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1 Introduction

1.1 An expansion for the SU(N) Seiberg-Witten periods

The Seiberg-Witten (SW) solution of N = 2 SU(2) gauge theory in four dimensions [1, 2]
and its generalizations have led to many new insights into the dynamics of gauge theories
and string theories at strong coupling. In the original work [1], the exact low-energy effective
Lagrangian on the Coulomb branch of the pure SU(2) gauge theory was determined by
computing the periods of a suitable SW one-form over the homology cycles of an auxiliary
genus-one Riemann surface — the SW curve.

In this paper, we revisit the generalization of the SW solution to pure SU(N) gauge
theory [3–5], beginning with a brief sketch of its salient features. These theories have a
Coulomb branch that is parameterized by N − 1 complex coordinates un, n = 0, . . . , N − 2,
in correspondence with the gauge-invariant products of the SU(N) vector multiplet scalars.
At generic points on the Coulomb branch, the low-energy theory on the Coulomb branch
is a U(1)N−1 gauge theory described by N − 1 abelian N = 2 vector multiplets AI ,
I = 1, · · · , N − 1, whose complex scalar bottom components we denote by aI . Note that
the aI(u) are locally (but not globally) holomorphic functions of the Coulomb branch moduli.

The leading long-distance interactions of these vector multiplets are completely deter-
mined if we also specify N − 1 locally holomorphic functions aDI(u), which can be thought
of as vector multiplet scalars in a magnetic dual description. Then the Kähler potential
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describing the sigma model for the scalars is given by

K = i

4π

N−1∑
I=1

(
aI āDI − āI aDI

)
, (1.1)

while the symmetric matrix of complexified U(1)N−1 gauge couplings is given by τIJ =
∂aDI/∂aJ . It follows from N = 2 supersymmetry that the positive-definite Kähler met-
ric gIJ = ∂2K/∂aI∂āJ is (up to a positive constant) the same as the imaginary part
of τIJ .

The SW solution can be expressed through the 2(N−1) special coordinates aI(u), aDI(u)
(also called SW periods), which in turn are identified with the periods of a meromorphic
one-form λ on a canonical basis of homology cycles (AI ,BI) of a genus N − 1 hyperelliptic
curve C(u) that depends on the moduli,

2πi aI =
∮
AI

λ , 2πi aDI =
∮
BI

λ . (1.2)

The derivatives of the SW differential with respect to the moduli un are holomorphic
one-forms, which is sufficient to ensure the positivity of the Kähler metric. Different
choices of homology basis (AI ,BI) act on the special coordinates as electric-magnetic
duality transformations: a change of homology basis by M ∈ Sp(2(N − 1),Z) preserves the
canonical intersection pairing, while the period vector v = (aDI , aI) transforms under such
a duality transformation in the doublet representation.

The presentation of the SU(N) SW solution sketched above is deceptively simple:
obtaining explicit, tractable expressions for the periods that are valid in varied regions of
moduli space is in general a formidable challenge. For gauge group SU(2), the periods are
elliptic integrals and can be expressed in terms of Gauss hypergeometric functions [1]. The
latter have well-known analytic continuations in the entire u-plane. For general N , efficient
methods for obtaining the period integrals in certain limits have been developed in [6–12].
The SU(N) periods are known to satisfy Picard-Fuchs differential equations as functions
of the moduli un [5, 13] (see also [14, 15]). For SU(3) gauge group, the solutions to these
Picard-Fuchs equations were shown in [5] to be given by Appell F4 functions. However, the
complexity of the Picard-Fuchs equations increases rapidly with N .

A principal result of this paper is the derivation of a simple, exact series expansion for
the aI , aDI periods around the origin of moduli space, where all un vanish, generalizing
the earlier results for N = 2 and N = 3. This result is expressed as Theorem 2.1 below;
it is then refined in several Corollaries and exploited in various applications. For SU(2)
and SU(3) gauge groups, our series expansion reduces to the known hypergeometric and
Appell function representations, respectively. For higher N , it takes the form of a series
expansion in the moduli un, which is optimal in the sense that the coefficient of each
monomial u`00 · · ·u

`N−2
N−2 consists of a single factorized term.

1.2 Exploring the SU(N) Kähler potential

In addition to the SW periods aI , aDI themselves, another object whose properties we wish
to illuminate is the Kähler potential (1.1). Besides being an important ingredient in the low-
energy Lagrangian, our interest in the Kähler potential K derives from the observation [16]
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that K plays a critical role in a certain supersymmetry-breaking scenario that connects four-
dimensional N = 2 Yang-Mills theory with gauge group G to a non-supersymmetric G gauge
theory with two Weyl fermions transforming in the adjoint representation of G — in short,
Nf = 2 adjoint QCD. The renormalization group flow from the supersymmetric to the non-
supersymmetric theory is triggered by the soft supersymmetry-breaking deformation TUV ∼
Tr(φ̄φ), which gives mass to the complex N = 2 vector multiplet scalars. Crucially, the
operator TUV is the bottom component of the protected N = 2 stress-tensor supermultiplet;
it can therefore be reliably tracked to the low-energy description on the Coulomb branch,
where it is identified with the Kähler potential, i.e. TUV → TIR ∼ K. Several comments are
in order:

(i) Since TUV is a well-defined operator and it flows to K in the IR, it follows that the
Kähler potential given by (3.1) is a well-defined function on the Coulomb branch,
i.e. it does not suffer from the usual Kähler ambiguities, and it is invariant under
Sp(2(N − 1),Z) electric-magnetic duality transformations.1

(ii) Even though TUV ∼ Tr(φ̄φ) is classically positive-definite, quantum effects can render
its expectation value negative. Indeed we show below that there is a region of the
Coulomb branch — which we term the strong-coupling region — where K < 0. Note
that this region is well defined, because K is well defined (see (i) above).2

(iii) The deformation by TUV leads to a supersymmetry-breaking scalar potential pro-
portional to K on the Coulomb branch. In this way, the properties of K lead to a
prediction for the vacuum structure of non-supersymmetric Nf = 2 adjoint QCD,
which is reliable if the supersymmetry-breaking mass scale is small compared to the
strong coupling scale Λ of the N = 2 theory. In upcoming work [19], we utilize this
perspective to explore the phases of Nf = 2 adjoint QCD with gauge group SU(N).

With the preceding motivation in mind, we here apply our explicit and (relatively)
simple expressions for the SW periods, along with other analytic and numeric methods, to
study the global structure of the SW Kähler potential K, focusing on its stationary points
and convexity properties. For the case of gauge group SU(2), K(u) is a convex function of
the single complex modulus u, with a single minimum at the origin u = 0 of moduli space.
This minimum is depicted in figure 1, and was also previously discussed in [16, 20] in the
context of supersymmetry-breaking.

For general N > 2, K is a function of N − 1 complex variables, and the extraction
of its properties is considerably more involved. We prove that for general N , the origin
of moduli space where all un = 0 is a stationary point (see section 4.3). Since the SW
curve is invariant under a Z2N symmetry when all the un = 0 — corresponding to the
action of the unbroken Z4N R-symmetry on the moduli space — we refer to this point as
the Z2N -symmetric point (or simply the Z2N point). We compute the value K(0) at the

1The former statement is similar to constraints on Kähler potentials in theories with four supercharges [17,
18]. The latter statement is manifest from the definition (3.1).

2This region should not be confused with the strong-coupling chamber for massive BPS states, which will
also make an appearance below.
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Figure 1. The Kähler potential for gauge group SU(2) in the complex u-plane (with Λ = 1), made
using the hypergeometric function representation of the periods (see section 2.4). The black curve
indicates the K = 0 contour; it is the boundary of the strong-coupling region where K < 0. Note
that the monopole and dyon points (indicated by the blue dots) lie on this K = 0 boundary.

Z2N -symmetric point and show that it is negative, scaling with N as K(0) ∼ −N2 (and
given explicitly in (3.10)). Then, much as in SU(2), there is a region around the origin
for which K is negative, K < 0, which we refer to as the strong coupling region. The
boundary of this region for SU(2) is depicted by the black curve in figure 1, which contains
the singular monopole and dyon points. For general N , the N multi-monopole points —
the N > 2 generalization of the monopole and dyon points studied in [21] — also lie on the
K = 0 boundary of this region. In section 5.4 we numerically study this K = 0 surface for
the case of gauge group SU(3), slices of which are depicted in figures 4(a) and 4(b).

It is natural to conjecture that the origin is the unique global minimum of the Kähler
potential, and that K is everywhere convex, for all N . While this conjecture is as of yet
proven only for gauge group SU(2), it is supported by the following evidence that we present
throughout the paper:

• If K has another stationary point, it occurs at a negative value of K, i.e. within the
strong coupling region. The proof of this statement is given in section 4.1. Thus one
may restrict the search for another minimum to this region.

• For gauge group SU(3), we have thoroughly explored the Kähler potential numerically.
This analysis is presented in section 5.4. Our numerical studies have shown K to
be convex on every slice upon which we have evaluated it, with no evidence for a
minimum away from the Z2N -symmetric point at the origin.

• We obtain some partial analytic results that are valid for all N and consistent with
the convexity conjecture. For instance, on the slice parameterized by a single modulus
u0 (with all other un = 0) there is no stationary point for Im(u0) 6= 0 (see section 4.4).

It would be interesting to find a definitive proof (or disproof) of this conjecture, but we
leave this problem for the future.
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1.3 Charting candidate curves of marginal stability

It has been known since [1] that there are walls of marginal stability on the Coulomb
branch. In the simplest cases, such walls are loci where a massive BPS particle becomes
marginally unstable to decay into two (or more) other BPS particles — or conversely, loci
where two (or more) BPS particles can form threshold bound states.3 This occurs when the
complex central charges of the BPS particles in question, which are determined by the SW
periods, have aligned phases. The SU(2) case was completely understood in [1, 22]: a wall
of marginal stability separates the moduli space into a strong-coupling chamber around the
origin, and a weak-coupling chamber extending out to infinity. This wall precisely coincides
with the black K = 0 contour depicted in figure 1, i.e. the SU(2) strong-coupling chamber
for massive BPS states is the same as our strong-coupling region defined by K < 0.

Already the case of SU(3) gauge group is much richer, see for instance [23–25] for
discussions specifically focusing on this case, with many additional references to the large
literature on BPS states and wall crossing in 4d N = 2 theories.

As another application of our formulas for the SW periods of SU(N) gauge theory,
in section 6 we map out some candidate walls of marginal stability within the strong
coupling K < 0 region near the origin of the Coulomb branch. We emphasize that the scope
of our analysis is narrow: we do not claim to find all walls of marginal stability, nor do we
analyze the much more delicate question of which BPS states actually decay or form bound
states as we cross these walls. The results in this section should be viewed as motivation
for a more detailed study of this problem.

Outline. The remainder of this paper is organized as follows:
In section 2 we present a simple series expansion for the SU(N) SW periods around

the Z2N -symmetric point at the origin of moduli space, as well as various simplifications
of this expression for different special values of the moduli, and for low values of N . The
proof of the main theorem is relegated to appendix A, and the proof that the expansion
reproduces the SU(3) Appell functions appears in appendix B.

In section 3 we build on these results to express the Kähler potential in a simple
diagonal form. We evaluate K at the Z2N -symmetric point, showing that it behaves (up to
an O(1) positive coefficient) as −N2 for N � 1, and additionally discuss the structure of
the Kähler potential for restricted values of the moduli.

In section 4 we collect a number of general results regarding the structure of the Kähler
potential, including a proof that the Z2N -symmetric point is a stationary point (as expected
from the Z2N -symmetry), and that K is negative at an arbitrary stationary point. We also
re-express the derivatives of K with respect to the moduli as two-real-dimensional integrals,
which is useful both for proving some of the results in this section, and for numerical
computations in later sections.

In section 5 we restrict to the case of gauge group SU(3). By mapping the SW curve
and differential to an elliptic problem, we compute the SW periods on the cusp slice of
moduli space, where the discriminant of the curve vanishes — and which includes both

3In general more complicated phenomena are possible when a wall is crossed.
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the multi-monopole and the Argyres-Douglas [26] points of SU(3). We use these results
to evaluate K at special points of the moduli space. Next, we describe the results of a
numerical exploration of K, presenting evidence that the Kähler potential is convex and
that the Z2N -symmetric point at the origin is the only minimum. Appendix C includes
a brief review of elliptic functions and modular forms as needed for the analysis of this
section, and numerical methods for evaluating K are discussed in appendix D.

In section 6 we investigate candidate walls of marginal stability within the K < 0
strong-coupling region. We mostly focus on special slices of SU(3) moduli space, but also
present some results for general N . A summary of the BPS particles that are stable in the
strong-coupling chamber of the SU(N) theory (with emphasis on the case N = 3) appears
in appendix E.

Acknowledgments

The research of ED is supported in part by the National Science Foundation under grants
PHY-19-14412 and PHY-22-09700. The research of EN is supported by World Premier
International Research Center Initiative (WPI), MEXT, Japan. EN also acknowledges
the Aspen Center for Physics where part of this work was performed, which is supported
by National Science Foundation grant PHY-1607611. TD is supported by a DOE Early
Career Award under DE-SC0020421, by the Simons Collaboration on Global Categorical
Symmetries, and by the Mani L. Bhaumik Presidential Chair in Theoretical Physics at
UCLA. We are grateful to P. Dumitrescu, A. Neitzke, and F. Yan for useful discussions.
We especially thank E. Gerchkovitz for collaboration and discussion on closely related
work [12, 19].

2 Expanding the periods around the Z2N point

In this section we analyze the SW periods in the vicinity of the Z2N -symmetric SW curve,
or equivalently the Z2N -symmetric origin, where all un = 0, of the Coulomb branch.

2.1 Seiberg-Witten review

We consider pure N = 2 supersymmetric Yang-Mills theory with gauge group SU(N) (for
any N ≥ 2) and no hypermultiplets in four space-time dimensions. We begin by briefly
reviewing the Seiberg-Witten (SW) solution for this class of theories, which was found
in [1, 3–5]. This solution determines the vector multiplet scalars aI(u) and their magnetic
duals aDI(u) as locally holomorphic functions of the gauge invariant Coulomb branch
moduli un (n = 0, 1, . . . , N − 2). This is accomplished by expressing them as periods of a
meromorphic SW one-form (or differential) λ over a canonical basis of homology one-cycles
AI and BI ,

2πi aI =
∮
AI

λ , 2πi aDI =
∮
BI

λ , (2.1)

on a family of curves C(u) (known as SW curves) that depend holomorphically on the
moduli un. Recall that, given a compact, oriented surface a canonical homology basis of
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oriented one-cycles (AI ,BI) is defined by the following intersection pairings,

#(AI ,BJ) = δIJ , #(AI ,AJ) = 0 , #(BI ,BJ) = 0 , (2.2)

where #(X,Y ) = −#(Y,X) denotes the antisymmetric intersection pairing of the oriented
one-cycles X and Y .

