brane sources encountered in this work are resolved.

The study of the Toda equation (1.2) in non-axisymmetric setups is particularly chal-
lenging. A possible inroad into this problem is furnished by the analysis in [38]. The main
idea is to consider a coordinate change from x1, x2, y to a new set of coordinates τ , ϑ, ϕ,
of the form

x1 = eaτΩ1(τ) sinϑ cosϕ , x2 = eaτΩ2(τ) sinϑ sinϕ , y = Ω2(τ) cosϑ , (7.1)

where a is a constant parameter, Ω1,2 are functions of τ , 0 ≤ ϑ ≤ π, and ϕ is an angle of
period 2π. In the generic case in which Ω1(τ) is not identically equal to Ω2(τ), this ansatz
describes a non-axisymmetric configuration. Nonetheless, one retains analytic control as
follows. If we introduce a new coordinate s via as = e−aτ , and we set the Toda potential
D to be eD = a2s2, we can verify that the Toda equation reduces to an ODE for a single
function w = w(s). The ODE is of Painlevé III type,

w′′ = (w′)2

w
− w′

s
+ γw3 + δ

w
, (7.2)

where γ, δ are constant parameters.
Relating the search of M-theory solutions dual to irregular punctures to a Painlevé

equation is particularly tantalizing, given that Painlevé equations have natural links to
the Hitchin integrable system on punctured Riemann surfaces, see e.g. [39]. A functional
transform from the Toda equation to the Painlevé III equation might thus be a way to
establish a precise correspondence between the holographic description of the class S model,
and its description in terms of the Higgs field entering the Hitchin system. We plan to
investigate this direction further in the future.

Holographic realizations of renormalization group flows. Another interesting di-
rection is to understand the holographic analogues of known renormalization group flows
between Argyres-Douglas SCFTs. For example, there is an RG flow between the
(A(N)

N−1[k], Ymax) theory with a regular maximal puncture on the sphere, and the
(AN−1, Ak+N−1) theory with no regular puncture, via nilpotent Higgsing [40]. This flow
can furthermore be understood purely from the Lagrangian perspective. It would be quite
interesting to reproduce such an RG flow holographically, using the proposed holographic
duals that we have now identified.
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A Further details on separable solutions

A.1 Angular coordinates φ, z

As anticipated in the main text, it is convenient to perform a change of coordinates from
the Toda angles χ, β to a new pair of angles φ, z. The change of coordinates is engineered
in such a way that, along the segment P3P4 in each case in figure 1, the linear combination
of Killing vectors ∂χ, ∂β that has vanishing norm is simply ∂φ. This can be achieved by
setting

χ = ṽ

ṽ − 1φ− z, β = − 1
ṽ − 1φ+ z, (A.1)

where ṽ ≡ vβ(t, u2) is the constant value attained by vβ along the P3P4 segment,

ṽ = 1− σ

2

(
1− u1

u2

)
⇒ C = ṽ − 1 = −σ2

(
1− u1

u2

)
, (A.2)

where we have also given the value of the constant C that enters the parametrization (3.1)
used in the main text. In terms of the Killing vectors and differential forms, we can write(

∂χ
∂β

)
=
(

1 1
ṽ−1

1 ṽ
ṽ−1

)(
∂φ
∂z

)
,

(
dχ

dβ

)
=
(

ṽ
ṽ−1 −1
− 1
ṽ−1 1

)(
dφ

dz

)
. (A.3)

With this, the metric takes the form

ds2
11 =e2λ̃

m2

[
ds2(AdS5) + t2u2e−6λ̃

4 ds2(S2) (A.4)

+R2
zDz

2 +R2
φdφ

2 − ∂yD
K1u

2 +K2t
2

4tu

(
dt2

K1
+ du2

K2

)]
,
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where Dz = dz − Ldφ and we have made the definitions

R2
z = −∂yDK1K2

4tu + (vβ − 1)2

1− tu∂yD

= −σ2

4tu(t1t2u2 − u1u2t2)

(
ut1t2(t1 + t2)(u− u1)(u− u2) (A.5)

+ t2(t1 + t2)
(
u3 − u1u2(3u− u1 − u2)

)
− tt1t2

(
4u3 − (u1 + u2)(3u2 − u1u2)

)
+ t3

(
4uu1u2 − (u1 + u2)(u2 + u1u2)

))
,

L = − 2(u− u2)
P

(
tuu1 (t(ut2 − tu1) + t1(tu− t2(2u− u1)))

− (u− u1)u2
(
ut1t2(2t− t1 − t2) + tu1(t− t1)(t− t2)

)
+ tu1u

2
2(t− t1)(t− t2)

)
,

R2
φ = σ(u1 − u2)

P
(t− t1)(t− t2)(u− u1)(u− u2)

(
(t1 + t2)u− (u1 + u2)t

)
,

P =σ(u1 − u2)
(
ut1t2(t1 + t2)(u− u1)(u− u2) + t2(t1 + t2)

(
u3 − u1u2(3u− u1 − u2)

)
− t3

(
u2(u1 + u2)− u1u2(4u− u1 − u2)

)
− tt1t2

(
4u3 − (u1 + u2)(3u2 − u1u2)

))
.

From these definitions we can readily read off that the φ circle shrinks along the intervals
where the Ki vanish, and we can find that the Dz fibration will only vanish at the locations
of the monopoles.

