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1 Introduction

When a supersymmetric system possesses an off-shell formulation, this can offer crucial
insight into its structure. Such formulations incorporate, in addition to the usual physical
bosonic and fermionic fields, new auxiliary fields that do not typically propagate but exist to
close the supersymmetry algebra off-shell — that is, without imposing equations of motion.
In the context of finding higher derivative corrections, this is especially useful because the
problem of finding the supersymmetric action and the supersymmetry transformations are
divorced: the transformations are fixed and only an invariant action must be sought.

For systems with four supercharges, such as the familiar 4D N = 1 supersymmetry,
off-shell approaches are straightforward. Even for systems with eight supercharges (e.g. 4D
N = 2), where the number of auxiliaries become infinite, techniques are available involving
harmonic or projective superspace to tame this zoo. For 11D supergravity, the situation
is quite different. While there exists an off-shell approach in pure spinor superspace [1, 2],
it is even more technically challenging. Such a superspace has non-minimal pure spinor
coordinates on which superfields have explicit dependence. It is not a trivial exercise to
show that solutions to the equations of motion in this non-minimal pure spinor superspace
correctly describe the usual superfields of eleven-dimensional supergravity that depend
only on ordinary superspace coordinates (z™, 0%) (see, e.g. [3] where the connection to 11D
supergravity was first directly shown). Meanwhile, other techniques to construct higher
derivative terms — either via deformations of on-shell superspace [4] or by working directly
at the component level [5] — have not been completely successful.

An alternative approach is to maintain only some fraction of the full supersymmetry
by rewriting 11D supergravity in a lower dimensional superspace, specifically 4D N = 1
superspace, while keeping additional parametric dependence on the other seven bosonic
coordinates, which are spectators from the point of view of N = 1 supersymmetry. We
denote such a framework as a 4|4 + 7 superspace for brevity; it is also convenient to think
of the seven dimensional space as an “internal space” and the 4D N = 1 superspace as
“external”, although we will neither truncate the theory nor expand on the internal space
in harmonic functions.!

In recent years, two of us, along with numerous collaborators, have been exploring
just how this works. The key point of departure is the 3-form in 11D; it descends to an
abelian tensor hierarchy in 4D language, and the structure of such a hierarchy in 4D N =1
superspace is quite rigid [7, 8] and just by itself already correctly reproduces the internal
sector of 11D supergravity [9]. A key missing feature is the additional gravitini super-
multiplets, and these were taken into account in [10]. An action (to quadratic order in
fields) was presented in [10] that consists of the linearization of a superspace volume term,
and a Chern-Simons term for the gauged (by “internal” diffeomorphisms) tensor hierarchy
coupled to the 4D supergravity and extra gravitino superfields. The full structure of the ac-
tion is dictated by superconformal and gauge symmetries, a complete list of which was also
provided. When projected to components, this action was explicitly shown to reproduce
the full linearized action of 11D supergravity. The conformal graviton propagator, and

IThis approach is inspired by the early rewriting of 10D super Yang-Mills in 4D N = 1 superspace [6].



all other superspace Feynman rules needed for perturbative calculations can be deduced
already at this level. Furthermore, a first step towards a non-linear completion was taken
in [11] and the appropriate framework for this eventual completion was constructed in [12].

While this line of approach is promising, the resulting framework is cumbersome. Oper-
ationally, this is due to the additional gravitino superfields, which are encoded in curvature
superfields of vanishing mass dimension. This fact means non-polynomial functions of this
superfield play a role when constructing invariant superspace actions. Even more, the
non-manifest supersymmetry is joined with a large number of other local symmetries. The
upshot is that a larger number of component fields exist than one would normally expect,
and the extra ones (aside from the auxiliary fields) turn out to be pure gauge degrees of
freedom, set to zero by a Wess-Zumino condition or otherwise eaten by a gauge field. The
framework is also more abstractly cumbersome because no trace of the higher Lorentz group
remains; internal indices are purely world (curved) indices carried by various p-forms and
even the internal metric is entirely encoded in a 3-form identifiable as a G2 structure. While
all of this leads to extremely natural N = 1 multiplets fitting together into two elegant hier-
archies, when taken together it deeply obfuscates the connection to the original 11D theory.

An alternative approach is to build on our earlier linearized work [10], maintaining
(at least some of) the additional Lorentz symmetry and identifiable elements of the 11D
theory. Indeed, this is the path we recently followed in [13], where employing the N =1
superfield constituents uncovered in [10], we identified the linearized components of 11D
supergravity along with the auxiliary fields implied by N = 1 supersymmetry. We worked
purely at the component level, putting the various components of the N = 1 superfields
together into fields with the right transformation rules, until we recovered (on-shell) the
known linearized transformations of 11D supergravity. The goal of the present paper is
to explore this from a complementary perspective: that of a 4|4 4+ 7 superspace for which
those component fields are the natural geometric constituents.

We emphasize that although we do not give an explicit action in this paper, the off-
shell linearized geometry we are discussing should be thought of as the geometry underlying
the off-shell action in [10]. Put another way, that action, written in terms of prepoten-
tials is not intrinsically geometric (aside from the Chern-Simons term). When taken to
components, it can be reorganized in a way that reflects the underlying 11D geometry, as
shown in [13]. What we accomplish here is the superspace analogue: what is the off-shell
linearized superspace geometry for which the action in terms of prepotentials is that of [10].

Before delving more into that, we should remark on a surprising feature of the super-
space we will be discussing (and the corresponding component theory given in [13]): it
involves the full 11D Lorentz group SO(10,1). At first blush, in a Kaluza-Klein-like 4 + 7
reformulation, one would expect the full Lorentz group to be broken to SO(3,1) x SO(7),
say after fixing an upper triangular gauge for the vielbein. Moreover, since we are keeping
only 1/8 of the supersymmetry, one might further expect that the SO(7) should be broken
to G, the subgroup respecting the selection of an N = 1 subsector of the natural N = 8 su-
persymmetry expected in 4D. The crux of the matter is that we are discussing a linearized
supergeometry and must distinguish between background Lorentz transformations (which
are manifestly broken when the background becomes rigid) and ones associated with the



linearized fluctuation, which retain their 11D character. Naturally, this means that the for-
mulation we are presenting is rather special to the linearized setting. Undoubtedly in trying
to construct a non-linear version, we would need to specialize to an SO(3,1) x G2 Lorentz
group, and this would presumably arise as some sort of gauge-fixing of the supergeometry
discussed in [12]. We leave that question for future work.

The body of this paper is organized as follows. In section 2 we give a review of
the prepotential superfields that encode dynamical fields of 11D supergravity along with
auxiliary fields required for off-shell closure of four supersymmetries. We also construct
partial invariants under the linearized transformations of these prepotentials. Section 3
gives an explicit, “bottom up”, construction of the 4|4 + 7 superspace. There are two key
steps in this construction — linearization around a background, and reduction to 4[4 + 7
superspace — both of which are explained in detail. The 4|4+7 superspace is equipped with
a frame, a spin connection, a super three form gauge field and its associated field strength,
and seven extra gravitini. Components of all these constituents are defined in terms of the
partial invariants introduced in section 2. At this point, we change our perspective to ask
the following supergeometric questions. Any generic superspace equipped with the same
geometric ingredients as above is constrained to satisfy Bianchi identities. What additional
data should be specified so that it is further constrained to match the superspace we built
explicitly? In other words, what additional torsion constraints should be imposed so that
a solution of the resulting Bianchi identities in terms of unconstrained prepotentials is
given by our construction in section 37 These questions are addressed in section 4. We
go all the way in analyzing the Bianchi identities to show which torsion or curvature
components are determined fully in terms of lower dimensional components, and which
components do not get constrained by Bianchi identities at all. We systematically derive
derivative relations between these various torsion and curvature components as well. In
the final discussion section, we summarize what we have accomplished and discuss possible
elaborations, including the connection to exceptional field theory.

2 Linearized 4D NN = 1 prepotentials

The spectrum of 11D supergravity consists of a frame field e,;,%, a 32-component gravitino
3%, and a 3-form gauge field Crap- The fields provide a realization of the 11D N =1
supersymmetry algebra provided they are on-shell. The superspace formulation of this
theory has also been long known [14, 15], which suffers from the same on-shell problem —
the combination of torsion constraints and superspace Bianchi identities imply equations
of motion. A brief review of this on-shell 11|32 superspace will be given in subsection 3.1.
We summarize the various index types we employ in table 1.

In a series of recent papers [7—11], a formulation of linearized 11D supergravity with
four off-shell supersymmetries was presented. In this approach, fields are linear fluctuations
around a rigid Minkowski background R'32. On the bosonic manifold, a global, constant
3-form ¢ is chosen which, in some bosonic Cartesian coordinates (z™,y™), takes the form

6123 145 167

o= —( 4l 16Ty (216 (25T (347 356) (2.1)



index range description
m,n,... 0,---,10 11D coordinate
a, 13, e 0,---,10 11D tangent
&,B, .. 1,---,32 11D spinor
m,n,... 0,1,2,3 4D coordinate
a,b,... 0,1,2,3 4D tangent
a,B,...,a,08... 1,2 4D spinor
m,n,... 1,---,7 7-component label
M,N, (m, f1) 11|32 coordinate
A, B, (a, &) 11|32 tangent
a (o, &) |compound notation a la [16]
A (a,a) 4]4 tangent

Table 1. Legend of indices. Indices of various 7-dimensional representations (GL(7) coordinate,
SO(7) tangent, G5 representation, and label for seven extra gravitini) have all been identified to
avoid proliferation of notation.

where e .= dy™ Ady2AdyL. The submanifold obtained by setting ™ = 0 then define the
“internal” 7-manifold Y = R” with coordinates (y), and the remaining 4 dimensions are
external. ¢ satisfies the properties of being a G5 structure, and hence reduces the structure
group of Y from GL(7) to G3. Using the real commuting spinor (C.2) associated with the
G9 structure (more details on how this works later), one can naturally identify 4 special

Grassmann coordinates out of the 32 in R!1I32

, which combine with the external bosonic
coordinates to give a 4D, N = 1 superspace. Component fields of 11D supergravity are then
embedded in “prepotential” superfield representations of the 4D, N = 1 superconformal
algebra. In this section we sketch a lightning review of these prepotentials and their

transformations.

2.1 Prepotentials and their transformations

Under the decomposition of 11D spacetime coordinates into four external coordinates x™,
and seven internal coordinates y™, the components of the 3-form break up into an abelian
tensor hierarchy of forms in external spacetime of degrees 0 through 3:

CS — CM; Cm@a Cmnga Cmnp (2'2)

It is known [7] how to embed these bosonic p-forms into 4D N = 1 superfields. One needs
a chiral superfield Prnp, @ real vector superfield Vi,,, a chiral spinor superfield X,,,, and
a real superfield X. Their abelian gauge transformation is derived by decomposing the



2-form abelian gauge transformations of Cs in 11D:

0Prmnp = 30mAny) » (2.3a)
1 _
Vin = 5 (Amn — Apun) = 200Uy, (2.3b)
6 om = —%DQDQUB + 0T, (2.3¢)
1 o N . Yo
6X = - (D T - DeTY) (2.3d)

where the gauge parameters are a chiral superfield A, a real superfield U,,, and a chiral
spinor superfield Y,. Moreover, internal diffeomorphisms appear as a non-abelian gauge
symmetry from a 4D perspective, the gauge field being the Kaluza-Klein vector of the 11D
vielbein. The abelian tensor hierarchy, when gauged by internal diffeomorphisms in this
way, is called a non-abelian tensor hierarchy. The Kaluza-Klein vector is embedded in the
prepotential V™ a real vector superfield. The only prepotentials that transform under
linearized non-abelian gauge transformations are V,, and V™

SVEL = NE LN 6V = —ipmn (A AZ) | (2.4)

where the non-abelian gauge parameter A is chiral, A™ is antichiral, and ©mnp is the
G5 structure on the background Minkowski superspace R** x R7. One can construct
field strength superfields invariant under transformations? (2.3) and (2.4), and from them
construct the Chern-Simons action. The Chern-Simons action, at the component level,
contains kinetic terms for the 4D vector fields, but not those of the scalars and 2-forms.
For that, one needs to add a Kéhler-type term.

This embedding of spin < 1 component fields of 11D supergravity has a surfeit of
component fields. In addition to the 11D components with spin < 1, there are 16 extra
scalars, and 15 extra fermions. Moreover, the purely external graviton and spin % part of
the gravitino are still missing. The 4D N = 1 gravitino and graviton belong together in a
real superfield Hyg = (0%)aaHq. This is the linearized prepotential of 4D N = 1 conformal

supergravity, transforming under linearized local superconformal transformation as
8Huys = DoLs — Ds Ly, , (2.5)

where the gauge parameter L is unconstrained. The original 11D N = 1 gravitino has 32
components, and H,s encodes four of them. For the remaining 28, we have seven addi-
tional gravitini which are embedded in spinor superfields ¥,,,. These are called “matter”
gravitini. The basic matter gravitino model subjects the prepotentials to gauge transfor-
mations [17]

W me = Ema + DaSm (2.6)

20ne can fully non-linearize the non-abelian transformations by modifying the 4D N = 1 derivatives to
include a Kaluza-Klein connection, both when the 4D superspace is curved (but y-independent) [11] and in
the fully general case [12]. Field strengths and Chern-Simons action can be constructed in both scenarios.



where Z,,,, is chiral, and €2, is an unconstrained complex superfield. These transformations
contain the non-manifest supersymmetry. With the introduction of Hy,s and ¥4, all 11D
supergravity component fields have been embedded into 4D N = 1 prepotentials. The
only problem remaining is that these prepotentials have more components in them than
just the physical fields in 11D supergravity plus auxiliary fields necessary for four off-shell
supersymmetries. These extra fields are accompanied by additional local gauge symmetries
(lying within Z,,, and €2,,,) that can remove them. The prepotentials of the tensor hierarchy
turn out to transform under these additional transformations as

5Py = —%wmnquQQz (2.72)
1 _
_ P _ OP
6Vin = o Pmnp (22 — O2) (2.7b)
5204@ = _E'ma (27C)
6X = D*Ly + DgL® (2.7d)
1 _
Vi =~ (2 + ) (2.7¢)

and the matter gravitini are given local superconformal transformations with parame-

ters Ly:
OVima = 210 Lq - (2.8)

For instance, the superfield G = —%DQX plays the role of chiral compensator in 4D N =1
conformal supergravity.