It is standard to introduce a locally defined and holomorphic prepotential F(a), which
captures the relationship between the electric and magnetic periods aI(u) and aDI(u), as
well as the symmetric matrix τIJ(u) of effective holomorphic U(1)N−1 gauge couplings on
the Coulomb branch,

aDI = ∂F
∂aI

, τIJ = ∂aDI
∂aJ

= ∂2F
∂aI∂aJ

= τJI , (I, J = 1, · · · , N − 1) . (2.3)

The SW curve C(u) is parametrized by the N − 1 complex moduli u0, · · · , uN−2. For
each value of the un, the curve is hyper-elliptic and can be chosen to take the following
form,

y2 = A(x)2 − Λ2N , A(x) = xN −
N−2∑
n=0

unx
n , (2.4)

where Λ is the strong-coupling scale of the non-Abelian gauge theory.4 For the remainder
of this paper we set Λ = 1, so that all quantities are dimensionless. In terms of the data
in (2.4), the SW differential λ is given by

λ = xA′(x)dx
y

. (2.5)

By construction, the derivatives of the SW differential λ with respect to the moduli un
produce holomorphic Abelian differentials, modulo exact differentials,

∂λ

∂un
= ωn − dx

∂

∂x

(
xn+1√
A(x)2 − 1

)
, ωn = xndx√

A(x)2 − 1
. (2.6)

Here the ωn (with n = 0, . . . , N − 2) are holomorphic Abelian differentials of the first kind,
which furnish a basis for the Dolbeault cohomology H(1,0)(C(u),C). It follows that the
matrix τIJ (u) is the period matrix of the curve C(u) for a given set of un. By the Riemann
bilinear relations, τIJ (u) is symmetric and has positive definite imaginary part, as required
for a matrix of complexified U(1)N−1 gauge couplings in a unitary theory.

2.2 The Z2N -symmetric curve

The Seiberg-Witten curve C(0) at the origin of the Coulomb branch, obtained by setting
all un = 0 in (2.4), is given by

y2 = x2N − 1 . (2.7)

Note that C(0) is manifestly invariant under the following Z2N transformation,

(x, y)→ (εx,±y) , ε = e
2πi
2N , (2.8)

4For completeness, we note that our conventions for the curve differ from those in [8, 12] by anN -dependent
redefinition of the strong-coupling scale 4Λ2N

there = Λ2N
here .
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with ε a 2N -th root of unity. This symmetry descends from a physical Z4N discrete R-
symmetry of the N = 2 gauge theory, whose quotient by fermion parity (−1)F acts on the
bosonic moduli space coordinates un via the following Z2N action,

un → e
2πi(N−n)

2N un . (2.9)

Thus the origin, where all un = 0, is the unique point on the Coulomb branch where
this Z2N symmetry is unbroken. For this reason we refer to C(0) as the Z2N -symmetric
curve.

The branch points of C(0) are the 2N roots of unity εn, with n = 0, · · · , 2N − 1,
and the branch cuts in the hyper-elliptic representation may be chosen to lie along the
intervals [ε2I−2, ε2I−1] with I = 1, · · · , N . We define the cycles AI and BI (with I =
1, · · · , N) as follows,

AI =
I⋃

J=1
ÂJ , ÂI = (ε2I−2, ε2I−1) , BI = (ε2I−1, ε2I) . (2.10)

Here the intervals indicating the cycles are somewhat schematic. In truth, the cycles are
closed curves surrounding the branch points, as indicated in detail in figure 2 for the
case N = 3. Crucially, we choose the orientations of the cycles as indicated in the figure:
clockwise for ÂJ , AI and counter-clockwise for BI . This ensures that AI and BI comprise
a canonical homology basis in the sense of (2.2).

Warning. The cycles AI and BI defined above (which are very convenient near the origin)
do not coincide with other common duality frames used in SW theory, e.g. the standard
electric frame that is simply related to the UV theory by Higgsing (and that, in a suitable
sense, becomes weakly coupled at infinity in the moduli space), or the standard magnetic
frame that becomes weakly-coupled at the multi-monopole point where the maximal number
of mutually local monopoles become massless. Rather, our AI and BI cycles are related to
these bases by an electric-magnetic duality transformation. We will see this explicitly below.

Note that the N pairs of A- and B-cycles defined above are not independent: the union
of all A-cycles is homologically trivial, and so is the union of all B-cycles. Via (2.1), this
translates into

N∑
I=1

aI =
N∑
I=1

aDI = 0 , (2.11)

as required in SU(N) gauge theory.

2.3 Expanding around the Z2N -symmetric curve

Given the conventions spelled out above, the periods aI(u), aDI(u) (with I = 1, · · · , N − 1)
can be expressed as follows,

aI =
I∑

J=1

{
Q(ε2J−1)−Q(ε2J−2)

}
, aDI = Q(ε2I)−Q(ε2I−1) , ε = e

2πi
2N . (2.12)
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••

0
ε0

ε1ε2

ε3

ε4 ε5

Â1Â2

Â3

B1

B2 B3

Figure 2. Branch points x = εn for the Z2N -symmetric curve y2 = x2N − 1 for the special
case N = 3, for which ε = e2πi/6. The branch cuts are denoted by black double lines, while the ÂJ
and BI cycles defined above are shown in blue and red, respectively. The integration paths used to
define the function Q(ξ) (see (2.13) below) are shown in green.

Here Q(ξ) is a function on the 2N -th roots of unity ξ (i.e. ξ2N = 1), which is defined as the
integral of the SW differential λ in (2.5) along a path from x = 0 to x = ξ (i.e. one of the
green paths in figure 2),

πiQ(ξ) =
∫ ξ

0
λ . (2.13)

As usual, the factors of 2 in (2.12) account for the fact that the integral over a full cycle is
twice the integral over the corresponding interval on a single sheet of the curve.

The function Q(ξ) is a hyper-elliptic integral whose series expansion in powers of the
moduli un is given by the following theorem:

Theorem 2.1 The function Q(ξ) has the following series expansion around un = 0,

Q(ξ) =
∞∑

{`n}=0
n=0,...,N−2

VL,M (ξ)
u`00 · · ·u

`N−2
N−2

`0! · · · `N−2! , L =
N−2∑
j=0

j`j , M =
N−2∑
j=0

`j , (2.14)

where the coefficients VL,M (ξ) are given by,

VL,M (ξ) = 2M−(L+1)/N

2π2N
ξNM+L+N+1Γ(L+1

N )Γ(NM−L−1
2N )2 sin2 (πNM−L−1

2N
)
. (2.15)
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The proof of this theorem is essentially calculational; we defer the details to appendix A.
Note that the resulting series expansion is optimal, i.e. the coefficient of each monomial
u`00 · · ·u

`N−2
N−2 consists of a single factorized term. The following corollaries are direct conse-

quences of Theorem 2.1.

Corollary 2.2 The summation over `0 may be carried out to express Q(ξ) in terms of an
infinite series of Gauss hypergeometric functions F (a, b; c; z) = 2F1(a, b; c; z),

Q(ξ) =
∞∑

`1,...,`N−2=0

2M0−(L+1)/N

2π2N
ξNM0+L+N+1 Γ(L+1

N )YM0(ξN , L)
u`11 · · ·u

`N−2
N−2

`1! · · · `N−2! , (2.16)

where L = ∑N−2
j=0 j`j and M0 = ∑N−2

j=1 `j, while the coefficients YM0(ξN , L) are given by

YM0(ξN ,L) = 2u0 ξ
N cos2 (πNM0−L−1

2N
)
Γ(NM0+N−L−1

2N )2F
(
NM0+N−L−1

2N , NM0+N−L−1
2N ; 3

2 ; u2
0

)
+sin2 (πNM0−L−1

2N
)
Γ(NM0−L−1

2N )2F
(
NM0−L−1

2N , NM0−L−1
2N ; 1

2 ; u2
0

)
. (2.17)

Corollary 2.3 In the special case where un = 0 for all n 6= 0, the function Q(ξ) is given
by a linear combination of Gauss hypergeometric functions Q(ξ) = ξQ1 + ξN+1QN+1, with

Q1 =
u0 Γ(1 + 1

2N )
2 Γ(3

2) Γ(1
2 + 1

2N )
F
(
N−1
2N , N−1

2N ; 3
2 ;u2

0
)
,

QN+1 =
Γ(1

2 + 1
2N )

2 Γ(1
2) Γ(1 + 1

2N )
F
(− 1

2N ,− 1
2N ; 1

2 ;u2
0
)
. (2.18)

The proof of these corollaries, using the results of Theorem 2.1 as well as the standard series
representation of F (a, b; c; z), is essentially straightforward and left to the reader. Note
that while the hypergeometric functions appearing in these corollaries may be analytically
continued to all values of u0, it is in general not clear how this affects the convergence of
the resulting series expansions.

2.4 Comparison to known SU(2) results

When N = 2, the only modulus is u0. Then (2.12) (with ε = i) together with Corollary 2.3
implies that

a = Q(i)−Q(1) = (i− 1)Q1 − (i+ 1)Q3 ,

aD = Q(−1)−Q(i) = −(1 + i)Q1 − (1− i)Q3 , (2.19)

where the functions Q1 and Q3 are defined in Corollary 2.3 by,

Q1(u0) =
u0Γ

(
5
4

)
2Γ
(

3
2

)
Γ
(

3
4

)F (1
4 ,

1
4 ; 3

2 ;u2
0) ,

Q3(u0) =
Γ
(

3
4

)
2Γ
(

1
2

)
Γ
(

5
4

)F (−1
4 ,−1

4 ; 1
2 ;u2

0) . (2.20)
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Note that these functions have two symmetric branch cuts running from u0 = ±1 to u0 = ±∞
along the real axis.

Let us compare this to the SU(2) periods determined by Seiberg and Witten (SW)
in [1, 2]; we will follow the conventions of their [2]. Taking into account an overall factor
of
√

2 that results from differently normalized strong coupling scales (Λus =
√

2ΛSW, as in
footnote 4), we obtain,

aSW(u0) =
√

1 + u0 F (−1
2 ,

1
2 ; 1; 2

1+u0
) ,

aD,SW(u0) = i(u0 − 1)√
2

F (1
2 ,

1
2 ; 2; 1−u0

2 ) . (2.21)

Here we are using a representation in terms of hypergeometric functions that was spelled
out in [27] (see also section 4.1 of [16]). The conventions are such that aSW(u0) has a branch
cut running from the monopole point u0 = 1 to −∞ along the real axis, while aD,SW(u0)
has a branch cut running from the dyon point u0 = −1 to −∞ along the real axis. Note
that aD,SW = 0 at the monopole point u0 = 1. By contrast, we find that a = aD 6= 0
at u0 = 1.

We claim that our periods a, aD and the SW periods aSW, aD,SW are related by an
electric-magnetic duality transformation. This transformation can be determined by ana-
lytically continuing aSW(u0) to the origin u0 = 0 by going above the monopole point and
through the upper half plane.5 We can then verify that6

aSW = −a , aD,SW = a− aD ,
(
−1 0
1 −1

)
∈ SL(2,Z) . (2.22)

2.5 Comparison to known SU(3) results

Explicit formulas for the periods in the case N = 3 were obtained in [5] using Picard-Fuchs
equations. The authors expressed their results in terms of Appell F4 functions, which can
be defined by the following series expansion,

F4(a, b, c1, c2;x, y) =
∞∑

m,n=0

Γ(m+ n+ a)Γ(m+ n+ b)Γ(c1)Γ(c2)
Γ(a)Γ(b)Γ(m+ c1)Γ(n+ c2)m!n! xmyn . (2.23)

We recover their results in the following corollary:

Corollary 2.4 The periods for gauge group SU(3) are given by the relations (2.12) in
terms of the function Q(ξ), which for SU(3) simplify as follows,

a1 = Q(ε1)−Q(ε0) , aD1 = Q(ε2)−Q(ε1) ,
a2 = Q(ε1)−Q(ε0) +Q(ε3)−Q(ε2) , aD2 = Q(ε4)−Q(ε3) . (2.24)

5Due to the monodromy around the monopole point, other continuation paths will lead to different
duality transformations.

6This is straightforward for the second relation aD,SW = a−aD by explicitly expanding all hypergeometric
functions around u0 = 0, where all of these expansions converge. In order to verify that aSW = −a we can
use Mathematica, whose conventions for analytically continued hypergeometric functions agree with ours.
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The function Q(ξ) can be expanded in inequivalent representations of Z6,

Q(ξ) = ξ4Q0,0 + ξ2Q1,0 + ξ0Q2,0 + ξ1Q0,1 + ξ5Q1,1 + ξ3Q2,1 . (2.25)

The formula for Q(ξ) given in Theorem 2.1 may be recast in terms of Appell functions Qs,t
expressed as follows in terms of the variables x = 4u3/27 and y = v2 with u = u1 and
v = u0,

Q0,0 =
2 1

3 3 3
2 Γ(2

3)3

4π2 F4(−1
6 ,−1

6 ,
2
3 ,

1
2 ;x, y) ,

Q0,1 = 2π
2 1

3 3 3
2 Γ(2

3)3
v F4(1

3 ,
1
3 ,

2
3 ,

3
2 ;x, y) ,

Q1,0 = 2π
2 1

3 32 Γ(2
3)3

uF4(1
6 ,

1
6 ,

4
3 ,

1
2 ;x, y) ,

Q1,1 =
2 1

3 Γ(2
3)3

4π2 uv F4(2
3 ,

2
3 ,

4
3 ,

3
2 ;x, y) . (2.26)

Additionally, we have Q2,1 = 0, while Q2,0 cancels out of all periods. These expressions,
including their normalizations, agree with [5].

The proof of this corollary is given in appendix B. We note that the double infinite
series for the Appell function is absolutely convergent for

√
|x|+

√
|y| < 1 which gives the

following region of absolute convergence in terms of u and v,

2√
27 |u|

3
2 + |v| < 1 . (2.27)

Beyond this region, partial analytic continuation formulas are known for the Appell func-
tions,7

F4(a, b, c1, c2;x, y) = Γ(c1)Γ(b− a)
Γ(b)Γ(c1 − a) (−x)−aF4(a, a+ 1− c1, a+ 1− b, c2; 1

x ,
y
x)

+ Γ(c1)Γ(a− b)
Γ(a)Γ(c1 − b)

(−x)−bF4(b, b+ 1− c1, b+ 1− a, c2; 1
x ,

y
x) ,

(2.28)

which gives the following region in terms of u and v,

1 + |v| < 2√
27 |u|

3
2 , (2.29)

allowing us to explore the region of large |u| and small |v|. Recent progress on the analytic
continuation of F4 may be found in [28].

7These are obtained by expressing F4 as an infinite sum of hypergeometric functions, such as

F4(a, b, c1, c2;x, y) =
∞∑
n=0

Γ(n+ a)Γ(n+ b)Γ(c2)
Γ(a)Γ(b)Γ(n+ c2)n! yn F (n+ a, n+ b; c1;x) ,

and applying inversion formulas for the hypergeometric functions.
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2.6 Expanding periods of holomorphic Abelian differentials

To evaluate the series expansion of the holomorphic Abelian differentials ωn for the family
of SW curves C(u), we use their relation with the SW differential given in (2.6). The second
term on the right side in (2.6) is an exact differential of a single-valued holomorphic function
for 0 ≤ n ≤ N − 2, and thus integrates to zero on all closed homology cycles. We can thus
write the periods of the holomorphic Abelian differentials as follows,

2πi ∂naI =
∮
AI

xn dx√
A(x)2 − 1

=
∮
AI

ωn ,

2πi ∂naDI =
∮
BI

xn dx√
A(x)2 − 1

=
∮
BI

ωn , (2.30)

which shows that they are simply derivatives of the SW periods aI , aDI with respect to
un.8 Using (2.12), these in turn may be expressed in terms of un-derivatives of the function
Q(ξ),

∂naI =
I∑

J=1

{
∂nQ(ε2J−1)− ∂nQ(ε2J−2)

}
,

∂naDI = ∂nQ(ε2I)− ∂nQ(ε2I−1) . (2.31)

The derivatives ∂nQ(ξ) are given by Theorem 2.1 as follows,

∂nQ(ξ) =
∞∑

`m=0
m=0,...,N−2

`n
un

u`00 · · ·u
`N−2
N−2

`0! · · · `N−2! VL,M (ξ) , (2.32)

where L,M and VL,M (ξ) are the same as in Theorem 2.1. In the above sum, it is understood
that whenever un = 0 one also has `n = 0 in the first factor in the summand.