In terms of the new angular coordinates, the flux reads

G4 = − G4
(2π`p)3 = volS2

4π ∧ d
[
Y
dφ

2π −W
Dz

2π

]
, (A.6)

where the 0-forms Y , W are given by

W = t3u3e−6λ̃(vβ − 1)− tuvβ −
1
2F ,

Y +WL = −t3u3e−6λ̃ ṽ − vβ
ṽ − 1 −

tuvβ
ṽ − 1 −

F
2(ṽ − 1) , (A.7)

with vβ , F as in (2.16).
Finally, let us record the expression of the calibration 2-form Y ′ given in (3.14) in

terms of functions appearing in the line element (A.4),

Y ′ = 1
4(tu)3e−9λ̃volS2 + 1

2 tue
−3λ̃(1− (tu)2e−6λ̃)(vβ − 1)dτ ∧Dz

+ 1
2 tue

−3λ̃(1− (tu)2e−6λ̃)
(
ṽ − vβ
ṽ − 1 − (vβ − 1)L

)
dτ ∧ dφ

+
[

1
2τe

−3λ̃u

(
ṽ − vβ
ṽ − 1 − (vβ − 1)L

)
+ 1

4
K2tue

−9λ̃τ

1− (tu)2e−6λ̃

( 1
ṽ − 1 + L

)]
dt ∧ dφ
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+
[

1
2τe

−3λ̃t

(
ṽ − vβ
ṽ − 1 − (vβ − 1)L

)
− 1

4
K1tue

−9λ̃τ

1− (tu)2e−6λ̃

( 1
ṽ − 1 + L

)]
du ∧ dφ

+
[

1
2τe

−3λ̃y2(vβ − 1)− 1
4
K2tue

−9λ̃τ

1− (tu)2e−6λ̃

]
dt ∧Dz

+
[

1
2τe

−3λ̃y1(vβ − 1) + 1
4
K1tue

−9λ̃τ

1− (tu)2e−6λ̃

]
du ∧Dz, (A.8)

A.2 Solutions in Case II in the notation of [15]

Brief review. The AdS5 solutions discussed in [15] were obtained by uplift from 7d
gauged supergravity. The 11d metric and flux are given by

m2 ds2
11 = 2Bw1/3H(w, µ)1/3

√
1− w2

[
ds2(AdS5) + dw2

2w h(w) (1− w2)3/2 + C
2 h(w) dz2

B

+
√

1− w2

2B

(
dµ2

w (1− µ2) + (1− µ2)Dφ2

wH(w, µ) + wµ2 ds2(S2)
H(w, µ)

)]
. (A.9)

The quantities B, C are parameters specifying the solution and satisfy

0 < B < 1 , C = 1
`
√

1−B2
, ` ∈ Z>0 . (A.10)

The coordinates z, φ are angles with period 2π, while the coordinates µ, w have ranges

0 ≤ µ ≤ 1 , 0 ≤ w ≤ w1 := 1
2

(√
1 +B −

√
1−B

)
(A.11)

We have introduced the shorthand notation

H(w, µ) = µ2 + w2 (1− µ2) , h(w) = B − 2w
√

1− w2 . (A.12)

The quantity ds2(S2) is the metric on the round unit 2-sphere, while the 1-form Dφ reads

Dφ = dφ+ C (2w2 − 1) dz . (A.13)

The expression for G4 is

G4 = − 1
m3 volS2 d

[
µ3

µ2 + w2 (1− µ2) Dφ
]
, (A.14)

where volS2 is the volume form on the 2-sphere of unit radius.
When these solutions are cast in canonical LLM form, the Toda potential D reads

eD =
16B C2 (1− µ2)1+1/C [

B − 2w
√

1− w2
]

(1− w2) G(w)2 . (A.15)

The LLM coordinates r, y are related to the coordinates w, µ by the relations

y = 4Bwµ√
1− w2

, r = (1− µ2)−
1

2C G(w) . (A.16)

– 51 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
1

In the previous expressions, the quantity G(w) is a function of w only, satisfying the ODE

G′(w)
G(w) = −Bw

C (1− w2)
[
B − 2w

√
1− w2

] . (A.17)

Let us define a new variable t̂ via

t̂ = w√
1− w2

. (A.18)

The above ODE can be written in the form
d

dt̂
log G(t̂) = α1

t̂1 − t̂
+ α2

t̂2 − t̂
, (A.19)

where
t̂1,2 = 1∓

√
1−B2

B
, α1,2 = − B2

2C[1−B2 ±
√

1−B2]
. (A.20)

The solution can be written as

log G(t̂) = −α1 log(t̂1 − t̂)− α2 log(t̂2 − t̂) + const . (A.21)

Dictionary with Case II solutions. The µ, w coordinates are related to the t, u
coordinates of Case II via

u = u2µ , t = 4Bw
u2
√

1− w2
= 4B

u2
t̂ . (A.22)

We also record the identifications

σ = −C , t2
t1

= 1 +
√

1−B2

1−
√

1−B2
. (A.23)

B Formulae for the electrostatic potential

In this appendix we discuss the electrostatic potential generated by a piecewise linear
charge density profile with an arbitrary number of monopoles. The electrostatic potential
is computed from the charge density using the standard Green’s function for the Laplace
operator on R3, see (4.26).

