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1 Introduction

According to the Standard Model of particle physics and to some of its extensions, sponta-
neous symmetry breaking and phase transitions constitute a crucial aspect for the early
evolution of the universe.

When the temperature starts decreasing because of the expansion of the universe,
spontaneous symmetry breaking can be triggered so that the interactions among elementary
particles undergo (dis)continuous jumps from one phase to another. New phases with a
broken symmetry will form in many regions at the same time, and in each of them only
one single vacuum state will be spontaneously chosen. Sufficiently separated spatial regions
may not be in causal contact, so that it is quite natural to assume that the early universe is
divided into many causally disconnected patches whose size is roughly given by the Hubble

– 1 –



J
H
E
P
1
1
(
2
0
2
2
)
1
0
4

radius,1 and in each of which the vacuum is independently determined. As the universe
expands, it can eventually happen that patches with different vacua collide in such a way
that boundaries begin to form between adjacent regions with a different vacuum state.
Since the field associated with the spontaneous breaking has to vary in a continuous way
between different vacua, it must interpolate smoothly from one vacuum to another via the
hill of the potential. This implies that finite-energy field configurations must form at the
boundaries separating patches with different vacua, and must persist even after the phase
transition is completed. These objects are called topological defects [1], and their formation
mechanism (in a cosmological context) is known as Kibble mechanism [2, 3].

Topological defects can be of several type and different spatial dimensions, and their
existence is in one-to-one correspondence with the topology of the vacuum manifold [1].
Domain walls are two-dimensional objects that form when a discrete symmetry is broken, so
that the associated vacuum manifold is disconnected. Strings are one-dimensional objects
associated to a symmetry breaking whose corresponding vacuum manifold is not simply-
connected, and their formation could be predicted both by some extensions of the Standard
Model of particle physics and by some classes of Grand Unified Theory (GUT). Monopoles
are zero-dimensional objects whose existence is ensured when the vacuum manifold is
characterized by non-contractible two-spheres, and they constitute an inevitable prediction
of GUT. Moreover, there exist other topological objects called textures that can form when
larger groups are broken and whose vacuum-manifold topology is more complicated.

Since the existence of topological defects is intrinsically related to the particular topology
of the vacuum manifold, they can naturally appear in several theories beyond the Standard
Model that predict a spontaneous symmetry breaking at some high-energy scale. For
instance, the spontaneous breaking of SU(5) symmetry in GUT leads to the formation
of various topological defects. Therefore, observations and phenomenology of topological
defects are very important, and should be considered as unique test-benches to test and
constrain theories of particle physics and of the early universe. This also means that for
any alternative theory — e.g. that aims at giving a complete ultraviolet (UV) description
of the fundamental interactions — it is worth studying the existence of topological defects,
investigating how their properties differ with the respect to other models/theories, and
putting them to the test with current and future experiments.

In this paper we discuss for the first time topological defects in the context of nonlocal
field theories in which the Lagrangians contain infinite-order differential operators. In
particular, we will make a very detailed analysis of domain wall solutions. The type of
differential operator that we will consider do not lead to ghost degrees of freedom in the
particle spectrum despite the presence of higher-order time derivatives in the Lagrangian.

The work is organized as follows:

Section 2: we introduce nonlocal field theories by discussing the underlying motivations
and their main properties.

1The Hubble radius is given by RH ∼ H−1 = a(t)/ȧ(t) where a(t) is the scale factor depending on the
cosmic time t. More precisely speaking, the vacuum is chosen over the region with the correlation length of
the fields at that time.
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Section 3: we briefly review the domain wall solution in the context of standard (local)
two-derivative theories by highlighting various features whose mathematical and
physical meanings will be important for the subsequent sections.

Section 4: we analyze for the first time domain wall solutions in the context of ghost-
free nonlocal field theories by focusing on the simplest choice for the infinite-order
differential operator in the Lagrangian. Despite the high complexity of non-linear and
infinite-order differential equations, we will be able to find an approximate analytic
solution by relying on the fact that the topological structure of the vacuum manifold
ensures the existence of an exact domain wall configuration. Firstly, we analytically
study the asymptotic behavior of the solution close to the two symmetric vacua.
Secondly, we find a linearized nonlocal solution by perturbing around the local domain
wall configuration. We show that the linearized treatment agrees with the asymptotic
analysis, and make remarks on the peculiar behavior close to the origin. We perform
an order-of-magnitude estimation of width and energy per unit area of the domain
wall. Furthermore, we derive a theoretical lower bound on the scale of nonlocality for
the specific domain wall configuration under investigation.

Section 5: we briefly comment on other topological defects like string and monopole.

Section 6: we summarize our results, and discuss both theoretical and phenomenological
future tasks.

Appendix A: we develop a formalism to confirm the validity of the linearized solution
close to the origin.

Appendix B: we find a compact expression for the canonical energy-momentum tensor in
a generic nonlocal (infinite-derivative) field theory.

We adopt the mostly positive convention for the metric signature, η = diag(−,+,+,+),
and work with the natural units system, c = ~ = 1.

2 Nonlocal field theories

The wording ‘nonlocal theories’ is quite generic and, in principle, can refer to very different
theories due to the fact that the nonlocal nature of fields can manifest in various ways. In
this work with ‘nonlocality’ we specifically mean that Lagrangians are made up of certain
non-polynomial differential operators containing infinite-order derivatives.

A generic nonlocal Lagrangian contains both polynomial and non-polynomial differential
operators, i.e. given a field φ(x) one can have

L ≡ L
(
φ, ∂φ, ∂2φ, . . . , ∂nφ,

1
�
φ, ln

(
−�/M2

s

)
φ, e�/M

2
s φ, . . .

)
, (2.1)

where � = ηµν∂µ∂ν is the flat d’Alambertian and Ms is the energy scale at which nonlocal
effects are expected to become important. Non-analytic differential operators like 1/� and
log(−�) are usually important at infrared (IR) scales, e.g. they can appear as contributions
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in the finite part of the quantum effective action in standard perturbative quantum field
theories [4, 5]. Whereas analytic operators like e�/M2

s are usually responsible for UV
modifications and do not affect the IR physics. Such a transcendental differential operator
typically appears in the context of string field theory [6–12] and p-adic string [13–17].

We are interested in alternative theories that extend the Standard Model in the UV
regime, therefore we will focus on analytic differential operators. In general, we can consider
a scalar Lagrangian of the following type:2

L = −1
2φF (−�)φ− V (φ) , (2.2)

where V (φ) is a potential term, and the kinetic operator can be defined through its Taylor
expansion

F (−�) =
∞∑
n=0

fn(−�)n , (2.3)

where fn are constant coefficients. It should now be clear that the type of nonlocality under
investigation manifests through the presence of infinte-order derivatives.

To recover the correct low-energy limit and avoid IR modifications, it is sufficient to
require that the function F (z), with z ∈ C, does not contain any poles in the complex plane.
Thus, we choose F (−�) to be an entire function of the d’Alembertian �.

By making use of the Weierstrass factorization theorem for entire functions we can write

F (−�) = eγ(−�)
N∏
i=1

(−�+m2
i )ri , (2.4)

where γ(−�) is another entire function, m2
i are the zeroes of the kinetic operator F (−�),

and ri is the multiplicity of the i-th zero. The integer N ≥ 0 counts the number of zeroes
and, in general, can be either finite or infinite.

To prevent the appearance of ghost degrees of freedom, it is sufficient to exclude the
possibility to have extra zeroes besides the standard two-derivative one.3 We impose that
the kinetic operator does not contain any additional zeroes, so that the effects induced by
new physics are entirely captured by the differential operator eγ(−�). Therefore, we consider
the following Lagrangian:

L = 1
2φ e

γ(−�)(�−m2)φ− V (φ) , (2.5)

whose propagator reads

Π(p2) = −i e
−γ(p2)

p2 +m2 . (2.6)

2To keep the formula simpler we do not write the scale of nonlocality in the argument of F (−�) which,
to be more precise, should read F (−�/M2

s ).
3It is worth mentioning that this is not the unique possibility for ghost-free higher derivative theories. In

fact, we can allow additional pairs of complex conjugate poles and still avoid ghost degrees of freedom and
respect unitarity, in both local [18–21] and nonlocal theories [22, 23]. Moreover, tree-level unitarity was
shown to be satisfied also if one admits branch cuts in the bare propagator [24, 25].
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From the last equation it is evident that no additional pole appears other than p2 = −m2,
because e−γ(p2) is an exponential of an entire function and as such does not have poles in
the complex plane.

More generally, under the assumption that the transcendental function e−γ(p2) is
convergent in the limits p0 → ±i∞, it was shown that an S-matrix can be well defined for
the Lagrangian (2.5), and it can be proven to satisfy perturbative unitarity at any order in
loop [11, 26–28]. Moreover, the presence of the exponential function can make loop-integrals
convergent so that the scalar theory in eq. (2.5) turns out to be finite in the high-energy
regime [29–32]. Very interestingly for such nonlocal theories, despite the presence of infinite-
order time derivatives, a consistent initial value problem can be formulated in terms of a
finite number of initial conditions [33–35].

This type of transcendental operators with some entire function γ(−�) have been
intensely studied in the past years not only in the context of quantum field theories in
flat space [29–32, 36, 37], but also to formulate ghost-free infinite-derivative theories of
gravity [29, 38–51].

In this work we assume that fundamental interactions are intrinsically nonlocal, and
that nonlocality becomes relevant in the UV regime. Thus, we consider nonlocal quantum
field theories as possible candidates for UV-complete theories beyond the Standard Model.
With this in mind, we will analyze topological defects in infinite-derivative field theories,
and investigate the physical implications induced by nonlocality in comparison to standard
(local) two-derivative theories.

In what follows, we work with the simplest ghost-free nonlocal model for which the
entire function is given by

γ(−�) = − �
M2
s

. (2.7)

3 Standard domain wall: a brief review

Before discussing domain walls in the context of nonlocal quantum field theories, it is worth
reminding some of their basic properties in standard two-derivative field theories, which
will then be useful for the main part of this work.

In presence of a domain wall one has to deal with a static scalar field that only depends
on one spatial coordinate, e.g. x, and whose Lagrangian reads [1, 52]

L = 1
2(∂xφ)2 − U(φ) , U(φ) = λ

4 (φ2 − v2)2 , (3.1)

which is Z2-symmetric as it is invariant under the transformation φ → −φ; λ > 0 is a
dimensionless coupling constant and v > 0 is related to the symmetry-breaking energy scale.
The quartic potential has two degenerate minima at φ = ±v (U(±v) = 0).

As mentioned in the Introduction, the discrete symmetry Z2 can be spontaneously
broken, for instance, in the early universe because of thermal effects. As a consequence,
causally disconnected regions of the universe can be characterized by a different choice of
the vacuum (i.e. φ = +v or φ = −v), and when two regions with different vacua collide a
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continuous two-dimensional object — called domain wall — must form at the boundary of
these two regions.

Let us now determine explicitly such a finite-energy configuration interpolating ±v.
First of all, we impose the asymptotic boundary conditions

φ(−∞) = −v , φ(∞) = v . (3.2)

The field configuration must be non-singular and of finite energy, therefore φ(x) must
interpolate smoothly between the two vacua, this implies that there exists a point x0 ∈ R
such that φ(x0) = 0. Without any loss of generality, we can choose the reference frame such
that the centre of the wall is at the origin x0 = 0, i.e. φ(0) = 0.