3 Expanding the Kähler potential around the Z2N point

In this section we express the Kähler potential for pure N = 2 Seiberg-Witten theory with
gauge group SU(N), defined in terms of the periods aI and aDI by (1.1), which we repeat
here for convenience,

K = i

4π

N−1∑
I=1

(
aI āDI − āI aDI

)
, (3.1)

in terms of the functions Q(ξ), defined in (2.13) as (hyper-) elliptic integrals. The series
expansion of the Kähler potential is then readily obtained from the series expansion of the
functions Q(ξ), derived in Theorem 2.1. We thus have the following theorem:

Theorem 3.1 In terms of the Fourier coefficients Qj in the decomposition of the function
Q(ξ) into inequivalent representations of Z2N ,

Q(ξ) =
2N−1∑
j=0

Qj ξ
j , (3.2)

8Here we use the shorthand ∂f/∂un = ∂nf . Note that the matrix of complexified gauge couplings τIJ is
identified with the period matrix of the curve as τIJ = ∂naDI(∂naJ)−1.
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the Kähler potential takes the following diagonal form,

K = N

2π

2N−1∑
j=1
j 6=N

|Qj |2 tan
(
πj

2N

)
. (3.3)

The function Q0 does not enter the expression for the Kähler potential, and QN = 0.
To prove Theorem 3.1, we use the expression (2.13) for the periods in terms of the

function Q(ξ), as well as Theorem 2.1 giving a decomposition of Q(ξ) in powers of ξ.
To show that QN = 0 we observe that the coefficient of ξN in VL,M (ξ) of Theorem 2.1

can arise only when NM −L−1 ≡ 0 (mod 2N). When this relation holds, the sine function
that appears in VL,M (ξ) vanishes. Moreover, the Γ-function of the same argument is non-
singular since we have NM − L ≥ 2 whenever at least one `n 6= 0 and NM − L− 1 = −1
when all `n = 0. As a result, QN = 0.

To evaluate the Kähler potential in terms of the functions Qj , we substitute the
expansion (3.2) into the expressions for the periods in (2.12) and carry out the sum over J ,

aI = −
2N−1∑
j=1

Qj
1− ε2Ij

1 + εj
, aDI =

2N−1∑
j=1

Qj(1− ε−j)ε2Ij . (3.4)

The Kähler potential is then given by

−4πiK =
2N−1∑
j,k=1

QjQ̄k
(1 + εj)(1 + ε̄k)

N−1∑
I=1

[
(εk − ε−k)(ε−2Ik − ε2I(j−k))

+ (εj − ε−j)(ε2Ij − ε2I(j−k))
]
. (3.5)

The summation over I gives the following,

N−1∑
I=1

ε2Ik = −1 +
N−1∑
I=0

ε2Ik = Nδk≡0 − 1 . (3.6)

Here we use δk≡0 = δk≡0 (modN) to represent the Kronecker symbol mod N . In carrying
out the summations over I the contribution of the additive term −1 cancels out. The
contributions j = N and k = 0 cancel in view of QN = 0, a fact that was established above.
This leaves only the contributions δj−k≡0,

K = N

4πi

2N−1∑
j,k=1

QjQ̄k
(1 + εj)(1 + ε̄k)

[
εk − ε−k + εj − ε−j

]
δj−k≡0 . (3.7)

Next, we solve δj−k≡0 which gives k = j + αN for some integer α. The solutions for the
ranges of k and j involved in the sums are as follows,

k = j 1 ≤ j ≤ N − 1 and N + 1 ≤ j ≤ 2N − 1
k = j +N 1 ≤ j ≤ N − 1
k = j −N N + 1 ≤ j ≤ 2N − 1 (3.8)
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The fact that QN = 0 implies that the contributions j = N and k = N are absent. For the
solutions k = j ±N , we have εj + εk = 0, so that their contributions to K vanish. This
leaves only the contribution from k = j,

K = N

2πi

2N−1∑
j=1
j 6=N

|Qj |2
|1 + εj |2 (εj − ε−j) . (3.9)

Expressing ε = e2πi/2N in terms of real variables we readily obtain (3.3), thereby completing
the proof of Theorem 3.1.

3.1 The value of K at the Z2N -symmetric point

At the symmetric point, we have un = 0 for all n = 0, · · · , N − 1. Using the results of
Corollary 2.2 for u0 = 0, we find that Q(ξ) = ξN+1QN+1 where QN+1 is given by the
corollary. Using the expression (3.3) for the Kähler potential, with the only non-vanishing
contribution from j = N + 1, we readily obtain

K(un = 0) = − N

8π2
Γ(1

2 + 1
2N )2

Γ(1 + 1
2N )2 cot

(
π

2N

)
. (3.10)

This formula has two noteworthy features:

• K(un = 0) is negative.

• K(un = 0) scales as −N2/4π2 for N � 1.

3.2 Structure of the Kähler potential on restricted moduli

An immediate consequence of Theorem 3.1 is that the number NQ of independent func-
tions Qj that can contribute to the Kähler potential is bounded from above, NQ ≤ 2N − 2,
with equality being attained for generic moduli. Setting some of the moduli to zero may
decrease the number NQ to values smaller than 2N − 2. In this subsection, we shall give a
formula for NQ as a function of the choice of non-vanishing moduli.

At the Z2N -symmetric point, all moduli un vanish so that only QN+1 is non-zero and
we have NQ = 1 for any value of N . On the slice un = 0 for all n = 1, · · · , N − 2 and u0 6= 0
we have NQ = 2 as shown in Theorem 2.1. More generally, the number of independent Qj
functions contributing to the Kähler potential equals the number of distinct values, other
than ε0 and εN , taken by the roots of unity function εNM+N+1+L in the expression for Q(ξ)
given in Theorem 2.1.

Let uj1 , . . . , ujp be the set of distinct moduli that differ from zero, while all other
moduli vanish, and define the set S = {j1, j2, · · · , jp} ⊂ {0, 1, 2, · · · , N − 2}. In terms of
these data, the roots of unity function takes the following values,

NQ = #
({
εN+1 ∏

j∈S
ε(N+j)`j

}
0≤`j≤2N−1

\ {ε0, εN}
)
. (3.11)
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Here the `j are allowed to take all possible values in the range 0 ≤ `j ≤ 2N−1. A significant
simplification occurs when N + j is even for every j ∈ S. In this case ε0 and εN never
belong to the range of the root of unity function and we simply have,

NQ = #
{
εN+1 ∏

j∈S
ε(N+j)`j

}
0≤`j≤2N−1

. (3.12)

As an example, consider the case N = 4k, with only the modulus u2k turned on,

NQ = #
{
εN+1(−i)`2k

}
0≤`2k≤3

= |Z4| = 4 . (3.13)

Note that the counting procedure outlined above is correlated with the breaking pattern of
the Z2N symmetry on the moduli space.

4 Some exact properties of the Kähler potential

In this section we present a number of general results about the Kähler potential, which
offer evidence for its overall structure advocated in this paper. The derivations of these
results are direct and exact, i.e. they do not rely on the series expansion of the periods
around the Z2N symmetric point presented in Theorem 2.1.

4.1 K is negative at an arbitrary stationary point

At an arbitrary stationary point of K, the value of K is negative. This may be established
by using the partial derivative of K with respect to an arbitrary modulus un and using the
fact that aI and aDI are holomorphic in un,

∂K

∂un
= i

4π
∑
I

∂aI
∂un

(
āDI −

∑
J

τIJ āJ

)
= 0 . (4.1)

Since the matrix ∂aI/∂un is invertible, the vanishing condition required at an arbitrary
stationary point of K simplifies and we have,

āDI −
∑
J

τIJ āJ = 0 , (4.2)

for I = 1, . . . , N − 1. Using this relation to eliminate aDI and āDI from K, we obtain,

K
∣∣
stationary = − 1

2π
∑
I,J

aI āJ Im (τIJ) = − 1
2π
∑
I,J

aDI āDJ (Im τ)−1
IJ ≤ 0 . (4.3)

This inequality is strict as long as the vectors aI and aDI are not both identically zero.

4.2 K as a two-dimensional integral

In this subsection, we shall prove that derivatives of the Kähler potential K can be written
as real, two-dimensional integrals over the SW curve C(u), via the following formulas,

∂K

∂ūn
= i

16π3

∫
C(u)

λ ∧ ∂λ̄

∂ūn
= 1

8π3 lim
R→∞

∫
|x|<R

d2x
xA′(x) x̄n
|A(x)2 − 1| , (4.4)
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where d2x = i
2dx ∧ dx̄. The SW differential λ is meromorphic in all its ingredients and

has only double poles at P± = ±∞. The formula is established using calculations similar
to those used to prove the Riemann bilinear relations on the integrals involving Abelian
differentials. Indeed, the starting point is the relation,

∂K

∂ūn
= i

16π3
∑
I

(∮
AI

λ

∮
BI

ω̄n −
∮
BI

λ

∮
AI

ω̄n

)
, (4.5)

where the holomorphic differentials ωn were given in (2.6) by

∂λ

∂un
= ωn + (exact differential) , ωn = xndx√

A(x)2 − 1
. (4.6)

To recast (4.5) in terms of a two-dimensional integral, we introduce a simply-connected
domain Mε in C, where Mε is obtained from the SW curve C(u) by cutting the latter open
along the AI and BI cycles of a canonical homology basis and removing coordinate discs,
of coordinate radius ε > 0, centered at P± with boundaries γ±. In the simply-connected
domain Mε, we may write the closed form ωn as the exact differential ωn = dfn of a function
fn that is single-valued in Mε. With this set-up, we evaluate the following integral,∫

Mε

λ ∧ ω̄n =
∫
Mε

λ ∧ df̄n = −
∫
Mε

d(f̄nλ) = −
∮
∂Mε

f̄nλ . (4.7)

Decomposing the integral over ∂Mε into integrals over cycles, we obtain (see e.g. [29])

−
∮
∂Mε

f̄nλ =
∑
I

(∮
AI

λ

∮
BI

ω̄n −
∮
BI

λ

∮
AI

ω̄n

)
+
∮
γ+
f̄nλ+

∮
γ−
f̄nλ . (4.8)

The integrals over AI and BI cycles may be read off from the properties of the SW
differential and the period matrix, while the integrals over γ± vanish, as may be seen by
expanding f̄n(z) in a series near the points P±. Taking the limit ε→ 0 gives a prescription
for regularizing the double pole in the surface integral, and we obtain,∫

C(u)
λ ∧ ω̄n = 2πi

∑
I

(
−aDI +

∑
J

τ̄IJaJ

)
∂āI
∂ūn

. (4.9)

From the definition of K we obtain,

∂K

∂ūn
= i

4π
∑
I

(
−aDI +

∑
J

τ̄IJaJ

)
∂āI
∂ūn

. (4.10)

Re-expressing this relation in terms of the variables un we obtain the first equality in (4.4);
substituting the values for the SW differential and making the regularization explicit
establishes the second equality in (4.4).

As an aside, the convexity of K for gauge group SU(2) can be proven by differentiat-
ing (4.4), and showing that the determinant of the Hessian is strictly positive. For general
N > 2 such arguments can be used to demonstrate positivity of the derivatives of K on
certain sub-slices of moduli space, but we have not succeeded in generalizing them to prove
the conjecture that the origin is the only minimum of K.
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4.3 The Z2N -symmetric point is a stationary point of K

Here we verify that the symmetric point, defined by un = 0 for all n = 0, 1, . . . , N − 2, is a
stationary point of K, as expected from the fact that K is invariant under Z2N rotations.
To establish this directly, we use formula (4.4) above for the gradient of K as a surface
integral,

∂K

∂ūn
= 1

8π3

∫
C
d2x

xA′(x) x̄n
|A(x)2 − 1| . (4.11)

At the symmetric point, we have A(x) = xN , so that,

∂K

∂ūn

∣∣∣∣
u=0

= N

8π3

∫
C
d2x

xN x̄n

|x2N − 1| . (4.12)

Under a rotation on x by angle 2π/2N ,

x = εy , ε = e2πi/2N , (4.13)

the denominator and the measure d2x are invariant, but the remaining part of the numerator
is not invariant, and we have,∫

C
d2x

xN x̄n

|x2N − 1| = εN−n
∫
C
d2y

yN ȳn

|y2N − 1| . (4.14)

Since εN−n 6= 1 for all n = 0, · · · , N − 2, the integral must vanish for all n, which shows
that the symmetric point is a stationary point. Note that the periods aI are manifestly not
zero at that point, so that the value of K at the symmetric point must be negative (as was
already shown in (3.10)).

4.4 ∂K/∂ū0 6= 0 whenever Im (u0) 6= 0

We shall now prove a stronger statement that implies the result of section 4.3 above:
Im (∂K/∂ū0) > 0 for Im (u0) > 0, where we stress that both inequalities are strict. This
result will imply that ∂K/∂ū0 6= 0 whenever Im (u0) 6= 0. Our starting point is (4.4) for
A(x) = xN − u0 and we change integration variable from x to z = xN to obtain

∂K

∂ū0
= 1

8π3N

∫
C

d2z

|z|2− 2
N

z

|z − u0 + 1| |z − u0 − 1| . (4.15)

We decompose z and u0 into real coordinates z = x+iy and u0 = v1+iv2 with x, y, v1, v2 ∈ R,
and take the imaginary part of the above equation,

Im ∂K

∂ū0
= 1

8π3N

∫ ∞
−∞

dx

∫ ∞
−∞

dy
ϕ(x, y, u0)
|x2 + y2|1− 1

N

, (4.16)

where the function ϕ is given by,

ϕ(x, y, u0) = y(
(x− v1 + 1)2 + (y − v2)2) 1

2
(
(x− v1 − 1)2 + (y − v2)2) 1

2
. (4.17)
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Decomposing the integration over y into positive and negative parts, and reducing both
integrations to y > 0, we obtain,

Im ∂K

∂ū0
= 1

8π3N

∫ ∞
−∞

dx

∫ ∞
0

dy
ϕ(x, y, u0) + ϕ(x,−y, u0)

|x2 + y2|1− 1
N

. (4.18)

Note that (x− v1 ± 1)2 + (y + v2)2 > (x− v1 ± 1)2 + (y − v2)2 as long as v2 > 0. Thus, for
Im (u0) = v2 > 0 we have

ϕ(x, y, u0)− ϕ(x,−y, u0) > 0 , (4.19)

uniformly throughout the domain of integration, and thus Im (∂K/∂ū0) > 0, strictly.

4.5 ∂K/∂u0 6= 0 for real u0 6= 0

A subtle analysis, which is much more involved than the one given above for Im (u0) 6= 0
and that we shall not reproduce here, allows one to show that ∂K/∂u0 is non-zero also
when u0 is purely real and non-zero. The result is obtained by a detailed bound on various
combinations that appear in the integrand.

5 Exploring the Kähler potential for SU(3)

The goal of this section is to explore the behavior of the Kähler potential for the case of
gauge group SU(3) using a variety of complementary analytic and numerical techniques.