We consider a total of n monopoles, located at ηi, i = 1, . . . , n. We start by computing
the contribution of the linear charge density between two consecutive monopoles, which we
parametrize as

λ(η) = miη + qi for ηi < η < ηi+1 , i = 1, . . . , n− 1 . (B.1)

This segment of charge density gives the electrostatic potential

V (ηi, ηi+1,mi, qi) = 1
2

[
mi

√
ρ2 + (η − ηi)2 − (miη + qi)arctanh

(
η − ηi√

ρ2 + (η − ηi)2

)
(B.2)

−mi

√
ρ2 + (η − ηi+1)2 + (miη + qi)arctanh

(
η − ηi+1√

ρ2 + (η − ηi+1)2

)]
.
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Next, we study the semi-infinite line at the right of the last monopole. The charge
density is written as

λ(η) = mnη + qn for η > ηn . (B.3)

This contribution suffers from divergences, which are treated in the same way as for Case I
in the main text. We introduce a regulator ηR and we subtract the divergences as ηR →∞,
with the result

Vright = lim
ηR→∞

[
V (ηn, ηR,mn, qn) + mnη + qn

2 log(2ηR) + mn

2 ηR

]

= 1
2

[
mn

√
ρ2 + (η − ηn)2 − (mnη + qn)arctanh

(
η − ηn√

ρ2 + (η − ηn)2

)

+ (mnη + qn) log ρ+mnη

]
. (B.4)

The semi-infinite line at the left of the first monopole is treated in an analogous way.
We parametrize the charge density as

λ(η) = m0η + q0 for η < η1 . (B.5)

We then compute

Vleft = lim
ηL→∞

[
V (−ηL, η1,m0, q0) + m0η + q0

2 log(2ηL)− m0
2 ηL

]

= 1
2

[
−m0

√
ρ2 + (η − η1)2 + (m0η + q0)arctanh

(
η − η1√

ρ2 + (η − η1)2

)

+ (m0η + q0) log ρ+m0η

]
. (B.6)

Let us remark that continuity of the charge density imposes the following constraints
on the monopole locations ηi, the slope parameters mi, and the intercept parameters qi,

mi−1ηi + qi−1 = miηi + qi , i = 1, . . . , n . (B.7)

The total electrostatic potential for the full charge density takes the form

Vtot =
n−1∑
i=1

V (ηi, ηi+1,mi, qi) + Vleft + Vright . (B.8)

C Detailed analysis of generalized Case II

In this appendix we present a more detailed analysis of the generalized Case II solutions
discussed in section 5. Before addressing these solutions, however, we describe the electro-
static picture for Case II solutions in the notation of [15].
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C.1 Electrostatic interpretation of Case II, revisited

Determination of ρ, η, V . The expression of ρ as a function of (w, µ) is obtained
directly by combining (4.1), (A.15), and (A.16),

ρ =
4 C
√
B
√

1− µ2
√
B − 2w

√
1− w2

√
1− w2

. (C.1)

The function η = η(µ,w) can be determined as follows. Let us regard V as a function of
µ, w. Its derivatives with respect to w, µ can be computed from ∂ρV , ∂ηV with the help
of the chain rule, in terms of an unspecified η = η(µ,w). The result reads

∂µV (µ,w) = ∂µη(µ,w) log
[
(1− µ2)−

1
2C G(w)

]
− 4Bwµ2

(1− µ2)
√

1− w2
, (C.2)

∂wV (µ,w) = ∂wη(µ,w) log
[
(1− µ2)−

1
2C G(w)

]
+ 4Bwµ(2w2 − 1)

(1− w2)
[
B − 2w

√
1− w2

] + 4Bw2µ

(1− w2)3/2 .

The integrability condition ∂w∂µV (µ,w) = ∂µ∂wV (µ,w) yields

0 = bw (1− µ2) ∂µη(µ,w) + µ (1− w2)
[
B − 2w

√
1− w2

]
∂wη(µ,w)

− 4B C w (1 + µ2) +
4B2 C

[
µ2 + w2 (1− µ2)

]
√

1− w2
. (C.3)

We have used the expression for G′(w)/G(w). On the other hand, the function V must
satisfy the Laplace equation (4.5), up to localized sources. In the first term of (4.5), we
make use of ∂ρ(ρ ∂ρV ) = ∂ρy, and in the second term we write ∂2

ηV = ∂η log r. The
quantities ∂ρy, ∂η log r are then expressed as functions of µ, w with the help of the chain
rule, in terms of η = η(µ,w). We get

µ∂µη(µ,w)− w (1− w2) ∂wη(µ,w)− 4 C µ = 0 . (C.4)

Combining (C.3) and (C.4), we have two linear equations in ∂µη(µ,w), ∂wη(µ,w), with
solution

∂µη(µ, η) = 4 C
(

1− Bw√
1− w2

)
, ∂wη(µ, η) = −4B C µ

√
1− w2

(1− w2)2 . (C.5)

We can now solve these PDEs for the function η = η(µ,w),

η = 4 C µ
(

1− Bw√
1− w2

)
. (C.6)

We have fixed an integration constant by requiring η = 0 for µ = 0.
In Figure 10 we depict schematically the change of coordinates from (w, µ) to (ρ, η).

