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1 Introduction

The cusp anomalous dimension Γcusp was originally introduced in Polyakov’s paper [1] to
describe the scaling of a cusped Wilson loop with a variation of UV cutoff parameter.
The same quantity determines the infrared singularity structure of scattering amplitudes
in the chosen QFT theory. The physical meaning of this correspondence is simple. Since
the infrared divergencies stem from soft regions of loop integration, the incoming/outgoing
particle can be replaced by a cusped Wilson line which IR and UV scaling behavior is
governed by the same exponent by dimensional arguments. The notation Γcusp(φ, αs)
indicates that this quantity depends on cusp angle φ and coupling constant αs. Of course,
the cusp anomalous dimension depends also on the specific variant of quantum field theory.
In the case of quantum electrodynamics without massless fermions, the cusp anomalous
dimension determines the scaling of quasi-elastic cross sections with the soft-photon energy
cut-off thus being a directly observable quantity. Note that in this case result exact in α can
be obtained from one-loop calculation, thanks to exponentiation of QED. For non-abelian
theories, in particular, for QCD, Γcusp(φ, αs) is a nontrivial series in αs accessible only via
perturbative calculations.

The asymptotics of Γcusp(φ, αs) at large and small angles also provide an important
information. The light-like cusp anomalous dimension K(αs) = limφ→i∞ iΓcusp(φ, αs)/φ
plays important role for the infrared asymptotics of massless scattering amplitudes and
form factors [2–4]. The opposite limit of small angles is also of some interest. In particular,
the Bremsstrahlung function B(αs) = − limφ→0 Γcusp(φ, αs)/φ2 determines the energy loss
of a charged particle moving along a smooth curved trajectory [5]. In addition, the calcu-
lations in the small-angle limit are much more accessible and often precede the full-angle
dependence calculations.

The exact angle dependence of Γcusp(φ, αs) is known up to three loops in QCD [6]
and supersymmetric Yang-Mills theories [7]. At the four loop order, only partial results
are available: fermionic contributions to QCD Γcusp(φ, αs) in small-angle expansion [8–11],
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abelian part with full angle dependence [8, 10, 12], planar part of angle-dependent cusp
anomalous dimension in N=4 SYM [13]. In addition, the Bremsstrahlung function has
been calculated at the four-loop level in 3-dimensional ABJM theory, refs. [14, 15].

The goal of the present paper is to provide the small-angle expansion up to φ4 of the
QCD four-loop cusp anomalous dimension. As a byproduct, we calculate the anomalous
dimension of the heavy quark field in heavy quark effective theory (HQET) [16], extending
the partial results of refs. [8–11, 17]. Both calculations require the knowledge of the four-
loop HQET propagator-type integrals and provide the first application examples of the
results of ref. [18] where a full set of the four-loop HQET propagator master integrals was
calculated. As an additional cross-check for all ingredients of the calculation chain we
obtain from the renormalization of the heavy-quark-gluon vertex the four-loop QCD beta-
function [19, 20] known for a long time and recently extended to five-loop order [21–23].

The paper is organized as follows. In section 2 we introduce the HQET framework and
in section 3 we present details of our calculation. Section 4 contains four-loop results for
the calculated heavy quark field anomalous dimension as well as small angle expansion of
QCD cusp anomalous dimension. We conclude in section 5.

2 Cusp anomalous dimension in HQET framework

Heavy Quark Effective Theory is a well established framework for calculation of both full
angle dependent Γcusp(φ, αs) [6, 7, 12] and its small-angle expansion [9, 11]. In our work
we closely follow the technique employed in refs. [9, 11] for the calculation of Γcusp(φ, αs) in
small angle expansion. Within the HQET framework the quantity Γcusp(φ, αs) is extracted
from UV divergences of diagrams with cusped HQET line where the cusp corresponds to
an abrupt change of heavy quark velocity.

Being an effective theory of QCD, HQET describes the interaction of heavy quark field
h with massless quarks by gluon exchange. The renormalization of HQET theory requires,
in addition to QCD renormalization constants, the only new constant Zh connecting the
bare and the renormalized heavy quark fields, which appears in the diagrams with external
heavy legs. The QCD renormalization constants up to the four-loop order can be found in
ref. [20].

To fix notation we provide Feynman rules for the heavy quark propagator and the
heavy-quark-gluon vertex:

v

p
i j = −iδij

ω − v · p
,

v
i j

µ, a
= igvµT aij . (2.1)

By introducing in eq. (2.1) the residual energy ω we regulate the IR divergencies in the
diagrams, then the UV divergences, our main interest, reveal themselves as poles in ε =
(4 − d)/2. Since one of our goals, h-field anomalous dimension, is known to be gauge
dependent quantity, we perform our calculations in a generalized covariant gauge where
the gluon propagator has the form

p
a b = −iδab

p2

[
gµν − ξ

pµpν
p2

]
. (2.2)

All other QCD Feynman rules are standard and available from ref. [24].
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Equipped with the above Feynman rules we are prepared to calculate loop diagrams
in HQET. We perform our calculations in two steps. In the first step, we calculate the sum
of bare unrenormalized diagrams up to the needed order. In the second step, we carry out
renormalization and extract the required renormalization constants.

The first and simplest quantity we need to calculate is the heavy quark field renormal-
ization constant and the corresponding anomalous dimension γh. We consider the quantity

Ghh =
vi j

· δij
ωN

. (2.3)

where N is the number of colors and the dashed blob stands for the sum of the bare
1PI two-point functions up to the four-loop order. For convenience, we contract the color
indices to make the expression scalar and choose the normalization factor such that the
perturbative expansion of Ghh starts with 1.