The prepotentials introduced so far can be used to construct superfields which have
as the leading terms in their f-expansion the physical 11D gauge connections (i.e. the
frame, 3-form, and gravitini), and auxiliary fields added to the spectrum to achieve 4D
N =1 off-shell supersymmetry. This explicit construction was performed in [13], and will
also be reviewed in sections 3.4 to 3.9. Counting the degrees of freedom encoded in the
prepotentials, one finds that the real superdimension of the auxiliary field space adds up
to 201|56, rendering the total spectrum 376|376 dimensional.

2.2 Partial invariants

The explicit construction of [13] was given at the component level. Our goal in this article
is to describe the supergeometry of the 4|4 + 7 superspace, whose underlying prepotential
structure and component field content is precisely that of [13]. An obvious problem to
overcome is that the local gauge symmetries underlying our prepotentials are significantly
larger than those of 11D supergravity. As a prelude towards building that supergeometry,
we will introduce a number of building blocks by sequentially eliminating gauge symme-
tries by trading prepotentials for composite curvatures. Once these basic ingredients are
determined we will turn to the construction of the supergeometry in section 3.



Invariants of the abelian tensor hierarchy. We start by trading prepotentials of the
abelian tensor hierarchy for their curvatures:

Enpg = 40Py (2.9a)
Fronp = 2% (@i = Ponnp) — 30 Vi (2.9b)
Winna := —iDQDan + 20 ajn] (2.9¢)
H,y = % (D*Sam — DaSm) — OmX (2.9d)

G = —iDQX (2.9¢)

These superfields are invariant under the abelian tensor hierarchy transformations (2.3).

L, invariants. Now let us introduce superfields that are L, invariant. Since only Hgg,
U, and X (and thus G and H,,) transform at the linearized level, we trade these for the
following curvatures:

i .
Wga = ED%W”D[;HQ);Y (2.10a)
1 —on , 0 = .
= ——D?G + —D*9p H* 2.1
R 5 DG + 5 D% (2.10b)

i _ 1 1 . 1 , 1
aq = —=0aa (G — —O— —={D? D?!| Hog + | =000 + —A0a AP | H,
G 50 (G G)+[2 32{ : }} +{4a 0" + o5 58

(2.10¢)
1 ,_ _
Xmos = 5 (Da¥ma + DaVima ) + O Hod (2.10d)
Yona = 205 Voo (2.10e)
~ 1 - -
Hy o= Hy, + - (Do — Da i) (2.10f)
where A, = —%[DQ,DQ]. The first three above are familiar from conventional N = 1

superspace [16], while the last three covariantize H,, and ¥,,q.

Ema invariants. The only prepotentials suffering =,,, transformations are V¥,,, and
Yam- So we investigate Wima; Xmads Ymna,and Hy,. We observe that Hy,, X;aa are
already Zo-invariant, and we can easily trade Wyna and W, for their invariant sum,

Winna = Wina + ¥imna - (2.11)
Am invariants. Prepotentials transforming under internal diffeomorphisms are V,, and
Vinn- The Kaluza-Klein field strength

1=
Wam = —ZDQDan (2.12)

is invariant under A, (as well as L, and =,,,). Similarly, Ey,,, and Wiyna are Ay,-invariant.

Fpnp transforms, but its spinor derivative can be made A, invariant by defining

FO‘M = DQFM — 3ig0gmag]Dan (2.13)

Its complex conjugate is denoted by Fimnp-



2.3 Q,, transformations

The only transformation left is €2,,, which contains the extended supersymmetry. The
partial invariants that we have defined each transform under this symmetry as

1, .
50 Xmaa = 57 (DaDalm + DaDallm) (2.14a)
_ 1 9 —o=
Sl = 5 (D*Qp — D’ (2.14b)
0oWam = éDzDa (Qm + Qm) (2.14c)
. i ) _
5QWM04 = g@mD D, (QB — QB) + 28[mD|a|Qm (2.14(21)
1 e L
00 Famnp = = Ymnpg Do D*Q + 3160 1 Oy Do (2.14e)
00 Emnpq = 27L¢[MI£\6Q}D2§£ (2.14f)

The conventional N = 1 superfields W,3,, R, and G are {2y, invariant. These will serve
as the building blocks in subsequent sections.
As a starting point, we note that the first {),,,-invariant that we can build out of the

fields in (2.14) lies at dimension 3:

. i . , _
Ama = m EWanp — 20m P Fanpg + DaHpm + 2iWam — 2D Ximaa - (2.15)
il 6 i o 4

This is proportional to the equation of motion of the matter gravitino superfield ¥,,, and
matches the dimension 1 auxiliary field identified in [13].

3 Linearized supergeometry of 4|4 + 7 superspace

In this section, we will describe how a linearized 4|4 + 7 superspace is constructed out of
the prepotential constituents given in the previous section.

The fermionic coordinates of 11D N = 1 superspace are a 32-component Majorana
fermion. The 11|32 superspace coordinates are combined in M= (z™ 0", where z™
are 11 bosonic coordinates, and ## are 32 fermionic ones. We introduce a vielbein E MA,
the corresponding frame EA = g:M EMA, and a spin connection one form Q) valued in
SO(10,1). The torsion is the covariant derivative of the vielbein

TA:DEA:dEA+EBAQBA:%EéAEBTBéA, (3.1)
and the curvature is defined in terms of the spin connection Q
RP=a0 P+ Q. n0E. (3.2)
The torsion and the Riemann tensors satisfy the Bianchi identities
DIA=EP AR, DRy =0. (3.3)



For convenience, we quote the components of these tensors

n A A B A noA HOBO . A ymb
Tyn” = 2D byy” =20k Eyy” = 2 E57 Qg 57 ()™ (3.4a)
A B A B A lols B
and their Bianchi identities
& A FA A_p A
DipTes” +Tipe Lipg” = Bipen” (3.5a)
5 AL Pp A
D[ERﬁC’B} + T[Ef) R\F\C‘B] =0 (3.5b)

We suppress gradings above, and in all following component expressions. The spin connec-
tion and Riemann tensor are both SO(10, 1) valued, so that they obey

A AT

Qaé =0, Qs = Qag(rab)aﬁ, (3.6)

|

with other components vanishing (similarly for R AB ). The spectrum of 11D supergravity
also contains a 3-form, so we introduce one in superspace,

.1 . " o
C3 = gdZM AdzN A dP CﬁNM' (3.7)

The associated 4-form field strength G4 = dCs satisfies the Bianchi identity

A 1 N 1 . P oA
dGe =0= 5D pGpepa + 5 Lien Glpiepa) - (3.8)
A1 312!

3.1 Review: on-shell 11D supergravity in superspace

The Lagrangian of 11D supergravity is given by

Af 1~ 1~ ~ .. ~ 23 1 . As s sn
7L == SR+ S (U) 5 Datly” — 1 G G
1 R R
- Esml i manarng Gring-ing Grng-oamgy + (3.9)

where we have omitted higher order fermionic terms. An 11D superspace is said to be
on-shell if its component projection satisfies equations of motion derived from the above
Lagrangian. It is called off-shell otherwise.

We give a quick review of the on-shell 11|32 superspace, initially constructed in [14, 15],
in our notations and conventions. In the process, we point out why this superspace is
necessarily on-shell, and motivate our construction of a partially off-shell, albeit linearized
around a background, 4|4 4+ 7 superspace.

Suppose we augment the superspace data (following [14, 15]) by the constraints for Gy

¢ = G&E&?’ (3.10a)
5= 2(T55)45 0 (3.10b)

~10 -



and the constraints for the torsion

Tt =207, T5"=0="T5%, (3.11a)
T;0=0. (3.11b)

Pos Lo pbed ; 5 (rbede
Top" = —36Cabedl )" — g Wanede) 7 G (3.12a)
PN 1 P NY: ~

i =~y (M) DG (3.12b)

From (3.12b), it follows that the gravitino field strength Tai)& satisfies the Rarita-Schwinger
equation of motion

(T Ty 5 =0 (3.13)

One then imposes the torsion Bianchi identities to find that the equations of motion for
the vielbein, and the 4-form field strength are also satisfied. This establishes that the
superspace of refs. [14, 15] is on-shell.

At the component level, this has the following consequence. If we normalize the 11D
gravitino conventionally as @md = 2Emd\9:0, then the 11D SUSY transformations of the
component fields can be written

(Sém& = —Ed(f‘&)&B\PMB, (3.14&)
S = 2D + 260, 8 Gy a(090) 8 4 L (B0) G 3.14D
Uy = mE +2€m € 36 {zbéd( )5 + 288( abe é)@ ) (3. )

and these supersymmetry transformations close only up to the equations of motion of 11D
supergravity.

The root cause of the on-shell nature of the superspace lies in the choice of con-
straints (3.10) and (3.11). One may be able to throw the superspace off-shell by cleverly
relaxing these. In this scenario, auxiliary fields would be present in the spectrum, playing
their usual important role in off-shell closure of the SUSY algebra, and superspace Bianchi
identities would not imply field equations. However, the new set of constraints must also
have the property that we get back the on-shell theory upon imposing field equations. So
far it has not been possible to achieve this in the fully non-linear setting. We present
a partial solution to the problem by constructing a linearized superspace which is also
truncated, resulting in partially off-shell SUSY. In the next two sections, we sequentially
describe these two steps — linearization around a background and restriction to a subspace
that keeps only 4 fermionic coordinates and throws away the other 28.

- 11 -



3.2 Linearizing around a background

We expand to linear order about a background superspace which satisfies the superspace
Bianchi identities. All background quantities are denoted by placing a circle ° on top, and
linear fluctuations are denoted by bold letters. We will compute components of the torsion
and curvature (and associated Bianchi identities), and four-form (and associated Bianchi
identity) in terms of the linear fluctuations. Our choice of background is the flat 11(32
superspace. In Minkowski coordinate system, we can choose the background superframe
(up to rigid Lorentz transformations)

EY = da® — 0%(T%),5d07,  E%=d6" . (3.15)
The linearized supervielbein is given by
oA A B A
EM :EM +EM HB R (3.16)

where H BA is the linearized fluctuation. The spin connection has no background value, so

A

Q B:Q B

N A NA -

We will shortly give an explicit construction of the linear fluctuations of the superviel-
bein (restricted to 4|4 4+ 7 superspace) in terms of the prepotential constituents introduced
in section 2. A guiding principle in this construction is the transformation properties of
these objects under diffeomorphisms and local Lorentz transformations. Linearizing the
diffeomorphism parameter, we take EM = fM + EM . The indices can be flattened with the
background vielbein. We ignore background diffeomorphisms §M , as these will reduce to
the isometries that preserve (3.15). Consequently, the linearized transformation rules of H

and € are

Here, L BA are Lorentz parameters.

Next, we denote by T BA the linearized fluctuations of the tangent space components
of torsion, i.e.

>
B
I
')ﬂ B
i
_|_
s
>

vt =T, wp (3.18)

From the definition of torsion, it follows that

A A A A, Dyr A D A
Ty :2D[C’HB] +2Q[C’B] +Tep H, —2H[é T|D\B} , (3.19)
which is invariant under the linearized transformations (3.17). The linearized curvature
tensor is

Rp* =dp”! (3.20)

o

which in components becomes

A A F A
RDC‘B :2D[ﬁﬂé]é +Tphe Qpp” - (3.21)
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The linearized torsion and curvature Bianchi identities read

Fham = Rpem™s  DpRpep’ =0. (3.22)

A o
W Tep™ +1 (DB 5Rpes

DipTep
We will also need similar results for the linearized 3-form and its 4-form field strength.
For the background 4-form, we take

Gaped =2Tei)as (3.23)

and all other components of G are set to zero. We denote by C the linearized fluctuation
of cotangent space components of the 3-form, i.e. C=C+C. We expand this fluctuation
in the background frames,

1

A 2B A C

C =

The linearized fluctuation to the cotangent space components of G4 is denoted by G a4,
so that

P

pooR B
Gpepi =4DpCepa)+ 6T pe Cpipa)— 4Hp) G piepa - (3.25)
This is invariant under the linearized diffeomorphisms and gauge transformations
5CMNP:38[MANP]+ERGRMNP . (3.26)
The Bianchi identity that G obeys can be shown to be

1 11, g 11 P B
1 PECoena * 5511Ep" Gleesa) T 55 En” Glacsa = 0- (3.27)
The fact that the background solves the superspace Bianchi identities can be explicitly
checked. The only non-trivial check is the G4 Bianchi identity involving Ga fed> equivalent to

A A

(Fd)(@ﬁ(rab)ﬁ) =0, (3.28)
which is the fundamental 11D gamma matrix identity.