It is convenient to define

η1 = 4 C
√

1−B2 = 4
`
, η2 = 4 C = 4 (N + k)

N
, ρ∗ = 4B C . (C.7)
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Figure 10. A schematic depiction of the relation between the (w, µ) coordinates and (ρ, η) co-
ordinates. The shaded regions on both sides correspond to the allowed values of the (w, µ), (ρ, η)
coordinates. On the right, we also include the plot of the charge density λ(η).

The locus w = 0 is mapped to an arc of the ellipse defined by the equation

ρ2

16B2 C2 + η2

16 C2 = 1 . (C.8)

Using (C.6), we can find the explicit solution to the PDEs (C.2). We may start with
the equation for ∂µV and integrate it in µ. To do so, we do not need the explicit form of
G(w). The resulting expression for V , up to an arbitrary function of w, is then plugged
back in the equation for ∂wV . Making use of the expression for G′(w)/G(w), we complete
the determination of V , up to an overall constant. The result reads

VT = 4µ− 2 log 1 + µ

1− µ − 2
[
1− Bw√

1− w2

]
µ log(1− µ2) + 4 C

[
1− Bw√

1− w2

]
µ log G(w) .

(C.9)

We have added a subscript ‘T’ as a reminder that this the electrostatic potential that is
inferred from the Toda form of the solution, via the Bäcklund transform. We have fixed
an arbitrary additive shift in VT by demanding VT = 0 for µ = 0. We can also extract the
charge density along the η axis from VT using (4.6). The result, written as a function of η,
takes the form of a continuous piecewise linear function defined on the interval [0, η2],

λT(η) =


λ1
η1
η for 0 ≤ η ≤ η1 ,

− λ1
η2 − η1

(η − η2) for η1 < η ≤ η2 ,

(C.10)

where we have introduced
λ1 = 4 (1−

√
1−B2) . (C.11)

Finally, we notice that the function G(w) is determined only up to a multiplicative constant.
This ambiguity, however, translates into an ambiguity in the potential VT of the form (4.7),
and therefore has no effect on the metric and flux.
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Improved form for V . The expression (C.9) for the electrostatic potential has two
drawbacks: it is not given in closed form as a function of ρ, η; it is only determined in the
interior of the shaded region in figure C.9 in the (ρ, η) plane. Correspondingly, the charge
density λT is known on the interval [0, η2], but not on the entire η axis. We now discuss
an improved potential V , which is given explicitly as a function on the entire (ρ, η) plane.

To write V , we start by prescribing a charge density along the η axis, which is contin-
uous and piecewise linear, and extends (C.10) beyond the interval [0, η2],

λ(η) =



λ1
η1
η for −η1 ≤ η ≤ η1 ,

− λ1
η2 − η1

(η − η2) for η > η1 ,

− λ1
η2 − η1

(η + η2) for η < −η1 .

(C.12)

Given this charge density, the electrostatic potential is determined using the standard
Green’s function for the Laplacian in R3. The naive expression for V would be

− 1
2

∫ +∞

−∞

λ(η′)√
ρ2 + (η − η′)2 dη

′ , (C.13)

but this quantity suffers from logarithmic divergences from the large |η′| region in the
domain of integration. We regularize the divergence by integrating in η′ in the range
[−η∗, η∗], with η∗ large and positive. We perform a “minimal subtraction” of the divergence,
and we send the regulator η∗ to infinity. This prescription yields

V = lim
η∗→+∞

[
− λ1
η2 − η1

η log η∗ −
1
2

∫ +η∗

−η∗

λ(η′)√
ρ2 + (η − η′)2 dη

′
]
. (C.14)

The first term implements the minimal subtraction and it corresponds to a shift in the
electrostatic potential of the form (4.7). Computing the η′ integral and taking the limit,
we find

V = λ1
2η1 (η1 − η2)

[
η2

√
(η − η1) 2 + ρ2 − η2

√
(η + η1) 2 + ρ2

− (η − η1) η2 arctanh
(

η − η1√
(η − η1) 2 + ρ2

)
+ (η + η1) η2 arctanh

(
η + η1√

(η + η1) 2 + ρ2

)

+ 2ηη1 log(ρ) + 2ηη1 − ηη1 log(4)
]
. (C.15)

The charge density (C.12) satisfies λ(−η) = −λ(η), implying that V is equal to zero along
the ρ axis at η = 0: this is a standard application of the method of images.

We may now compare V with the potential VT given in (C.9). The values of η1,
η2, λ1 in terms of B, C were given in (C.7), (C.11). After a lengthy but straightforward
computation, using the expression for G(w) in (A.21), one verifies that

VT − V = K
4B C η , (C.16)
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where K is a constant, given by

K = 4B + 4B C log G∗ + 2 arctanhB + B log(16B2) + 4B log C . (C.17)

We see that the difference VT − V is of the form (4.7). It follows that, for the purposes of
computing the 11d metric and flux, we can use V in (C.15) instead of VT.