The energy density can be computed as

E(x) ≡ T 0
0 (x) = 1

2(∂xφ)2 + λ

4 (φ2 − v2)2 , (3.3)

from which it follows E(x) ≥ U(0) = λv2/4, and this implies that there exists a solution
that does not dissipate at infinity. Hence, the topological structure of the vacuum manifold
— which is disconnected in the case of Z2 symmetry — ensures the existence of a non-trivial
field configuration of finite energy.

We can determine qualitatively the behavior of this field configuration by making an
order-of-magnitude estimation of the width R (along the x-direction), and of the energy
per unit area E of the wall.

In fact, we can define the width of the wall in three ways. The first one is to use the
energy density in eq. (3.3). The lowest energy configuration interpolating the two vacua
can be found by balancing the kinetic and potential term in the energy density E(x).

By approximating the gradient with the inverse of the width, ∂x ∼ 1/R, and the field
value with φ ∼ v, eq. (3.3) gives

1
2

1
R2 v

2 ∼ λ

4 v
4 ⇒ R ∼

√
2
λ

1
v
, (3.4)

from which it follows that the width of the wall is of the same order of the Compton
wavelength R ∼ (

√
λv)−1 ∼ m−1. Whereas, the energy per unit area can be estimated as

E =
∫
R

dx
[1

2(∂xφ)2 + λ

4 (φ2 − v2)2
]

∼ (width of the wall)× (energy density)
∼ R× λv4

∼
√
λv3 . (3.5)

The other two ways are to use the exact configuration (solution) of the domain wall. The
field equation

∂2
xφ(x) = λφ(φ2 − v2) (3.6)
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can be solved by quadrature, and an exact analytic solution can be found, and it satisfies
all the qualitative properties discussed above. The exact solution is sometime called ‘kink’,
and it reads [1]

φ(x) = v tanh

√λ

2 vx

 . (3.7)

Its asymptotic behavior is given by

|x| → ∞ ⇒ φ(x) ∼ ±v
(
1− 2e−

√
2λvx

)
. (3.8)

Through the exact solution (3.7), we can define the width of the wall in two ways. One
way is to identify it with the typical length scale over which φ(x) changes in proximity of
the origin, that is, the length scale ` defined as the inverse of the gradient at the origin, i.e.
` ∼ v/(∂xφ|x=0), where the scale v is introduced for dimensional reasons. From eq. (3.7)
we have

∂xφ(x)|x=0 = v2

√
λ

2 , (3.9)

which yields

` ∼
√

2
λ

1
v

= R . (3.10)

The last way is to use the asymptotic behavior given in eq. (3.8). The width of the wall, R̃,
can be defined as

|x| → ∞ ⇒ φ(x) ∼ ±v
(

1− 2e−
2x

R̃

)
, (3.11)

which yields R̃ ∼
√

2
λ

1
v = R = `. In the local case, all of the three definitions give the same

expressions and we need not discriminate them. But, as we will show, in the nonlocal case,
all of the definitions would give different expressions in the sub-leading order, though two of
them (R and R̃) have the similar feature. In fact, R and/or R̃ might be more appropriate
as the definition of the width (or the radius) of a domain wall because ` is related to the
behavior of the solution close to the origin and far from the vacuum.

We can obtain the energy per unit area as

E =
∫
R

dxE(x) =
∫
R

dx
(dφ

dx

)2
= 4

3

√
λ

2 v
3 , (3.12)

which is consistent with the estimation in eq. (3.5) up to an order-one numerical factor.
The discussion in this section was performed for a local two-derivative theory in one

spatial dimension. However, the essential concepts and methods, like the condition for the
existence of a solution related to the non-trivial topology of the vacuum manifold, and
the order-of-magnitude estimations, can be applied to nonlocal field theories and to higher
dimensional cases (e.g. string and monopole).
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4 Domain wall in nonlocal field theories

In this section we analyze the domain wall solution for the nonlocal field theory (2.5)
with the simplest choice of entire function given in (2.7). Hence, we consider a nonlocal
generalization of the Lagrangian (4.1) given by

L = 1
2φe

−∂2
x/M

2
s (∂2

x + λv2)φ− λ

4
(
φ4 + v4

)
, (4.1)

whose field equation reads

e−∂
2
x/M

2
s (∂2

x + λv2)φ = λφ3 . (4.2)

We can easily verify that in the limit ∂2
x/M

2
s → 0 we consistently recover the local two-

derivative case, i.e. eqs. (3.1) and (3.6).
In this case the differential equation is non-linear and highly nonlocal, and finding a so-

lution seems to be very difficult not only analytically but even numerically. However, despite
the complexity of the scalar field equation, we can still find a domain wall configuration.

First of all, by relying on the fact that the presence of the exponential operator e−∂2
x/M

2
s

should not change the number of degrees of freedom and of initial conditions [33], we can
impose the same boundary conditions as done in the two-derivative case in eq. (3.2), i.e.
φ(±∞) = ±v.

Furthermore, the existence of a time-independent and non-dissipative solution is still
guaranteed by the non-trivial topological structure of the vacuum manifold which is discon-
nected in the case of Z2 symmetry. In other words, also in the nonlocal case a finite-energy
field configuration that smoothly interpolates between the two vacua φ = ±v must exist.
Indeed, the energy density can be computed from the expression of the energy-momentum
tensor (B.31) (with m2 = −λv2) and, up to total derivatives, we have:

E(x) ≡ T 0
0 (x) = −1

2φe
−∂2

x/M
2
s (∂2

x + λv2)φ+ λ

4 (φ4 + v4) , (4.3)

which can be easily verified to be positive definite after imposing the field equation and
using the fact that the solution satisfies |φ| ≤ v. Since φ(v) = −φ(−v) and by continuity in
x, there must exist a point x0 such that φ(x0) = 0. By translation invariance we can set
x0 = 0 and φ(0) = 0, without any loss of generality. It follows that E(x) ≥ U(0) = λv2/4
for any x ∈ R, which implies the existence of a time-independent solution that does not
dissipate at infinity.

Hence, also for the nonlocal model under investigation the topological structure of the
vacuum manifold ensures the existence of a non-trivial field configuration of finite energy
which does not dissipate at infinity. Topology also implies that the solution is stable against
time-independent perturbations of its spatial shape.

Very interestingly, knowing that a domain wall solution must exist, and equipped
with a set of boundary conditions, we can still find an approximate analytic solution by
working perturbatively in some regime. We will proceed as follows. In section 4.1 we
will determine the solution asymptotically close to the vacua ±v (i.e. for |x| → ∞). In
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Figure 1. Schematic illustration of the analysis made in this section to study the domain wall
configuration in nonlocal field theory, whose qualitative behavior is drawn consistently with the
boundary conditions φ(±∞) = ±v, and with the choice of the origin φ(0) = 0. We analyze the
behavior of the domain wall configuration in several regimes, and use different methods to find
approximate analytic solutions. (i) We study the asymptotic behavior of the domain wall solution
in the limit |x| → ∞. (ii) We find a linearized nonlocal solution by perturbing around the local
domain wall configuration treated as a background, and analyse its behavior not only at infinity
but also close to the origin. (iii) We make an order-of-magnitude estimation for the width and the
energy per unit area of the wall, and verify the consistency with the analytic approximate solutions.

section 4.2 we will find a linearized nonlocal solution by perturbing around the known
local ‘kink’ configuration treated as a background. Finally, in section 4.3 we will make
an order-of-magnitude estimation for the width and the energy of the nonlocal domain
wall, and check the consistency with the approximate analytic solutions. See figure 1 for a
schematic illustration of our analysis.

Remark 1. The presence of the infinite-derivative differential operator in the Lagrangian
requires some more discussion. Because of the minus sign in the exponent it is not always
guaranteed that its action on any function is well-defined. For example, given a function
f(x) that admits Fourier transform, a term like e−∂2

x/M
2
s f(x) in Fourier space becomes

e+k2/M2
s f̃(k). Thus, we should make sure to work with a class of functions on which the

action of the nonlocal operator gives a finite result despite the plus sign in the exponent
of e+k2/M2

s . In this paper, we implicitly work with a restricted class of functions (either
Fourier transformable or not) such that one can still produce a finite result after acting
with e−∂2

x/M
2
s . It is worth to mention that the same issue was discussed in the context of

string field theory [6]. Below we will confirm that the action of the nonlocal operator in this
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work is well-defined; for instance, for the asymptotic analysis in section 4.1 we will have
f(x) = e−Bx on which we can safely define the action of the infinite-derivative operator.

4.1 Asymptotic solution for |x| → ∞

As a first step we analyze the asymptotic behavior of the solution close to the two vacua
φ = ±v, i.e. in the regime |x| → ∞. Let us first consider the perturbation around φ = +v,
i.e. we write

φ(x) = v + δφ(x) , |δφ|
v
� 1 , (4.4)

so that the linearized field equation reads

e−∂
2
x/M

2
s (∂2

x + λv2)δφ = 3λv2δφ . (4.5)

Taking inspiration from the asymptotic behavior of the domain wall in the local case (see
eq. (3.8)), as an ansatz we assume that φ(x) approaches the vacuum exponentially, i.e.
we take

δφ = φ− v = Ae−Bx (4.6)

where A, and B > 0 are two constants.
Since the exponential is an eigenfunction of the kinetic operator, we can easily obtain

an equation for B,

e−B
2/M2

s (B2 + λv2) = 3λv2 . (4.7)

By using the principal branch W0(x) of the Lambert-W function (defined as the inverse
function of f(x) = xex) we can solve eq. (4.7) as follows

B2 = −M2
s W0

(
−3λv2

M2
s

e−λv
2/M2

s

)
− λv2 . (4.8)

Before continuing let us make some remarks on the Lambert-W function. It is a multivalued
function that has an infinite number of branches Wn with n ∈ Z. The only real solutions
are given by the branch W0(x) for x ≥ −1/e, and an additional real solution comes from
the branch W−1(x) for −1/e ≤ x < 0. In the equations above we have taken the so-called
principal branch W0, and we will do the same in the rest of the paper. However, we will
also comment on the branch W−1 and the physical implications associated to it. Regarding
higher order branches n > 0, they will generate non-physical complex values, and in some
cases they do not even recover the local limit; therefore, we discard such solutions.

Note that, by means of the asymptotic analysis above the coefficient A cannot be
determined as it factors out from the field equation but, as we will explain in section 4.2,
we will be able to determine it up to order O(1/M2

s ).
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4.1.1 A theoretical constraint on the scale of nonlocality
The use of the Lambert-W function to obtain the solution for B in eq. (4.8) relied on the
fact that eq. (4.7) could be inverted. As explained above this inversion is valid if and only
if c ∈ {xex|x ∈ R}, i.e. if c ≥ −1/e.

Applying this condition to (4.8), we get

−3λv2

M2
s

e−λv
2/M2

s ≥ −1
e
, (4.9)

and inverting in terms of the (principal branch) Lambert-W function we obtain the following
theoretical constraint:

M2
s ≥ −

λv2

W0(−1/3e) , (4.10)

where we have used the fact that W0(x) is a monotonically increasing function. The
inequality (4.10) means that the energy scale of nonlocality must be greater than the
symmetry-breaking scale

√
λv. We can evaluate W0(−1/3e) ' −0.14, so that the lower

bound reads M2
s & 7.14λv2. One usually obtains constraints on the free parameters of

a theory by using experimental data. In the present work, instead, we found a purely
theoretical constraint. See section 6 for further discussions on this feature.