5.1 Expansion around the Z6-symmetric point

The exact series expansion around the Z6-symmetric curve given by Theorem 2.1, or via
Appell functions in Corollary 2.4, is absolutely convergent in a finite neighborhood of
moduli space surrounding the origin u = v = 0. The boundaries of this region are set by
the singularities that arise when branch points collide. For SU(3) gauge group the Kähler
potential takes the following form (see Theorem 3.1),

K(u, v) =
√

3
2π
[
|Q0,1|2 + 3|Q1,0|2 − 3|Q0,0|2 − |Q1,1|2

]
. (5.1)

The special slice u = 0 reduces to Gauss hypergeometric functions,

K(0, v) =
√

3
2π
[
|Q0,1|2 − 3|Q0,0|2

]
, Q0,0 =

2 1
3 3 3

2 Γ(2
3)3

4π2 F (−1
6 ,−1

6 ; 1
2 ; v2) ,

Q0,1 = 2π v
2 1

3 3 3
2 Γ(2

3)3
F (1

3 ,
1
3 ; 3

2 ; v2) , (5.2)

as does the special slice v = 0,

K(u, 0) =
√

3
2π
[
3|Q1,0|2 − 3|Q0,0|2

]
, Q0,0 =

2 1
3 3 3

2 Γ(2
3)3

4π2 F (−1
6 ,−1

6 ; 2
3 ; 4u3

27 ) ,

Q1,0 = 2π u
2 1

3 32 Γ(2
3)3

F (1
6 ,

1
6 ; 4

3 ; 4u3

27 ) . (5.3)

The full control over the analytic continuation of the hypergeometric function allows for a
complete picture of K in either the u = 0 or v = 0 slices through moduli space.
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5.2 The cusp slice

In this subsection, we explore the behavior of the SW periods and of the Kähler potential
on the cusp slice for gauge group SU(3), namely the section of moduli space along which
the discriminant of the SW curve vanishes.

5.2.1 Definition

The SW curve may be parametrized by u = u1 and v = u0, following the notation of [5],

y2 = (x3 − ux− v − 1)(x3 − ux− v + 1) , λ = (3x3 − ux)dx
y

. (5.4)

Both factors on the right side of y2 cannot vanish simultaneously, so that the discriminant
of the SW curve factors into the product ∆+∆− of the discriminants of each factor (up to
an overall constant), with

∆± = 4u3 − 27(v ∓ 1)2 . (5.5)

The cusp divisor is the union of the vanishing sets of ∆+ and ∆−. The two sets are related
by (u, v)→ (−u,−v), and the SW curve and differential are invariant provided we also let
(x, y)→ (−x,−y). Thus, we concentrate on ∆+ for which v is given as a function of u by,

v = 1 +
(

4u3

27

) 1
2

. (5.6)

Note that the N = 3 Argyres-Douglas points [26], as well as the multi-monopole points
(i.e. the N = 3 generalization of the SU(2) monopole and dyon points, studied for instance
in [8, 12, 21]), lie on the cusp slice, as they satisfy

(u3, v2)AD = (0, 1) , (u3, v2)mon = (27/4, 0) . (5.7)

Inspection of the boundary of absolute convergence of the Appell functions in (2.27)
and (2.29) reveals that the above cusp relation sweeps out a divisor that intersects with the
boundary of convergence. For this reason the Appell function solution, even if analytically
continued with the help of (2.28), is expected to be of limited use for evaluating the periods
and the Kähler potential on the cusp slice.

5.2.2 Mapping to an elliptic problem

Instead, we shall use the special properties of the cusp slice to solve it with the help of
elliptic functions and modular forms. We begin by substituting the cusp relation (5.6) into
the expression for the SW curve,

y2 =
(
x3 − ux− 2−

(
4u3

27

) 1
2
)(

x3 − ux−
(

4u3

27

) 1
2
)
. (5.8)

It will be convenient to scale out the modulus u by using the new variables ξ, κ,

ξ =
(3
u

)1
2
x , κ =

( 27
4u3

) 1
2
, (5.9)
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in terms of which the SW curve and differential become,

y2 =
(
u

3

)3
(ξ + 1)2(ξ − 2)(ξ3 − 3ξ − 2− 4κ) ,

λ =
√

3u ξ(ξ − 1)dξ√
(ξ − 2)(ξ3 − 3ξ − 2− 4κ)

. (5.10)

Note that the factor (ξ + 1)2 in the equation for the SW curve cancels out from the SW
differential. This cancellation is the crucial ingredient in reducing the SW differential to
an elliptic differential whose denominator is the square root of a quartic polynomial. By
contrast the denominator of the original SW differential involved the square root of a
polynomial of degree 6. The explicit knowledge of one of the roots of the quartic polynomial,
namely ξ = 2, allows us to send that point to infinity using a Möbius transformation from
the variable ξ to a new variable χ. The resulting polynomial is now cubic. Choosing the
remaining freedom in the Möbius transformation to cancel the term quadratic in χ in the
cubic polynomial determines the appropriate change of variables uniquely,

ξ = 2− 4κ
χ− 3 . (5.11)

In terms of χ the SW differential becomes,

λ = 4
√

3u (χ− 3− 2κ)(χ− 3− 4κ)dχ
(χ− 3)2

√
4χ3 − 12(9 + 8κ)χ+ 8(8κ2 + 36κ+ 27)

. (5.12)

The square root in the denominator is now over a polynomial of degree three in χ whose
quadratic term vanishes.

5.2.3 Uniformization

The SW differential obtained in (5.12) may be uniformized in terms of the Weierstrass
elliptic function ℘(z) with periods 1 and τ , using the differential equation it satisfies,

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 , (5.13)

where g2 and g3 are the standard modular forms of weight 4 and 6 respectively, with respect
to the periods 1 and τ .9 However, in mapping the SW differential to the elliptic problem, we
need to leave the periods 2ω and 2ω′ with ω′/ω = τ to be determined by the SW problem.
Restoring arbitrary periods may be carried out by using the degrees of homogeneity in the
periods, which are 2, 4 and 6 for ℘(z), g2 and g4 respectively. Thus, we uniformize the
Seiberg-Witten curve and differential by making the following change of variables,

℘(z) = χ (2ω)2 , g2 = 12(8κ+ 9) (2ω)4 ,

g3 = −8(8κ2 + 36κ+ 27) (2ω)6 . (5.14)

The complex coordinate z takes values in the fundamental parallelogram with vertices
{0, 1, τ, τ + 1}. The uniformized SW differential is then given by,

λ = 8ω
√

3u f(z) dz , (5.15)
9A summary of elliptic functions and modular forms needed here is provided in appendix C.
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where the elliptic function f(z) is given by,

f(z) = 1− 24ω2κ

℘(z)− 12ω2 + 128ω4κ2

(℘(z)− 12ω2)2 . (5.16)

The reduced discriminant ∆ = g3
2 − 27g2

3 and the j-function evaluate as follows,

∆(τ) = −212 × 27 (2ω)12κ3(κ+ 1) , j(τ) = −27 (8κ+ 9)3

κ3(κ+ 1) . (5.17)

Given κ in terms of u as in (5.9), the modulus τ may be obtained by the standard expression
in terms of hypergeometric functions F = 2F1 [30, 31],

τ = i√
3
F
(

1
3 ,

2
3 ; 1;−κ

)
F
(

1
3 ,

2
3 ; 1; 1 + κ

) . (5.18)

A final rearrangement of λ is made to obtain an expression that may be easily integrated to
obtain the periods. To do so, we define a point z0 such that 12ω2 = ℘(z0). By matching
zeros and poles we obtain the following alternative expression for f(z),

f(z) = 1
4 + 3

8℘(z0)
(
℘(z − z0) + ℘(z + z0)

)
. (5.19)

This formula may be checked directly by using the addition formula for Weierstrass functions.

5.2.4 Periods on the cusp slice

In summary we obtain the following formula for the SW differential on the cusp slice,

λ =
√

3u
4ω dz

(
8ω2 + ℘(z − z0) + ℘(z + z0)

)
. (5.20)

The SW curve for the cusp slice is a genus-one curve with two punctures at z = ±z0, resulting
from a non-separating degenerating of the genus-two SW curve for SU(3). Correspondingly,
the SW differential has double poles at z = ±z0. The homology generators of the underlying
compact genus-one Riemann surface may be chosen as follows,

A : z → z + 1 , B : z → z + τ . (5.21)

Of the remaining two homology cycles of the genus-two curve, one cycle tends to infinity
under the non-separating degeneration and corresponds to the curves from −z0 to +z0,
while the other cycle tends to zero.

The periods of the SW differential λ on the cycles A and B are readily evaluated using
the Weierstrass ζ-function, which satisfies ℘(z) = −ζ ′(z), and the monodromy relations
given in (C.6) of appendix C,

2πia =
√

3u
(
2ω − 2η

)
, 2ω η = ζ(1

2) ,
2πiaD =

√
3u
(
2ω′ − 2η′

)
, 2ω η′ = ζ( τ2 ) . (5.22)
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The modular transformation properties of the periods are manifest in view of (C.11).10 The
Kähler potential,

K(u, v) = 3|u|i
4π3

(
(ω − η)(ω̄′ − η̄′)− (ω̄ − η̄)(ω′ − η′)

)
, (5.23)

is manifestly modular invariant. For later use, it will be convenient to recast K in the
following way,

K(u, v) = 3|u|i
16π3|2ω|2

[(
4ω2 − 2ζ(1

2)
)(

4ω̄2τ̄ − 2ζ( τ2 )
)
− c.c.

]
. (5.24)

Manifestly, only the single-valued combination ω2 appears (recall that ω is double valued).

5.3 Values of K at special points

As noted around (5.7), the Argyres-Douglas points and multi-monopole points lie on the
cusp slice, and thus we may use (5.24) to evaluate the Kähler potential at these points.

5.3.1 Argyres-Douglas points

The Argyres-Douglas points are located at (u, v) = (0,±1), which lie on the cusp slice since
they satisfy ∆+∆− = 0 in (5.5). Thus, we may obtain the behavior of the Kähler potential
at the Argyres-Douglas points by taking the limit u→ 0 on the cusp slice.

As u → 0, we have κ → ∞ in view of (5.9), and thus j(τ) → 0 in view of (5.17),
which implies that τ = ρ = e2πi/3, up to modular transformations. Since g3(ρ) is finite and
κ→∞, the last equation in (5.14) implies that we must have ω → 0 as u→ 0. This result
is consistent with the fact that g2(ρ) = 0 and the relation between g2, κ and ω in (5.14).
Using the result for η and η′ for τ = ρ from (C.18), we readily find,

2ωη = π√
3
, 2ωη′ = − π

2
√

3
− iπ2 . (5.25)

The Kähler potential evaluates as follows,

K(0,±1) = − lim
u→0

√
3|u|

4π|2ω|2 . (5.26)

We obtain ω from its relation with g3(ρ), which in turn is derived from the value of E6(ρ)
given in (C.18), and we find,

K(0,±1) = −3
√

3
4π

∣∣∣∣ 16
g3(ρ)

∣∣∣∣ 1
3

= −2 1
3 3 9

2 Γ(2
3)6

(2π)5 = −0.1112829388 (5.27)

In particular, the Kähler potential is negative at the Argyres-Douglas points.
10Actually, the periods a and aD are subject to the larger Fourier-Jacobi group Z2 n SL(2,Z), which acts

on ω and η by a common shift, and similarly for ω′ and η′. A systematic investigation of the non-separating
degeneration of genus-two Riemann surfaces was presented in [32].
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5.3.2 Multi-monopole points

At the multi-monopole points we have v = 0, and u = u∗ with 4u3
∗ = 27 and κ2 = 1. The

root κ = −1 corresponds to a singular curve where j = ∞ and τ = i∞ up to modular
transformations, and is the proper value for the multi-monopole point (by contrast κ = 1
corresponds to a regular curve). Using the values of (C.18), we obtain η and η′ in the limit
of large τ ,

ω = π

2
√

3
, ω′ = πτ

2
√

3
, η = π

2
√

3
, η′ = πτ

2
√

3
− i
√

3 . (5.28)

Hence ω − η vanishes in this limit, while ω′ − η′ remains finite. As a result, we have,

K(u∗, 0) = 0 . (5.29)

This is as expected, and also confirms the result obtained by substituting for u = u∗ on
the v = 0 slice in (5.3). We will have more to say about the K = 0 hypersurface inside the
N = 3 moduli space in section 5.4 below.

5.3.3 Behavior of K for large u

Large u→∞ corresponds to κ→ 0, which implies j(τ)→∞ and thus τ → i∞. Using (5.14)
and the values of g2 and g3 at infinity, we obtain

g2(i∞) = 4π4

3 , g3(i∞) = 8π6

27 , 4ω2 = −π
2

9 . (5.30)

We also have the following asymptotics for the ζ-values at half periods,

ζ(1
2 |i∞) = π2

6 , ζ( τ2 |τ)
∣∣∣
τ→i∞

≈ π2

6 τ − iπ . (5.31)

This allows us to recast K in the following form,

Ku→∞ = |u|
2π2

(4π
3 τ2 − 6

)
. (5.32)

The limiting behavior ofK may be obtained form the expression for the reduced discriminant,

∆(τ) ≈ (2π)12e2πiτ ≈ −33 × 212 (2ω)12κ3 = −29π12(3u)−
9
2 , (5.33)

so that,
K
∣∣
cusp ,u→∞ = |u|

2π2

(
2 ln 2− 6 + 3 ln

∣∣∣∣3uΛ2

∣∣∣∣)→ +∞ . (5.34)

5.4 A numerical study of K

In this subsection we summarize the results of a numerical exploration of the SU(3) Kähler
potential, which are complementary to the analytic results obtained thus far. Let us briefly
review what has already been learned:

• K has a minimum at the symmetric point u = v = 0, where the value of K is negative.
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• On the 2-real-dimensional slices of moduli space u = 0 and v = 0, one may straight-
forwardly use the hypergeometric function representations (5.2) and (5.3) to conclude
that K does not have stationary points away from the origin. (This has not been
proven on the analogous slices for general N > 3, although the result of section 4.4
provides some evidence in this direction.)

• An arbitrary stationary point of K must occur at negative K, and so it is of interest
to map the real-codimension-1 boundary of this region, where K = 0. The multi-
monopole points lie on this K = 0 boundary, while the Argyres-Douglas points lie
within it.

We would like to numerically evaluate K to further elucidate its features, e.g. whether
it has other stationary points and what can be said about the K = 0 surface. On a generic
slice in moduli space, K is given in terms of Appell F4 functions whose arguments are
functions of the moduli u and v, as per Corollary 2.4. Unfortunately analytic studies of
the Appell functions are limited, and software tools such as Mathematica and Maple have
considerable difficulty evaluating them directly.11 We have developed two complementary
techniques to evaluate K numerically, which are more fully described in appendix D. The
first method (see appendix D.1) converts the system of second order differential equations
defining F4 into the integration of a first order ODE along a ray in moduli space; the second
method (see appendix D.2) uses (4.4) to numerically compute the derivatives of K with
respect to the moduli, which are then numerically integrated to obtain K.

Using both of these numerical techniques, we have evaluated K and its derivatives
on many slices through the four-real-dimensional moduli space, with representative plots
appearing in figures 3–5. In all cases we observe that K is apparently convex, with no
evidence for an extremum away from the origin of moduli space.