C.2 Generalization of the charge density profile

We now turn to the generalization of Case II solutions. The metric and flux are as in (4.9).
Our task is to specify C and V . The main idea is to compute V using the standard
Green’s function starting from a given charge density profile λ along the η axis. Building
on solutions of Case II, we make the following working assumptions. The charge density is
taken to be continuous and piecewise linear. Its slope changes at a finite number of points
along the η axis. Moreover, we require

λ(−η) = −λ(η) , (C.18)

so that it is sufficient to specify λ for η ≥ 0.
A generic continuous, piecewise linear profile for λ can be parametrized as follows. Let

0 < w1 < w2 < · · · < wp be the locations on the η axis where the slope of λ changes. We
may then write

λ(η) =


m0 η for 0 ≤ η < w1 ,

ma η + ya for wa ≤ η < wa+1, a = 1, 2, . . . , p− 1 ,
mp η + yp for η ≥ wp ,

(C.19)

where we have introduced the slope parameters ma (a = 0, 1, . . . , p) and the intercepts ya
(a = 1, 2, . . . p). We also define q0 := 0. Continuity of λ imposes

(ma −ma−1)wa + (ya − ya−1) = 0 , a = 1, 2, . . . , p . (C.20)

Further constraints on the slope and intercept parameters will be derived below from
metric regularity and flux quantization. The outcome of our analysis will be the charge
density (5.2) discussed in the main text.

The electrostatic potential determined by the charge density (C.19) can be com-
puted as a sum of various contributions. Firstly, we may consider the interval [wa, wa+1],
a = 0, 1, . . . , p − 1, and its mirror image [−wa+1,−wa]. (By definition, w0 := 0.) The
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corresponding contribution to the electrostatic potential reads

V (wa, wa+1,ma, ya) = −1
2

∫ wa+1

wa

ma η
′ + ya√

ρ2 + (η − η′)2 dη
′ − 1

2

∫ wa

−wa+1

ma η
′ − ya√

ρ2 + (η − η′)2 dη
′

= 1
2

(
ma

√
(η − wa) 2 + ρ2 − arctanh

(
η − wa√

(η − wa) 2 + ρ2

)
(maη + ya)

)

+ 1
2

(
−ma

√
(η + wa) 2 + ρ2 + arctanh

(
η + wa√

(η + wa) 2 + ρ2

)
(maη − ya)

)

+ 1
2

(
−ma

√
(η − wa+1) 2 + ρ2 + arctanh

(
η − wa+1√

(η − wa+1) 2 + ρ2

)
(maη + ya)

)

+ 1
2

(
ma

√
(η + wa+1) 2 + ρ2 − arctanh

(
η + wa+1√

(η + wa+1) 2 + ρ2

)
(maη − ya)

)
. (C.21)

Next, we have the contribution of the semi-infinite interval [wp,+∞) and its mirror image
(−∞,−wp]. In this case, a naïve integration of the charge density against the standard
Green’s function yields a logarithmic divergence. We regulate and subtract the divergence
in the same way as in (C.14). We thus obtain the quantity

V (wp,∞,mp, yp) =

= lim
w∗→+∞

[
− 1

2

∫ w∗

wp

mpη
′ + yp√

ρ2 + (η − η′)2 dη
′ − 1

2

∫ −wp
−w∗

mpη
′ − yp√

ρ2 + (η − η′)2 dη
′ +mp η log η∗

]
= 1

2mp

√
(η − wp) 2 + ρ2 − 1

2mp

√
(η + wp) 2 + ρ2 − 1

2mpη(−2 log ρ− 2 + log 4) (C.22)

+ 1
2 (mpη − yp) arctanh

 η + wp√
(η + wp) 2 + ρ2

− 1
2 (mpη + yp) arctanh

 η − wp√
(η − wp) 2 + ρ2

.
The final expression for V is

V =
p−1∑
a=0

V (wa, wa+1,ma, ya) + V (wp,∞,mp, yp) . (C.23)

By virtue of the method of images, V is an odd function of η, and thus in particular it is
zero at η = 0.

C.2.1 Metric regularity

Monopole sources. The 11d metric functions entering (4.9) may now be computed in
closed form by plugging (C.23) into (4.10). In particular, we observe that

• The quantity R2
φ vanishes along the η axis in the (ρ, η) plane.

• The quantity R2
z has isolated zeros in the (ρ, η) plane, situated along the η axis at

the locations wa (a = 1, 2, . . . , p) where the slope in λ(η) changes.

• The quantity L is piecewise constant along the η axis,

if wa < η < wa+1, lim
ρ→0+

L(ρ, η) := `a+1 = ma + 1
C
. (C.24)
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We infer that the internal geometry admits the following description. The total 6d space
is a fibration of S2 and S1

z over a 3d base space, spanned by ρ, η, φ. The quantity Rφ is
the radius of S1

φ in the 3d base space. The fact that it vanishes along the η axis implies
that S1

φ shrinks smoothly there inside the 3d base space. The locations wa (a = 1, 2, . . . , p)
on the η axis are monopoles for the S1

z fibration over the 3d base space. Indeed, the radius
Rz of S1

z goes to zero at wa, and the function L which governs the fibration of S1
z over S1

φ

jumps at wa. The discontinuity of L at wa is identified with the monopole charge ka of the
ath monopole, which must be a positive integer,

`a − `a+1 = ka ∈ Z>0 , a = 1, 2, . . . , p . (C.25)

It follows that all the slope parameters ma can be deterimined recursively in terms of the
monopole charges ka and the outermost slope parameter mp. Based on analogy with the
original solution given by the charge density (C.12), we set

mp = − 1
C
, or equivalently `p+1 = 0 . (C.26)

All slope parameters are thus fixed,

ma = − 1
C

+
p∑

b=a+1
kb , a = 0, 1, . . . , p− 1 . (C.27)

The intercepts ya are then also fixed, using y0 = 0 and the continuity condition (C.20),

ya =
a∑
b=1

kbwb , a = 1, . . . , p . (C.28)

The original solution based on the charge density (C.12) corresponds to the case of one
monopole, p = 1. In that case, the value of λ at the location w1 is positive. By analogy,
we now require that the value of λ at the location wp of the last monopole be positive,

λ(wp) = −wp
C

+
p∑
b=1

kbwb > 0 . (C.29)

It follows that the charge density profile has a zero at a point wm > wp, given by

wm = C
p∑
b=1

kbwb . (C.30)

We observe that the charge density λ is positive and concave in the interval [0, wm].