Given the fact that λv2/M2
s < 0.14, we can expand (4.8) and obtain

B2 = 2λv2
(

1 + 3λv2

M2
s

)
+O

(λv2

M2
s

)2
 , (4.11)

or by taking the square root,

B =
√

2λv
(

1 + 3
2
λv2

M2
s

)
+O

(λv2

M2
s

)2
 . (4.12)

From this expression, we can obtain the width of wall, R̃, defined in eq. (3.11) as

R̃ ∼ 2
B
∼
√

2
λ

1
v

(
1− 3

2
λv2

M2
s

)
. (4.13)

Also, from eq. (4.12) we can check that in the local limit Ms → ∞ we recover the two-
derivative case in eq. (3.8):

lim
Ms→∞

B2 = 2λv2 =
(√

2λv
)2
≡ B2

L . (4.14)

Furthermore, from (4.11) we can notice that B ≥ BL =
(√

2λv
)
. This physically means

that the nonlocal domain wall solution approaches the vacuum φ = +v faster as compared
to the local two-derivative case. This feature, which is manifest in eq. (4.13), may also
suggest that the width of the nonlocal domain wall is smaller as compared to the local case;
indeed this fact will also be observed with the expression of R in the next subsections.

So far we have only focused on the asymptotic solution for x→ +∞ (φ(+∞) = +v)
but the same analysis can be applied to the other asymptotic x → −∞ (φ(−∞) = −v),
and the same results hold because of the Z2 symmetry.
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Remark 2. Before concluding this subsection it is worth commenting on the validity of
the asymptotic solution we determined. On one hand, we know that the existence of the
domain wall is ensured by the topological structure of the vacuum manifold, and this should
not depend on the value of Ms. On the other hand, it appears that the asymptotic solution
we found is only valid for some values of Ms satisfying the inequality in eq. (4.10), which
seems to imply that the domain wall solution does not exist for other values of Ms. Is this
a contradiction? The answer is no, all is consistent, and in fact the domain wall solution
exists for any value of Ms.

First of all, we should note that to solve eq. (4.9) in terms of Ms we have used the
principal branch W0(x) which is a monotonic increasing function, but an additional real
solution can be found by using the branch W−1(x) which is, instead, a monotonically
decreasing function. Thus, given the opposite monotonicity behavior of W−1 as compared
to W0, if we solve eq. (4.9) by means of W−1 we get Ms ≤ −λv2/W−1(−1/3e) ' 0.30λv2.
Moreover, in the range of values 0.30λv2 .M2

s . 7.21λv2 the functional form in eq. (4.6)
does not represent a valid asymptotic behavior for the domain wall. In this case the domain
wall configuration may be characterized by a completely different profile, but its existence
is still guaranteed by the non-trivial topology. Anyway, as already mentioned above, in this
paper we only work with W0, therefore with values of Ms satisfying the inequality (4.10).
See also section 6 for more discussion on this in relation to physical implications.

4.2 Perturbation around the local solution

Let us now implement an alternative method to determine the behavior of the nonlocal
domain wall not only at infinity but also close to the origin.

We consider a linear perturbation around the standard two-derivative domain wall con-
figuration φL(x) = v tanh

(√
λ/2vx

)
. Let us define the deviation from the local solution as

δφ(x) = φ(x)− φL(x) ,
∣∣∣∣ δφφL

∣∣∣∣� 1 , (4.15)

in terms of which we can linearize the field equation (4.2):[
e−∂

2
x/M

2
s (∂2

x + λv2)− 3λφ2
L

]
δφ = λ(1− e−∂2

x/M
2
s )φ3

L . (4.16)

Since the nonlocal scale appears squared in (4.2), we would expect that δφ ∼ O(1/M2
s )

such that the local limit is consistently recovered, i.e. δφ → 0 when M2
s → ∞. We now

write eq. (4.15) up to order O(1/M2
s ) in order to extract the leading nonlocal correction

to φL. By expanding the nonlocal terms as follows

e−∂
2
x/M

2
s δφ = δφ+O

(
∂2
x

M2
s

)
δφ , (4.17)

e−∂
2
x/M

2
s φ3

L = φ3
L −

∂2
x

M2
s

φ3
L +O

( ∂2
x

M2
s

)2
φ3

L , (4.18)

we can write (4.16) up to order O(1/M2
s ):[

∂2
x + λv2 − 3λφ2

L(x)
]
δφ = λ

M2
s

∂2
x(φL(x)3) . (4.19)
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This expansion is valid as long as the following inequality holds:

1
|δφ|

∣∣∣∣∣ ∂2
x

M2
s

δφ

∣∣∣∣∣� 1 . (4.20)

We now introduce the dimensionless variable s =
√
λ/2 vx and the function f(s) =

δφ(x)/v, so that we can recast eq. (4.19) as

f ′′(s) + 2(1− 3 tanh2 s)f(s) = λv2

M2
s

(tanh3 s)′′ (4.21)

where the prime ′ denotes the derivative with respect to s. The above differential equation
can be solved analytically, and its solution reads

f(s) = C1

cosh2 s
+ 3C2/2+27λv2/32M2

s

cosh2 s
log 1+tanhs

1−tanhs

+
[(

2C2+ λv2

8M2
s

)
cosh2 s+

(
3C2−

61λv2

16M2
s

)
+ 2λv2

M2
s

(1+tanh2 s)
]

tanhs, (4.22)

where C1 and C2 are two integration constants to be determined.
The boundary conditions φ(±∞) = ±v in terms of the linearized deviation read

δφ(±∞) = 0, or equivalently f(±∞) = 0. These are satisfied if and only if the algebraic
relation 2C2 + λv2/8M2

s = 0 holds true, which means that C2 = −λv2/16M2
s . Moreover,

the constant C1 must be zero because of the Z2-symmetry. Thus, the solution for δφ is
given by

δφ = vf(s) = λv3

M2
s

1
cosh2

√
λ
2vx

3
4 log

1 + tanh
√

λ
2vx

1− tanh
√

λ
2vx
− 2 tanh

√
λ

2 vx

 . (4.23)

In figure 2 we showed the behavior of the nonlocal domain wall solution φ = φL + δφ

in comparison with the local two-derivative one φL; we have set values for v, λ and Ms

consistently with the theoretical lower bound in eq. (4.10). From the plot we can notice
that the nonlocal solution approaches the vacua ±v faster as compared to the local case,
which is in agreement with the asymptotic analysis in the previous subsection. Indeed, we
can expand the solution φ = φL + δφ in the regime |x| → ∞, and obtain

φ(x) ' ±v
[
1− 2

(
4v2λ

M2
s

)
e−
√

2λvx − 2e−
√

2λvx
(

1− 3
2
√

2λλv
3

M2
s

x

)]

' ±v
[
1− 2

(
1 + 4v2λ

M2
s

)
e−
√

2λv(1+3λv2/2M2
s )x
]

' ±v
[
1− 2

(
1 + 4v2λ

M2
s

)
e−Bx

]
, (4.24)

where to go from the first to the second line we have used the freedom to add negligible
terms of order higher than O(1/M2

s ), i.e. 4v2λ/M2
s ' 4v2λ/M2

s (1− 3
√

2λλv3x/2M2
s ) and

1 − 3
√

2λλv3/2M2
s x ' e−(3

√
2λλv3/2M2

s )x. Remarkably, the asymptotic behavior of the
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Figure 2. In this figure we show the linearized nonlocal domain wall solution φ(x) = φL(x) + δφ(x)
(solid blue line) in comparison with the local domain wall (orange dashed line). The nonlocal
configuration approaches the asymptotic vacua at x → ±∞ faster as compared to the local case.
In the smaller plot we showed the behavior of the two solutions over a smaller interval in order to
make more evident the differences between local and nonlocal cases. We can notice that when going
from x = 0 to x→ ±∞ the nonlocal curve slightly oscillates around the local one. We set λ = 2,
v = 1 and M2

s = 14.3, which are consistent with the theoretical constraint M2
s ≥ −λv2/W0(−1/3e)

in eq. (4.10).

linearized solution perfectly matches the result obtained in eq. (4.12), indeed the coefficient
B in the exponent turns out to be exactly the same in both approaches. Moreover, from
the linearized solution we can also determine the coefficient A up to order O(1/M2

s ), i.e.
A = −2v − 8v3λ/M2

s , which could not be determined through the asymptotic analysis in
section 4.1 (see eq. (4.6)).

Furthermore, the behavior of the linearized solution close to the origin is quite peculiar
as the nonlocal domain wall profile slightly oscillates around the local one. In other words,
when going from x = 0 to x→∞ the perturbation δφ is initially negative and then becomes
positive; whereas the opposite happens when going from x = 0 to x→ −∞. This property
may suggest that the typical length scale ` over which φ(x) changes in proximity of the
origin is larger as compared to the local case. As done for the local domain wall in section 3,
we can estimate such a length scale as the inverse of the gradient at the origin times the
energy scale v, i.e. ` ∼ v/(∂xφ|x=0). By doing so, up to order O(1/M2

s ) we get

∂xφ(x)|x=0 = v2

√
λ

2

(
1− λv2

2M2
s

)
+O

( 1
M4
s

)
, (4.25)
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Figure 3. In this figure we show the energy density E(x) = −T00 of the linearized nonlocal domain
wall solution φ(x) = φL(x) + δφ(x) (solid blue line) in comparison with the one of the local domain
wall (orange dashed line). We set λ = 2, v = 1 and M2

s = 14.3.

which yields

` ∼
√

2
λ

1
v

(
1 + λv2

2M2
s

)
. (4.26)

Note that such a length scale does not coincide with the width of the wall because it is
related to the behavior of the solution close to the origin and far from the vacuum. In
standard two-derivative theories the above computation would give a result for ` that
coincides with the size of the wall, but this is just a coincidence. We will comment more on
this in section 4.3.

As a consistency check, we can also compute the energy density of the nonlocal domain
wall and confirm that it is positive definite. This must be done consistently by expanding
E(x) = T 0

0 in eq. (4.3) up to order O(1/M2
s ). In figure 3 we plotted the behavior of the

energy density of φ(x) in comparison with the one of the local kink φL(x). As shown in
section 4, the positivity of the energy density was a necessary condition to prove that the
non-trivial topology ensures the existence of a time-independent non-dissipative solution.

4.2.1 Validity of the linearized solution

The above linearized solution was found perturbatively, and it is valid as long as the two
inequalities in eq. (4.15) and (4.20) are satisfied. We now check when these conditions
are verified.
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By working with the variable s =
√
λ/2vx and the field redefinition δφ = vf(s), the

inequality (4.15) reads:

|H(s)| =
∣∣∣∣ f(s)
tanh s

∣∣∣∣� 1 , (4.27)

where H(s) := f(s)/ tanh s. By analyzing the behavior of |H(s)| we can notice that it is
always less than unity, thus supporting the validity of the linearized solution in eq. (4.23);
see the left panel in figure 4.