Figure 3 depicts two representative numerical plots of K(u, v) on two-dimensional
slices of moduli space. In figure 3(a), K is plotted in the Re(u) and Re(v) plane with
Im(u) = Im(v) = 0. This slice includes the two Argyres-Douglas points at v = ±1, and
one of the three multi-monopole points on the K = 0 contour. Figure 3(b) is the SU(3)
analogue of figure 1 for SU(2), depicting K in the complex u-plane at v = 0 that includes
all three multi-monopole points on the K = 0 contour. Another slicing is shown in 5(a),
which depicts K along rays in the complex u-plane for various fixed real values of v.

All these plots indicate that K is negative around the Z6-symmetric point u = v = 0
and goes to positive infinity as u, v → ∞. A visualization of the K = 0 hypersurface
bounding the region of negative K surrounding the origin is depicted in figure 4. In detail,
figure 4(a) depicts the complex u-plane as a function of real v, and figure 4(b) depicts the
complex v-plane as a function of real u. In these slices, the K = 0 surface is roughly shaped
like a cigar, which caps off at approximately |v| ∼ 2.01 and |u| ∼ 1.89. Another view of this
boundary is depicted in figure 5(b), which shows an almost-circular section of the K = 0
surface along a ray in the u-direction.

11Mathematica does not have a built in Appell F4 function; while Maple does have such a function, its
evaluation fails outside its strict region of convergence.
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(a) K plotted in the Reu-Re v plane, with Im u = Im v = 0, evaluated on a grid with spacing
δReu = δRev = 0.25. This slice includes the two Argyres-Douglas points, indicated by the red
dots, and one of the multi-monopole points, indicated by the blue dot.

(b) K plotted in the complex u-plane, with v = 0, evaluated on a grid with spacing δReu =
δImu = 0.25. The three multi-monopole points are indicated by blue dots.

Figure 3. The SU(3) Kähler potential, plotted numerically on two-real-dimensional slices of the
moduli space, using the method of appendix D.2. The K = 0 contours are depicted in black.

6 Some candidate walls of marginal stability

Consider the Coulomb branch of the pure SU(N) gauge theory, where the low-energy gauge
group is U(1)N−1. In addition to the massless fields on the Coulomb branch, there can be
massive particles. These are characterized by their mass M , as well as their electric and
magnetic charges under the low-energy U(1)N−1 gauge group, collectively denoted by a
charge vector ~µ,

~µ = (q1, . . . , qN−1; g1, . . . , gN−1) ∈ ZN × ZN , (6.1)

with q1, . . . , qN−1 ∈ Z the electric charges and g1, . . . , gN−1 ∈ Z the magnetic ones.
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(a) K = 0 contours in the complex u-plane, for real v ≥ 0. K becomes positive on this slice
when v & 2.012. The blue v = 0 contour in the left panel includes the three multi-monopole
points, indicated by the blue dots. The K = 0 surface plotted in the right panel is the 3D
visualization of the contours plotted in the left panel, and is symmetric under v → −v.

(b) K = 0 contours in the complex v-plane, for real u ≥ 0. K becomes positive on this slice
when u & 1.89. The K = 0 surface plotted in the right panel is the 3D visualization of the
contours plotted in the left panel.

Figure 4. K = 0 contours for gauge group SU(3), plotted via the method of appendix D.2.
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(a) K plotted along rays parameterized by u = te
iπ
6 , for various real values of v. Each ray

consists of 100 data points. As v is increased, the region of negative K shrinks.

(t,v) with K(u=te
ⅈ π
6 ,v)=0

0.5 1.0 1.5
t

0.5

1.0

1.5

2.0

v

(b) Plot of the (approximately, but not exactly ellipse-shaped) K = 0 contour in the (t, v) plane,
for various real values of t and v, with u = te

iπ
6 . The curve is made up of 36 data points, and

is symmetric under v → −v.

Figure 5. Plots of K made using the numerical techniques of appendix D.1.

The central charge in the N = 2 supersymmetry algebra is a complex linear function
of the charges that depends on the SW periods [1],

Z[~µ] =
N−1∑
I=1

(qIaI + gIaDI) . (6.2)

A single-particle state of mass M and electromagnetic charge vector ~µ satisfies the following
BPS bound [33],

M ≥ |Z[~µ]| . (6.3)

The particle is a short, or BPS, multiplet of the N = 2 super-Poincaré algebra if and only
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if this bound is saturated,
MBPS = |Z[~µ]| . (6.4)

Consider two BPS particles with charge vectors ~µ, ~µ′ and masses given by (6.4). Hence-
forth we assume that both charge vectors are non-zero, and that they are not integer
multiples of one another.12 Let us recall that two such particles can in principle form a
single-particle bound state (which necessarily has electromagnetic charge vector ~µ + ~µ′)
that is also BPS. This happens precisely for threshold bound states (with zero binding
energy) whose masses satisfy the following condition,∣∣Z[~µ+ ~µ′]

∣∣ = |Z[~µ]|+
∣∣Z[~µ′]

∣∣ . (6.5)

Since Z is a linear function of the charges, this condition saturates the triangle inequality,
which is only possible when the complex numbers Z[~µ], Z[~µ′] (and hence also Z[~µ+ ~µ′])
are related by a real proportionality factor,

Z[~µ′] = ζ Z[~µ] , ζ ∈ R . (6.6)

For fixed charge vectors, this real condition carves out a real-codimension-one slice on the
Coulomb branch. We refer to this slice as a candidate wall of marginal stability for the
BPS particles with charge vectors ~µ, ~µ′. Whether or not these particles actually form a
bound state upon crossing the wall is a more interesting and delicate question that we do
not analyze here.

6.1 Review of marginal stability for SU(2)

For gauge group SU(2), there is a single pair ~µ = (q, g) of electromagnetic charges on the
Coulomb branch, so that Z[~µ] = qa + gaD. Given two (non-vanishing and non-parallel)
charge vectors ~µ = (q, g) and ~µ′ = (q′, g′), the condition (6.6) for a candidate wall of
marginal stability then reads

(q′a+ g′aD) = ζ(qa+ gaD) , ζ ∈ R . (6.7)

Since the charges are all real, this condition can be satisfied if and only if a and aD are
themselves related by a real proportionality factor, or equivalently

Im
(
aD
a

)
= 0 . (6.8)

This condition defines a (roughly elliptical) curve surrounding the origin u = 0, which is
plotted in figure 6. As shown in [1, 22], inside the wall of marginal stability, there are
precisely two BPS states (together with their antiparticles): the monopole that becomes
massless at u = 1, and the dyon that becomes massless at u = −1. Note that these points
lie on the wall. The interior of the wall is known as the strong coupling chamber of the
moduli space. As the wall is crossed towards the weakly coupled region at infinity, the
monopole and the dyon form an infinite tower of BPS bound states comprising the SU(2)
W-bosons and the infinite dyon towers that are visible at weak coupling.

12If ~µ = p~µ′ with p ∈ Z, it is possible that the BPS particle of charge µ is a threshold bound state of p
BPS particles of charge ~µ′. This famously happens for D0 branes in type IIA string theory. The structure of
such bound states is particularly delicate and we will not discuss it.

– 29 –



J
H
E
P
1
1
(
2
0
2
2
)
1
0
2

u

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 6. The unique wall of marginal stability in SU(2) gauge theory. The monopole point at
u = 1 and the dyon point at u = −1 are indicated as blue dots.

Finally, note that the Kähler potential K ∼ Im aāD vanishes on the wall of marginal
stability, because the condition (6.8) is equivalent to Im aāD = 0. Thus our notion of strong
coupling region, defined as the region where K < 0, coincides with the standard strong
coupling chamber for BPS particles in the case of SU(2) gauge group.

6.2 Some candidate walls of marginal stability for SU(3)

Here we use the expansion of the periods obtained in Corollary 2.4 for SU(3) gauge group
to determine candidate walls of marginal stability in special slices of the moduli space,
and in a neighborhood that encompasses our strong-coupling region, where K < 0. It is
known that there is an open neighborhood of the origin — termed the strong coupling
chamber — in which the BPS spectrum consists of exactly six stable particles (as well as
their antiparticles), pairs of which become massless at the three multi-monopole points
of SU(3) gauge theory [34–36]. However, the precise extent of this chamber in moduli space
is not known, and our results can serve as a starting point for a more detailed analysis of
this question.

6.2.1 The v = 0 slice

Inspection of the solution given by Corollary 2.4 shows that Q0,1 = Q1,1 = 0 when v = 0,
so that Q(ξ) = ξ4Q0,0 + ξ2Q1,0. Thus, the periods in the u-plane are given by

a1 = (ρ2 − 1)Q0,0 + (ρ− 1)Q1,0 ,

a2 = (ρ2 − ρ)Q0,0 − (ρ2 − ρ)Q1,0 ,

aD1 = (ρ− ρ2)Q0,0 − (ρ− ρ2)Q1,0 ,

aD2 = (ρ2 − 1)Q0,0 + (ρ− 1)Q1,0 , (6.9)

where ρ = ε2 = e2πi/3. The above expressions for the periods imply the following relations,
independently of the values taken by Q0,0 and Q1,0,

a2 = −aD1 , aD2 = a1 . (6.10)
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Figure 7. Candidate wall of marginal stability in the u-plane (where v = 0) for SU(3) gauge group.
The three multi-monopole points are indicated as blue dots. In the u-plane, the wall coincides with
the locus where K = 0, i.e. it coincides with the outermost contour plotted in figure 4(a).

Let us evaluate the Kähler potential on this slice. Thanks to (6.10), the two pairs of periods
contribute equally to K, which can now be expressed in terms of a1 and aD1 only,

K = i

2π
(
a1āD1 − ā1aD1

)
. (6.11)

This differs from the Kähler potential for SU(2) by an overall factor of 2.
Now consider two BPS states with (non-vanishing, non-proportional) charge vectors ~µ =

(q1, q2; g1, g2) and ~µ′ = (q′1, q′2; g′1, g′2). Thanks to (6.10) their central charges are given by

Z[~µ] = (q1 + g2)a1 + (g1 − q2)aD1 ,

Z[~µ′] = (q′1 + g′2)a1 + (g′1 − q′2)aD1 . (6.12)

Requiring these to be related by a real proportionality factor implies that a1 and aD1
are also thus related. Thus, as a result of the relations (6.10), this case is completely
parallel to the case of SU(2) discussed above: there is a candidate wall of marginal stability
defined by the curve Im(aD1/a1) = 0 in the u-plane, depicted in figure 7, and the Kähler
potential (6.11) vanishes there.

6.2.2 The u = 0 slice

General discussion. Inspection of the solution given by Corollary 2.4 shows that Q1,0 =
Q1,1 = 0 for u = 0, so that Q(ξ) = ξ4Q0,0 + ξQ0,1. As a result, the periods are given
as follows

a1 = −(2 + ρ)Q0,0 + ρQ0,1 ,

a2 = −(1 + 2ρ)Q0,0 −Q0,1 ,

aD1 = +(1 + 2ρ)Q0,0 −Q0,1 ,

aD2 = −(2 + ρ)Q0,0 − ρQ0,1 , (6.13)
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where ρ = e2πi/3. The above expressions for the periods imply the following inter-relations,
independently of the values taken by Q0,0 and Q0,1,

a2 = −ρ2 a1 , aD2 = ρ aD1 . (6.14)

On this slice, the Kähler potential takes the form

K = i

4π
(
(1− ρ)a1āD1 − (1− ρ2)ā1aD1

)
=
√

3
2π
(
|Q0,1|2 − 3|Q0,0|2

)
. (6.15)

As before, we consider two BPS states with (non-vanishing, non-proportional) charge
vectors ~µ = (q1, q2; g1, g2) and ~µ′ = (q′1, q′2; g′1, g′2). Substituting these charges and the
periods (6.13) into the central charge formula (6.2), we find

Z[µ] = (m1 +m2ρ)Q0,0 + (n1 + n2ρ)Q0,1 ,

Z[µ′] = (m′1 +m′2ρ)Q0,0 + (n′1 + n′2ρ)Q0,1 , (6.16)

where,

m1 = g1 − 2g2 − 2q1 − q2 , n1 = g1 − q2 ,

m2 = 2g1 − g2 − q1 − 2q2 , n2 = −g2 + q1 ,

m′1 = g′1 − 2g′2 − 2q′1 − q′2 , n′1 = g′1 − q′2 ,
m′2 = 2g′1 − g′2 − q′1 − 2q′2 , n′2 = −g′2 + q′1 . (6.17)

Note that since the charge vector (g1, g2; q1, q2) is not identically zero, the same is true for
(m1,m2;n1, n2), and similarly for the primed charges. Thus Z[~µ], Z[~µ′] 6= 0 for generic v.

The condition (6.6) for a candidate wall of marginal stability, namely Z[~µ′] = ζZ[~µ] for
ζ ∈ R, may be expressed as follows,

ζ = az + b

cz + d
, z = Q0,1

Q0,0
, (6.18)

with

a = n′1 + n′2ρ , b = m′1 +m′2ρ ,

c = n1 + n2ρ , d = m1 +m2ρ . (6.19)

We now analyze the implications of these equations, recalling from above that c and d are
not both equal to zero. Let us distinguish the following cases:

• For the singular case ad− bc = 0 the numerator az + b is a constant multiple of the
denominator cz + d in (6.18). Since c and d cannot vanish simultaneously, it suffices
to analyze the cases c 6= 0 and d 6= 0, for which we have the relations,

c 6= 0 : ζ = a

c
, d 6= 0 : ζ = b

d
. (6.20)

Since a, b, c, d ∈ Z[ρ], the ratios a/c and b/d may be real or complex. If the ratios are
not real, then there can be no solution since ζ must be real. If the ratios are real,
then the charges ~µ, ~µ′ are proportional to one another, which we assumed was not
the case.
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• For the regular case where ad− bc 6= 0, the relation between z and ζ may be inverted
to give z as a function of ζ,

z = Q0,1
Q0,0

= dζ − b
−cζ + a

. (6.21)

For generic electromagnetic charge vectors, the constants a, b, c, d will be complex,
and thus z, as a function of ζ, will span an arc of a circle in the complex plane whose
center is on the imaginary axis. Below, we will see this explicitly in examples.

Candidate walls for BPS states that are stable in the strong-coupling chamber. We will
now apply the general discussion above to the six BPS particles that are stable in the
strong-coupling chamber of the SU(3) gauge theory. As we review in appendix E, in our
conventions these particles have the following electromagnetic charge vectors (q1, q2; g1, g2),

~µ01 = (−1, 0;−1, 0) ,
~µ02 = (0, 1; 0,−1) ,
~µ11 = (1, 0;−1,−1) ,
~µ12 = (−1, 1; 0, 1) ,
~µ21 = (0, 1; 1, 1) ,
~µ22 = (1,−1;−1, 0) .