3.3 Reduction to 4|4 + 7 superspace

Having described linearization around a background, we now move on to the second key
step — reduction to a 4|4+ 7 superspace. Choosing a global 3-form (2.1) splits the bosonic
background into a 4 dimensional “external” space R* and a 7 dimensional “internal” space
R”. We can use this structure to pick out four special fermionic directions in the following
manner. The background now has a reduced structure group SO(3,1) x Ga. A spinor %
of SO(10, 1) decomposes under a reduction to SO(3,1) x SO(7) as

¢ = W ar), (3.29)
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where «, & are indices of Weyl spinors of SO(3,1), and I is the index of an 8-component
spinor of SO(7). Breaking SO(7) further to its G2 subgroup results in 8so(7) = 1, + 7,
in the following way:

" = nTy® +i(T ) e (3.30a)

Yar = N1e + i(T™0) 1Pme. - (3.30Db)

The constant real spinor 7! of unit norm defines the embedding of G5 into SO(7) and T
are the SO(7) gamma matrices. Our conventions for these are discussed in appendix A and
the G'2 embedding is elaborated a bit in appendix C. The real G2 structure ¢y, is given
in terms of n by o

Pmnp = inTan’ @Z)mnpq = nTanpqn . (3.31)

Applying this decomposition to the fermionic coordinates ## of 11D N = 1 superspace

gives
O = (0", 0™ 0y, Omy) - (3.32)
Now we are in a position to define our 4|4 + 7 superspace. It is the hypersurface
0 = 0 = Opy, - (3.33)
For consistency, the following one forms also get set to zero:
d0™ = 0 = Ay - (3.34)

The bosonic coordinates undergo the simple split ™ = (2™, y™). Together with 6~ éﬂ,
they form the coordinates of our 4|4 + 7 superspace: M zM|4|4+7 = (M, y™), where
M = (mm,G“,éﬂ) are the usual 4D N = 1 superspace coordinates. The background
superframe becomes

B = da + 0%(1%),,5d6° + 84(v*)*Pdbs, (3.35)
Em— gy (3.35b)
E* = do~, (3.35¢)
Eme =0 (3.35d)

We emphasize that the projection to 4|4 + 7 superspace means that form indices of all
geometric objects will run through the range of 4|4 + 7. In particular, forms will not have
legs along the “extra” fermionic directions. However, we still keep the full (background +
linear fluctuation) “superframe” BA = (B, E%) as a collection of 11 + 32 one forms:

BA = (B, B2 B B9 By, By - (3.36)

Here EA = (E“, EO‘, Ea) is the 4|4 supervielbein, Fe is a Kaluza-Klein photon, and
Fao Egd are seven additional gravitini. All of these have form legs only along the 4|4 + 7
superspace. This is not a vielbein in the traditional sense since it is rectangular.
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An important comment about the internal bosonic indices is in order. There are three
different indices that take seven values in the non-linear theory — the internal coordinate
index m, the SO(7) vector index a, and a G index, say i. We have already implicitly set
a = 1 by convention. The remaining two indices m and a are related by the vielbein E’mﬁ.
In the linearized theory, the background value for this internal component being §,,%, we

can identify a with m.

3.4 Components of the 4D supervielbein and spin connection

In the remainder of section 3, we will give explicit expressions for the linear fluctuations
of the vielbein, spin connection, 3- and 4-form etc. in terms of the off-shell prepotentials
described in section 2. These definitions will be guided by how these linear fluctuations
transform under different symmetries, and by torsion constraints.

In this subsection, we consider the purely 4D part Hp?. This should be built out
of Hus and G and G. There are actually a number of ways of doing this, and different
choices are related to how one defines the various transformation parameters. A simple
choice is [18]

H,” :=iD %, H,:=6,H, H,;=0, (3.37)
where
H= LD, Darte - Loumie— layla (3.38)
12 6 " 6 3 '
These transform consistently as
SHL" = Dot 1 4i5,° & (3.39a)
1
6H,” = D,e’ — L, = 550651)757, (3.39b)
5Ha5 = Daéﬂ' = 0, (339C)
where we identify the linearized parameters
€os = —i(DaoLs + DsLy) , (3.40a)
1-
Eo = —ZDQLQ, (3.40b)
Laﬁ = D(asﬁ) . (3400)

The other components of Hg*, and the linearized spin connection, are obtained by solving

the expression for the purely 4D part of the linearized torsion,
Tep® =2 DicHp™ + 2Qcp™ + Tep” Hp® — 2 HicPTip g™ (3.41)

subject to the constraints

dimension 0:  Tng° =0,

1
dimension 3" Topt =0, Ty = Taéc =0, (3.42)
dimension 1 : T,°=0,

which correspond to the linearized version of eq. (14.25) of ref. [16].
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First, let us consider the T® conditions. From Tﬁ B“ = 0, we obtain
H,,% = LDy Dy — 5,05,0 | LG+ @) + 2D, DyE| . (3.43)
2 3 6
This transforms consistently as
OH = 0p€° — Ly*, (3.44)

with Ly, = —(Jba)O‘BLag + (5ba)dgid5. The condition T',3* = 0 is already satisfied.
Alternatively, this condition would have told us H, 5 =0 if we hadn’t already fixed it.
From T%,* = 0 = T3, one finds that
Q" = —Ds Hy" + 0, Hy* — 2iHP (0%) 5 . (3.45a)
Q" = —D,H,* + 0,H,* + 2iH,’(0%) ;. (3.45b)
The components Hbé on the right hand side of the above equations have not been defined
yet. We note that, by virtue of (3.6), €2, g, and Q’y 4 are derived from Q. 3,. From

T.* = 0, one determines £2,% in the usual manner.
Next, we consider the T'* conditions. Twa = 0 holds identically. Tz* = 0 leads to

Q5% = —DyHp® — 2iHpg” . (3.46)

The two equations for this component of the spin connection imply

H,;* = éD2D5H5a — 63 DgH , (3.47a)
Qs po = %D2D(5Haﬁ, (3.47b)
Q 4, = —2¢55DayH (3.47¢)
and these transform as
OH 3" = 05, 09y pa = DyLga, 09 g0 = DyLga - (3.48)

The remaining conditions on the torsion tensor are solved very similarly to chapter XV of
ref. [16], and using the definitions for R, G4, and W,g, in section 2.3 all conditions are
satisfied in a lengthy computation we do not repeat here.

3.5 Extending the supervielbein
Let us now compute the following components of the fluctuations of the supervielbein

Hp* HBm> _ (HBA ABm>

A _
(HB )|4|4+7_ (HnA H,™ XEA H,™ (3.49)

Typically, in a Kaluza-Klein setting, the bosonic component x,“ in the lower left block
would vanish. This would involve the gauge-fixing of SO(10,1) to its SO(3,1) x SO(7)
subgroup. It turns out that, in the 4D N = 1 superfield setting that we are employing, this

~16 —



gauge choice is extremely inconvenient while maintaining the irreducible superfield content
we have identified. That is, we find

. . 1 _. .
H,“" = xn"" = —i(Do‘\Ilma - D, %) (3.50)
and setting this to vanish would impose an awkward constraint on W7,. This transforms as
5Xmaa = amgda - Lmda ) (3.51)
where
fe 7" 1 o o 1 a O
L, = §D D, — iD Dy, (3.52)

has the obvious interpretation of being the higher-dimensional SO(10,1) transformation
that has not been gauge-fixed. We will sometimes refer to this as the mixed Lorentz
parameter. Next, we define

1 21 8
2Xm,oz = wm,oz = - }

; {DQ\IIW, +3 (Dalm + 2D Xt ) - gWam| +di e, (3.53)
where d; is a constant. Since A\, has the same engineering dimension and index structure
as the other terms, its addition corresponds merely to a field redefinition of the gravitino
by a covariant piece. We will leverage this arbitrariness of d; to simplify certain things
later in this section. x,,* transforms simply as

X = O™ (3.54)

This completes the construction of Hg” and HmA, leaving Hp™ and H,™. A natural
choice for H,™ would seem to be

H,™ =iD, V™ . (3.55)
This transforms as
SH,™ = iD N — %DQ(Qm + Q™) = Do €™ + 2ig 0 (3.56)
where we define
g %(Qﬂ SOy £ ) e = —%Dan (3.57)

The parameter €,,, describes the additional 28 supersymmetries present in 11D supergrav-
ity. We also choose

1 _
Hoo™ = 5 [Doy Da] V2 = ~Aos V™ (3.58)
which transforms as

_ 1 _
0H ™ = i@ad()\m - )\m) + iAad(Qm + Qm) = Opa&™ — L™ (359)
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where L, = — L™, correctly accounts for the Lorentz transformation of this component
with a mixed Lorentz parameter.
Finally, we consider H,™. We choose a gauge where this is symmetric, implying that

it can be identified with thg internal metric.
1

1
H,™ = _g,™ @E(ﬂpm)ﬁ —

1
27 Ty 36

36 5%w@F& (3.60)
This transforms as
0H,™ = 0,§™ — L,™, Ly = a[ﬂgm} . (3.61)

This completes the construction of the linearized supervielbein with all indices restricted
to 4|4 4+ 7. The extra gravitini in H™2 will be constructed in the next subsection. Sym-
metrization of the bosonic components of the vielbein defines the linearized 11D metric.
We don’t give a detailed account of this here, except to introduce

Jamn = Da {gm - 2i8(mvﬂ)} (3.62)

which is a A™ -invariant quantity constructed from the spinor derivative of g.,. In fact, it
is the 1 + 27 G projection of Fyy,p, defined in (2.13). Its complex conjugate is denoted
by gamn. The 7 piece Fipm of Famnp descends from the 7 piece F, of Fippp:

1 1
F, = —Ewmnqu@, Fom = —ﬁwmnqua@ (3.63)

The complex conjugate of Fi, is denoted by Fi.,m. The quantities gamn and Fj, will be
useful in the construction of components of the extra gravitini below.

3.6 Extra gravitini
Now we focus on the so far undefined seven extra gravitini ™. We define components of
Y™ with bosonic form legs,

Hbﬂa = *’(/}bﬂa, (364&)

N 21 - 1 I
wﬁﬁ,ma = D(C“X|m|/3)5 + €8a (D s Hyy + gwﬁm + GDVXm'YB) + do eﬁa)\mﬂ' (3.64b)

1

51@”, (3.65a)

i 1 7 1 Prsyy i Dqrs
Ymna 1= 5904@ D) Wamn — gﬁpm@*Waﬁ - 5@@@&7}7&@

+ EQDMDQFIB + d3 ()OMABOJ . (365b)
Again, the A, terms come with (as of now) arbitrary constants da and d3. These compo-
nents of the gravitini transform as
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The remaining components are ¥™* and 1)42°. These are given by

1 1 N . 1 . i .
nd._ —nB._ _~sB(pn_ fn anB . ~pénB . ° ynaB
H," = sopo™ = — 200 (F s ) o H = syt i= X (3.67a)
1 . . 1 .
SH,Y = Def — Z%%LWL& : SH™S — Diegnf 1 iLﬂﬁa : (3.67b)

In addition to linearized SUSY transformations, these components also undergo in-
ternal Lorentz transformations. These higher Lorentz transformations naturally descend
from 11D superspace in the following manner. Recall that the linearized torsion on the
extended space is of the form (3.19). The linearized spin connection €2 is valued over all
of SO(10,1). Reducing this to 4|4 + 7, the form indices C' and B will run over 4[4 + 7
superspace, while A will include the extra gravitini as well. Let us look at the cases when
A is a spinor index. Looking only at the spin connection contributions, we find

1 "
Tep™ ~ 105" Qeac (V)5 = C = B, (3.68)

1 : 1 A .
TABEOC ~ +§6B,6" Qédm(ad)ﬂa + 1536 QPMEQCVMZ —C& B. (3.69)

Here, we have used 11D gamma matrices outlined in appendix A. The first equation with
A=a just means that the torsion tensor T'® gets no contribution from spin connections
with either one or both Lie algebra indices along the internal manifold. This is consistent
with the fact that the vielbeins involved in this torsion do not suffer Lorentz transformations
with Loy, and Ly,,. However, T™“ gets spin connection contributions of these kinds to
negate the Ly, and Ly, transformations of H 5™

1 . 1
5Héma|Lorentz = _§6B5 Ldm(o-d)ﬁa - Zééﬂ SDML@ : (370)
This concludes the construction of the entire supervielbein.

3.7 Extending the linearized spin connection

The purely 4D components of €2 were determined in section 3.4. The remaining spin con-
nection components will be given now. Being valued in SO(10, 1), the only independent spin

connections are 02, and the rest are determined in terms of them: Q8¢ = %(FE&)MQB&,

Qb = 0. One guiding principle in their definitions can be their transformation rules under
local SO(10,1): 5906& = DC,LB&, with the form index C restricted to 4|4 + 7. Another
approach is to give definitions of torsion components, which are covariant quantities, and
derive from them the spin connections. We will take the second approach.