Let us now focus on the inequality (4.20). By introducing also in this case the variable
s =

√
λ/2vx we can write

∂2
x

M2
s

δφ = λv2/2
M2
s

vf ′′(s)

= λv3/2
M2
s

λv2

M2
s

d2

ds2

{ 1
cosh2 s

(3
4 log 1 + tanh s

1− tanh s − 2 tanh s
)}

= v × 1
2

(
λv2

M2
s

)2 d2

ds2

{ 1
cosh2 s

(3
4 log 1 + tanh s

1− tanh s − 2 tanh s
)}

︸ ︷︷ ︸
=: g(s)

, (4.28)

where g(s) := ∂2
xδφ(x)/(M2

s v). In terms of the dimensionless functions f(s) and g(s) the
inequality (4.20) becomes∣∣∣∣∣ ∂2

x

M2
s

δφ

∣∣∣∣∣� |δφ| ⇔ |g(s)| � |f(s)| . (4.29)

Therefore, we have to analyze the function

h(s) := g(s)
f(s) = λv2

2M2
s

d2

ds2

[ 1
cosh2 s

(3
4 log 1 + tanh s

1− tanh s − 2 tanh s
)]

1
cosh2 s

(3
4 log 1 + tanh s

1− tanh s − 2 tanh s
) , (4.30)

and check for which values of s its modulus |h(s)| is less than unity. In the right panel of
figure 4 we have shown the behavior of h(s); we have only plotted the region s ≥ 0 as h(s)
is an even function in s. We can notice that h(s) diverges at the point s ∼ 1.03402 where
f(s) vanishes; therefore, in the proximity of this point the linearized solution δφ(x) might
not be valid. However, for |s| → ∞ and s→ 0 the inequality (4.20) can be satisfied:

h(0) = lim
s→0

h(s) = −7λv
2

M2
s

, h(∞) = lim
s→∞

h(s) = 2λv
2

M2
s

, (4.31)

and by using the theoretical lower bound in eq. (4.10), i.e. λv2/M2
s ≤ −W−1

0 (−1/3e) ∼ 0.14,
it follows that both asymptotic limits are always less than unity, i.e. |h(0)| < 0.98 and
h(∞) < 0.28, and the approximation becomes better for larger values of the scale of
nonlocality Ms.

– 16 –



J
H
E
P
1
1
(
2
0
2
2
)
1
0
4

0 1 2 3 4

-0.06

-0.04

-0.02

0.00

s

H
(s
)

0 1 2 3 4 5
-2

-1

0

1

2

s

h(
s)

Figure 4. (Left panel) behavior of H(s) = f(s)/ tanh s as a function of s =
√
λ/2vx. The modulus

of the function is always less than unity, i.e. |H(s)| < 1, supporting the validity of the linearized
solution δφ(x) = vf(x) in eq. (4.23). H(s) becomes smaller and smaller for larger values of Ms.
(Right panel) behavior of the function h(s) = g(s)/f(s). As long as |h(s)| � 1 the linearized
solution (4.23) can be trusted as a good approximation of the true behavior of the nonlocal domain
wall. We can notice that close to the asymptotics (s → ∞) the function can be kept less than
one, but there is a singularity at s ∼ 1.03402 caused by the fact that f(s) vanishes at this point.
Moreover, the linearized approximation close to the origin and at infinity becomes better for larger
values of Ms. In both panels we only showed the behavior for s ≥ 0 because both functions h(s) and
H(s) are even in s. We set λ = 2, v = 1 and M2

s = 14.3, which are consistent with the theoretical
constraint M2

s ≥ −λv2/W0(−1/3e) in eq. (4.10).

Let us now make two important remarks.

Remark 3. In light of the remark at the end of section 4.1 we now understand that the
linearized perturbative solution (4.23) would have not been valid if instead we had used W−1
and the corresponding upper bound Ms ≤ −λv2/W−1(−1/3e). In such a case a different do-
main wall solution with the same functional form of the asymptotic behavior is obviously guar-
anteed to exist, but we are not interested in it in the current work. Therefore, we emphasize
again that we only work with a domain wall configuration consistent with the bound (4.10).

Remark 4. We have noticed that the linearized approximation breaks down in the
proximity of s ∼ 1.03402. It means that the boundary condition δφ(±∞) = 0 imposed on
the perturbation cannot be used to connect the behavior of the solution from x = ±∞ to
x = 0 because the boundary condition itself would break down. This might imply that
apparently the linearized solution obtained in eq. (4.23) can be trusted only close to the
vacua, and that the above analysis is not enough to justify the behavior close to the origin.
However, by using a different and reliable perturbative expansion in the intermediate region
around s ∼ 1.03402, and imposing junction conditions to glue different pieces of the solution
defined in three different regions, we checked and confirmed that the behavior close to the
origin found above is well justified. See appendix A for more details.

4.3 Estimation of width and energy

We now estimate the width and the energy per unit area of the nonlocal domain wall by per-
forming an analogous analysis as the one made for the local two-derivative case in section 3.
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Let us approximate the field as φ ∼ v, and the gradient as ∂x ∼ R−1 where R is the
width of the wall. The next step would be to impose the balance between the kinetic
and the potential energy in eq. (4.3) for the lowest-energy configuration, and solve the
resulting equation for the width R. For convenience, we recall the expression for the energy
density (4.3)

E(x) = −1
2φe

−∂2
x/M

2
s (∂2

x + λv2)φ+ λ

4 (φ4 + v4) . (4.32)

The presence of the infinite-derivative operator makes the procedure less straightforward as
compared to the local case because we should first understand how to estimate e−∂2

x/M
2
s , i.e.

whether to replace the exponent with −1/M2
sR

2 or +1/M2
sR

2.
The strategy to follow in order to avoid any ambiguities is to Taylor expand, recast

the infinite-derivative pieces in terms of an infinite number of squared quantities, replace
∂x ∼ 1/R, φ ∼ v, and then re-sum the series.

By Taylor expanding in powers of ∂2
x/M

2
s the infinite-derivative terms in eq. (4.32),

and neglecting total derivatives, we can write

φe−∂
2
x/M

2
s ∂2

xφ=−∂xφe−∂
2
x/M

2
s ∂xφ

=−
[
(∂xφ)2− 1

M2
s

∂xφ∂
2
x∂xφ+ 1

2!M4
s

∂xφ∂
4
x∂xφ−·· ·+

(−1)n
n!M2n

s

∂xφ∂
2n
x ∂xφ+· · ·

]
=−

[
(∂xφ)2+ 1

M2
s

(∂2
xφ)2+ 1

2!M4
s

(∂3
xφ)2+· · ·+ 1

n!M2n
s

(∂n+1
x φ)2+· · ·

]
=−

∞∑
n=0

1
n!

( 1
M2
s

)n(
∂n+1
x φ

)2
, (4.33)

and

λv2φe−∂
2
x/M

2
s φ = λv2

∞∑
n=0

1
n!

( 1
M2
s

)n
(∂nxφ)2 . (4.34)

Then, by using φ ∼ v and ∂x ∼ 1/R, we get

φe−∂
2
x/M

2
s ∂2

xφ ∼ −
v2

R2

∞∑
n=0

1
n!

( 1
M2
sR

2

)n
= − v

2

R2 e
1/(MsR)2

, (4.35)

and
λv2φe−∂

2
x/M

2
s φ ∼ λv4e1/(MsR)2

. (4.36)

Thus, we have shown that the correct sign in the exponent when making the estimation is
the positive one.4

4To further remove any possible ambiguity and/or confusion, it is worth mentioning that the same result
would have been obtained if we would have started with a positive definite expression for the kinetic energy,
for instance with the expression ∂xφe

−∂2
x/M2

s ∂xφ = (e−∂2
x/2M2

s ∂xφ)2 ≥ 0, where we integrated by parts and
neglected total derivatives. Also in this case one can show (up to total derivatives) that (e−∂2

x/2M2
s ∂xφ)2 =∑∞

k,l=0 1/(k! l!)(1/2M2
s )k+l

(
∂

(k+l+1)
x φ

)2
∼ (v2/R2)

[∑∞
k=0 1/k!(1/2M2

sR
2)n
]2 = (v2/R2)e1/(MsR)2

.
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To make more manifest the consistency with the low-energy limit Ms → ∞, it is
convenient to separate the kinetic and the potential contributions in (4.32) as follows:

E(x) =
[
−1

2φe
−∂2

x/M
2
s ∂2

xφ−
1
2λv

2φ
(
e−∂

2
x/M

2
s − 1

)
φ

]
+
[
λ

4
(
φ2 − v2

)2
]
, (4.37)

so that the balance equation between kinetic and potential energies reads

1
2
v2

R2 e
1/(MsR)2 − 1

2λv
4
(
e1/(MsR)2 − 1

)
∼ λ

4 v
4 . (4.38)

We are mainly interested in the leading nonlocal correction, thus we expand for MsR� 1
up to the first relevant nonlocal contribution:

1
2
v2

R2

(
1 + 1

M2
sR

2

)
− 1

2
λv4

M2
sR

2 ∼
1
4λv

4

The solution up to order O(1/M2
s ) is given by

1
R2 ∼

λv2

2

(
1 + λv2

2M2
s

)
, (4.39)

from which we obtain
R ∼

√
2
λ

1
v

(
1− λv2

4M2
s

)
. (4.40)

Therefore, the width of the nonlocal domain wall, R, turns out to be thinner as compared
to the local two-derivative case. This is consistent with both the asymptotic analysis in
section 4.1 and with the linearized solution in section 4.2. In fact, in the previous subsections
we found that the nonlocal configuration approaches the vacua ±v faster as compared to
the local case, i.e. the coefficient B in eq. (4.12) is larger than the corresponding local one.
Then, as shown in eq. (4.13), R̃ becomes smaller in the nonlocal case, which is consistent
with the behaviour of R. That is, the coefficient B and the width of the wall R should be
inversely proportional to each other; this means that if B increases then R must decrease,
and indeed this is what we showed.

We can also estimate the energy per unit area

E =
∫
R

dx
[
−1

2φe
−∂2

x/M
2
s (∂2

x + λv2)φ+ λ

4 (φ4 + v4)
]

∼ (width of the wall)× (energy density)
∼ R× λv4

∼

√
λ

2 v
3
(

1− λv2

4M2
s

)
, (4.41)

which is also decreased as compared to the local case.
It is worth to emphasize that the expansion for small λv2/M2

s is well justified for the
domain wall solution satisfying the bound in eq. (4.10) which was obtained by using the
principal branch W0 of the Lambert-W function.
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Remark 5. In section 4.2 we have estimated an additional scale ` in addition to the
width (` > R, R̃). In standard local theories all of the three scales are the same because
there is only one physical scale, `L = RL = R̃L ∼ (

√
λv)−1. In fact, in general ` and R (R̃)

represent two different physical scales, and this becomes manifest in the nonlocal theory
under investigation. The length scale R (R̃) is the one that contains the information about
the size of the wall because it is proportional to 1/B, and it is related to how fast the field
configuration approaches the vacuum. Whereas, the scale ` is related to how fast the field
changes in the proximity of the origin, indeed it is inversely proportional to the gradient at
x = 0 (see eqs. (4.25) and (4.26)), and we have ` > `L. The difference between ` and R (R̃)
is caused by the oscillatory behavior of the nonlocal solution around the local one.

5 Comments on other topological defects

So far we have only focused on the domain wall configuration. However, it would be very
interesting if one could repeat the same analysis also in the case of other topological defects,
like string and monopole which can appear in nonlocal models characterized by continuous-
symmetry breaking. A full study of these topological defects in nonlocal field theories goes
beyond the scope of this paper, however we can make some important comments.

First of all, the existence of such finite-energy configurations is always guaranteed by
the non-trivial topological structure of the vacuum manifold.5 Knowing that a solution
must exist, then we could ask how some of their properties would be affected by nonlocality.
Actually, a similar order-of-magnitude estimation as the one carried out in section 4.3 can
be applied to these other global topological defects. In particular, by imposing the balance
between kinetic and potential energy one would obtain that the radius of both string and
monopole are smaller as compared to the corresponding ones in the local case.

We leave a more detailed investigation of higher dimensional topological defects, in-
cluding stabilizing gauge fields, for future tasks.

6 Discussion & conclusions

Summary. In this paper, we studied for the first time topological defects in the context of
the nonlocal field theories. In particular, we mainly focused on the domain wall configuration
associated to the Z2-symmetry breaking in the simplest nonlocal scalar field theory with
nonlocal differential operator e−�/M2

s . Despite the complexity of non-linear infinite-order
differential equations, we managed to find an approximate analytic solution. Indeed,
we were able to understand how nonlocality affects the behavior of the domain wall both
asymptotically close to the vacua and around the origin. The consistency of different methods
to find the solution confirm that our linearized treatment is mathematically correct.