(6.22)

Note that the particle pairs with charges ~µk1, ~µk2 become massless at the three multi-
monopole points (lying in the v = 0 slice) corresponding to k = 0, 1, 2. Combining
with (6.13), we see that their central charges in the u = 0 plane take the following form,

Z[~µ01] = 1
2

(
3− i

√
3
)

(Q0,0 +Q0,1) ,

Z[~µ02] = 1
2

(
3− i

√
3
)

(Q0,0 −Q0,1) ,

Z[~µ11] = −i
√

3(Q0,0 −Q0,1) ,
Z[~µ12] = −i

√
3(Q0,0 +Q0,1) ,

Z[~µ21] = −1
2

(
3 + i

√
3
)

(Q0,0 +Q0,1) ,

Z[~µ22] = −1
2

(
3 + i

√
3
)

(Q0,0 −Q0,1) . (6.23)

Note that the two Argyres-Douglas points lie in the u = 0 plane, at v = ±1 (see (5.7)).
Evaluating (5.2) at these points, we find the following relations between the Q-functions,

Q0,1
∣∣
v=±1 = ±Q0,0

∣∣
v=±1 . (6.24)

We see that the states ~µ01, ~µ12, ~µ21 are massless at the v = −1 Argyres-Douglas point, while
the remaining three BPS states ~µ02, ~µ11, ~µ22 are massless at v = +1.
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Using the central charges in (6.23), we can form ( 6
2 ) = 15 different pairwise ratios, of

which six are complex constants ∼ ρ, ρ2 so that the corresponding central charges can never
align. In order to express the alignment conditions for the remaining nine pairs, we use the
variable z = Q0,1/Q0,0. This leads to the following three cases:

1. The central charges pairwise align as Z[~µ01] ∼ Z[~µ02], Z[~µ12] ∼ Z[~µ11], and Z[~µ21] ∼
Z[~µ22] (with ∼ indicating real proportionality) if and only if

1 + z

1− z = ζ ∈ R ⇐⇒ z = ζ − 1
ζ + 1 . (6.25)

This describes a horizontal straight line in the complex z-plane, i.e. z = Q0,1/Q0,0 has
to be real, and this can only happen when v is real.

2. The central charges pairwise align as Z[~µ01] ∼ Z[~µ22], Z[~µ12] ∼ Z[~µ02], and Z[~µ21] ∼
Z[~µ11] (with ∼ again indicating real proportionality) if and only if

ρ
1 + z

1− z = ζ ∈ R ⇐⇒ z = ρ2ζ − 1
ρ2ζ + 1 . (6.26)

This describes a segment of the circle |z + i/
√

3|2 = 4/3.

3. The central charges pairwise align as Z[~µ01] ∼ Z[~µ11], Z[~µ12] ∼ Z[~µ22], and Z[~µ21] ∼
Z[~µ02] if and only if

− ρ2 1 + z

1− z = ζ ∈ R ⇐⇒ z = ρζ + 1
ρζ − 1 . (6.27)

This describes a segment of the circle |z − i/
√

3|2 = 4/3.

In the left panel of figure 8 we have plotted the circle described by (6.26) in red, and the
one described by (6.27) in blue. There we also indicate in black the curve corresponding to
the vanishing of the Kähler potential, K = 0. As may be read off from (6.15), this curve is
a circle in the z-plane of radius

√
3.

In the right panel of figure 8, the curve of vanishing Kähler potential and the candidate
curves of marginal stability are plotted in the v-plane. The function z = Q0,1(0, v)/Q0,0(0, v)
is holomorphic and single-valued away from the Argyres-Douglas branch points. Thus,
the map from z to v is conformal away from the branch points and preserves all angles.
Comparison of the curves in the left and right panels of figure 8 clearly shows, however,
that the angles between the curves are not preserved at the Argyres-Douglas points, as
expected. Using (5.2), the precise expression for the map is given by

z = Q0,1(0, v)
Q0,0(0, v) = 8π3 v

2 2
3 33Γ(2

3)6

F (1
3 ,

1
3 ; 3

2 ; v2)
F (−1

6 ,−1
6 ; 1

2 ; v2)
. (6.28)

The lowest order approximation, where the hypergeometric functions are set to 1, gives the
approximation z ≈ 0.93875 v and translates the circle |z|2 = 3 into the circle |v|2 ≈ 3.4043,
which provides a reasonable approximation to the curve of vanishing Kähler potential in
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Figure 8. Candidate curves of marginal stability in the u = 0 slice for SU(3). In the left panel, the
curves are circles of radius 2√

3 centered at ± i√
3 in the z-plane, and plotted in blue and red. In the

right panel, the image of the blue circle is shown in blue and cyan, while the image of the red circle
is shown in orange and red. In both panels, the Argyres-Douglas points are indicated by bold black
dots, while the K = 0 curve where the Kähler potential vanishes is plotted in black.

the v-plane. The behavior near the Argyres-Douglas points may be obtained by using the
analytic continuation formulas for the hypergeometric functions, which leads to

z = v
(
1− 0.47310(1− v2)

5
6 +O(1− v2)

)
. (6.29)

The points v = ±1 are clearly mapped to the points z = ±1, but the map is not conformal
at those points, which explains the widening of the angles in the v plane.

6.3 Generalization to the u0 slice for SU(N)

The approach adopted above for the u = 0 slice in SU(3) extends almost verbatim to the
1-complex-dimensional slice u0 6= 0 and un = 0 with n = 1, . . . , N − 2 for SU(N) gauge
group. Recall from Corollary 2.3 that in this case,

aDI = Q(ε2I)−Q(ε2I−1) ,

aI =
I∑

J=1

{
Q(ε2J−1)−Q(ε2J−2)

}
, (6.30)

where ε = e2πi/2N and the function Q(ξ) for any ξ2N = 1 is given by,

Q(ξ) = ξQ1 + ξN+1QN+1 , (6.31)

where Q1 and QN+1 are functions of u0 only. Substituting the form of these functions into
the periods, we obtain,

aDI = ε2I−1
{

(ε− 1)Q1 + (ε+ 1)QN+1
}
,

aI =
I∑

J=1
ε2J−2

{
(ε− 1)Q1 − (ε+ 1)QN+1

}
. (6.32)
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The central charge of a BPS state with electromagnetic charge vector
~µ = (q1, . . . , qN−1; g1, . . . , gN−1) is given by

Z[~µ] = mQ1 + nQN+1 , (6.33)

where m,n ∈ Z[ε] are given in terms of the charge vector,

m =
N−1∑
I=1

gI ε
2I−1(ε− 1) +

N−1∑
I=1

qI

I∑
J=1

ε2J−2(ε− 1) ,

n =
N−1∑
I=1

gI ε
2I−1(ε+ 1)−

N−1∑
I=1

qI

I∑
J=1

ε2J−2(ε+ 1) . (6.34)

Now we simply repeat the argument used to determine candidate curves of marginal stability
in the u = 0 slice for SU(3) gauge group (see section 6.2.2 above). Consider two charge
vectors ~µ, ~µ′ with corresponding central charges,

Z[~µ] = mQ1 + nQN+1 ,

Z[~µ′] = m′Q1 + n′QN+1 . (6.35)

Marginal stability requires Z[~µ′] = ζZ[~µ] for ζ ∈ R, or equivalently

ζ = n′z +m′

nz +m
, z = QN+1

Q1
. (6.36)

For the singular case n′m−m′n = 0 and, say, m 6= 0, we have ζ = m′/m. There are then
two possibilities: if m′/m is not real, then there are no solutions; while if m′/m = n′/n

are real, then the charge vectors are proportional to one another. For the regular case
n′m−m′n 6= 0, the relation between z and ζ may be inverted and we have,

z = QN+1
Q1

= mζ −m′
−nζ + n′

. (6.37)

For generic charge vectors, z traces an arc of a circle in the complex plane.

A Proof of Theorem 2.1

In this appendix, we shall provide a complete proof of Theorem 2.1.

A.1 Taylor series expansion of λ

To obtain a Taylor expansion for the periods aI and aDI at the Z2N symmetric curve, we
begin by Taylor expanding the Seiberg-Witten differential in the moduli un by setting,

A(x) = xN − U(x) , U(x) =
N−2∑
`=0

u` x
` , (A.1)

and expanding in powers of the polynomial U(x),

λ =
∞∑

m,n=0

Γ(m+ 1
2)Γ(n+ 1

2)
Γ(1

2)2m!n!

(
NxN − xU ′(x)

)
U(x)m+n

(xN − 1) 1
2 +m(xN + 1) 1

2 +n
dx . (A.2)
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To obtain this formula, it is convenient to derive the expansions arising from the factors
A(x)± 1 separately and then multiply both series together. Furthermore, to arrive at an
integrand whose integrals are easily computed, it will be convenient to multiply numerator
and denominator by the factor (xN +1)m(xN −1)n, so that all contributions have a common
denominator in the form of a power of (x2N − 1). Changing summation variables from m,n

to m and M = m+ n, the result may be expressed as follows,

λ =
∞∑

M=0
PM (xN )

(
NxN − xU ′(x)

)
U(x)M

(x2N − 1) 1
2 +M

dx . (A.3)

Here we have introduced a family of polynomials PM (z), defined by

PM (z) =
M∑
m=0

Γ(m+ 1
2)Γ(M −m+ 1

2)
Γ(1

2)2m! (M −m)!
(z + 1)m(z − 1)M−m . (A.4)

Alternatively, one may define these polynomials by their generating function,
∞∑

M=0
xMPM (z) = 1√

(1− xz)2 − x2 . (A.5)

The polynomial PM (z) is of degree M in z, satisfies the parity relation PM (−z) =
(−)MPM (z), and belongs to a class of polynomials that generalizes Jacobi polynomials. Its
expansion in powers of z defines the coefficients pM (`) as follows,

PM (z) =
M∑
m=0

pM (m) zm . (A.6)

The parity relation for PM (z) implies that the coefficients pM (m) vanish unless M and m
are either both even or both odd, in which case we have the following expression for pM (m)
obtained using Mathematica,

pM (m) = 2m−M M !
m! Γ(1

2(M −m) + 1)2 , 0 ≤ m ≤M, M ≡ m (mod 2) . (A.7)

We shall also use the multinomial expansion of U(x)M in powers of the moduli,

U(x)M =
∞∑

`0,...,`N−2=0
δ

M − N−2∑
j=0

`j

( M

`0, . . . , `N−2

)
u`00 · · ·u

`N−2
N−2 x

L , (A.8)

where L and M are related to the exponents `j by

L =
N−2∑
j=0

j`j , M =
N−2∑
j=0

`j . (A.9)

Putting all together, we obtain the following expansion for the SW differential,

λ =
∞∑

`0,...,`N−2=0

(
M

`0, . . . , `N−2

)
u`00 · · ·u

`N−2
N−2

M∑
m=0

pM (m)λM (Nm+ L) , (A.10)
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where L and M are given in terms of the exponents `j by the relations of (A.9) and the
differential (1, 0)-form λM (k) is given as follows,

λM (k) = (NxN − xU ′(x))xk dx
(x2N − 1) 1

2 +M
. (A.11)

To derive the expansion of Theorem 2.1 we need to obtain the period integrals of the
differential λM (k) and to carry out the sum over m.

A.2 The basic integrals

The period integrals of λ may be expressed in terms of those of λM (k) through (A.10),
which in turn may be obtained as finite linear combinations of integrals of the type,∫ y

0

xγ−1 dx

(x2N − 1)
P
2

= iP
yγ

γ
F

(
P

2 ,
γ

2N ; 1 + γ

2N ; y2N
)
, (A.12)

for Re (γ) > 0 and odd integer P ≥ 1. The branch cut has been chosen so that
√
x2N − 1 =

−i
√

1− x2N when |x| < 1, for which the square root
√

1− x2N is positive for x real.
Actually, in view of (2.12) and (2.13), evaluating the period integrals requires the above
integrals only at the points y = ξ where ξ2N = 1. To obtain these, we choose the integration
path to be the straight line from 0 to ξ, as illustrated for N = 3 by the green lines in
figure 2. Since the hypergeometric function then has argument 1, it may be simplified using
Gauss’s formula,

F (a, b; c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , (A.13)

and we obtain, ∫ ξ

0

xγ−1 dx

(x2N − 1)
P
2

= iP
ξγ

γ

Γ
(
1 + γ

2N
)

Γ
(
1− P

2

)
Γ
(
1 + γ

2N − P
2

) . (A.14)

Using the decomposition of the differential (1, 0)-form λM (k) in terms of the above inte-
grands,

λM (k) = NxN+k dx

(x2N − 1) 1
2 +M

−
N−2∑
j=1

juj
xk+j dx

(x2N − 1) 1
2 +M

, (A.15)

its integral is readily obtained with the help of (A.14),

1
πi

∫ ξ

0
λM (k) =

ξk+N+1 Γ
(
k+1
2N + 1

2

)
2Γ
(
k+1
2N + 1−M

)
Γ(M + 1

2)
,

−
N−2∑
j=1

j uj
ξk+j+1 Γ

(
k+j+1

2N

)
2N Γ

(
k+j+1

2N + 1
2 −M

)
Γ(M + 1

2)
, (A.16)

where we used Γ(1
2 −M)Γ(1

2 +M) = π(−)M for integer M to simplify the result.
The integral of the SW differential from 0 to an arbitrary 2N -th root of unity ξ,

Q(ξ) = 1
πi

∫ ξ

0
λ , (A.17)
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may then be expressed in terms of the integrals of the differentials λM (k),

WM (ξ, L) = M !
M∑
m=0

pM (m) 1
πi

∫ ξ

0
λM (Nm+ L) , (A.18)

as follows,

Q(ξ) =
∞∑

`0,...,`N−2=0

u`00 · · ·u
`N−2
N−2

`0! · · · `N−2! WM (ξ, L) , (A.19)

where in both formulas L and M are given in terms of the `j by (A.9).

A.3 Carrying out the sum over m

Substituting the result (A.16) for the integral of λM (k) into the expression for WM (ξ, L)
in (A.18), we obtain

WM (ξ, L) = 1
2 ξ

NM+L+N+1
M∑
m=0

pM (m) Γ
(
m
2 + 1

2 + L+1
2N

)
M !

Γ
(
m
2 + L+1

2N + 1−M
)

Γ(M + 1
2)

− 1
2N ξNM+L+j+1

N−2∑
j=1

j uj

M∑
m=0

pM (m) Γ
(
m
2 + L+j+1

2N

)
M !

Γ
(
m
2 + L+j+1

2N + 1
2 −M

)
Γ(M + 1

2)
. (A.20)

We have used the fact that pM (m) vanishes unless M and m are both even or both odd
to set ξNm = ξNM , thereby allowing us to extract this factor from under the summation
symbol. Both sums over m are of the following form for an arbitrary γ ∈ C,

SM (γ) =
M∑
m=0

pM (m) Γ
(
m
2 + γ

)
M !