As in ordinary general relativity, setting the bosonic components Tééd = 0 lets one
determine the purely bosonic part of the spin connection as

1
Qg = D) (KaBa + Kape + Kaaé) ’ (3.71)
where K ;. = 0, H;, — 0; Hse are the anholonomy coefficients.
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The rest of T is going to involve parts with fermionic legs. The purely 4D components
Q. op are in (3.47). Now we look at the cases where at least one Lie algebra index is
internal. Consider T'*, with one fermionic form leg and one internal leg. This is

T = DgHp" — 0 Hg" + Qpp + 2iHyp ()57 (3.72)
This component of the torsion tensor is dimension % and can include A\,,*. We rewrite
Qi = —Tp® + OmHg" — DgH,," — 2iH,p, 5(0%)57 . (3.73)
We also notice that, from the definition of Tg,™,
Qg™ = —T,3™ + 0, Hg™ — DgH,™ — 2i0™"* H,, ,,3 . (3.74)
This must be opposite in sign from the previous expression (3.73), so we get

Topa + Topan = OaHgm — DsHam + OpHp o — DgHyp o — 2iHms(04)5" — 2iHy g ,
(3.75)

which is independent of the spin connection. We can write out the right hand side explicitly

from the given definitions of the supervielbein,

(0" aa(Tmp,a + Tapm) = i €5a(2d1 + d2) Ama - (3.76)
We choose to populate T5™ by Apo, with an undetermined proportionality factor d4, and
consequently

Top™ = i dy (00) g3\, (3.77)

Tns® =i (di + %dz — d)(0") 5N (3.78)

Qs = (00) 55 (W2 + i dAT2) — 20 H 5™ . (3.79)

The definition of T),z™ gives
T, = Op,Hg™ — DgH,™ — Qg™ — 2i 6@Hﬂ@5 . (3.80)

The symmetric part of this in nm gives the SUSY transformation of g, with extra SUSY
parameters €,,,. Because there are no such terms in (3.61), this symmetric part is zero.
The antisymmetric part amounts to a choice of £23,™, and its 7 part can be chosen to have
a A piece. We find

Ts,™ = T =ids cpﬂmﬂ)\gﬁ ) (3.81)
Qpn = i(ds = d3)pmn®Aps + 1Dy Vn) + % (Wamn — % rnp P Wr)
- %wmwwzfﬂﬂ - éwmpﬁﬁg . (3.82)
Again, dy is undetermined. For the dimension zero components, we find as expected
0 =Tup™ = 2D Hpg™, (3.83)
0="T,;™ = DoHy™ + DyH,™ + 2i6™H, ; . (3.84)

At this point, we have chosen all components of the spin connection.
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3.8 Evaluating the remaining torsion components

Torsion components for which explicit prepotential expressions have not yet been given can
now be computed. The purely external parts of T'* work out in the standard way. The
parts with at least one internal leg, such as

Tmﬁa = 8mHﬁa — D/BHma + Qmﬁa s (3.85)

are more complicated, and presumably do not vanish because there are invariants with
that dimension and representation. We decompose this into irreps of SL(2,C):

T 3% =:108%Sm + Smp” (3.86)

where the second term is traceless. Explicitly,

. 1

©Sm = O H + §D7Hmﬂ/

i da 1 7o L i ha 1 o
i ) 1

and

Smpa = ~D(gHmja) + Qmpa

1 _ . T, i 1
=~ 15 PP Xjmlays = 108" Xmayy + 75 PWaym — 591 D(5Ama)

i L _d

= —15¢m™ Gapnp + (24 - 2) DgAmja) (3.88)

Above, J(V)n, denotes the equation of motion of V,,. Next,
T, " = —iSne(59)° = =D’ H,,"
1 - 1 —; A 1 - :
= —-d1D°)\y,* + =D’ D*H,, + —D?X,,"*
P Am mt A

1, -4 1
= —5h DA+ o

1-, 1= s . : :
= | = 300" = 5D’ + 267 + %%@G%‘@ (3.89)

The lowest dimension components of T™% are with dimension=1/2:
1
T, g™ = 2D(VH5)ma + 590@5(50497)@, (3.90)

> ; 1 d 1 0
Tq/ﬁ.ma = D,YHBma + DBH'yma + QZH,yﬂ'ma — 59’}/ m(O’d)aB + Z@M(&/aﬂﬁ@’ (391)
T, ;™ = 2D Hpy ™ — Q;"™(014)% 5 - (3.92)

These must be invariants, and may involve the gravitino equation of motion. The last
one then must vanish. The other two can be chosen to vanish by choosing the spinor spin
connections appropriately, but this means there may be tension with other components of
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the torsion. We stick with our previous choices of spin connections instead. Explicitly,
we find

T = 3 (ds — d) 0, A2s (3.93)
aym 3

T, ;2 = g, N2y (- S(d2 = ds + ds) - da) (3.94)

T")/Bma =0 (3.95)

Remarkably, we can turn off all dimension % torsion components by setting all of the d; to
zero. We make this convenient choice. Explicit expressions for the remaining dimension 1
components can be similarly obtained by expanding the right hand sides of

Ty ™ = OpHy™" — Dy Hy™ + Oy ™7 (3.96a)
Tb:yma = 8{,H@ma - D&Hbma + Qb,ﬂma ) (396b)

and their complex conjugate equations where ma — md. These components of the tor-
sion can be decomposed into SL(2, C) irreducible pieces. It turn out that, as a consequence
of Bianchi identities, some of these irreducible pieces are related to the S superfields in-
troduced above, and spinor derivatives of Ao. The explicit prepotential expressions of
the torsion components, although useful in their own right, do not immediately make it
transparent that such relationships exist. Without the knowledge of Bianchi identities, one
could still discover these relationships by computing various derivatives of the torsion com-
ponents explicitly, and linearly combining them (respecting dimension and representation
theory, of course). Obviously, a more systematic approach would be to use the Bianchi
identities to extract the exhaustive list of relations, identify which pieces of the torsion
components do not participate in Bianchi identities and, hence, are new/independent su-
perfields (as opposed to being derivatives of superfields that are in lower dimensional torsion

components). This approach will be presented in section 4.

The dimension % components are gravitino curls TAéé‘, and the same comment applies

to them. Instead of giving explicit prepotential expressions for these, we will use Bianchi
identities in section 4 to find which parts of these are independent, and which parts get
determined in terms of lower dimensional stuff.

3.9 Components of the 3-form gauge field and its 4-form curvature

Before going to the Bianchi identities, let us not forget the super 3-form gauge field and
its field strength. The highest dimensional components of G4 are fully bosonic components
with dimension 1. We start with its purely internal part, G,npq- Under abelian tensor

hierarchy transformations alone, this is encoded by E,,;,q, which no longer is invariant

under ) transformations. So we covariantize it:

Grnpg = ReErmnpg + 20y fnpOg H” (3.97)
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which is an invariant quantity, a dimension 1 curvature. Similar exercise of covariantization
gives the rest of the components as follows:

. 1 _ ~
(0)* G = 5 | DaFamnp = DaFamnp = 604mn05 X %o + Ymnpgac | (3.982)

Gabmn = _(Uab)aBGagm +h.c.

= 50@)* | D@ Wiymn + i9mnl 0o Xipjoys | + hc. (3.98b)
Gabcm = 6abch?dm
1 . _ _
= gearea(@)* (Do Dol Hyy = D’ X ot = D* X o) (3.98¢)
Gabed = 3i€abcd(R - R) . (3'98(1)

It is going to be useful to decompose Ggmnp into its 1 + 27 and 7 bits in the canonical
way. We find

1 1 -
(0%)aaGamn = §Da9dm - §Ddgam = 20mXn)aa (3.99a)
1 1~ A
(6")aaGam = 5 DaFam = 5 DeFom — ¢m"™ n Xpas+ Do (3.99b)

We also choose to define the dimension % component

1 _ .
Gabw = _é(ab)ad()@mABaa (3100)

and set all remaining components of G to zero. From the above expressions for the cur-
vature components, we can derive components of the three-form gauge field up to exact
pieces. These are:

1 _ 1 .
1 _
(0*)a6Camn = 5[Da: D Vi = GmnpOaa V2 + Pmnp X Pas (3.101b)
Cobmn = —(0ap)*PCop + hic.,
= —(oq)* > D,V h 3.101
= —(0w)*| = 5 (PteSpm + Dia¥imis)) | +hic. (3.101c)
Cope = 6abcdé’d
1 . 1 _ _
= — 5 €abea(0)* { -7 ([Da> Da)X + D? Hog, + DQHW)} . (3.101d)

4 Solving the Bianchi identities

In the previous sections, we have constructed a 4[4 + 7 superspace (with extra gravitini
and gauge fields) from prepotential ingredients. Now we change gears to take a “first
principles” supergeometric approach in which we deal with torsions, curvatures, and their
Bianchi identities. The linearized Bianchi identities in 11|32 superspace are (3.5), (3.8).
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We will project these to 4|4 + 7 by restricting all form indices and solve them in order
of their engineering dimensions starting from the lowest dimension, which is % When
we say we solve Bianchi identities, we mean that we write down an exhaustive list of
derivative relations satisfied by various torsion and curvature components, and identify
components that are not constrained by Bianchi identities at all. We turn a blind eye to all
the information presented in section 3 except, crucially, to pose a set of torsion constraints
that are inspired by the explicit construction. These constraints will be the analogue of
eq. (14.25) in [16]. Together with the Bianchi identities, they define the supergeometry of a
linearized 4|4 + 7 superspace, a solution to which (in terms of unconstrained prepotentials)

is the one we presented in section 3.

4.1 Restriction of linearized Bianchi identities to 4|4+47

Recall that the spinorial superframes EA decompose as

Bl = gl B 4 i(Tpym) B (4.1a)

Ear = nrEs +i(T20) B, - (4.1b)
The dual superspace derivatives become

Dar =n1Da + i(rmn)IDma (42&)
DY =yl D% (T pm)! D2 (4.2b)
The derivatives Dy, Dma do not appear in the Bianchi identities restricted to 4|4 + 7.
Bianchi identities satisfied by T in 11|32 are:

A f
DpTep +Tipe! T,

A v A_p . A
fB Tt T[DC‘VTW\B} =Ripop - (4.3)

Restricted to 4|4 4 7, this gives rise to the following:

DipTep™ + Tipc! T + Tipe™ Tirp™* = Ripop™ (4.4a)
OmTes™ + 2D 1T + Top! Tim™ + 2T  Tipip* = 2Rmicm™ + Ropm™  (4.4b)
28[QTM]BA + DBTﬁA + TmFTFBA = RMBA + 2RB[M]A (4.4c)
Ty = R[M]A . (4.4d)

For T%, we have
DipTep® + Tipe! T + Tipe Ty = Ripon™ - (4.5)

Restricted to 4|4 4+ 7, this gives rise to

DipTop® + Tipe! Tisim® + Tioe Taip* = Ripes)® (4.6a)

OmTep®+ 2DicTpn® + Top! Tim® + 2T Tis 5% = 2Rmop” + Ropm®  (4.6b)
20, T 5% + DBToum® + Tom T3 5% = Rump® + 2R pjnm® (4.6¢)

O Tp)® = Rppimp)® - (4.6d)
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For T™2, we have

DipTop™ + Tipe! T o™ = Ripey™ (4.7)
Restricted to 4|4 + 7,
DpTep™* + T[DchmB]* = Ripcp™* (4.8a)
OnTep™ + 2D T, ™ + Top! Tra™® = 2Ry j0p™ + Ropn™ (4.8b)
20,1, ]B— + DBTnp = Ran + 2RBn,,m°‘ (4.8¢)
O Tpg™ = Rpppg™ . (4.8d)

The linearized G4 Bianchi identities in 11|32 superspace are
DG pepa + 215" Gropa + 20" G|F| cpi) =0 (4.9)

Restricted to 4|4 + 7,

DG pepa + 2Ten! Gipiopa) + 2T[EDFé|p|CBA] =0 (4.10a)
DG pepa) + 20mp! Gifiopa) + 2T@DFC?| frepa =0 (4.10D)
D Grepa) + 2ﬂmfG‘f|CBA] + QﬂmﬁéWWBA] =0 (4.10¢)
DimGrpp ) + 2 hmn” G pipa) + 2T Gy = 0 (4.10d)
D[mG@A] + 2T[Mpé|p@A] =0 (4.10e)

O Grpgr) = 0 (4.10f)

One can further decompose the 4|4 indices A, B, C' into bosonic and fermionic indices,
but we don’t show it explicitly here. The curvature two forms Rg"ﬁ appear in the torsion

Bianchi identities. From R4 = %Rdg(f‘&i’)dg, we deduce that the only non-zero RB@’S are

Ry" = iRab(’Yab)Bav (4.11a)
Rys® = —%55%@R@7 (4.11Db)
Ry™® = i%%mR@, (4.11c)

R,™" = i‘s@chd(WCd)ﬁa + 255 [ 0" PLRy + Ry™ — R™, | (4.11d)
R —%(5“)B“Raﬂ, (4.11e)
RPme — %(5”)5‘1&@, (4.11f)

Rr/me — —%(5 )7 Ry, (4.11g)

and their complex conjugates. Of these, the ones with the first index along the extra 6
directions do not appear in the restricted Bianchi identities.
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4.2 Constraints

We postulate the following conventional constraints for the torsion and the 4-form. All
dimension 0 components of the torsion vanish:

Top® = Tog™ =0 . (4.12)

All dimension % components of T' vanish:

Taﬁcszéc: aém: ﬂém:m T%l:T%m”/: gy =0 . (4.13)
All dimension 1 components of T' determining bosonic spin connections vanish:

Tabc = CramC = Tmnc = T’abm = Tanm = T‘npm =0. (414)

1

—3, and 0 vanish:

All components of G with dimensions —1,

GoanS:O, Ga@:Gm@ZO? Gablé:Gamiszn s=20. (4.15)

The 4-form components at dimension % are Gaomnp, Gaabe; Gaabms and Gapmn. The first

one is set to zero by fiat:

Gamnp =0. (416)
The next two will be found to vanish as consequence of dimension % Bianchi identities.
The last one is non-zero, and, in general, a 2-form of GGo. We impose the constraint that it
belongs in the 7 of Ga, and is proportional to Ayue. Choosing a normalization:

1 -
Gozbm = —E(O'b)ad@m)\g . (417)

The above constraints are informed by the explicit construction of section 3. In the next
subsection, we state the consequences of the Bianchi identities subject to these constraints.