5Of course, they can exist only dynamically in the local case because of Derrick’s theorem [1]. But, in a
nonlocal case, even Derrick’s theorem might be circumvented. This issue will be left for a future work.
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Let us briefly highlight our main results:

• We showed that the nonlocal domain wall approaches the asymptotic vacua ±v faster
as compared to the local two-derivative case. We confirmed this feature in two ways:
(i) studying the behavior of the solution towards infinity (|x| → ∞); (ii) analyzing
a linearized nonlocal solution found through perturbations around the local domain
wall configuration.

• Such a faster asymptotic behavior also means that the width of the wall, R (R̃), is
smaller than the corresponding local one. This physically means that the boundary
separating two adjacent casually disconnected spatial regions with two different vacua
(i.e. +v and −v) becomes thinner as compared to the local case. We confirmed this
property by making an order-of-magnitude estimation involving the balance equation
between kinetic and potential energy. As a consequence, also the energy per unit area
can be shown to be smaller.

• We noticed that the nonlocal domain wall has a very peculiar behavior around the
origin, i.e. in the proximity of x ∼ 0. We found that the linearized nonlocal solution,
φ = φL + δφ, oscillates around the local domain wall when going from x = 0 to
|x| → ∞. In other words, the perturbation δφ changes sign: when going from x = 0
to x = +∞ it is first negative and then positive, and vice-versa when going from
x = 0 to x = −∞. We confirmed the validity of the solution close to the origin in
appendix A.

• The specific nonlocal domain wall solution analyzed in this paper can exist only if the
nonlocal scale Ms satisfies the lower bound Ms &

√
λv, namely if the energy scale of

nonlocality is larger than the symmetry-breaking scale.

Discussion & outlook. Here we have only dealt with nonlocal field theories in flat
spacetime without assuming any specific physical scenario. However, it might be interesting
to understand how to embed our analysis in a cosmological context where we could expect
also gravity to be nonlocal; see refs. [40, 48–50] and references therein.

In particular, in refs. [49, 50] inflationary cosmology in nonlocal (infinite-derivative)
gravity was investigated, and the following experimental bound on the scale of nonlocality
was obtained: Ms & H , where H is the Hubble constant during inflation, i.e. H ∼ 1014GeV.
Our theoretical lower bound is consistent with the experimental constraint derived in [49, 50]
for the gravity sector. Indeed, some symmetry breaking is expected to happen after inflation,
i.e. at energies v . H, which is consistent with the theoretical lower bound Ms &

√
λv

in eq. (4.10).
Hence, in a cosmological context one would expect the following hierarchy of scales:6

Ms & H & v . (6.1)
6We are implicitly assuming that there exists only one scale of nonlocality Ms for both gravity and

matter sectors.
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Very interestingly, this cosmological scenario can be used to rule out some topological-defect
solutions in nonlocal field theory. For instance, in light of the discussions a the end of
section 4.1 and section 4.2, there must exist at least another domain wall configuration
that is valid for M2

s . λv2. In such a case the set of inequalities (6.1) would be replaced
by v &Ms & H, which implies that the symmetry breaking would happen before inflation.
Thus, if we are interested in domain wall formation after inflation, then we can surely
discard any configuration valid in the regime M2

s . λv
2.

It would be very interesting if one would consider other topological defects, like strings
and monopoles, which can appear in nonlocal models characterized by continuous-symmetry
breaking. In fact, global string might play important roles like axion emissions in an
expanding universe. In the local case, the topological defects that are formed from global-
symmetry breaking should be unstable because of Derrick’s theorem [1] which excludes the
existence of stationary stable configurations in dimensions greater than one. Then, they can
exist only dynamically e.g. in an expanding universe. However, Derrick’s theorem might not
apply to a nonlocal case thanks to the nonlocality. It would be also interesting to investigate
whether such stationary stable configurations could exist in a nonlocal case or not.

As another potential future direction to follow we can consider another class of models
characterized by gauge symmetries as well as global ones. In fact, among the possible physical
applications that can be studied in relation to topological defects, we have gravitational
waves, e.g. the ones emitted by cosmic strings. We would expect that the presence of
nonlocality would change the dynamics in such a way to modify non-trivially the gravitational
wave-form. This type of investigations will provide powerful test-benches to test nonlocal
field theories, and to further constrain the structure of the nonlocal differential operators in
the Lagrangian and the value of the nonlocal scale. In this work we only focused on the
simplest model with F (−�) = e−�/M

2
s , but one could work with more generic operators.

Actually, the class of viable differential operators is huge (e.g. see [23]), and it would be
interesting to reduce it by means of new phenomenological studies.

More generally, one can consider gravitational effects sourced by nonlocal topological de-
fects in both local and nonlocal theories of gravity; see refs. [53–57] for studies concerning non-
local gravitational fields sourced by local topological defects and other local extended objects.

As yet another future work we also wish to consider other type of field theoretical
objects. An important phenomenon is the false vacuum decay [58–60] according to which
the false vacuum — which corresponds to a local minimum of the potential — has a non-zero
probability to decay through quantum tunneling into the true vacuum — which corresponds
to a global minimum. This tunneling process consists in interpolating between the false
and the true vacuum through an instanton (a bounce solution). It may be very interesting
to generalize the standard analysis done for a local two-derivative theory to the context of
nonlocal field theories, and to understand how nonlocality would affect this phenomenon,
e.g. how the tunneling probability would change. Another interesting direction is to consider
non-topological solitons like Q-balls and oscillons/I-balls. The existence of these objects is
also related to the presence of a bounce solution. But, one should notice that, different from
topological defects, the presence of these bounce solutions is not guaranteed in nonlocal
theories. In fact, it is very difficult to guarantee the presence of such a bounce solution
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in a nonlocal theory, different from the local cases. Therefore, even if one would obtain
(possible) approximate solutions somehow, one cannot make any argument based on such
approximate solutions without the proof of the existence of exact bounce solutions. This
is the reason why we dealt only with topological defects in this paper, and left a study of
non-topological field theoretical objects for future work.

Finally, we should emphasize that non-linear and infinite-order differential equations
are not only difficult to solve analytically but even numerically. Indeed, up to our knowledge
no numerical technique to find domain wall solutions is currently known. Some techniques
to solve nonlinear equations involving infinite-order derivatives have been developed in the
last decades [61–66], but none of them seem to be useful for the type of field equations
considered in this paper. Previous numerical studies only focused on time-dependent systems
for which the differential operator is e+∂2

t , whereas we are interested in time-independent
configurations with e−∂2

x . The difference in sign in the exponent is crucial and does not
allow us to use the convolution techniques implemented in refs. [61–64]. Therefore, as a
future task it will be extremely interesting to develop new numerical and analytic methods
to find topological-defect solutions. This will also be important to investigate the stability of
topological defects in nonlocal field theory, something that we have not done in this paper.
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A Behavior of the solution close to the origin

At the end of section 4.2 we noticed that the behavior of the linearized solution close to the
origin was not well justified because the linear approximation fails in an intermediate region
around s ∼ 1.03402. In appendix A.1 we establish a formalism to justify the linearized
solution even in the proximity of the origin; in appendix A.2 we make a further consistency
check by implementing a series expansion method.

A.1 Nonlocal corrections and junction conditions

The idea is to replace the expansion φ = φL + δφ with a different one around s ∼ 1.03402,
in such a way that a linear approximation can be valid also in this intermediate region.
We will study the solution in three different regions and in each of them we will find a
solution depending on some integration constants to be fixed through boundary and junction
conditions. To glue the three solutions we need to choose two points on the left and on the
right of s ∼ 1.03402, respectively, and show that the resulting full solution is independent
of the chosen points as long as the linear approximation remains valid in all three regions.
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In what follows we perform the analysis by choosing the points s = 0.6 and s = 1.4, but
we will also comment on different choices. It will be useful to work with the dimensionless
variable s ≡

√
λ/2vx and function f(s) ≡ δφ/v.

1. Close to the vacuum (s ≥ 1.4). In this region, we use the perturbation φ = φL + δφ.
We know that the linearized solution is the one obtained in section 4.2 by imposing
the boundary condition δφ(∞) = vf(∞) = 0 which fixes the integration constant
equal to C2 = −λv2/16M2

s . Let us call this solution

f1(s) = λv2

M2
s

1
cosh2 s

[3
4 log 1 + tanh s

1− tanh s − 2 tanh s
]
. (A.1)

From section 4.2 we know that it respects the linear approximation for any s > 1.4.

2. Intermediate region (0.6 ≤ s ≤ 1.4). In this region the solution f1(s) is not valid,
therefore we will use a different linear expansion. We consider

δφ = φ− v , (A.2)

so that the corresponding linearized equation reads

e−∂
2
x/M

2
s (∂2

x + λv2)δφ = 3λv2δφ . (A.3)

Because of the exponential differential operator this equation is very difficult to solve.
Alternatively, we can expand the exponential up to some derivative order, and thus
solve a higher-order derivative equation:

e−∂
2
x/M

2
s (∂2

x + λv2)δφ =
(

1− ∂2
x

M2
s

+ 1
2
∂4
x

M4
s

− 1
3!
∂6
x

M6
s

+ · · ·
)

(∂2
x + λv2)δφ = 3λv2δφ ,

(A.4)

where the dots stand for higher-order derivative terms; we call its solution f2(s) = δφ/v.
Note that the higher the derivative order is, the larger the number of integration
constants will be. This implies that a larger number of junction conditions will have
to be imposed to determine the full solution. This also means that the accuracy of
the final solution will be higher. In particular, we proceed as follows: if we truncate
to some derivative order 2n, we impose 2n junction conditions at the point s = 1.4 to
glue region 1. and region 2., namely we impose the continuity f2(1.4) = f1(1.4) and
2n− 1 junctions for the derivatives of order 1, 2, . . . , 2n− 1.

3. Close to the origin (s ≤ 0.6). In this region the perturbation φ = φL + δφ is still a
valid one, but we cannot use the boundary condition δφ(∞) = 0 to fix the integration
constant. As explained in section 4.2, the reason for this is that the boundary condition
breaks down because of the failure of the approximation around s ∼ 1.03402, so that
we cannot connect the solution from s = +∞ to s = 0.
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However, in this region we can still consider the solution

f3(s) = 3C3/2 + 27λv2/32M2
s

cosh2 s
log 1 + tanh s

1− tanh s

+
[(

2C3 + λv2

8M2
s

)
cosh2 s+

(
3C3 −

61λv2

16M2
s

)
+ 2λv2

M2
s

(1 + tanh2 s)
]

tanh s ,

(A.5)

where the integration constant C3 must be determined by imposing the junction
condition with the solution in the intermediate region at the point s = 0.6. In
particular, we have to impose the continuity f3(0.6) = f2(0.6).

We have implemented the above procedure by expanding the solution in the intermediate
region up to 22nd order derivative, and found the corresponding solution f2(s) numerically.
In figure 5, we showed the behavior of the full glued solution (in all three regions) for 4, 6, 8,
10 and 12-th derivative cases, by setting λ = 2, v = 1 and M2

s = 14.3. One can notice that
by increasing the derivative order for the intermediate solution, the behavior close to the
origin converges very quickly to the behavior of the linearized solution found in section 4.2.
This means that the value B3 = −λv2/16M2

s is very well justified, and that the linearized
solution found in (4.23) is a good approximation for the nonlocal domain wall configuration
in all three regions. We have also checked that the linear approximation in the region 2. is
respected, i.e. |f2(s)| � 1. This analysis also confirms that the nonlocal solution is smaller
than the local one close to the origin, which physically means that the width of the wall is
larger in the nonlocal case.