Allowed region in the (ρ, η) plane. As already explained in the main text, it is
determined by the inequalities (5.10). The arc ∂ρV = 0 intersects the η axis at the value
wm where the positive zero of λ is located, see (C.30).
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w3

Z

Figure 11. The 4-cycles of type C are obtained combining the dashed arcs AaBa with the S2

and the φ circle in the base of the Dz fibration. The 4-cycles of type B are obtained combining a
segment [wa, wa+1] on the η axis with the S2 and the Dz circle fiber.

C.2.2 Flux quantization

In our normalization conventions, the quantity G4 in (4.9) has integral periods on any
4-cycle in the internal space. The computation of the periods of G4 is facilitated by
the following properties of the functions Y , W in (4.9), which can be verified by direct
computation using (4.10), (C.23).

• The quantity Y (ρ, η) is piecewise constant along the η axis. Its values are determined
by the intercepts parameters ya in the charge density profile,

Y (0, η) = ya , for wa < η < wa+1 , a = 0, . . . , p− 1 ,
Y (0, η) = yp , for η > wp . (C.31)

• The values of the quantity W (ρ, η) at the monopole locations are

W (0, ηa) = wa , a = 1, . . . , p . (C.32)

• Both Y (ρ, η) and W (ρ, η) vanish for η = 0, for arbitrary ρ.

We can now list the 4-cycles in the geometry and evaluate the corresponding G4-flux
parameters. Our discussion follows closely the approach and notation of [33].

Four-cycles of type C. With reference to figure 11, let us consider the arc AaBa. The
S2 shrinks at Ba. The φ circle in the base of the Dz fibration shrinks at Aa, because R2

φ

goes to zero there. We then have a four-cycle, which we denote Ca.
To identify the φ circle in the base of the Dz fibration, we use that L = `a+1 and we

set 0 = Dz = dz − `a+1 dφ, giving us dz = `a+1 dφ along the arc AaBa. As a result, the
relevant terms in G4 are

G4 = volS2

4π d(Y + LW − `a+1W ) dφ2π (C.33)
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The integral of this quantity over Ca yields the value of the function Y at the endpoint Aa,∫
Ca

G4 = Y (Aa) . (C.34)

But Y (Aa) = ya from (C.31). We conclude that the intercept parameters ya are all inte-
grally quantized. (Throughout this appendix, we fix the mass scale m as in (2.7)).

We also notice that the outermost flux quantum yp (p = 3 in the example of figure 11)
is identified with the number N of M5-branes,

yp = N . (C.35)

Four-cycles of type B. We can consider the segment [wa−1, wa] along the η axis, com-
bined with the S2 and the Dz circle, to get a four-cycle denoted Ba. The relevant terms
in G4 are

G4 ⊃
volS2

4π (−dW ) Dz2π . (C.36)

The corresponding flux quantization implies that the following are integers,∫
Ba

G4 = W (0, wa)−W (0, wa−1) = wa − wa−1 . (C.37)

In the second step we used (C.32). Since w0 = 0, we conclude that

{wa}pa=1 is an increasing sequence of positive integers. . (C.38)

We can also extend the arguments of the previous paragraphs to the last segment
[wp, wm]. The interpretation is now different: this is a four-cycle because the warp factor
goes to zero along the boundary of the (ρ, η) region. The lesson is that wm must be also an
integer. The flux quantum wm should be regarded as a property of the smeared M5-brane
source located at ∂ρV = 0, which is discussed in greater detail below. We find it convenient
to parametrize it in terms of N and another integer parameter k,

wm = N + k , k ∈ Z . (C.39)

The zero wm of the charge density is located at the right of the last monopole location,
wm > wp. It follows that the integer k must satisfy

N + k > wp . (C.40)

Regularity of G4 near monopoles. We observed above that Y and L are piecewise
constant along the η axis. This might potentially generated delta-function singularities in
G4, due to the presence of the derivatives ∂ηY , ∂ηL. One can verify, however, that these
singularities are absent by virtue of the conditions (C.20), which guarantee the continuity
of the charge density profile. The continuity condition implies (C.28), which together
with (C.35) gives us

N =
p∑
a=1

wa ka . (C.41)

We have thus verified the emergence of a partition of N from regularity and flux quanti-
zation.

– 61 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
1

The parameter C is fixed by flux quanta. The slope of the charge density profile for
η > wp is given in (C.26) in terms of C. It can be alternatively be computed by connecting
the points (η, λ) = (wp, N − wp/C) and (η, λ) = (N + k, 0). The result is the following
relation between C and the flux quanta N , k,

C = N + k

N
. (C.42)

C.2.3 M5-brane source

To clarify the behavior of the solution near the arc defined by ∂ρV = 0, let us start
from (4.9) and perform two operations:

• We break up Dz and we complete the dφ square, so that the line element is written
in terms of dz and Dφ = dφ − L dz. (The quantity L is fixed requiring the absence
of cross terms dzDφ).