4.3 Results

We present our results organized by dimension. At each dimension, we list all components
of T, R, and G, and decompose them into their SL(2, C) and Gy irreducible pieces. Then we
state which of the irreducible pieces are determined by Bianchi identities to be derivatives
of lower dimensional components, and which ones are new/independent superfields. We
end the discussion at each dimension by reiterating important relations/properties (such as
reality or chirality of various pieces of the components) implied by the Bianchi identities.

The purely 4D part of the analysis follows in the standard way [16]. We do not explain
their derivations but merely quote the results.
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4.3.1 Dimension < %

All dimension —1 components (namely Gag,s), all dimension —3 components (namely

Gips), all dimension 0 components (namely Gain s and T,,5¢), and all dimension % torsion

components (namely T;g s and Tpg 4) vanish by fiat. The dimension % components Gamnp

are chosen to vanish by fiat. The lowest dimensional Bianchi identities are a set of G4

equations at dimension %:

) (513G )eba = 0 = (0°)5(5G5)cba (4.18a)
("b)(amev)am =0= (0”)5(56‘@@ (4.18b)
(Jb)(élﬁ'le)bm =0= (Ub)é(BG‘y)bM . (4.18¢)

Decomposing all external indices under SL(2, C), these imply

1 .
Géabc = Gﬁabm =0, G, bmn = _é(ab)ad)‘ama (4'19)

where Aoy, is an arbitrary internal 2-form. It decomposes under Go as 2150(7) = 7, +
14¢,. Our constraint (4.17) then restricts it to its 7 piece

1 .
Gab@ = _ESDM(Ub)ad)\Ba . (4.20)

This is the only non-zero component field up to dimension %

4.3.2 Dimension 1

Torsion. Torsion components at dimension 1 are

o T;..: these vanish by constraint via a choice of spin connection.
k)

4|4+7
. Ty , ‘—+> T;  .: we decompose these into irreps of SL(2,C) and Gb.
9,8 6

The purely external components, namely T} o, follow from [16]:

1 .
— _ (5, \BB .
Tb77a - 2 (Ub) Tﬂﬁv’%a

i

TBB,%a = _Z(fﬁaG'yB - 3675Ga3 - 3€waG55) (4.21a)
Tyy6 = —%(@)BﬁTﬂBma

Thpsa = _i(GBaGﬁﬁ — 3€;5Gpa — 3e5aGgp) (4.21b)
Ty = _%(51’)’86%&7@

Topra = 2ievB€BaRT g R' =R (4.21c)

1 4
Tisa = —5(00) Ty

Tgp s o = 216 5€pa R . (4.21d)
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The independent superfields here are G,4 and R. It is implied by a Bianchi identity that
G, 5 is real.
The internal pieces of T, are decomposed as

Tmﬂ,a = —iﬁgasm + Smﬁa (422&)
Typa = —1(0)apSme = —iSnap (4.22b)
Tp6 = —1€565m + Sppa - (4.22¢)

Here, Sy,qp and S'm & re symmetric in the two spinor indices. From T% = (T%)* and the
above definitions, the following complex conjugation relations follow

(Smaﬂ)* = _Smaﬁ'v Sme 1= (Smc)* . (423)

A dimension 1 Bianchi identity (4.10b) for G4 implies that Sy, is real

Sy = (Sp)* = Sy, (4.24)

which we have already taken into account in (4.22). The independent superfields here are

Smy Smap = _(Smaﬁ')*a and Spe = (Sme)*-

Next we have the pieces of T2, These are T, g™ and Tps™*. We start with the first
of these. When the two spinor indices are both dotted (or both undotted), a dimension 1
torsion Bianchi identity (4.6b) implies that the e-traceless (spin 1) piece is (proportional
to) a curvature component. The trace piece (spin 0) does not participate in (4.6b), and
hence it is proportional to an independent superfield Z,, ,. The comma between indices
denotes that it belongs to 7 x 7 of G2 and should be decomposed into irreps of G3. When
one spinor index is undotted, and the other is dotted, we split the corresponding torsion
component into its real and imaginary parts. The real part is set equal to a curvature

component (times i, since the curvature component in question is imaginary), and the

imaginary part is new, denoted by X afmn- Explicitly, we have
Ty, np = _i.R’YﬁM + éevﬂzm,n (4.25a)
T 5, 0= i Y Bmn %%Bzm,ﬂ (4.25Db)
Ty = %Rv/i’m — X, bmn (4.25¢)
Tm 3, nB — _%Rﬁ‘ym - iXB"ym@v (4'25d)

where

Zm@ = (Zmn)" Xpy mn = (XWB m,@>* (4.26)
Rﬁﬁ,m =— (Rypmn)", Rispmn = _(R»yﬁ'm)* (4.27)
More information about X n = —%(5a)do‘Xadmﬂ is hidden in the dimension 1 G4 Bianchi

identities (4.10c) and (4.10d). The first implies that X, ,) lies only in 7 of G2, which
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means that the full X, is in 35 of SO(7), an internal 3-form. The second implies that
this internal 3-form is nothing but GGM . We Go-decompose Xy pn (alternatively Gamnp)-

Its G2 singlet is denoted X, its traceless symmetric piece (27) is denoted by Xam, and

its antisymmetric piece (7) is encoded in Xg,,. Their complex conjugates are X4, Xamn,
and X, respectively:

5 1 1
Xam,@ = XGM + ?(5@Xa + gSDMBXaB (428&)
- . 1
0" Xamn = Xa,  Xamn = Xanm: Xajmn) = 50mnpXa® (4.28b)

The identification of this superfield with Gamnp is through the following

Gamnp = —6Xapm, “Pnplq (4.29)
which implies
Xa = —%«pMGaM (4.30a)
Xamn = —éw(m’ﬂGmm)@ + %5m¢@&m (4.30b)
Xam = 4—18%@(}@@ : (4.30c)

Equations (4.30) can be easily inverted to express irreducible pieces of Ggmnp in terms of
those of Xgm . This is not all. Bianchi identity (4.10c) determines completely the 7 piece

Xam, and the curvature component Raan in terms of previously introduced independent
superfields:

. 1 - _ 3i -

ZXOCBm = E(Da)\mﬁ' + DB)‘ma) — Z(Smaﬁ + Smaﬂ) (4.31&)

i _ _ _

Raﬂm = QDMB E(Da)‘gﬁ' - DBAEOI) - (SLBOZB - Sgaﬁ) (431b)
Notice that R afmn is forced to lie in the 7. The components R,gm, and R fmn @Y€ 1OY
fully determined by dimension 1 Bianchi identities. Their 7 pieces are forced (by (4.8a))
to vanish

"R Bmn = 0 = @MRQBM, (4.32)

while their 14 pieces are left unconstrained.

We will now G2 decompose Z,, ,. For its symmetric part, we denote the 1 piece by
R, and the 27 piece by Rm. For the anti-symmetric part, we denote the 7 piece by
Rm, and the 14 piece by Lipy),,- Their complex conjugates are R, RM, R,,, and E[mh .

respectively:
1= 1 = 1 =5
Zmpn = §Rmn + ﬂ(smnR + E(PMR* + Limn)14 (4.33a)
mn ]_ ~ ~ ~ 1 _
052 = iR’ Ripn = Ram Z[m,ﬂ} = E@MRB + L[M}M : (4.33b)



The dimension 1 Bianchi identity (4.10¢c) for G4 implies

Limn)ra = I_’[m]m (4.34a)
— 1 1. —.
Ry, — Ry = 605, + ZDO‘)\Qm - ZDd)‘am (4.34b)
Thus, new/independent superfields in the components (4.25) are Rogmn = —( Ra,é’mn)*7

Xamns Xay L]y, (which is real), Re(Rpn), Rpnn, and R.

The remaining torsion components at this dimension are fully determined by Bianchi
identities in the following way (we skip the details of the derivation):

1 s
Typma = _5(‘75’)65T’y,ﬂ5,ma

L 68lo. & i 3i 1, - _
=37 {2“7/35”@5 * €ya {4 1 omss + 16 (DsAgm — Dﬁ')‘ﬁ’m)} ]

(4.35a)

Smpp +

1 g
Tipms = —5(0)"

1, .5 .
= —§(Ub)6’8 |:226,-Y6'Sm5d + €44 |:

4,88,mad

1 31 1, = <

Zsmﬁ[f Ty Pmss T E(Dﬁ')‘ﬁm - Dﬁ)‘Bm)} ]
(4.35b)

1

Typma = =500, g5 me

L 8] _
= 75(01))55 [z@ﬁﬁﬁ'dsm + 36,485,456 — E,Basmvﬂ} (4.35¢)

1
Tibma = _5(01))6611%[35,@04

[N P _
= _5(013)56 {ze,megasm + 36,-YBSMQ - 6/3065@,%8} (4.35d)
There are no new superfields here.

Curvature. The curvature components at dimension 1 are

4447
Ré'yl;&

* R

Remember we do not need to separately consider Rsﬁéd since these get determined

through (4.11). Purely external components follow in the standard way as in [16]. The Lie
algebra indices on R5*’y ba are decomposed into self-dual and anti-self-dual pieces,

Ry, = _(Uba)ﬁast ga Tt (5ba)BdR57 B (4.36)

and similarly for R pq, R(;7 par and Ry pe. A Bianchi identity forces

Rﬁ fa = 0= Rév B (4.37)

and the rest of the components are determined in terms of the superfields G4 and R:
R(;,-yﬁ'd =1 (650‘[6#5 + 6*/6(555) R, R(;,yga =4 (Egae,yg + 67a655) RT (4.38&)
R(Sﬁ'ﬁd = — (673G5d + 6r’de58> , R&wa = — (eggGa;y + 65aG57) . (4.38b)
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Similarly, components with internal indices are given to be

R‘/B,ma = _S(Uac)ﬂ’ygmc7 Rﬁﬁ',ma = _8<6ac)ﬁ';ysmc (4.39&)
R4 ma = 20 [(U“)BBSWWB — (Ua)wgmﬂ (4.39b)

The components R,gm, and R appear in the irrep. decomposition of torsion com-

&Bmn

ponents Tm,aj (and c.c.). They lie in the 14. We have already catalogued these as
new /independent superfields in the above paragraph for torsion.

4-form. 4-form components at dimension 1 are

4)a+7

e G.i:.i — G

abed abed

Most of these are fully determined by Bianchi identities:
Gabcd = 3i€abed (R - R) (440&)
Gabcm = 3i€abed (Smd -5, d) (440b)

Gabm = _(Uab) P |:<Pmnp ( E Aﬁp + 215]3&[3) QRQ/BM]

_ &b 1 = < 1
+ (Gan)’ |:90mnp _ﬁDd/\Bg +2i Spa5> + Raﬂmn] (4.40¢)

GGM = _6Xam,gsonp}g . (440(1)

The only 4-form component at dimension 1 completely undetermined/unconstrained by
dimension 1 Bianchi identities is Gp,npq, Which we G2 decompose:

L T
Gmnpq 24 x 7¢mnpqg + 42 Qp[mnp ‘|‘ ¢ mnp gq]T (441&)

Gmn = Gnm; 6™ Gmn =0 . (4.41Db)
The above is 3550(7) = 1a, + 76, + 27a,-

Relations. We reiterate some of the properties of the independent superfields implied
by Bianchi identities:

(Gop)" = Gga (4.42a)
Sm = (Sm)* = Sm (4.42b)
P Rapnp = 0= 9" R, (4.42¢)
R smn = Pmn® 12(D Mp = Didap) = (Spas = Spap) (4.42d)

. 31 _
iX o fm = 16(D Nim + DjAam) — Z(Smaﬁ' + Sppas) (4.42¢)

= 1 1 -

Ry = Ry = 6iSyn + 7D Nom — 7 DaXm (4.42f)
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4.3.3 Dimension %

Torsion. Torsion components at this dimension are

4)4+47
\ T

¢ TB&,@ be,a’ T be,ma

Purely external components follow from [16]. We have Ty, o = 1(5.)17(55)%” T, 554 and

1 _ § _ §
TW%@BM - _QGWBWWﬂOC - 561/3 (E'yaD(;Gﬁ + €gaDsGA )

1 _ _
+ ieyg (D"}’Gaﬁ + D,BGOW) (4.43a)
_ 1 5 5
T 6= 268Wpa — 5618 (EﬁdDéG 5t €5, DsG 1)
1
+ 565 (DyGpa + DsGra) - (4.43b)

Now we deal with components with internal indices one by one. Decomposing T, g with
respect to SL(2,C), we have

Tom,p = _i(5a>da mafa T i(aa)Bdedv (4-44)

where X034 is symmetric in o3, and X,,s is the e-trace piece. We use the following
notation for their complex conjugates

(Xmaﬁ'y)* = _Xmaﬁ'fyv (Xmo'z)* = Xma 5 (445)

in terms of which
Ty i = Tamp)" = —i(30)** X ago — 1(0a) s Xm® - (4.46)

Bianchi identities of dimension % fully determine these superfields in terms of the lower
dimensional ones:

1 _ 1 = -
Xmaﬂ"y = ZD(aS|m|ﬁ)’y - D’)’Smaﬁ s deﬁ',y ZD(O‘S‘E’Y‘B) D“/Smdﬁl (4478,)
[ = 1 = i 1- - 5
X = =7 | DaSim + iDﬁsmﬁd + Xma =7 |DaSm — iDﬁ-smaﬁ . (4.47Db)

Here we mention that, as a consequence of the Bianchi identity (4.4b), the a8 symmetric
part of the derivative Dagmg;y vanishes. We give a name to the remaining anti-symmetric
piece:

_ i : B .