One might wonder whether the same result holds by choosing other matching points
different from s = 0.6 and s = 1.4. In fact, we checked that our result is independent of the
specific chosen points. For instance, for the pairs of points (s = 0.7, 1.5) and (s = 0.8, 1.6)
we obtained the same result and confirmed the validity of our analysis.

A.2 Expansion of the solution around the origin

We now introduce a general formalism involving Taylor series expansions around the origin
to make a further consistency check of the linearized solution obtained in section 4.2

Analogously to the local case and because of the topological structure of the vacuum
manifold we expect that the nonlocal domain wall solution is also given by an odd function
which is regular at the origin. Thus, we can Taylor expand the solution φ(x) as

φ(x) =
∞∑
n=0

a2n+1(Msx)2n+1 , (A.6)

where Msx is dimensionless and a2n+1 are coefficients depending on the scale of nonlocality;
we can determine their dependency on Ms as follows. By writing b2n+1 = a2n+1M

2n+1
s ,

we understand that to consistently recover the local case limit we should have b2n+1 =
bL,2n+1(1 +O(1/M2

s )), where bL,2n+1 is the coefficient in the local case and does not depend
on Ms. This implies that

a2n+1 ∼ O
( 1
M2n+1
s

)
∀n ∈ N . (A.7)
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Figure 5. (Top panel) We have reported the behavior of the full glued solution for several higher-
derivative truncation of the differential equation in region 2. We performed computations up to 22nd
order derivative, but it is enough to show the results up to 12th order. The solutions were obtained
by imposing the junction conditions at s = 0.6 and s = 1.4 (vertical lines) following the procedure
explained in this appendix. The 4, 6, 8, 10, and 12-th order cases are plotted in comparison with
the linearized solution φ = φL + δφ obtained in eq. (4.23) and the local kink solution. The color
and the style for each curve is summarized in the legend. (Bottom panel) we have zoomed on a
shorter interval of the x-axis in proximity of the origin in order to see more clearly the differences
between the curves. In both panels we set λ = 2, v = 1 and M2

s = 14.3, which are consistent with
the theoretical constraint M2

s ≥ −λv2/W0(−1/3e) in eq. (4.10).
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These coefficients can in principle be determined through the field equation (4.2). Let us
evaluate both left-hand-side (l.h.s.) and right-hand-side (r.h.s.) of eq. (4.2).

Since we are working in a static configuration and in one spatial dimension, we can
evaluate the l.h.s. by using the very useful property of the Weierstrass transformation:

e−∂
2
x [xn] = Hn

(
x

2

)
, (A.8)

where Hn(z) is the n-th Hermite polynomial, we can write

l.h.s. = e−∂
2
x/M

2
s

(
∂2
x + λv2

)
φ

= e−∂
2
x/M

2
s

{(
∂2
x + λv2

)[ ∞∑
n=0

a2n+1(Msx)2n+1
]}

= M2
s e
−∂2

x/M
2
s

{(
∂2

∂(Msx)2 + λv2

M2
s

)[ ∞∑
n=0

a2n+1(Msx)2n+1
]}

= M2
s

∞∑
n=1

(2n+ 1)(2n)a2n+1H2n−1

(
Msx

2

)
+ λv2

M2
s

∞∑
n=0

a2n+1H2n+1

(
Msx

2

)

= M2
s

∞∑
n=0

[
(2n+ 3)(2n+ 2)a2n+3 + λv2

M2
s

a2n+1

]
H2n+1

(
Msx

2

)
; (A.9)

in the last step we have redefined the summation index in the first term as n → n + 1.
Then, by using the series representation of the Hermite polynomials with odd indexes,

H2n+1(z) = (2n+ 1)!
∞∑
k=0

(−1)n−k
(2k + 1)!(n− k)! (2z)2k+1 , (A.10)

we obtain

l.h.s. = M2
s

∞∑
n=0

∞∑
k=0

[
(2n+ 3)(2n+ 2)a2n+3 + λv2

M2
s

a2n+1

]
(2n+ 1)!(−1)n−k
(2k + 1)!(n− k)! (Msx)2k+1 .

(A.11)

Let us now focus on the r.h.s. of eq. (4.2). We can use the Cauchy product formula,( ∞∑
i=0

aix
i

) ∞∑
j=0

bjx
j

 =
∞∑
k=0

ckx
k with ck =

k∑
l=0

albk−l , (A.12)

to write the cubic term as

r.h.s. = λφ3 = λ
∞∑
n=0

n∑
k=0

k∑
i=0

a2i+1a2(k−i)+1a2(n−k)+1(Msx)2n+3 . (A.13)

Hence, the field equation (l.h.s.=r.h.s) can be recast in the following form:
∞∑
n=0

∞∑
k=0

{[
(2n+ 3)(2n+ 2)a2n+3 + λv2

M2
s

a2n+1

]
(2n+ 1)!(−1)n−k
(2k + 1)!(n− k)!

}
(Msx)2k+1

=
∞∑
n=0

{
λ

n∑
k=0

k∑
i=0

a2i+1a2(k−i)+1a2(n−k)+1

}
(Msx)2n+3 (A.14)
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Moreover, by introducing the new index l through n = k + l, we can write the l.h.s. as

l.h.s. =
∞∑
k=0

∞∑
l=0

{[
(2(k + l) + 3)(2(k + l) + 2)a2(k+l)+3 + λv2

M2
s

a2(k+l)+1

]

×(2(k + l) + 1)!(−1)l
(2k + 1)!l!

}
(Msx)2k+1 .

(A.15)

By replacing the index k with n and extracting the term proportional to (Msx), we obtain

l.h.s. =
[ ∞∑
l=0

(
(2l + 3)(2l + 2)a2l+3 + λv2

M2
s

a2l+1

)
(2l + 1)!(−1)l

l!

]
(Msx)

+
∞∑
n=0

[ ∞∑
l=0

{(
(2(n+ l) + 5)(2(n+ l) + 4)a2(n+l)+5 + λv2

M2
s

a2(n+l)+3

)

×(2(n+ l) + 3)!(−1)l
(2n+ 3)!l!

}]
(Msx)2n+3 . (A.16)

We can now factorize the pieces (Msx)2n+1 at any order in n in eq. (A.14), and finally
obtain the following algebraic equations for the coefficients:

∞∑
l=0

(
(2l+3)(2l+2)a2l+3+λv2

M2
s

a2l+1

)
(2l+1)!(−1)l

l! = 0 (coefficient of Msx) , (A.17)

∞∑
l=0

(
(2(n+l)+5)(2(n+l)+4)a2(n+l)+5+λv2

M2
s

a2(n+l+1)+1

)
(2(n+l)+3)!(−1)l

(2n+3)!l!

=
n∑
k=0

{
λ

M2
s

k∑
i=0

a2i+1a2(k−i)+1a2(n−k)+1

}
(coefficient of (Msx)2n+1 with n≥ 1) .

(A.18)

If we could solve the above equations for the coefficients a2n+1, we would be able to find an
exact solution for φ(x).

A.2.1 Linearized solution close to the origin

The formalism introduced above does not really offer a simpler way to find an exact solution.
However, it provides exact relations among the coefficients a2n+1, which must be satisfied
by any approximate solution that aims at describing the behavior of the domain wall close
to the origin. In other words, the above relations can be used to check the validity of
approximate solutions in the region around origin. In particular, we are going to check
whether the coefficients a2n+1 of the linearized solution found in section 4.2 satisfy the
relations in eqs. (A.17) and (A.18) up to O(1/M2

s ), which is the order in powers of Ms up
to which the linearized solution (4.23) was determined.

We Taylor expand φ = φL + δφ (see eq. (4.23))

φ(x) = a1(Msx) + a3(Msx)3 + a5(Msx)5 + a7(Msx)7 + a9(Msx)9 + · · · , (A.19)
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with

a1 = v2

Ms

√
λ

2

(
1− λv2

2M2
s

)
, a3 = − v4λ3/2

6
√

2M3
s

(
1− 7λv2

2M2
s

)
,

a5 = v6λ5/2

30
√

2M5
s

(
1− 19λv2

2M2
s

)
, a7 = − 17v6λ7/2

2510
√

2M5
s

(
1− 635λv2

34M2
s

)
,

a9 = 31v6λ9/2

22680
√

2M5
s

(
1− 1927λv2

62M2
s

)
, (A.20)

and substitute the above coefficients into the relations (A.17) and (A.18), and verify that
they are consistently satisfied up to order O(1/M2

s ).
The relevant terms up to order O(1/M2

s ) in eq. (A.17) are given by

M3
s

(
6a3 + λv2

M2
s

a1

)
− 6M3

s

(
20a5 + λv2

M2
s

a3

)
+O

( 1
M4
s

)
= 0 , (A.21)

where we multiplied by M3
s so that the first term contains contributions of order O(1/M0

s )
and O(1/M2

s ), whereas the second term contains the orders O(1/M2
s ) and O(1/M4

s ). We
can explicitly verify that the orders O(1/M0

s ) and O(1/M2
s ) consistently vanish.

At order O(1/M0
s ) we have

M3
s

(
6a3 + λv2

M2
s

a1

)
= 6

(
−v

4λ3/2

6
√

2

)
+ λv2

(
v2√λ√

2

)
+O

( 1
M2
s

)
= 0 +O

( 1
M2
s

)
; (A.22)

while at order O(1/M2
s ) we get

M3
s

(
6a3 + λv2

M2
s

a1

)
− 6M3

s

(
20a5 + λv2

M2
s

a3

)
= 7v6λ5/2

2
√

2M2
s

− v6λ5/2

2
√

2M2
s

− 4v6λ5/2
√

2M2
s

+ v6λ5/2
√

2M2
s

+O
( 1
M4
s

)
= 0 +O

( 1
M4
s

)
. (A.23)

One can verify that also the relation (A.18) is satisfied. For instance, for n = 1 the relevant
terms up to order O(1/M2

s ) are

M7
[(

42a7 + λv2

M2
s

a5

)
− 42

(
72a9 + λv2

M2
s

a7

)]
= M7

(
3 λ

M2
s

a2
1a3

)
, (A.24)

where we have multiplied by M7 both sides of eq. (A.18) to isolate the orders O(1/M0
s )

and O(1/M2
s ); now the coefficients a7 and a9 contribute to the analysis. By substituting

the expressions (A.20) for the coefficients, we can easily show that the relation (A.24) is
consistently satisfied up to order O(1/M2

s ).
Hence, by making use of the series-expansion formalism we obtained an additional

consistency check for the validity of the linearized domain wall solution found in section 4.2.
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B Energy-momentum tensor in nonlocal field theories

In this appendix we are going to derive a very general expression for the energy momentum
tensor in nonlocal field theories by taking into account the presence of infinitely many
derivatives in the Lagrangian.