Γ
(
m
2 + γ + 1

2 −M
)

Γ(M + 1
2)
, (A.21)

in terms of which WM can be expressed as follows,

WM (ξ, L) = 1
2 ξ

NM+L+N+1SM (N+L+1
2N )− 1

2N ξNM+L+1
N−2∑
j=1

j uj ξ
jSM (L+j+1

2N ) . (A.22)

To evaluate the functions SM (γ) we need the following lemma:

Lemma A.1 The function SM (γ) evaluates to the following expression,

SM (γ) = 2M+1−2γ

π2 Γ(2γ)Γ(M+1
2 − γ)2 sin2 (π(M+1

2 − γ)
)
, (A.23)

for integer M ≥ 0.
The formula was obtained by induction from the form of SM (γ) for low values of M ,

and then verified using Maple for all values of M up to 200. It may be proven analytically
by appealing to the hypergeometric function 3F2 as follows: using the explicit expression
for pM (m) given in (A.7), the sum over m in SM (γ) may be carried out to obtain

SM (γ) =
2M+2σΓ(M2 + 1

2 + σ)2Γ(γ + σ)
πΓ(M + 1

2)Γ(1
2 + σ −M + γ) 3F2

(
σ − M

2 , σ − M
2 , γ + σ

1
2 + 2σ, 1

2 + σ −M + γ
; 1
)
, (A.24)
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where σ = M
2 −

[
M
2

]
takes the value 0 when M is even and 1

2 when M is odd. Next, we use
the analogue of Gauss’s formula for 3F2,

3F2

(
a, b,−n

c, 1 + a+ b− c− n; 1
)

= Γ(c− a+ n)Γ(c− b+ n)Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)Γ(c+ n)Γ(c− a− b+ n) , (A.25)

with a = σ − M
2 , b = γ + σ, c = 1

2 + 2σ, and n = M
2 − σ. After some simplifications, this

expression combines to give the formula of Lemma A.1 and completes its proof.
Substituting Lemma A.1 into (A.22), we find the following formula for WM (ξ, L),

WM (ξ, L) = 2M−(L+1)/N

2π2 ξNM+L+N+1Γ(N+L+1
N )Γ(NM−L−1

2N )2 sin2 (πNM−L−1
2N

)
− 2M−(L+1)/N

π2N

N−2∑
j=1

j uj ξ
NM+j+L+1 2−

j
N Γ( j+L+1

N )Γ(NM+N−j−L−1
2N )2

× sin2 (πNM+N−j−L−1
2N

)
. (A.26)

A.4 Final simplification

We now substitute the formula for WM (ξ, L) in (A.26) above into the expression for Q(ξ)
in (A.19) to obtain

Q(ξ) =
∞∑

`0,...,`N−2=0

u`0
0 · · ·u

`N−2
N−2

`0! · · · `N−2!
2M−(L+1)/N

2π2 ξNM+L+N+1Γ(N+L+1
N )Γ(NM−L−1

2N )2 sin2 (πNM−L−1
2N

)
−

∞∑
`0,...,`N−2=0

u`0
0 · · ·u

`N−2
N−2

`0! · · · `N−2!
2M−(L+1)/N

π2N

N−2∑
j=1

j uj ξ
NM+j+L+1

2
j
N

Γ( j+L+1
N )

× Γ(NM+N−j−L−1
2N )2 sin2 (πNM+N−j−L−1

2N
)
, (A.27)

where on both lines we use the expressions for L and M given in (A.9). In the sum over j on
the second and third lines, we combine the lone factor of uj with the monomial u`j → u

`j+1
j

and change variables `j +1→ `j . The net effect is to bring out a factor of `j and to decrease
the values of M and ` as follows, M → M − 1 and L→ L− j. Carrying out these three
changes at once, and factorizing common parts, gives

Q(ξ) =
∞∑

`0,...,`N−2=0

u`00 · · ·u
`N−2
N−2

`0! · · · `N−2!
2M−(L+1)/N

2π2 ξNM+L+N+1Γ(NM−L−1
2N )2

× sin2 (πNM−L−1
2N

) Γ(1 + L+1
N )− Γ(L+1

N )
N−2∑
j=0

j `j
N

 . (A.28)

The expression inside the brackets simplifies to Γ(L+1
N )/N , which leads to our final result,

Q(ξ) =
∞∑

`0,...,`N−2=0

u`00 · · ·u
`N−2
N−2

`0! · · · `N−2!
2M−(L+1)/N

2π2N
ξNM+L+N+1

× Γ(L+1
N )Γ(NM−L−1

2N )2 sin2 (πNM−L−1
2N

)
.

This expression may be recast in the form of Theorem 2.1, thereby completing its proof.
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B The SU(3) solution in terms of Appell functions

In this appendix, we prove Corollary 2.4 and thereby show that the results obtained in
Theorem 2.1 for arbitrary N reproduce the solution in terms of Appell functions obtained
in [5].

The starting point for the proof is the expression for Q(ξ) for the case N = 3. We shall
use the simplified notation v = u0 and u = u1, and express the sum in terms of ` = `0 and
k = `1 so that M = k + ` and L = k. In terms of these variables, the result of Theorem 2.1
reduces to the following expression for Q(ξ),

Q(ξ) =
∞∑

k,`=0

2(3`+2k−1)/3

6π2 k! `! ξ3`+4k+4 uk v` Γ(k+1
3 )Γ(3`+2k−1

6 )2 sin2 (π 3`+2k−1
6

)
. (B.1)

To decompose the function Q(ξ) into powers of ξ, we decompose the summation variables k
and ` modulo 3 and 2 respectively,

k = 3m+ µ m ≥ 0 µ = 0, 1, 2
` = 2n+ ν n ≥ 0 ν = 0, 1 (B.2)

so that the ξ-dependence of Q(ξ) is contained entirely in µ, ν and independent of m,n. The
function Q(ξ) then decomposes as follows,

Q(ξ) =
∑

µ=0,1,2

∑
ν=0,1

ξ4µ+3ν+4Qµ,ν

= ξ4Q0,0 + ξ2Q1,0 + ξ0Q2,0 + ξ1Q0,1 + ξ5Q1,1 + ξ3Q2,1 , (B.3)

where the coefficient functions are given by,

Qµ,ν = 1
6π2 sin2 (π 3ν+2µ−1

6
) ∞∑
m,n=0

22m+2n+ν+(2µ−1)/3

(3m+ µ)! (2n+ ν)! u
3m+µ v2n+ν

× Γ(m+ µ+1
3 )Γ(m+ n+ 3ν+2µ−1

6 )2 . (B.4)

Using the duplication and triplication formulas for the factorials in the denominators,

Γ(2n+ ν + 1) = 22n+ν
√
π

Γ(n+ ν
2 + 1

2)Γ(n+ ν
2 + 1) ,

Γ(3m+ µ+ 1) = 33m+µ+ 1
2

2π Γ(m+ µ
3 + 1

3)Γ(m+ µ
3 + 2

3)Γ(m+ µ
3 + 1) , (B.5)

we obtain,

Qµ,ν = 2−1/3

3
√

3π

∞∑
m,n=0

sin2 (π 3ν+2µ−1
6

)
Γ(m+ n+ 3ν+2µ−1

6 )2
(

4u3

27

)m+µ
3 v2n+ν

Γ(n+ ν
2 + 1

2)Γ(n+ ν
2 + 1) Γ(m+ µ

3 + 2
3)Γ(m+ µ

3 + 1)
. (B.6)

Of the six inequivalent representations of Z6, Q2,0 multiplies the trivial representation of Z6
and cancels in the differences giving the periods. Also, the sine-factor vanishes identically
for µ = 2 and ν = 1, so that we have

Q2,1 = 0 . (B.7)
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The remaining four functions correspond to µ, ν = 0, 1 and evaluate as follows,

Q0,0 = 2−1/3

12
√

3π

∞∑
m,n=0

Γ(m+ n− 1
6)2

Γ(m+ 2
3)Γ(n+ 1

2)m!n!

(
4u3

27

)m
v2n ,

Q0,1 = 2−1/3

4
√

3π
v
∞∑

m,n=0

Γ(m+ n+ 1
3)2

Γ(m+ 2
3)Γ(n+ 3

2)m!n!

(
4u3

27

)m
v2n ,

Q1,0 = 21/3

36
√

3π
u
∞∑

m,n=0

Γ(m+ n+ 1
6)2

Γ(m+ 4
3)Γ(n+ 1

2)m!n!

(
4u3

27

)m
v2n ,

Q1,1 = 21/3

12
√

3π
uv

∞∑
m,n=0

Γ(m+ n+ 2
3)2

Γ(m+ 4
3)Γ(n+ 3

2)m!n!

(
4u3

27

)m
v2n . (B.8)

Using the definition of the Appell function F4 in the variables x = 4u3/27 and y = v2, we
easily convert these expressions into those stated in Corollary 2.4.

C Aspects of elliptic functions and modular forms

In this appendix, we provide a brief review of elliptic functions and modular forms as needed
here. A standard and useful reference is [30], whose notations we follow.

C.1 Weierstrass elliptic functions

Given a lattice in C with periods 2ω, 2ω′ the Weierstrass ℘ function ℘(υ|2ω, 2ω′) satisfies
the following differential equation,(

∂℘(υ|2ω, 2ω′)
∂υ

)2
= 4℘(υ|2ω, 2ω′)3 − g2(2ω, 2ω′)℘(υ|2ω, 2ω′)− g3(2ω, 2ω′) , (C.1)

where each of these quantities is given by the following lattice sums,

℘(υ|2ω, 2ω′) = 1
υ2 +

∑
(m,n) 6=(0,0)

( 1
(υ + 2mω + 2nω′)2 −

1
(2mω + 2nω′)2

)
,

g2(2ω, 2ω′) = 60
∑

m,n 6=(0,0)

1
(2mω + 2nω′)4 ,

g3(2ω, 2ω′) = 140
∑

m,n 6=(0,0)

1
(2mω + 2nω′)6 . (C.2)

It will be convenient to use canonical normalizations instead in which the periods are
normalized to 1, τ = ω′/ω, and the argument is normalized accordingly to z = υ/2ω. The
relation between these two normalizations amounts to a scaling factor by powers of the
period 2ω (the functions with both normalizations are denoted by the same symbol),

(2ω)−2 ℘(z|τ) = ℘(υ|2ω, 2ω′) ,
(2ω)−4 g2(τ) = g2(2ω, 2ω′) ,
(2ω)−6 g3(τ) = g3(2ω, 2ω′) , (C.3)
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or equivalently g2(τ) = g2(1, τ) and g3(τ) = g3(1, τ). In the sequel, the argument τ will
not be exhibited if its dependence is clear from the context. The differential equation for
the Weierstrass function is homogeneous under this scaling, and the canonical Weierstrass
function ℘(z) satisfies,

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 . (C.4)

Henceforth, we shall use this canonical form which is the derivative of the Weierstrass ζ(z)
function (not to be confused with the Riemann ζ-function which will not enter here),

℘(z) = −ζ ′(z) , ζ(−z) = −ζ(z) . (C.5)

The ζ(z) function has the following monodromy relations,

ζ(z + 1)− ζ(z) = 4ωη , 2ω η = ζ(1
2) ,

ζ(z + τ)− ζ(z) = 4ωη′ , 2ω η′ = ζ( τ2 ) . (C.6)

Note that ζ(1
2) and ζ( τ2 ) are functions of τ only but, because of the extra factor of ω

in their definition, the parameters η and η′ depend on both ω and τ . The relations are
readily established by using the fact that ζ(−z) = ζ(z) and setting z equal to −1

2 and − τ
2 ,

respectively. The periods 2ω and 2ω′ and the parameters η and η′ satisfy the following
relation,

2η ω′ − 2η′ω = τζ(1
2)− ζ( τ2 ) = iπ . (C.7)

One may use this relation to obtain η′ and ζ( τ2 ) in terms of the other data. A useful formula
for ζ(1

2) and thus η in terms of the discriminant ∆ = g3
2 − 27g2

3 is as follows,

ζ(1
2) = − iπ12 ∂τ ln ∆ = π2

6 E2(τ) . (C.8)

The combinations g2, g3 and ∆ are holomorphic modular forms.

C.2 Modular transformations and modular forms

Modular transformations form the group SL(2,Z) and act on τ by Möbius transformations,

τ → τ̃ = aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z) . (C.9)

They are generated by the transformations S and T , under which S : τ → −1/τ and
T : τ → τ + 1, and whose matrix form is as follows,

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (C.10)

Under an arbitrary modular transformation τ → τ̃ , the half-periods ω and ω′ and the
parameters η and η′ transform linearly,

ω̃′ = aω′ + bω , η̃′ = aη′ + bη ,

ω̃ = cω′ + dω , η̃ = cη′ + dη , (C.11)
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while the combinations g2, g3, ∆ = g3
2 − 27g2

3, and j = 1728 g3
2/∆ transform as follows,

g2(τ̃) = (cτ + d)4 g2(τ) , ∆(τ̃) = (cτ + d)12 ∆(τ) ,
g3(τ̃) = (cτ + d)6 g3(τ) , j(τ̃) = j(τ) . (C.12)

The combinations g2, g3, and ∆ are referred to as holomorphic modular forms of weight
(4, 0), (6, 0), and (12, 0) respectively, while j is a meromorphic modular function, since it is
invariant under SL(2,Z). We note that ζ(1

2) and ζ( τ2 ) are not modular forms. Indeed, by
combining the expression for E2 in terms of ∆ with the transformation law for ∆, we obtain,

E2(τ̃) = (cτ + d)2E2(τ) + 12
2πic(cτ + d) , (C.13)

and E2 is referred to as a quasi-modular form.
The standard fundamental domain for SL(2,Z) is given by,

F = {τ ∈ C such that 0 < τ2, 1 ≤ |τ |, |τ1| ≤ 1
2} . (C.14)

It contains the orbifold points i, ρ = e2πi/3, and ρ′ = ρ+ 1, which are fixed points under
the transformations S : i → i, ST : ρ → ρ and TS : ρ′ → ρ′. The j-function provides a
holomorphic bijection from F to the Riemann sphere Ĉ.

Convergent Taylor series expansions in terms of the variable e2πiτ for ζ(1
2), g2 and g3

with τ in the standard fundamental domain F are given by

ζ(1
2 |τ) = π2

6 E2(τ) , E2(τ) = 1− 24
∞∑
n=1

σ1(n) e2πinτ ,

g2(τ) = 4π4

3 E4(τ) , E4(τ) = 1 + 240
∞∑
n=1

σ3(n) e2πinτ ,

g3(τ) = 8π6

27 E6(τ) , E6(τ) = 1− 504
∞∑
n=1

σ5(n) e2πinτ , (C.15)

where σk(n) = ∑
d|n d

k with d > 0 are the standard sum-of-divisor functions. The discrimi-
nant takes the form,

∆(τ) = (2π)12

1728
(
E4(τ)3 − E6(τ)2

)
= (2π)12 e2πiτ

∞∏
n=1

(1− e2πinτ )24 . (C.16)

The j-function is normalized so that its pole in q = e2πiτ at the cusp has unit residue,

j(τ) = e−2πiτ + 744 +O(e2πiτ ) . (C.17)

C.3 Special values

In this final subsection, we review the reality conditions for g2, g3,∆, E2 and ζ(1
2) and ζ( τ2 ),

and obtain their special values at the orbifold points i and ρ and at the cusp i∞. The
modular function j, the modular forms g2, g3,∆, as well as E2 and thus ζ(1

2) are real for
τ ∈ iR and τ ∈ ±1

2 + iR.
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At the orbifold points i, ρ and at the cusp i∞, the functions E4(τ), E6(τ), j(τ), ζ(1
2 |τ)

and ζ( τ2 |τ) take the following values,

E2(i∞) = 1 E2(i) = 3
π E2(ρ) = 2

√
3

π

E4(i∞) = 1 E4(i) = 48Γ(5
4)4/(π2Γ(3

4)4) E4(ρ) = 0
E6(i∞) = 1 E6(i) = 0 E6(ρ) = 729Γ(4

3)6/(2π3Γ(5
6)6)

j(i∞) =∞ j(i) = 1728 j(ρ) = 0

ζ(1
2 |i∞) = π2

6 ζ(1
2 |i) = π

2 ζ(1
2 |ρ) = π√

3

ζ( τ2 |τ) ≈ π2

6 τ − iπ ζ( i2 |i) = − iπ
2 ζ(ρ2 |ρ) = − π

2
√

3 −
iπ
2 (C.18)

The values for the cusp τ = i∞ follow from the series expansions of E2, E4 and E6, and
the relation between ζ(1

2) and E2 and (C.7). The cancellations of E4(ρ) and E6(i) follow
from the modular transformations [37]: the relation Si = i implies E6(Si) = −E6(i) so that
E6(i) = 0 and j(i) = 1728. Similarly, the relation STρ = ρ implies E4(STρ) = ρ2E4(ρ)
so that E4(ρ) = 0 and j(ρ) = 0. The values of E4(i) and E6(ρ) may be found on page 7
in [38].