Do Spp = 7(0'17)(155@5 ) Pma = (Pma)

1 (4.48)

Remaining components of T at dimension % are T),,®. This is an internal 2-form, and

decomposes under Go as 7 + 14.

1

Tnn® = ESOMUEQ + Timn] s (4.49a)
. 1 _ _ .

Toun® = (Tun®)" = & PmnpUP" + Tin1,* - (4.49D)
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The complex conjugate notations are, obviously,
(Unma)™ = Una » (T[m]ma)* = T[m]md : (4.50)

The superfield Uy, is fully determined by Bianchi identities,

31 _ 5 i _ i _ _ -
Umo = =% Pma — DaSm + DPS s — 473[1)2 — 2D Ao — 57PaDs + 2D ;Do) A,
4.51)
while Tj,n],,q 18 left unconstrained. It is an independent superfield.
Next, we consider
Tab,mv = _(O-ab)aﬁ [Tmaﬁ'y + EwaTmﬁ] - (a—ab)dﬂTo‘CB,ym (452&)
Toms = Tavmy)” = 0a) ™ [~ Topsps + €56 Tms5| — ()™ Topiom » (4.52b)
where notations adopted for complex conjugation are
(Tinapy)" = _Tmaﬁ'«w (Tma)" = dea (Taﬁ'qm)* = _Taﬁﬁm ‘ (4.53)
These superfields are all fully determined by Bianchi identities,
TMQBV = iD(aS‘mwv) s Tmfxﬁ.ﬁ = _ZD(O‘S|m|57) . (4.54&)
1 i - 1= T _
1= = = _ 1 _ -
Tc’yB'ym iD(aS\m’ﬂﬁ) — ZD'YSmO'éB , Taﬁ"ym = _§D(a8|m|ﬁ)"y + ZD,'ySmag . (4.54(3)

Next, we move on to components with two internal indices, belonging to 7 x 7 =
(14 27) + (7 + 14) of Go. These are T, and T, = (T,,,*%)*. We decompose these
components with respect to SL(2,C) first, and then with respect to Go:

Tomnp = _i((}a)wym,ﬂaﬂ‘y + i(Ua)ﬁde,@d (4.55a)
a1~ 1. - 1
= —i(0a)" [Qanam + 17 0mnQapy + £ Pmnp@Fapy + K [mTL]Maﬁ"Y]
. 1- . 1. =~ 1 . .
+i(0a)sa [2Pmna P+ oy PP+ M[m]l4"‘] . (4.55h)

Here, Yi, nagsy is symmetric in «f3, and belongs in 7 x 7 of Ga. Its symmetric part de-
composes into a Go singlet Qam and a 27 (traceless, symmetric) of Gy denoted Qmaﬁ*w
while its anti-symmetric part decomposes into a 7 of G denoted Qpaps, and a 27 of G

denoted Ky The af anti-symmetric part of Tp4 m, ng is encoded in Ymﬂd, which

14035
isin 7 x 7 of Go and gets similarly decomposed. Ppna is in 27, P4 in 1, Pga in 7, and

Mipn), 46 in 14. All these irreducible parts are fully determined (by Bianchi identities) in
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terms of previously introduced superfields:

Qmnopy = iD(aX,B)fyma Qupy = 1D Xpg)y - (4.56a)
1 _ 31
Qmasy = 76D LiAmis) = 7 DaSmipyy:  Kmnjaasy = 1617 Rogmn - (4.56b)
I 1 — = ~ Z ~ 1 ~ - .
Prna = EDO.Z [Rmn - RM} - gDﬁXﬁam, Poz = ED [R— R} — ZDBXﬁd .
(4.56¢)
3_ 7 = 7 1 _ _
Pra = gPma — §Dd5m - éDﬁSmﬁa - %[DQ + D’ Ama — %[DﬂDd + 2D D% Aps
1 =4 )
M[M}HC‘“: _@DBRBQM - Zir[m]md . (456(1)

Finally, we have the torsion components T, po With three internal indices. The in-
ternal indices we decompose step by step, first under SL(7), then under SO(7), and finally
under Gy. The SL(7) decomposition results in a totally anti-symmetric piece V and a
mixed symmetric piece W

SLy

TM,QQ - Wm},a + Wm@a (457)

We use m]ﬂ to denote the tableaux |=|2]. This is 21 x 7 = 35 + 112 for SL(7). Under

G2, the 35 decomposes into 1 4+ 7 + 27 in the following manner:

Vimnpl,a = %@MVQ + iwwvza + Zcpﬂ[wvma : (4.58)
where V,, is in 1, Vo is in 7, and Ve is a traceless symmetric 27:
Vinna = Vama 0™ Vimna =0 . (4.59)
Under SO(7), W decomposes into 7 + 105:
Wmlga = Jmlg,a + 0pm Tna — Opn Tma (4.60a)
Jnlpa = = Jnmipa Jmnjpla =0, 5@Jm|ga =0. (4.60b)
Under G, the 105 decomposes further into 14 + 27 + 64:

14
Jmnjp,a = J, + J2T + Jb

mlg,a mn|p,o mn|p,a

(4.61a)

where mn|p now denotes the irreducible hook representation of SO(7). Let us parameterize
J™" by a 2-form Jmn,a in the 14 and J 2T by a rank 2 symmetric traceless tensor In,a as

1 1
Jﬁ@ a = Pmn= Jpq,a - 5@@2‘]@,& + 5@@g<]@,a (4.62&)
27 1 1 g
‘]Mlp, = Prn*lgp.o — 590@*1@,04 + 580@71@,04 ) (4.62Db)
which can be inverted as

9
(pmﬂ‘];jlﬂ,a = 9{]@7& ) qu np|g,o _§Jm,a (463&)

7
P pq|n o = Thnn.a, qunp|qa —§Im7a . (4.63Db)
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We do not give an explicit parameterization of J%, since it is just the remaining piece of
Jmn|pa, and denote it instead by Zpjpe- From the fact that J, JY, J?7 have the same
mixed-symmetry, Zp,|p, must satisfy

Zm\g,a = _Zm\ga ) 5@Zmlg,a =0, Z[m\g],a =0, (4.64)

in addition to the irreducibility conditions®

(pgw th,a = 0, ‘Pg@Zmlg,a =0. (4.65)

Combining everything, we have the following equations:

1 7 9 1
p Tnp e ?5mva + <V1frm’a - 21m7a> - §Jw,a + Somg (6‘/pa - Tpa) (466&)

1
em" Tpgn.a = =0mnVa + (Vin.a + Tlnn,a) + 9Jmn.a + Pmn” ( g Voo +27 pa) - (4.66D)

Plugging these irrep decompositions into the Bianchi identities, one finds

Vi = iDuR (4.67a)
3i ~5[3 -
Vma = —Epma—D §Sma,3+smoc,3 +2DaSm
1 1
+ 5 " D? + 4D A +15Da D +2D; Do) A I 3%"?’8 Apa (4.67D)
Z =
Vma = TSDQ(Rmn - Rmn) + 9D Xa,an + 76(m)\ﬂ)traceles57a (4.670)
i _ 3i 3 1
Yo = 15 DaRm = J6Pma — 8Dﬁ {25,”&5 + Smaﬂ] + ;DS
1
—[D? +4D%\ DD+ 2D 3Do)An’ + om0 4.67d
+192[ + 4D Ao + 96[ 5+ al +24 pa  (4.67d)
i
Jrna = §DaL[mh4 + 5711)51%/3&m (4.67¢)
i 17 = 1 = 2 5
IMO‘ = _ﬁDO‘ ERM—F 18an:| + @DﬁXaﬂmn 126 a(m )tracelessva : (467f)
Zynlpa is unconstrained by Bianchi identities at this dimension.  Therefore, the
new /independent superfields in the torsion components at dimension % are Tf,n1,,q and
Zmn|pa-
Curvature. Curvature components at dimension % are
4|4+7
* Rd’Y ba - Rcil ba

Bianchi identities at this dimension fully determine these curvature components. The
purely 4D components are as in [16],

Ropcg =i {(Ub)achdﬂ — (0e) o Tas” — (Ud)agTbcﬂ (4.68a)
Ry cq = —i [(Ub)ﬁaTch — (00)paTip” — (Ud)ﬁaTbc”B] . (4.68b)

3Both contractions belong to the 7 x 7 of G2 which decomposes as 1 + 7 + 14 + 27, with no 64.
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Similarly, components with at least one internal index are as follows:

Romab = ~iTapma — 200000 T+ Ramab = iTabmi + 2i(07) 56 Ty (4.698)
Rootm = Tabma + 20(0(0) 03 Do+ Reabm = —iTubma — 2i(0(0) pa Ty (4.69b)
Roamn = i(Ua)a/ngB + 20Ty m]a 5 Riamn = —i(04) gaTmn” — 20T, mpja (4.69c)
Raman = i(00) 05 Tomn” — 20Tutmmya»  Reéman = ~i(00) 3 Tn” + 20T ymmya (4.694)
Romup = iTinpe — Topma + Tymuals  Ramup = —ilTanps — Tapma + Tpmna) -

(4.69¢)

4-form. There are no 4-form components beyond dimension 1.

Relations. We repeat (and in some cases state for the first time) some of the important

relations implied by the Bianchi identities at dimension %:

D4R =0= DR (4.70a)
DPGss = Dy R (4.70D)
- i g - i
DaSmb = 5(00)appm” = DaSmpy = 5€aspmy (4.70c)
1 2 1 - - B
Do (B = Bun) = 6iDoSm + 4iD"S,,, = 30" Ama — 7 DaDphn (4.70d)
L DG =, e —DF 35 +8S a1+ 2D0Sy + — [D2+4D2})\
4o adm — mo = 2 Pma 9 maf maf 24 ma
1 N N Y A n,
+5PaDy+ 2D ;Do Am” + gcpm—pﬁﬂ)\ga (4.70e)
_ 1~ 1= ; _
Dg (2R + 6R> = %8m)\md + 3iDﬂX5d (4.70f)
=
Dy (R—-—G) = 4.
(R 489’) 0 (4.70g)
21 = 16 =5 ~
_ & _Opy . 2
Dagl - _21Da (4Rmn RM) 21D X(Xﬂm 21a(m)\ﬂ)tracelessaa : (470h)

4.3.4 Dimension 2

There are no torsion components beyond dimension 2, and no 4-form components beyond

2
dimension 1. Dimension 2 Bianchi identities either determine various components of the
curvature tensor, or imply the algebraic Bianchi identities satisfied by it.

Curvature. The curvature component at dimension 2 is

* Rdc ba

Some Bianchi identities at dimension 2 imply the familiar algebraic identities satisfied by
the bosonic Riemann tensor, namely

R[Jé,i)]d =0, (4.71)

which, in turn, imply the pair-exchange symmetry R, ;. = R;. j.-
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The purely 4D torsion Bianchi identities of dimension 2 are

Rigepo =0 (4.72a)
Rdc,,@a = DBTdc,a + 8ch,3,Oz - 60Td5,a > Rdc,Bd = DBTdc,dc + 8dTC/3'7d - 60Td5'7d (4'72b)
0= DﬁTdc,d + 8ch,8,d - 60Td5,d , 0= DBTdC’O‘ + 8chB,a - achB,oz (4.720)

The component Ry, can be decomposed into SL(2, C) irreducible pieces as follows:

N sslo )'(Ub)gg(ga)aaRdcba

(o
= 4 |5, €3a X(5m)(50) T €6v€80X (533 (30) — 63600 (52)(80) — €613 L 595
(4.73)

L L P

where ¥ and X denote complex conjugates of ¥ and X respectively. The algebraic Bianchi
identity is satisfied if and only if the following conditions are met:
0 . 0 _ _
Ve = Yeaen: € Xanee =k, A=A (4.74)

The other two Bianchi identities determine completely the irreducible pieces X and ¥ in
terms of lower dimensional superfields (W, g4, G, B R), and imply some derivative relations
between the said lower dimensional superfields. We have,

1 _ . i .
X 8a) = ~D@W)sy T 5€01(8Da) D7 Gryy + 5651691 Gayy (4.75a)

a 1 B o B o
i) P = [DVD G5 = DDPG)| (4.75b)

Now we move on to the following components with one internal index.

quba = _(O-ba)ﬁaRmc,ﬁa - (5ba)ﬁdRmc7Bd (4.76a)
R pa = (0)93 Rme o = (0)44 (OmTep.a + 0cTsma — DsTem,a)
__t
4
1 _ 1 _ 1
+ 565(71)25@&” +2iDg D5 Sy + 5630 [DgD@Sm — 4D25mﬂ,-y} (4.76b)

[67aamG6"y — 3€3,0mGay — 366048@6;7&} + Oy (ieﬁasm - Smﬁa)

Ry s = (03 R g = (0935 (0mTos 5+ 0T 4 — DyTemc.)
)
1 [q,damG,yﬁ' — 3%#8@6?7@ — 3€Bdamny} + 8’)”7 < Zeﬁ S + Sm,Ba)
1 _2 - — e 1 — _2 -
+ iéﬁ‘@D S|m7‘a) — ZZDBD,},Smﬁd =+ ie;yd [_DBDWSWL — ZD Sm'yB] (4.76C)

This clearly means that the a8 or & antisymmetric pieces above will vanish, yielding
relations between derivatives of the superfields involved, and the expressions for R, ga
and Rmn e
exchange symmetry, we conclude that Ry, me = Ryc pa-

will contain only the symmetric pieces of the right hand sides. Also, from pair
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The rest of the components of the Riemann tensor have more than one internal index
and are to be G5 decomposed. First, we consider this component with two internal indices:

Ry ba = _(Uba)BaRM,ﬂa - (Eba)BdRmﬁd (4.77a)
RMﬁOé = Qa[mTﬁ]B,a + DﬂTM,a (477b)
R, 56 = 20m T3 4+ DgTone (4.77¢)

This again has consequences similar to (4.76) which we do not spell out in detail. We note
that R, pq is an internal 2-form, and hence decomposes into a 7 and a 14 of Gs.