Let us consider the following action

S =
∫
d4xL(φ, ∂µ1φ, ∂µ1µ2φ, . . . , ∂µ1···µk

φ, . . . ) , (B.1)

where φ(x) can in principle be any type of tensor field although we will eventually apply
the result to our real scalar field theory; we denoted ∂µ1∂µ2 · · · ∂µk

by ∂µ1µ2···µk
where k ∈ N

can be either finite or infinite. The field equation reads

0 = ∂L
∂φ
− ∂ν1

∂L
∂(∂ν1φ) · · ·+ (−1)k∂ν1ν2···νk

{
∂L

∂(∂ν1ν2···νk
φ)

}
+ · · ·

⇒ ∂L
∂φ

= −
N∑
k=1

(−1)k∂ν1ν2···νk

{
∂L

∂(∂ν1ν2···νk
φ)

}
, (B.2)

where N counts the number of derivatives acting on the field in the Lagrangian. Note that
the variation with respect to the derivatives of the field is given by

∂(∂µ1µ2...µk
φ)

∂(∂ν1ν2...νk
φ) = δν1

µ1δ
ν2
µ2 · · · δ

νk
µk
, (B.3)

from which it is clear that, while ∂µ1µ2...µk
φ is symmetric in all its indexes, the derivative

∂/∂(∂µ1µ2...µk
φ) is not. We have to carefully take into account this fact when deriving the

expression for the energy-momentum tensor.
Let us compute the derivative of the Lagrangian

∂αL= ∂L
∂φ

∂αφ+ ∂L
∂(∂ν1φ)∂α∂ν1φ+ ∂L

∂(∂ν1ν2φ)∂α∂ν1ν2φ+· · ·+ ∂L
∂(∂ν1ν2...νk

φ)∂α∂ν1ν2...νk
φ+· · ·

⇒ ∂αL= ∂L
∂φ

∂αφ+
N∑
k=1

∂L
∂(∂ν1ν2...νk

φ)∂α∂ν1ν2...νk
φ, (B.4)

and by using (B.2) for the first term in the r.h.s. of (B.4) we can write

∂αL =
N∑
k=1

[
∂L

∂(∂ν1ν2...νk
φ)∂α∂ν1ν2...νk

φ− (−1)k∂ν1ν2...νk

{
∂L

∂(∂ν1ν2...νk
φ)

}
∂αφ

]
. (B.5)

We now recast the terms inside the square brackets in a more suitable form by using the
Leibniz rule.

We rewrite the k = 1 term as

∂L
∂(∂ν1φ)∂ν1∂αφ+ ∂ν1

∂L
∂(∂ν1φ)∂αφ = ∂ν1

[
∂L

∂(∂ν1φ)∂αφ
]
, (B.6)

which corresponds to the standard contribution in a two-derivative theory.
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The k = 2 term, instead, reads
∂L

∂(∂ν1ν2φ)∂ν1ν2∂αφ− ∂ν1ν2
∂L

∂(∂ν1ν2φ)∂αφ

= ∂L
∂(∂ν1ν2φ)∂ν1ν2∂αφ− ∂ν1ν2

∂L
∂(∂ν2ν1φ)∂αφ

= ∂ν1

[
∂L

∂(∂ν1ν2φ)∂ν2∂αφ− ∂ν2
∂L

∂(∂ν2ν1φ)∂αφ
]

− ∂ν1

{
∂L

∂(∂ν1ν2φ)

}
∂ν2∂αφ+ ∂ν2

{
∂L

∂(∂ν1ν2φ)

}
∂ν1∂αφ

= ∂ν1

[
∂L

∂(∂ν1ν2φ)∂ν2∂αφ− ∂ν2
∂L

∂(∂ν2ν1φ)∂αφ
]
, (B.7)

where we have used the fact that ∂ν1ν2φ is symmetric and that ν1 and ν2 are dummy indexes.
It is not difficult to guess the form for a generic term with a generic k:

∂L
∂(∂ν1ν2...νk

φ)∂α∂ν1ν2...νk
φ− (−1)k∂ν1ν2...νk

{
∂L

∂(∂ν1ν2...νk
φ)

}
∂αφ

= ∂ν1

[
∂L

∂(∂ν1ν2...νk
φ)∂α∂ν2ν3...νk

φ− ∂ν2

{
∂L

∂(∂ν2ν1...νk
φ)

}
∂α∂ν3ν4...νk

φ

+∂ν2ν3

{
∂L

∂(∂ν2ν3ν1...νk
φ)

}
∂α∂ν4ν5...νk

φ+ · · ·

· · ·+ (−1)k+1∂ν2···νk

{
∂L

∂(∂ν2ν3...νkν1φ)

}
∂αφ

]
. (B.8)

The above expressions at each k-th order were also derived in ref. [61]; see also refs. [67, 68]
for complementary works on the energy-momentum tensor in nonlocal field theories. In
what follows, we will rewrite those expressions in a compact form by using some properties
of functional derivatives and summations.

First of all, we can recast the term inside the square brackets in eq. (B.5) (including all
k-th orders) as

∂ν1

[
k∑
l=1

(−1)l+1∂(l−1)
ν2...νl

{
∂L

∂(∂ν2...νlν1νl+1...νk
φ)

}
∂(k−l)
νl+1...νk

∂αφ

]
, (B.9)

where for l = 1 the indexes ν2 . . . νlν1νl+1 . . . νk should be understood as ν1ν2 . . . νk.
We can rewrite the derivative of the Lagrangian (B.5) as a total derivative,

∂αL= ∂ν1

[
N∑
k=1

k∑
l=1

(−1)l+1∂(l−1)
ν2...νl

{
∂L

∂(∂ν2...νlν1νl+1...νk
φ)

}
∂(k−l)
νl+1...νk

∂αφ

]

⇒ ∂ν1

[
N∑
k=1

k∑
l=1

(−1)l+1∂(l−1)
ν2...νl

{
∂L

∂(∂ν2...νlν1νl+1...νk
φ)

}
∂(k−l)
νl+1...νk

∂αφ−δν1
α L

]
= 0 . (B.10)

Finally, we can extract the conserved energy-momentum tensor T ν1
α which is defined as

T ν1
α =

N∑
k=1

k∑
l=1

(−1)l+1∂(l−1)
ν2...νl

{
∂L

∂(∂ν2...νlν1νl+1...νk
φ)

}
∂(k−l)
νl+1...νk

∂αφ− δν1
α L , (B.11)

and it is indeed conserved as it satisfies the conservation law ∂ν1T
ν1
α = 0.
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B.1 Nonlocal real scalar field

We now apply the formula (B.11) to the case of a nonlocal real scalar field φ with a mass
m and a potential term V (φ) in 1 + 3 dimensions. In particular, we consider the action

L = 1
2φF (−�)

(
�−m2

)
φ− V (φ) , (B.12)

where the potential term V (φ) contains cubic and higher powers of φ, and the differential
operator can be expressed as

F (−�) =
∞∑
n=0

fn(−1)n�n ; (B.13)

in this case N =∞. For convenience, we denote the kinetic term and the mass term by LK
and Lm, i.e.

LK = 1
2φF (−�)�φ , (B.14)

Lm = −1
2m

2φF (−�)φ . (B.15)

We now compute (B.11) for the above Lagrangian. By taking the derivatives of LK we
have:

∂LK
∂(∂ν2...νlν1νl+1...νk

φ) = 1
2

∞∑
n=0

fn(−1)n ∂

∂(∂ν2...νlν1νl+1...νk
φ)
(
φ�n+1φ

)
= 1

2φ
∞∑
n=0

fn(−1)n ∂

∂(∂ν2...νlν1νl+1...νk
φ)
(
(∂α∂α)n+1φ

)
= 1

2φ
∞∑
n=0

fn(−1)nηα1β1 · · · ηαn+1βn+1
∂
(
∂α1β1···αn+1βn+1φ

)
∂
(
∂ν2...νlν1νl+1...νk

φ
) . (B.16)

If k = 2(n+ 1) the derivative is non-zero and we get
∂
(
∂α1β1···αn+1βn+1φ

)
∂
(
∂ν2...νlν1νl+1...νk

φ
) = δ

ν2...νlν1νl+1...νk

α1β1···αn+1βn+1
δk,2(n+1) , (B.17)

where we used the notation δµ1
ν1 δ

µ2
ν2 · · · δ

µn
νn

= δµ1µ2···µn
ν1ν2···νn . Thus, we obtain

∂LK
∂(∂ν2...νlν1νl+1...νk

φ) = 1
2φ

∞∑
n=0

fn(−1)nηα1β1 · · · ηαn+1βn+1δ
ν2...νlν1νl+1...νk

α1β1···αn+1βn+1
δk,2(n+1) . (B.18)

Similarly we can compute the mass-term as
∂Lm

∂(∂ν2...νlν1νl+1...νk
φ) =−1

2m
2
∞∑
n=0

fn(−1)n ∂

∂(∂ν2...νlν1νl+1...νk
φ)(φ�nφ)

=−1
2m

2φ
∞∑
n=0

fn(−1)n ∂

∂(∂ν2...νlν1νl+1...νk
φ)((∂α∂α)nφ)

=−1
2m

2φ
∞∑
n=0

fn(−1)nηα1β1 · · ·ηαnβn
∂(∂α1β1···αnβnφ)

∂
(
∂ν2...νlν1νl+1...νk

φ
)

=−1
2m

2φ
∞∑
n=0

fn(−1)nηα1β1 · · ·ηαnβnδ
ν2...νlν1νl+1...νk

α1β1···αnβn
δk,2n . (B.19)
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Substituting the above expressions for the derivatives of the Lagrangian with respect to the
field’s derivatives into (B.11), we obtain

T ν1
α = 1

2η
α1β1 · · · ηαn+1βn+1

∞∑
k=1

k∑
l=1

∞∑
n=0

fn(−1)n(−1)l+1δ
ν2...νlν1νl+1...νk

α1β1···αn+1βn+1
δk,2(n+1)

×
(
∂(l−1)
ν2...νl

φ
)(
∂(k−l)
νl+1...νk

∂αφ
)

− 1
2m

2ηα1β1 · · · ηαnβn

∞∑
k=1

k∑
l=1

∞∑
n=0

fn(−1)n(−1)l+1δ
ν2...νlν1νl+1...νk

α1β1···αnβn
δk,2n

×
(
∂(l−1)
ν2...νl

φ
)(
∂(k−l)
νl+1...νk

∂αφ
)
− δν1

α L . (B.20)

Let us introduce the new index m instead of k through the change k = l+m, so that given
a function f(n, l, k) we can write

∞∑
k=1

k∑
l=1

∞∑
n=0

f(n, l, k)δk,2(n+1) =
∞∑
m=0

∞∑
l=1

∞∑
n=0

f(n, l, l +m)δl+m,2(n+1)

=
∞∑
n=0

2n+1∑
m=0

f(n, 2(n+ 1)−m, 2(n+ 1)) , (B.21)

where the Kronecker delta was used to remove the l-summation in second line through
the condition m = 2(n + 1) − l ⇔ l = 2(n + 1) − m; the m-summation now runs over
0 ≤ m ≤ 2n + 1 because in the l-summation we had 1 ≤ l ≤ k = 2(n + 1). The same
holds for the other Kronecker delta δk,2n, and in this case 2n = l + m ≥ 1 so that the
n-summation runs over n ≥ 1:

∞∑
k=1

k∑
l=1

∞∑
n=0

f(n, l, k)δk,2n =
∞∑
m=0

∞∑
l=1

∞∑
n=0

f(n, l, l +m)δl+m,2n

=
∞∑
n=1

2n−1∑
m=0

f(n, 2n−m, 2n) . (B.22)

By applying the above two formula to the terms in the expression of the energy-momentum
tensor (B.20), we obtain

∞∑
k=1

k∑
l=1

∞∑
n=0

fn(−1)n(−1)l+1δ
ν2...νlν1νl+1...νk

α1β1···αn+1βn+1
δk,2(n+1)

(
∂(l−1)
ν2...νl

φ
)(
∂(k−l)
νl+1...νk

∂αφ
)

=
∞∑
n=0

2n+1∑
m=0

fn(−1)n(−1)m+1δ
ν2...ν2(n+1)−mν1ν2(n+1)−m+1...ν2(n+1)
α1β1···αn+1βn+1

×
(
∂(2(n+1)−m−1)
ν2...ν2(n+1)−m

φ
)(
∂(m)
ν2(n+1)−m+1...ν2(n+1)

∂αφ
)
, (B.23)

and
∞∑
k=1

k∑
l=1

∞∑
n=1

fn(−1)n(−1)l+1δ
ν2...νlν1νl+1...νk

α1β1···αnβn
δk,2n

(
∂(l−1)
ν2...νl

φ
)(
∂(k−l)
νl+1...νk

∂αφ
)

=
∞∑
n=1

2n−1∑
m=0

fn(−1)n(−1)m+1δ
ν2...ν2n−mν1ν2n−m+1...ν2n

α1β1···αnβn

(
∂(2n−m−1)
ν2...ν2n−m

φ
)(
∂(m)
ν2n−m+1...ν2n

∂αφ
)
.