The values of ζ(1
2 |τ) and ζ( τ2 |τ) at the fixed points may be obtained from the values of E2

at the fixed points combined with the relations (C.7). Applying the modular transformation
rule for E2 for the values τ = τ̃ = i and τ = τ̃ = i with the modular transformations S and
ST respectively, we find,

E2(i) = −E2(i) + 6
π
, E2(ρ) = ρE2(ρ) + 6ρ2

π
. (C.19)

Solving these equations gives the entries in the first line of (C.18).

D Numerical methods for SU(3)

In this appendix, we describe two numerical techniques to evaluate the Kähler potential for
the case of SU(3) gauge group.

D.1 Numerically evaluating F4

The Appell function F4(a, b, c1, c2;x, y) may be evaluated by summing its Taylor series at
x = y = 0 in the domain of convergence

√
|x|+

√
|y| < 1. Beyond this domain, the function

enjoys an inversion formula, given in (2.28), which allows one to extend the domain to√
|x|+ 1 <

√
|y| and

√
|y|+ 1 <

√
|x|. Still, the union of all these domains does not cover

all of x, y ∈ C, and in particular excludes the domain that is of greatest interest to us when
|x| ∼ |y| ∼ 1. Maple sports a preprogrammed function for F4, which has difficulties precisely
in this physically interesting region as well. To this end, we now present a numerical
approach that circumvents these problems. It is based on numerically integrating a first
order ODE along a ray x(t) = tx, y(t) = ty for a given point (x, y) ∈ C2 and t ∈ [0, 1]. We
shall now present the essential components of the method.
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D.1.1 Conversion to a first order system

Following Appell and Kampé de Fériet [39], we transform the system of two second order
differential equations for F4,

x(1− x)∂2
xf − y2∂2

yf − 2xy∂x∂yf +
(
c1 − c0x

)
∂xf − c0y∂yf − abf = 0

y(1− y)∂2
yf − x2∂2

xf − 2xy∂x∂yf +
(
c2 − c0y

)
∂yf − c0x∂xf − abf = 0 (D.1)

with c0 = a+b+1, into a system of 4 first order differential equations. Clearly, the dimension
of the first order system must be 4 since we know that there must be 4 independent solutions
(for generic parameters). Using the notation,

p = ∂f

∂x
, q = ∂f

∂y
, s = ∂2f

∂x ∂y
, (D.2)

the system of first order differential equations is conveniently expressed in terms of matrix-
valued differential form notation,

dΦ = (Mxdx+Mydy)Φ , (D.3)

where,

Φ =


f

p

q

s

 , Mx =


0 1 0 0
A1 A2 A3 A4
0 0 0 1
C1 C2 C3 C4

 , My =


0 0 1 0
0 0 0 1
B1 B2 B3 B4
D1 D2 D3 D4

 . (D.4)

The rows that involve only 0 and 1 in Mx and My readily result from the definitions of
p, q, s in (D.2). The entries A1, . . . , A4 and B1, . . . , B4 may be obtained by transforming the
system of second order equations into an equivalent system in which one equation involves
∂xp but not ∂yq and vice-versa. This system is given as follows,

x(1− x− y)∂xp− 2xys+ (c1 − c1y − c0x)p+ (c2 − c0)yq − abf = 0 ,
y(1− x− y)∂yq − 2xys+ (c2 − c2x− c0y)q + (c1 − c0)xp− abf = 0 . (D.5)

As a result, we have,

A1 = ab

x(1− x− y) B1 = ab

y(1− x− y)

A2 = c0x+ c1y − c1
x(1− x− y) B2 = (c0 − c1)x

y(1− x− y)

A3 = (c0 − c2)y
x(1− x− y) B3 = c2x+ c0y − c2

y(1− x− y)

A4 = 2y
1− x− y B4 = 2x

1− x− y (D.6)

To obtain the entries C1, . . . , C4 and D1, . . . , D4 we begin by taking the ∂y derivative of
the first equation in (D.5) and the ∂x derivative of the second equation. Taking linear
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combinations that produce one equation involving only ∂xs and another involving only ∂ys
and eliminating the derivatives ∂xp and ∂yq using (D.5), one obtains,

Ci = Ci
x(1− x− y)N , Di = Di

y(1− x− y)N , (D.7)

where N = (1− x− y)2 − 4xy. The coefficients Ci are given by,

C1 = ab(c0 − 2c1 + c2 + 1)x+ ab(c0 − c2 + 1)(1− y) ,
C2 = (−2ab+ c2

0 − c0c1 + c0c2 − c1c2 − c0 + c1)x2

+ (−2ab− c2
0 + 3c0c1 + c0c2 − 2c2

1 − c1c2 − 3c0 + 3c1)xy
+ (2ab+ c2

0 − 3c0c1 − c0c2 + 2c2
1 + c1c2 + 3c0 − 3c1)x ,

C3 = (ab− c0c2 + c2
2 + c0 − c2)(1− x)2 + (ab− c2

0 + c0c2)y2

+ (2ab+ c2
0 − 2c0c1 − 2c0c2 + 2c1c2 + c2

2 + 3c0 − 3c2)xy
+ (−2ab+ c2

0 − c2
2 − c0 + c2)y ,

C4 = (c0 − 2c2 + 2)x3 + c1y
3 + (2c0 − 3c1 + 2)x2y + (−3c0 + 2c1 + 2c2 − 4)xy2

+ (−2c0 − c1 + 4c2 − 4)x2 − 3c1y
2 + (2c0 − 4c1 + 2)xy

+ (c0 + 2c1 − 2c2 + 2)x+ 3c1y − c1 , (D.8)

and the coefficients Di are given by,

D1 = ab(c0 − c1 + 1)(1− x) + ab(c0 + c1 − 2c2 + 1)y ,
D2 = (ab− c2

0 + c0c1)x2 + (ab− c0c1 + c2
1 + c0 − c1)(1− y)2

+ (2ab+ c2
0 − 2c0c1 − 2c0c2 + c2

1 + 2c1c2 + 3c0 − 3c1)xy
+ (−2ab+ c2

0 − c2
1 − c0 + c1)x ,

D3 = (−2ab+ c2
0 + c0c1 − c0c2 − c1c2 − c0 + c2)y2

+ (−2ab− c2
0 + c0c1 + 3c0c2 − c1c2 − 2c2

2 − 3c0 + 3c2)xy
+ (2ab+ c2

0 − c0c1 − 3c0c2 + c1c2 + 2c2
2 + 3c0 − 3c2)y ,

D4 = c2x
3 + (c0 − 2c1 + 2)y3 + (−3c0 + 2c1 + 2c2 − 4)x2y + (2c0 − 3c2 + 2)xy2

− 3c2x
2 + (−2c0 + 4c1 − c2 − 4)y2 + (2c0 − 4c2 + 2)xy

+ 3c2x+ (c0 − 2c1 + 2c2 + 2)y − c2 . (D.9)

Swapping x↔ y and simultaneously c1 ↔ c2, we verify (A1, A2, A3, A4)↔ (B1, B3, B2, B4)
and (C1, C2, C3, C4)↔ (D1,D3,D2,D4).

D.1.2 Solution on a ray via ODE

Fix a point (x, y) ∈ C2 and parametrize a ray from the Z6 symmetric point to (x, y) by

x(t) = tα2 , x = α2 ,

y(t) = tβ2 , y = β2 . (D.10)
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In terms of this parametrization, the denominators (1− x− y) and N have simple zeros,

1− x(t)− y(t) = 1− t(α2 + β2) ,
N(x(t), y(t)) =

(
1− t(α− β)2)(1− t(α+ β)2) . (D.11)

On this ray, the system of first order equations in two variables collapses to a system in
just one variable t,

d

dt
Φ = (α2Mx + β2My)Φ , (D.12)

where Φ, Mx, and My are all evaluated at x(t), y(t). The initial values at the Z6-symmetric
point may be obtained from the Taylor expansion of F4 in powers of x, y. The integration of
this ODE for each one of the F4 functions appearing in the SU(3) solution is now standard,
and thankfully proves to be numerically fast.

D.2 Numerically evaluating the derivatives of K

We now describe a method for numerically evaluating the SU(3) Kähler potential by
integrating its derivatives with respect to the moduli u, v. Our starting point is the
expression (4.4) for the derivatives of K as two-dimensional integrals, which we repeat here

∂K

∂ūn
= 1

8π3 lim
R→∞

∫
|x|<R

d2x
xA′(x) x̄n
|A(x)2 − 1| , (D.13)

and likewise for the complex conjugate derivatives. For N = 3 the two complex moduli are
u1 = u and u0 = v, with A(x) = x3 − ux− v.

Straightforward numerical integration of (D.13) fails, due to the fact that the integrand
has poles at xi satisfying A(xi)2 = 1, as well as at infinity (for the v-derivative). We
proceed by explicitly subtracting the residues of these poles from the integrand, numerically
integrating, and then adding back in the subtracted contributions. For instance, dK/dū is
computed as

∂K

∂ū
= 2i

8π3 lim
ε→0

[∫ ∞
−∞

∫ ∞
−∞

dRe(x) dIm(x) I(x, ε) +
∑
i

J(xi, ε)
]
, (D.14)

where I(x, ε) and J(xi, ε) are given as,

I(x, ε) = |x|2A′(x)
|A(x)2 − 1| −

3x2

|x|4 e
− 1
|x|2 −

∑
i

|xi|2A′(xi)e−ε|x−xi|2

2|A′(xi)||x− xi|
,

J(xi, ε) = xiA
′(xi)

2|A′(xi)|
(2π)

∫ ∞
0

dr e−εr
2
. (D.15)

When evaluating these formulas numerically we take ε to be a small number (e.g. ε = 0.01)
whose precise value demonstrably does not affect the results of the integration. The
expression (D.14) for ∂K/∂ū, along with the analogous formulae for ∂K/∂v̄ and their
complex conjugates, can then be straightforwardly numerically integrated from an initial
point (which we take to be the multi-monopole point with real u for which K = 0) to a
generic point (u, v). In this way, K can be evaluated on a grid of complex (u, v) values.
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We have subjected the numerical evaluation method described above to various consis-
tency checks:

• Applying the same method to the case of SU(2) gauge group, we have verified that the
resulting K(u) matches the known hypergeometric function representation depicted
in figure 1.

• We have verified that on the u = 0 and v = 0 slices of moduli space for which the
Appell functions reduce to hypergeometric functions, the numeric evaluation of K(u, v)
reproduces the correct values. This includes matching to the analytic values of K
at the origin (computed in (3.10)) and at the Argyres-Douglas points (computed
in (5.27)).

• Within the region of convergence of Maple’s predefined Appell F4 function, we have
verified for a variety of (u, v) that the numerical evaluation of K(u, v) matches the
numerical evaluation of the exact formula of K given in terms of Appell functions.

• We have, in some regimes, checked the two numerical methods described in appen-
dices D.1 and D.2 against each other and found them to match with high precision.

E The strong-coupling spectrum for SU(N)

In this appendix, we enumerate the stable BPS particles in the strong-coupling chamber
of four-dimensional N = 2 pure supersymmetric gauge theory with gauge group SU(N),
though our primary interest is the case N = 3.

These BPS states were determined, for all SU(N) gauge groups, in [34–36]. We follow
the discussion in [35], where a basis different from ours is used. It is convenient to work
at the origin of moduli space, i.e. at the Z2N -symmetric point. The left panel of figure 9
shows the branch cut conventions and various cycles used in [35], while the right panel
shows our choice of branch cuts and cycles, both for the case of SU(3) gauge group. We
see that the branch cuts, as well as the ÂI (and hence the AI) cycles and the intersection
pairing #(AI ,BJ) = δIJ , are the same in both figures. However, the figures differ in the
definition of the BI cycles.

In order to translate their results into our conventions, we denote their BI cycles —
referring to the left panel of figure 9 — by Bthem

I , while our BI cycles — referring to the
right panel of figure 9 — are denoted by Bus

I . By examining these figures, we see that the
cycles are related as follows,

Bus
1 = Bthem

1 − A1 , Bus
2 = Bthem

2 + A2 . (E.1)

In the conventions of [35], the N(N − 1) BPS particles that exist at the origin of SU(N)
gauge theory have charge vectors ~µkI that correspond to the following cycles µkI ,13

µ0I = −Bthem
I , µ1I = CI , µkI = µk−1,I−1 + µk−1,I+1 − µk−2,I . (E.2)

13As is common in the literature on BPS particles, we do not list their corresponding anti-particles.
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ε3

ε4 ε5

Â1Â2

Â3

B1

B2
C1C2

ε0

ε1ε2

ε3

ε4 ε5

Â1Â2

Â3

B1

B2 B3

Figure 9. The left panel shows the conventions for the ÂI , BI , and CI cycles that are used in [35].
The right panel shows our conventions for the ÂI ,BI cycles. In this figure we have specialized to
N = 3, with ε = e

2πi
6 .

Here the labels run over k = 2, . . . , N − 1 and I = 1, . . . , N − 1, so that we set µkI = 0 for
I < 1 and I > N − 1. The CI cycle is obtained from Bthem

I by a − π
N rotation, as indicated

in figure 9 for the case N = 3. It can be expressed in terms of the AI and Bthem
I cycles:

CI =
{

−AI−1 + 2AI − AI+1 + Bthem
I I even

−AI−1 + 2AI − AI+1 −Bthem
I−1 −Bthem

I −Bthem
I+1 I odd . (E.3)

The tower of N − 1 mutually local dyons that become massless at the k’th multi-monopole
point corresponds to the set of µkI cycles, with I = 1, · · · , N − 1.

Specializing to N = 3, there are six BPS particles in the strong-coupling chamber,
corresponding to cycles µkI with k = 0, 1, 2 and I = 1, 2. The corresponding charges
~µthem = (~q;~g)them can be read off immediately from the specialization of (E.2) and (E.3) to
N = 3, while the charges ~µus = (~q;~g)us in our basis can be determined from (E.1),

~gus = ~gthem ,

qus
1 = qthem

1 + gthem
1 ,

qus
2 = qthem

2 − g2 .

(E.4)

The results are summarized in table 1. The states in the table are grouped into three pairs
µkI , labeled by k = 0, 1, 2, of mutually local dyons, with one pair becoming massless at
each of the three multi-monopole points. At each of the two Argyres-Douglas points, one
dyon from each pair becomes massless. At the origin of moduli space, all six states are
massive and degenerate.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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µkI Cycles (~q;~g)them (~q;~g)us

µ01 −Bthem
1 (0, 0;−1, 0) (−1, 0;−1, 0)

µ02 −Bthem
2 (0, 0; 0,−1) (0, 1; 0,−1)

µ11 C1 = 2A1 − A2 −Bthem
1 −Bthem

2 (2,−1;−1,−1) (1, 0;−1,−1)
µ12 C2 = −A1 + 2A2 + Bthem

2 (−1, 2; 0, 1) (−1, 1; 0, 1)

µ21 C2 + Bthem
1 (−1, 2; 1, 1) (0, 1; 1, 1)

µ22 C1 + Bthem
2 (2,−1;−1, 0) (1,−1;−1, 0)

Table 1. The six stable BPS particles in the strong-coupling chamber of SU(3) gauge theory, together
with the corresponding cycles and charges in the conventions of [35], as well as the translation of
the charges into our conventions.
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