The component Ry, is antisymmetric in the two internal indices, decomposing into
a7 and a 14 of G5. We have

1
Rdc,@ = E@QQRCZCQ + Rdc,[@}u : (478)

Each of these irreducible components get fully determined by Bianchi identities:

. = 1, .. — _
Rem = 6104 (SImIC] + S\m\d) — 10170 (DMm — DMM) (4.79a)
Rdc, mnligs — R mn]14,dc (by pair eXChange) (479b)
- _(Udc)ﬁa [28[msﬂh4’8’o‘ + DﬁT[M}M’O‘} B (&dc)ﬂd {28@521143702 + DBT[M}M@J '

(4.79¢)

The other component with two internal indices is R, 5, belonging in 7 x 7 of Ga. First,
we Go decompose it,

1 ~ 1
R pm = ?5m8ab + Sabnm + 690@35@1;8 + Sab[m]m (4.80a)
Sabnm = Sabmn » SR bm = Sab - (4.80b)

The two 4D vector indices a and b on each Go-irreducible piece above can be decomposed
into symmetric and antisymmetric parts. We choose not to do this explicitly. Instead,
we give the full expressions for Sy, Sabm, Sabm and Sgpium),, as determined by Bianchi
identities of dimension 2:

Sab = a0 Sy — 3(Tap) ¥ ™ Sniy + (0ap)” 0™ Snpy

. i S a1 iy .
~2i0uXy — 5 1 D? (R = R) = S DD X5 — (o) DD X

1 . . _
- §(aa)77(ab)a5D5D(dXhM (4.81a)

Sabmm = O [MatySm) = 3(01a) ™ Syas + (@100 Simpacs|

(M)traceless
. 1 . 1 .
— 200 Xpnm — 5(Ua)w(ab)aﬁDﬁD(Xmvlﬁ)m - EnaprDpoﬁm
1 1

2o.)BD. D X 4, LD (R, . — R
+ 5 0w) " Da D’ Xy + 5701 D* (R — R ) (4.81b)
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Sabm = Pm™Dn [inaSp = 3(Gan)* S5 + (900)*" Spa| — M D? [;Sm - 4%55 Amg}
+ (a3) 70, E (DsAmp + Dgdms) — % (S + gmﬁfi)}
+ (5b)35(5a)daD5 [12’6D(BD|Q5\m|a) + iD(BSmaW)}
- %(o—aa,)aﬁDg [&pm ~DPS s~ %Dﬁma + QDBDQXWB} (4.81c)

. 3 . s
Sabfml1s = O [Hﬂabsmm + 5(@0a) " Sy = 3(01ab) ™ Simlraay + (91a))” WSm]lm}

1 s 1 1 _
+ ED2 <(Uab)BVRBWm - 3(Uab)BWRBWm> + E(U“Gb)wDﬁT[mhm :

(4.81d)

We note that the component Rup,mn = Rimnap is related through the algebraic Bianchi
identity to the antisymmetric part in ab of R4 given above. This leads to another
relation which we quote in the next paragraph (4.96f).

Next, we consider R, pq, & curvature component with three internal indices. As a first
step, we decompose the last two (antisymmetric) internal indices into a 7 and a 14,

Rycpg = éwﬂﬁRﬁc,z + Rye,fpglra » (4.82)

where Rpem isin 7x 7 =1+274 7+ 14 of Ga:
Ropem =: %5ch + ﬁfcm + %SOMBRCB + Refnmlis (4.83a)
Rum = R » SR em = Re - (4.83D)

These superfields are determined completely by Bianchi identities:

Re = —0.R+ %(UC)QBDQDB (R=R) —2DX, + 0™ (5Snc + 35uc)
1

SGONE (D32Aws = Dsdury) (4.84a)
~ _ ~ L o ,B ~ 5 _ % 25
Renm = acRm"‘ 12(UC)QﬁD D (Rm Rm) 3D Xenm
; q L bl \ D
+ 0 (55me +3Sme) = 5(0)70 (DyAws — DiAuy) - (4.84b)
nm)iraceless

ROéBm = (Ua)aBRam

_ 3 _ 5
= 28{13}%@ — EDame — QDQDBSm + §D SmaB
i —gs T i -
+ ﬂDaD%mB + 6D2D5Ama + EDQDBDB)\mﬁ
& . 1 < -
+ 20y, [5ZSpO<B + 3ZSEQB + 1 (DQAEB - DB)‘PO‘)} (4.84c)
a o _ A 1 1 -,
Rc nmlia — 268LM]14 + a[ﬂ (5ZS + 318)@ 14€ + (UC)’Y’YD’Y [2T[M14,3‘/ + 24DpRﬁ',:ynm:|
IR b R 1 - _
+(0e)" [SD’JDmenm ~ 50 (DhPais — Dwm]m)] (4.84d)
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The remaining part of Rpcpg, namely Ry (pgy. 18 In 7 x 14 = 7+ 14 4 64 of Go. A

separate dimension 2 Bianchi identity determines the component R, . fully, from which,

using pair exchange symmetry, one can determine R, and an additional derivative

J[pglia>

relation. We give the expression for R, here, and quote the relation in the next

[pql14
paragraph (4.96e).

Ry lpglia = Bipglrame
& , N 1 -
= —(50)* [DBTm,nd — 200y (Xmanq] + 75q}nXBd>

: AR _
+ 0 Pgn" (12D,3>\m + Sg,@a) } (4.85)

[pgl14

Finally, we consider the purely internal component R, mn. Pair exchange symmetry
implies that

R[M}%[@h = R[@]m[mh € (7 X 7)symmetric =1+427 (4.86&)
R[M]7,[Z£h4 = R[@]M,[mh €ETXx14=T7+27+64 (486b)
Riyniisipalis = Ripglia,fmnia € (14 X 14)symmetric = 1 + 27 + 77 (4.86¢)

We find that everything except the 77’ piece of Ry pq gets determined by dimension 2
Bianchi identities. To illustrate this, we first decompose the last pair of antisymmetric
indices into 7 + 14:

1 T
qmn = EQOM*R@,E + Rmimn 4 (4.87)

Clearly, Rppm € (7 + 14) x 7, so it can be further Gy decomposed. The same goes for

Ryn,[pgia € (7 +14) x 14. Even without doing these decompositions explicitly, we find
that the entire R, is determined by a dimension 2 Bianchi identity:

1= 1 = 1 _
Rnpm = 48[@ {2Rp]m + ?%mR + 69%]@}%2 + Lﬂ}mM

1 1 3
—2D* |:4290nmn + ﬁ@/)npmqvga + Z‘Pg[@vm}ga

1 1
+ @@gjﬂa - igpmg']ﬂa + 5(‘0ng@0‘

1 1
+ @@glﬂa - isomglﬁa + isomglga

N anma} 7 (4.88)

from which the irreducible pieces in Rpp m can be extracted. The remaining piece Ry (mn],,

does not participate in any Bianchi identities in 4|14+ 7 except for the algebraic one, namely

4Since Ry, [pq); gets determined in two different ways from the Bianchi identities, they must be set equal.
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Ry pjq = 0. Hence, it can only be (possibly partially) determined in terms of Ry, by
using the algebraic identity. Its first two (form) indices can again be split into a 7 and a 14,

RP%[@]M = R[P!I]7,[mnh4 + R[pq]14,[mn]14 (4'89)

The first term R[pq), mn],, S determined in terms of Ry, using pair exchange:

14

1
Ripglq fmnl1s = Rlmnlys,lpa)r = §Ppa Rimnlar - (4.90)
The second term is Rppg),, mn]ys € (14 X 14)symmetric = 1 + 27 + 77'. We can use the
algebraic Bianchi identity to determine the 1 and the 27 pieces in the following way.
Projecting the identity onto 1,

mn mn 1 mn
P quffﬂvﬁ =0 = R[mh%[i]m = g‘/’JRM,Q7 (4‘91)

meaning that the singlet in Ry, (mn),, 13 Proportional to ™R, ,. Next, projecting
the algebraic Bianchi identity onto (7 X 7)symmetric = 1 + 27 (and subtracting the 1) gives
the 27 piece:

w(EMle,glg) =0 (4.92a)
= (R = _ia PR, + 1¢ mnp, SR
(14x1d)|27 ] o 97 ra® mnp T V(e P mn,s
2 S 14 1]
—39e gy Rijs (4.92b)

It is not possible to determine the 77 piece in terms of Ry, p using the algebraic Bianchi
identity simply because Rynp € (1 + 7 + 14 + 27) + (7 + 27 + 64). It is a piece of the
curvature component that is completely unconstrained.

Relations. We again state some derivative relations implied by Bianchi identities. Some
of these arise from the fact that certain components of the Riemann tensor that are equal by
pair exchange symmetry are determined by different Bianchi identities to be different stuff.
So these different stuff must be set equal. Other relations arise from projecting Bianchi
identities into their symmetric/antisymmetric pieces with respect to two dotted /undotted
spinor indices. The symmetric pieces determine Riemann components (which went in the
paragraph above) and the anti-symmetric pieces give rise to derivative relations between

torsion components.

DsW. 55 = 0= D;W,p0 (4.93a)

fo 1~ )
D*Wagy = 5D5D(5G,)’ (4.93b)
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DsD(, 5™ g4 =0 (4.94a)

e - 1o ss
2iD*Smia = =D D3 Simpia) — 500" Simsiay (4.94b)
1. _
8iOm R = —D*Sp, — <D5Da + QDO‘Dﬁ) Simpa (4.94c)
3i S D .
dio™0,Sy = =5 D" pma = DS + D*DPS 5+ 57 (D" D*Aa + DDA
(4.94d)

DThyntrsa = 4i03n S (4.94¢)

2]14
. 3t
2“0@7”;08@5]0046 -9

- = =25 L 2 T
p DBpma — DBDaSm+ §D Smozb" — @D,@D )\ma + ZSD Da)\mB
1 - .-
+ 150500 A (4.94f)

DgTin]s,0 = 2i0mS (4.94g)

nl14af

. R 1 = = s n
3iD(apim|p) + 3@8(a75|m|,3);y -3 (7D(OCD7 + 3D7D(a) Sim|8)y — 40m™0pSmas

= ;zD(aD;YDB))\m;Y <2D(QD2 — 3D2D(a) )\|m|5) (4.95&)

-
12
(6)% (200 T e + DpThama) = (900)"* Rune o + (550) ™ R 3

' . . 1 - o
= 8(0/8 [5,3)7 (zeMSer 3Smﬂ'ﬁ~/) + S|m|ﬁ)’Y€B"y} — §GV(QD S\m\ﬁ)ﬁ' +2iD D+ Spmap

= Ry 44,08 use (4.76¢) here. (4.95b)
con o 3 2 7/ — = ~
0= 05,5 — sD*X o5+ 5 DaD (R-R) (4.96a)
a & | P i _ = -
0 - Za(ﬂsm)tracelessaB o ED X@ﬁm + ﬂDaDﬁ (RM - Rw) (496b)

0= Pu™0uS,5 + 2 Dapps — s DaDySm — DS

+ Zlg {D “DjAmo = DaDyD A — ;DaDQXmB] (4.96¢)
0= Sia[ﬁgmhwﬁ + ZDO‘T[M]MB
- % [3D7D +2D3D"| Ry + 1—16DQD*Rij (4.96d)
Rm,en = _(5C)d6¢ﬂﬂ [DBT@@@ - 2@'33 (Xﬁqu T ;5’”‘15(50')

T—— (fQDng + Sﬂgd) ] (4.96¢)
2Rypfatjn = (0a) " Ronn o + (50) " Ry 36 (4.96f)
[Qa[nTg]B,ma + DﬂT@,ma} (@B) 0 (4.97)
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4.3.5 Remaining Bianchi identities

We mention for completeness that there are dimension 2 Bianchi identities satisfied by the
4-form field strength:

016Gl iginy = 0 - (4.98)

There are also dimension % torsion Bianchi identities, only containing bosonic curls like
the one above:

a[mch]ﬂ = 3@Tmb]g = amep]ﬂ =0 (4.99&)

DT ™ = O Toy™ = Oy Tyy™ = O Ty ™ = 0 (4.99b)

5 Discussion and possible extensions

The main goal in this paper has been to describe the 4|4 + 7 superspace geometry un-
derlying linearized 11D supergravity when 4D N = 1 supersymmetry is manifest. This
supergeometry underlies the linearized action given in [10]. It is an off-shell supergeometry
(just as the linearized action is off-shell) and involves linearized fields organized in terms
of representations of SO(3,1) x Go, which is the symmetry respected by the Minkowski
background. A crucial feature is that while the background itself is SO(3,1) x Ga, the
linearized fluctuations involve the full 11D super-Poincaré group, and this feature lets us
identify the actual linearized 11D component fields without going through a cumbersome
Wess-Zumino-type gauge-fixing procedure. Even taking this into account, the off-shell
geometry is rather involved, with quite a number of superfields and interlocking Bianchi
identities.