(B.24)
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Then T ν1
α can be recast as

T ν1
α = 1

2η
α1β1 · · · ηαn+1βn+1

∞∑
n=0

fn(−1)n
2n+1∑
m=1

(−1)m+1δ
ν2...ν2(n+1)−mν1ν2(n+1)−m+1...ν2(n+1)
α1β1···αn+1βn+1

×
(
∂(2(n+1)−m−1)
ν2...ν2(n+1)−m

φ
)(
∂(m)
ν2(n+1)−m+1...ν2(n+1)

∂αφ
)

− 1
2m

2 ηα1β1 · · · ηαnβn

∞∑
n=1

fn(−1)n
2n−1∑
m=1

(−1)m+1δ
ν2...ν2n−mν1ν2n−m+1...ν2n

α1β1···αnβn

×
(
∂(2n−m−1)
ν2...ν2n−m

φ
)(
∂(m)
ν2n−m+1...ν2n

∂αφ
)
− δν1

α L . (B.25)

Next we have to deal with the Kronecker deltas in the first and the second terms. To do so,
we decompose the m-summation into the even m = 2s and odd m = 2s+ 1 parts, with the
s-summation running over 0 ≤ s ≤ n. Then, the first term becomes

2n+1∑
m=0

(−1)m+1δ
ν2...ν2(n+1)−mν1ν2(n+1)−m+1...ν2(n+1)
α1β1···αn+1βn+1

(
∂(2(n+1)−m−1)
ν2...ν2(n+1)−m

φ
)(
∂(m)
ν2(n+1)−m+1...ν2(n+1)

∂αφ
)

=
n∑
s=0

[
−δν2...ν2(n+1−s)ν1ν2(n+1−s)+1...ν2(n+1)

α1β1···αn+1βn+1

(
∂(2(n+1−s)−1)
ν2...ν2(n+1−s)

φ
)(
∂(2s)
ν2(n+1−s)+1...ν2(n+1)

∂αφ
)

+ δ
ν2...ν2(n+1−s)−1ν1ν2(n+1−s)...ν2(n+1)
α1β1···αn+1βn+1

(
∂(2(n+1−s))
ν2...ν2(n+1−s)−1

φ
)(
∂(2s+1)
ν2(n+1−s)...ν2(n+1)

∂αφ
)]

=
n∑
s=0

[
−δν2

α1δ
ν3
β1
· · · δν2(n+1−s)

αn+1−s δν1
βn+1−s

δ
ν2(n+1−s)+1
αn+2−s · · · δν2n+1

αn+1 δ
ν2(n+1)
βn+1

×
(
∂(2(n+1−s)−1)
ν2...ν2(n+1−s)

φ
)(
∂(2s)
ν2(n+1−s)+1...ν2(n+1)

∂αφ
)

+ δν2
α1δ

ν3
β1
· · · δν2(n+1−s)−1

βn−s
δν1
αn−s+1δ

ν2(n+1−s)
βn−s+1

· · · δν2n+1
αn+1 δ

ν2(n+1)
βn+1

×
(
∂(2(n+1−s))
ν2...ν2(n+1−s)−1

φ
)(
∂(2s+1)
ν2(n+1−s)...ν2(n+1)

∂αφ
)]

=
n∑
s=0

δν2
α1δ

ν3
β1
· · · δν2(n−s)

αn−s δ
ν2(n−s)+1
βn−s

δ
ν2(n+1−s)+1
αn−s+2 · · · δν2n+1

αn+1 δ
ν2(n+1)
βn+1

×
[
−δν2(n+1−s)

αn−s+1 δν1
βn−s+1

(
∂(2(n+1−s)−1)
ν2...ν2(n+1−s)

φ
)(
∂(2s)
ν2(n+1−s)+1...ν2(n+1)

∂αφ
)

+δν1
αn−s+1δ

ν2(n+1−s)
βn−s+1

(
∂(2(n+1−s))
ν2...ν2(n+1−s)−1

φ
)(
∂(2s+1)
ν2(n+1−s)...ν2(n+1)

∂αφ
)]

−→
n∑
s=0

δν2
α1δ

ν3
β1
· · · δν2(n−s)

αn−s δ
ν2(n−s)+1
βn−s

δ
ν2(n+1−s)
αn−s+1 δν1

βn−s+1
δ
ν2(n+1−s)+1
αn−s+2 · · · δν2n+1

αn+1 δ
ν2(n+1)
βn+1

×
[
−
(
∂(2(n+1−s)−1)
ν2...ν2(n+1−s)

φ
)(
∂(2s)
ν2(n+1−s)+1...ν2(n+1)

∂αφ
)

+
(
∂(2(n+1−s))
ν2...ν2(n+1−s)−1

φ
)(
∂(2s+1)
ν2(n+1−s)...ν2(n+1)

∂αφ
)]

; (B.26)

in the last step, the arrow means that the dummy indexes αn−s+1 and βn−s+1 have been
exchanged as in the expression of the energy-momentum tensor one can use the symmetry
property of the metric tensor ηαn−s+1βn−s+1 .
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An analogous form can be obtained for the mass-term. In this case 0 ≤ s ≤ n− 1 and
we get

2n−1∑
m=0

(−1)m+1δ
ν2...ν2n−mν1ν2n−m+1...ν2n

α1β1···αnβn

(
∂(2n−m−1)
ν2...ν2n−m

φ
)(
∂(m)
ν2n−m+1...ν2n

∂αφ
)

=
n−1∑
s=0

[
−δν2

α1δ
ν3
β1
· · ·δν2(n−s)

αn−s δν1
βn−s

δ
ν2(n−s)+1
αn+1−s · · ·δν2n−1

αn
δν2n
βn

(
∂(2(n−s)−1)
ν2...ν2(n−s)

φ
)(
∂(2s)
ν2(n−s)+1...ν2n

∂αφ
)

+δν2
α1δ

ν3
β1
· · ·δν2(n−s)−1

βn−1−s
δν1
αn−s

δ
ν2(n−s)
βn−s

· · ·δν2n−1
αn

δν2n
βn

(
∂(2(n−s))
ν2...ν2(n−s)−1

φ
)(
∂(2s+1)
ν2(n−s)...ν2n

∂αφ
)]

−→
n−1∑
s=0

δν2
α1δ

ν3
β1
· · ·δν2(n−1−s)

αn−1−s δ
ν2(n−1−s)+1
βn−1−s

δ
ν2(n−s)
αn−s δν1

βn−s
δ
ν2(n−s)+1
αn−s+1 · · ·δν2n−1

αn
δν2n
βn

×
[
−
(
∂(2(n−s)−1)
ν2...ν2(n−s)

φ
)(
∂(2s)
ν2(n−s)+1...ν2n

∂αφ
)

+
(
∂(2(n−s))
ν2...ν2(n−s)−1

φ
)(
∂(2s+1)
ν2(n−s)...ν2n

∂αφ
)]
.

(B.27)

Substituting the above expressions into the energy-momentum tensor T ν1
α , we obtain

T ν1
α = 1

2η
α1β1 · · ·ηαn+1βn+1

∞∑
n=0

fn(−1)n

×
n∑
s=0

δν2
α1δ

ν3
β1
· · ·δν2(n−s)

αn−s δ
ν2(n−s)+1
βn−s

δ
ν2(n+1−s)
αn−s+1 δν1

βn−s+1
δ
ν2(n+1−s)+1
αn−s+2 · · ·δν2n+1

αn+1 δ
ν2(n+1)
βn+1

×
[
−
(
∂(2(n+1−s)−1)
ν2...ν2(n+1−s)

φ
)(
∂(2s)
ν2(n+1−s)+1...ν2(n+1)

∂αφ
)

+
(
∂(2(n+1−s))
ν2...ν2(n+1−s)−1

φ
)(
∂(2s+1)
ν2(n+1−s)...ν2(n+1)

∂αφ
)]

− 1
2m

2 ηα1β1 · · ·ηαnβn

∞∑
n=1

fn(−1)n

×
n−1∑
s=0

δν2
α1δ

ν3
β1
· · ·δν2(n−1−s)

αn−1−s δ
ν2(n−1−s)+1
βn−1−s

δ
ν2(n−s)
αn−s δν1

βn−s
δ
ν2(n−s)+1
αn−s+1 · · ·δν2n−1

αn
δν2n
βn

×
[
−
(
∂(2(n−s)−1)
ν2...ν2(n−s)

φ
)(
∂(2s)
ν2(n−s)+1...ν2n

∂αφ
)

+
(
∂(2(n−s))
ν2...ν2(n−s)−1

φ
)(
∂(2s+1)
ν2(n−s)...ν2n

∂αφ
)]

−δνµL , (B.28)

and making all possible contractions we get

Tµν = 1
2

∞∑
n=0

fn(−1)n
n∑
s=0

[(
�n−sφ

)
(�s∂µ∂νφ)−

(
�n−s∂µφ

)
(�s∂νφ)

]
− 1

2m
2
∞∑
n=1

fn(−1)n
n−1∑
s=0

[(
�n−s−1φ

)
(�s∂µ∂νφ)−

(
�n−s−1∂µφ

)
(�s∂νφ)

]
− ηµνL ,

(B.29)

where we have replaced the indexes ν1 and α with ν and µ, respectively, and lowered
both of them. One can verify that the energy-momentum tensor in eq. (B.29) satisfy the
conservation law ∂µTµν = 0.
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The expression (B.29) does not recover the standard form of the energy-momentum
tensor in the two-derivative case because a total-derivative term should be added. Thus, we
now add the following term in order to recover the appropriate two-derivative limit:

Wµν = −1
2

∞∑
n=0

fn(−1)n
n∑
s=0

[
∂µ(�n−sφ�s∂νφ)− ηµν∂ρ(�sφ∂ρ�n−sφ)

]
+ 1

2m
2
∞∑
n=0

fn(−1)n
n−1∑
s=0

[
∂µ(�n−1−sφ�s∂νφ)− ηµν∂ρ(�sφ∂ρ�n−1−sφ)

]
. (B.30)

One can easily show that ∂µWµν = 0, which guarantees that the new energy-momentum
tensor Tµν → Tµν +Wµν remains conserved.

The new expression of the energy-momentum tensor reads:

Tµν = −ηµνL −
∞∑
n=0

fn(−1)n
n∑
s=0

[
�s∂µφ�

n−s∂νφ−
1
2ηµν∂ρ

(
�sφ∂ρ�n−sφ

)]

+m2
∞∑
n=1

fn(−1)n
n−1∑
s=0

[
�s∂µφ�

n−1−s∂νφ−
1
2ηµν∂ρ

(
�sφ∂ρ�n−1−sφ

)]
. (B.31)

It is also worth to mention that the form of the energy-momentum tensor in eq. (B.31)
coincides with the Rosenfeld-Belinfante energy-momentum tensor that one would obtain by
coupling the scalar field φ to gravity and taking the variation of the scalar field action with
respect to the spacetime metric gµν .
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