• We collect the leading terms in the limit V̇ → 0.

All electric sources are localized along the η axis. As a result, at a generic point along the
arc ∂ρV = 0, the potential V satisfies the Laplace equation. Using this information, we
can write the resulting line element in the form

ds2
11

(4π)2/3`2p
≈ V̇ 1/3

[(V̇ ′)2 − V̈ V ′′

2V ′′
]1/3 [

ds2(AdS5) + C2 dz2
]

(C.43)

+ 1
4 V̇

−2/3
[(V̇ ′)2 − V̈ V ′′

2V ′′
]−2/3[

V̇ 2 ds2(S2) + ρ2

C2 Dφ
2 +

[
(V̇ ′)2 − V̈ V ′′

]
(dρ2 + dη2)

]
.

We observe that, at leading order near the locus ∂ρV = 0, we can write L ≈ C, and
hence Dφ ≈ dφ − C dz. This line element is compatible with an interpretation in terms
of smeared M5-branes. Near the arc ∂ρV = 0, we can parametrize the (ρ, η) 2d space in
terms of a normal coordinate n = V̇ , and a tangential coordinate t, which varies along
the arc. From the term V̇ 2 ds2(S2) = n2 ds2(S2) inside the bracket on the second line,
we see that, at small n near the arc, n and S2 combine into a local R3. We also observe
the appearance of overall V̇ prefactors with powers 1/3, −2/3 in the first and second lines
of (C.43), respectively, This structure implies that the M5-branes are: extended in the
AdS5 and z directions; smeared in the t and φ directions; localized at the origin of the
local R3 parametrized by n and S2. These findings are directly analogous to the analysis
of [15], which applies to the case p = 1.

We can also analyze the form of the G4-flux in the vicinity of the arc defined by
∂ρV = 0. Making use of (4.9), (4.10), we verify that, as we approach the locus ∂ρV = 0,
we have

L ≈ 1
C
, W ≈ η , Y ≈ 0 . (C.44)

It follows that the G4 is given at leading order by

G4 ≈
volS2

4π ∧ dη
C
∧ Dφ2π . (C.45)
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We can integrate this quantity along the S2 and Dφ, combined with an arc in the (ρ, η)
plane that approaches the boundary component ∂ρV = 0 from the inside of the allowed
region. We can use the coordinate η to parametrize this arc, regarding ρ = ρ(η) as fixed
by ∂ρV = ε, with small positive ε. As ε goes to zero, the integral of G4 approaches a finite
value, ∫

G4 ≈
wm
C

= N + k

C
= N . (C.46)

We have made use of (C.39) and (C.42). We conclude that the smeared M5-brane source
has a total charge equal to N .

C.3 Inflow analysis

In this section we derive the ’t Hooft anomaly coefficients quoted in (5.26), (5.28). We first
construct E4, the equivariant completion of the background flux G4, and we then compute
the integral of E3

4 on the internal space M6.

C.3.1 Construction of E4

The background flux G4 is presented in (4.9) as the wedge product of volS2 with the total
derivative of a locally defined 1-form. This suggests a naïve candidate for E4. Firstly, we
replace volS2/(4π) with e2, which is the standard global angular form of SO(3), normalized
to integrate to 1 on S2. (For more details, see for instance [33, 36].) Secondly, we consider
the local 1-form inside the total derivative, and we perform the replacements

dφ→ dφ+Aφ , dz → dz +Az . (C.47)

Here Aφ, Az denote the external background gauge fields associated to the isometries ∂φ,
∂z. The E4 resulting is manifestly closed and gauge invariant. It takes the form

Enaive
4 = e2

[
(dY +W dL) Dφ2π − dW

Dz
2π

]
− e2W

Fz
2π + e2 (Y +W L) Fφ2π , (C.48)

where we have introduced

Dφ = dφ+Aφ , Dz = dz +Az − LDφ , Fφ = dAφ , Fz = dAz . (C.49)

Crucially, however, E4 is not automatically guaranteed to be globally defined. To clarify
this point it is convenient to trade Az, Aφ for the external gauge fields Aβ , Aχ, associated
to the canonical LLM angular variables, making use of (4.8). We obtain

Enaive
4 = e2

[
(dY +W dL) Dφ2π − dW

Dz
2π

]
+ e2

[
Y + (L− C−1)W

] Fχ
2π + e2

[
Y + (L− C−1 − 1)W

] Fβ
2π . (C.50)

The coefficients of Fχ, Fβ must be well-defined 2-forms in the internal space M6. Recall
that the S2 shrinks both along the ρ axis, and along the arc in the (ρ, η) plane defined
by the condition ∂ρV = 0. We have already notices that both Y and W vanish along the

– 63 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
1

ρ axis, so regularity there is guaranteed both for the Fχ and the Fβ term. Along the arc
where ∂ρV = 0, on the other hand, we have W ≈ η, L ≈ C−1 and Y ≈ 0. As a result, we
observe that the coefficient of Fχ goes to zero, but the coefficient of Fβ does not.