A natural question is whether this can be pushed to a nonlinear level. In principle
there is no obstruction, but it would naturally grow increasingly cumbersome, for the same
reasons that general relativity written as a fluctuation about (say) a Minkowski background
becomes cumbersome: the underlying geometric principle is hidden and only emerges when
the infinite sum of terms is considered.

As discussed in the introduction, there are other approaches that would not exploit
this asymmetry between background and fluctuation. Our approach in [11, 12] is along
these lines, with the balance between natural 4D N = 1 ingredients and underlying 11D
geometry fully tilted toward the former: the framework is a generic 4|4 4+ 7 supergeometry
presuming only the GL(7) structure of internal diffeomorphisms on the internal manifold.
The superfields appropriate for 11D supergravity are chosen to admit a network of hidden,
non-manifest symmetries. Another approach would be to take SO(3,1) x G2 as an organiz-
ing principle from the beginning; that would involve treating the extra components of the
linearized spin connection we have discussed as contributions instead to the torsion tensor.
Then even more off-shell superfields would be involved with a hidden 11D Lorentz symme-
try. (Such an approach would undoubtedly be directly related to [11, 12] after degauging
the G2 symmetry.) Such tradeoffs are perhaps inevitable.

Another approach that would take us even further afield involves building a 4D N =1
superspace version of E; exceptional field theory (ExFT) [20]. Here the internal manifold
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involves 56 coordinates filling out the fundamental representation of E7, with a section con-
dition implying that only a small set are physical; both 11D and type IIB supergravities are
encoded in a duality-covariant way, and the connection to 4D N = 8 supergravity (arising
after a consistent truncation) is extremely transparent. The fully N = 8 supersymmetric
version of E7 ExFT has been given at the component [21] and superfield [22] levels, but
are both purely on-shell. At first glance, a 4D N = 1 superspace formulation would seem
impossible because the 70 scalars of F; ExFT (like N = 8 supergravity) live in a coset
of E7/SU(8), whereas only a subgroup of the SU(8) R-symmetry group is respected by
N = 1 supersymmetry. However, progress along these lines has been made recently [23],
where so-called generalized N = 1 structures have been identified within the context of F~
generalized geometry. It’s plausible that this approach could be applied at the superspace
level. If possible, it would yield a partly off-shell duality-covariant framework. We leave
such interesting questions to future work.

Acknowledgments

We thank William Linch for discussions, and Artem Bolshov and Nathan Brady for collab-
oration at an early stage of this work. This work is partially supported by the NSF under
grants NSF-2112859, and the Mitchell Institute for Fundamental Physics and Astronomy
at Texas A&M University.

A T matrices in 4, 7, and 11 dimensions

The defining postulates for matrices B and C' which relate a representation of the Clifford
algebra with its complex conjugate, and transpose representations respectively, are

Iy =—n(-1)'Br,B~', I} =-nCr,C™! (A.1)

where ¢ is the number of time-like directions. All I'’s are chosen to be unitary. The B and
C matrices can be related as C = BT A, where A is the product of all time-like I" matrices.
This implies

t(t—1)

BT =enf(-1) 2 B, cT = —eC, = —v/2cos < (14 17D)> (A.2a)

In even dimensions, both n = 1 and n = —1 are allowed. In odd dimensions, the first
(D —1) I'"s are borrowed from the preceding even dimension and the last one is obtained
( Flf‘g .I'p_1. This last I" satisfies
the same complex conjugation rule as the first D — 1 I'’s only for one of the two values

D(D—1

of nin (D — 1) dimensions. The rule is —n = (—1)~ 2 ' Further details may be found

by choosing one from two possibilities: I'p = +4¢+

e.g. in [19].
For example, in 1 4+ 10 dimensions, we must have n = 1, ¢ = 1. Therefore, any set of
11D gamma matrices, which for later convenience we denote [';, must satisfy

% = BI,B~! 1l = 01,071 (A.3)
B, -C, B=-CTy. (A.4)

B'B=1=8BB = B CT
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The index structures are C' ~ (48 ,and C~1 ~ é@ 4 Spinor indices are raised and lowered
following the conventions

Ay = —C. AP

AT, A= -CYA, (A.5)

In practice, we will build our 11D gamma matrices by taking tensor products of 4D and
7D gamma matrices.

A.1 4D gamma matrices

Our conventions are similar to [16]. We introduce the o® matrices

o’ = -1 0 ,01:01,0229_2,03:10 (A.6a)
0 —1 10 1 0 0-1

(32)% = edﬁeaﬁ(aa)ﬁs (A.6Db)
and use these to build a Weyl representation for 4D ~ matrices:
0y 20°
a — A7
g L.&a 02] (A7)
As matrices, 7° = io! ® 0¥, and ¥?? = —0? ® 01?3, We choose ) = € = 1 with
—eaB 0
Cup = —iod @02 =| 2, (A.8)
09 —€43
2 2 0y —e*
Byp=0"®0c° = . (Ag)
—€43 09
We take the chiral v5 matrix to be
. 5o 02
75 = i1y = 6P @ 0¥ = [g 50 ] (A.10)
2798

A.2 7D gamma matrices

Euclidean SO(7) T' matrices obey {I'¢, T2} = 2§%1g. Let I'L,... I'® supply the (unique
up to similarity transformations) unitary irrep of dimension 8 of SO(6). We choose I'” =
iTLr2 . TS The dimension being odd, we have only one option for 1 and ¢, in this case
n =1 and € = —1. Unitarity of the gamma matrices and Euclidean signature implies I'¢
are Hermitian. It also follows that

rles | ped = pawer — _jearcar - (127 (A.11)

The C and B matrices obey C’?D = C7p, B7TD = Byp, and since all Is are spacelike,
C7p = B7p. A Majorana basis can be chosen in which B7p = C7p is the identity matrix.
The proof goes as follows. Under a unitary change of basis, I'% = U~T2U, Cyp transforms
as C;D = UTC7;pU. We invoke the Autonne-Takagi factorization theorem which states
that, since Cvp is a complex symmetric matrix, then there exists a unitary matrix U such
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that C’, is a real diagonal matrix with non-negative entries. Being unitary, the eigenvalues
of CI, must be pure phases. These two facts mean we can choose C%, = Biy = 1g
(and henceforth dropping the primes). This means that I'* are antisymmetric and purely
imaginary,
(087 = -T2, (1) = e
= (1Y), = -9, = TY;; = -TY ;= — (Y}, etc. (A.12)

A.3 Explicit 11D gamma matrices
We choose the following 11D I" matrices:

R Aon B 016 i(0%) 3010
7o .— ,.Ya ® 18 — (Fa)dﬁ — li(&a)dﬁélJ O(f: (A13a)
A v 5 |—0P(TY) T 046
M= el = 9 =] . A.13b
V5 & ( )Oé l 016 5aB(Fg)IJ ( )
The charge conjugation matrix is
~ A _ aﬁ(SIJ 0
C=Cip®Cmp = P =|° 16 (A.14a)
016 —€44017
Ael A & |—€apdrs  O1p
C=-C = Cy,= l 016 —edB(SU] (A.14b)

The matrices éf, for ' of any rank, have both spinor indices upstairs, and I" C~! have
both indices downstairs, and have the following symmetry properties:

Symmetric ranks: 1,2,5,6,9,10

A.15
Antisymmetric ranks: 3,4,7,8 ( )
Other useful results include
o 0
Fab ,.Yab ®1lg = -2 [02 —(z2b ® 13 (Alﬁa)
1 0 a
Pl = [y, @Tb=| 2 "7 gTt (A.16b)
2 —10% 09
“ab y |0a7 02 b
M2 =1, = 0, 50 ® e (A.16¢c)
2 B
where 0% = 1(0%" — 6°5%) and ¢ = 1(5%° — 5b0?)

B Engineering dimensions

We define the mass (engineering) dimensions of various components of connections and
curvatures. Superspace coordinates, and coordinate differentials have

™ = [da™] = —1,  [07] = [d0] — —% (B.1a)
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The frame basis has the same mass dimension as the coordinate basis:

(B9 = —1 —  [ExY =0, [E9= -5 (B.2a)
B=— = [Baf=g  [BaY=0 (B.2b)

Exterior differentiation doesn’t change mass dimension. The mass dimensions of an arbi-
trary (p,q) super-tensor, and those of its components in any basis {é; }, {eNi},

S=ty®...08; oM. @&l MM o (B.3)

are therefore related as

. A 1 1
(] = [EMMeg g )= ne - 57+ My + 5

n, = number of vector N’s, ns; = number of spinor N’s

m, = number of vector M’s, m, = number of spinor M’s (B.4)

The engineering dimension of the spin connection, torsion, and Riemann tensors are

0=0 = [@=1 0= (B.5a)
=1 —  [B0=1 [B0- % T35 =0, (B.5b)
M=y = [BS=2 MA=1 [Mui=5,  (B5)
BA=0 = Ryl=2 Rell=o, Ryll=1. (B.5d)

C1=-3 = Cud=0. Cul=— Cupl=-1 Copl=— (B9
[G]= =3 = [Goal = 1 [Gapes) = % Ganss) =0, [Gapssl = —%  [Gipagl = 1
The prepotential superfields necessarily have dimensions
X]= 1, [Banl=—5 Vol =1 [Bup]=0, V2] =-1,
(Hoal =1, [Wma] =~ (B.7)

C Decomposing 11D spinor indices

When restricting the 11|32 superspace to 4|4 + 7, the 32-component spinor index & can be
decomposed by expanding a generic 11D: spinor ¥ as

YO, Ym @ (") (C.1)

where 9 is a spinor of SO(3,1) and 7 is a real commuting spinor of SO(7), which we
normalize as 777 = 1. The spinors n and iI'"™# are linearly independent and provide a
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basis for 8-component real spinors of SO(7). The spinor 7 is the spinor associated to the
Go-structure,

Prmnp = inTFMn . (C.2)

Therefore, n and i["™n are singlets under G2 and parametrize the decomposition of a generic
SO(7) spinor 8go(7) = 1G, ® TG, An 11D spinor ¥ can then be explicitly decomposed as

va = LIIZ%] ’ Var =n1¥a +i(T"0) 1 Vina vl = U[‘I’a + Z(an)lq,ma . (C.3)

Such a decomposition makes it transparent how our 11D gamma matrices act.

At this stage, let us record a few useful results for the Go spinors:

nI'T™y =0 (C.4a)
n TRy = gme (C.4b)
n TRIRRy = T D02y — _jmnp (C.4c)
1

nTl—xmnpqn — ¢mnpq — gemnpqrstspﬂ — (*@)mnpq (C4d)
nT TMITALPT gy = o ™24 4 gMngPd _ §mPsng 4 §md §np (C.4e)

In order to extract ¥, ¥, etc. from W, one can use the projection relations:
U =0'Vor, Vo =i(Tmn) Var, (C.5a)
U =, W = () T (C.5b)

Contractions of 11D spinors decompose in the following way:

AYBy = —A%C, BBB = A°By + AaB® + A B + Apa B (C.6)

D Background torsion and curvature tensors

In a Minkowski background, the only non-zero components of the torsion are T;/Ba =

Z(f‘&)ﬁ B which decompose as

°

To5" =21(0%)0s, T s = 20 0mn(0%) 0 (D.1)
Tons™ = 2i 6%e05, Tantm — _gj smnedd (D.2)
Tﬂﬁgym =21 @m@em , Tﬂﬁ.7g’7,m E—71 gpmeﬁ'ﬁ (D.3)

In particular, all components of T% vanish. All components of the Riemann tensor van-
ish. The only non-zero components of the four-form flux are éaif ;= Q(fAE)A 5» which
gl ab’/4
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decompose as

G = —4(0w),°, G5 = —4(Gaw)T; (D.4a)
éab,mmé =—4 %m(aab)vé’ éabmmg =—4 5%(5@)% , (D.4b)
éamm@ =2 (UG)WS(SM’ émm,s =2 (Ua)yé‘sm (D.4c)
G ™ = 2(0a)10%, Cam™"? = —2(54)100% (D.4d)
s = ~2 (0a).5Pmnp Gam™ = 2(52) o2, (D.4e)
Grn A2 =28, 0mnk Cnpy’ = —20+ Pranp (D.4f)

G"mﬁ@ =267 5Pmnp » Grun's = =267 s0mn? (D.4g)
Cnn® =206, [Ymnp” + 20y | Gn”! (5 = 267 [Ynlq + 207 05| (D.4h)
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