Equivalently, we can observe that the 3-form ιχG4 is exact, while the 3-form ιβG4 is
closed but not exact. This is the same phenomenon encountered in [15] for the solutions
of Case II (before generalization). Since ιβG4 is cohomologically non-trivial, expansion
of the M-theory 3-form on ιβG4 yields an axion. The would-be massless gauge field Aβ
participates to a Stückelberg coupling with this axion, and is thus massive. It does not
correspond to a continuous U(1) global symmetry on the field theory side. We refer the
reader to [15] for further details about this Stückelberg mechanism.

Since we are interested in studying anomalies for continuous symmetries, we proceed
setting Aβ = 0. We can then write

E4 = e2

[
(dY +W dL) Dφ2π − dW

Dz
2π

]
+ e2

[
Y + (L− C−1)W

] Fχ
2π

+
p∑
a=1

ka−1∑
I=1

F̂a,I
2π ω̂a,I . (C.51)

On the second line we have introduced the contributions originating from the Cartan
generators of the non-Abelian su(ka) flavor algebra associated to the ath monopole, of
charge ka. The 2-forms ω̂a,I are dual to the resolutions 2-cycles in the local C2/Zka .

C.3.2 Integration of E3
4

Let us start from the contributions that do not involve the su(ka) flavor symmetries. By a
standard application of the Bott-Cattaneo formula [41], we arrive at

−I inflow
6 =

∫
M6

1
6 E

3
4 ⊃ −

1
8 c1(U(1)χ) p1(SO(3))

∫
B2
dW ∧ d

[
Y +W (L− C−1)

]2
. (C.52)

Here c1(U(1)χ) = Fχ/(2π) andf p1(SO(3)) is the first Pontryagin class of the SO(3) back-
ground gauge field associated to the isometries of the S2 in the geometry. We have assigned
positive orientation to Dz∧Dφ. The symbol B2 denotes the domain in the first (ρ, η) quad-
rant, see figure 7. The integral over B2 can be written as∫

B2
dW ∧ d

[
Y +W (L− C−1)

]2
=
∫
∂B2

W d
[
Y +W (L− C−1)

]2
. (C.53)

Let us analyze in turn the components of ∂B2:

• Along the ρ axis, W = 0, hence we get zero.

• Along the arc defined by ∂ρV = 0, we know that W = η, Y = 0, L = C−1, hence we
get zero.

• Since L and Y are piecewise constant along the η axis, it is convenient to treat each
segment in turn. On a segment of the form [wa, wa+1], with a = 0, . . . , p−1, we know
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that L = `a+1 = ma + C−1. We also have Y = ya. We thus get a contribution∫
∂B2

W d
[
Y +W (L− C−1)

]2
⊃ −

∫
[wa,wa+1]

W d
[
ya +W ma

]2
= −

∫
[wa,wa+1]

W d
[
y2
a + 2ma yaW +m2

aW
2
]

= −
∫

[wa,wa+1]
d
[

2
3 m

2
aW

3 +ma yaW
2
]

= −2
3 m

2
a (w3

a+1 − w3
a)−ma ya (w2

a+1 − w2
a) . (C.54)

We have used W (0, wa) = wa. The minus sign in front comes from the fact that we
are taking ∂B2 with a counterclockwise orientation in the (ρ, η) plane. Finally, we
have the final segment [wp, wm]. It gives a contribution of the same form, formally
obtained taking a = p with the convention wp+1 = N + k, `p+1 = 0.

Making use of (C.52) and (C.54), as well as (5.24), we recover the expression (5.26)
for Ar,R quoted in the main text. The comparison between (5.26) and (5.22) relies on the
following identity,

p∑
a=0

[1
3 m

2
a (w3

a+1 − w3
a) +ma ya (w2

a+1 − w2
a) + y2

a (wa+1 − wa)
]

= −
p∑
a=0

[2
3 m

2
a (w3

a+1 − w3
a) +ma ya (w2

a+1 − w2
a)
]
. (C.55)

Let us now turn to the contributions associated to the su(ka) factor of the symmetry
associated to the regular puncture. The relevant terms in the inflow anomaly polyno-
mial are

− I inflow
6 ⊃ 1

2
Fχ
2π

p∑
a=1

ka−1∑
I,J=1

F̂a,I
2π

F̂a,J
2π

∫
ω̂a,I ω̂a,J

[
Y + (L− C−1)W

]
. (C.56)

The 2-forms dual to the resolution cycles are localized at the monopole locations. Even
though Y and L have jumps at the monopoles, the quantity Y +(L−C−1)W is continuous
at each monopole location, as may be verified using the continuity conditions (C.20) for
the charge density profile λ. We can write[

Y + (L− C−1)W
]

(ρ,η)=(0,wa)
= ya +mawa . (C.57)

It follows that the relevant term in the inflow anomaly polynomial reads

− I inflow
6 ⊃ 1

2
Fχ
2π

p∑
a=1

ka−1∑
I,J=1

F̂a,I
2π

F̂a,J
2π (ya +mawa) (−Csu(ka)

IJ ) . (C.58)

We have used the fact that the intersection pairing among the 2-forms ω̂a,I reproduces
minus the Cartan matrix C

su(ka)
IJ of su(ka). This result implies the expression (5.28) for

the flavor central charge quoted in the main text.
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