Another quantity that we want to calculate is the four-loop QCD beta-function. Al-
though this beta-function is known for a long time [19, 20], this calculation provides a
crucial check of our setup. We extract this quantity from the heavy-quark-gluon vertex.
Similar to the previous case, eq. (2.3), we define the scalar function Gghh accumulating the
contributions of 1PI three-point diagrams up to four-loop order:

Gghh =

vi j

a, µ

·
taijvµ

gsNCF
. (2.4)

To reduce the original problem to the problem of propagator-type diagrams calculation, we
apply the IRR trick [25] to diagrams entering in (2.4) and put external gluon momentum
to zero.

Finally, we want to consider the cusp anomalous dimension and, in particular, calculate
its small angle expansion. We consider the expectation value of an infinite cusped Wilson
line depending on two velocities v2 = v′2 = 1, v · v′ = cosφ. In momentum representation
the perturbative corrections to this expectation value are expressed via HQET diagrams
with [h(v)h̄(v′)] operator insertion into two-point function with heavy quark velocities v
and v′ to the left and to the right from the insertion point, respectively. Again, we construct
a scalar function G[hh]hh(φ) corresponding to the sum of bare 1PI diagrams convoluted with
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the appropriate tensor:

G[hh]hh(φ) =

i v
j

v′

φ

· δij
N
. (2.5)

Using results for bare functions GX calculated before we proceed with the second step,
namely, with the extraction of renormalization constants. The corresponding MS renor-
malization constants ZX for each function GX are determined from the poles cancellation
requirements

Zhh ·Ghh = O
(
ε0
)
, Zghh ·Gghh = O

(
ε0
)
, Z[hh]hh(φ) ·G[hh]hh(φ) = O

(
ε0
)
. (2.6)

Here we replace bare parameters as,B and aξ,B = 1 − ξ entering Gi with its renormalized
counterparts:

as,B = µ2εZasas, aξ,B = Zaξaξ. (2.7)

From vertex renormalization constants (2.6), dividing by external legs Z-factors we deter-
mine gauge parameter independent combinations:

Zas =
Z2

ghh
Z2

hhZA
, Zcusp(φ) =

Z[hh]hh(φ)
Zhh

, (2.8)

where Zhh found before and gluon field renormalization constant ZA is known from refs. [19,
20]. Gauge parameter independence of Zas and Zcusp(φ) allows us to calculate Gghh and
G[hh]hh(φ) as expansion around ξ = 0, keeping only the first term of expansion to verify
its cancellation in (2.8) as additional test on the validity of the obtained results. Another
test comes from the HQET Ward identity implying that:

Zhh = lim
φ→0

Z[hh]hh(φ). (2.9)

From the four-loop result for Zas in (2.8) we can derive a well known expression for
the four-loop QCD beta-function within the MS renormalization scheme:

βas = das
d logµ2 = −εas

1 + as∂as logZas
= −εas −

∞∑
n=0

bna
n+2
s , (2.10)

with b0 = 11
3 CA−

4
3nfTF . The agreement of the obtained coefficients b0−3 with the results

of refs. [19, 20] provides a strong check of our calculation setup.
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3 Calculation details

To calculate bare Green functions introduced in section 2 we have developed a highly
automatized setup. Its workflow starts with the generation of diagrams with DIANA [26],
which internally calls QGRAF [27]. We generate the propagator-type (two-point) diagrams for
the calculation of Ghh and vertex-type (three-point) diagrams for the calculation of Gghh.
The former diagrams have been reused in G[hh]hh calculation since the diagrams with the
cusp on the Wilson line are in one-to-one correspondence with the diagrams obtained by an
auxiliary leg insertion in all possible ways on the heavy-quark line in two-point diagrams.
The insertion point corresponds to a cusp, so we replace v → v′ in all h-propagators to
the right of this point. After that, all propagators dependent on v′ are expanded in the
vicinity of φ = 0 with a recursive application of the identity

1
1− 2 k · v′ = 1

1− 2 k · v︸ ︷︷ ︸
O(φ0)

+ 1
1− 2 k · v

2k · (v′ − v)
1− 2 k · v′︸ ︷︷ ︸

O(φ)

(3.1)

After the decomposition of v′ in numerator with v′ = v cosφ + n⊥ sinφ, where n2
⊥ = 1,

and v · n⊥ = 0 we are left with scalar products of n⊥ with loop momenta. Since the
result of the loop integration is independent of the n⊥ direction it is possible to replace
nµ1
⊥ . . . nµn⊥ →

〈
nµ1
⊥ . . . nµn⊥

〉
, where 〈•〉 denotes averaging over perpendicular directions. For

reference, we present explicit formulae for this averaging

〈
nµ1
⊥ . . . n

µ2s−1
⊥

〉
= 0,

〈
nµ1
⊥ . . . nµ2s

⊥
〉

= (1/2)s
(3/2− ε)s

S
s∏

k=1
g
µ2k−1µ2k
⊥ , (3.2)

where gαβ⊥ = gαβ − vαvβ , cs = c · (c+ 1) · . . . · (c+ s− 1) is the Pocchammer symbol, and S
is the normalized (i.e., S1 = 1) symmetrization operator with respect to permutations of
µ1, . . . , µ2k. From eq. (3.1) it is obvious that the calculation of higher orders of expansion
in φ requires the reduction of integrals with higher powers of denominators and scalar
products in the numerator. In our work we consider expansion to φ4, corresponding to two
first non-trivial orders in the small-angle expansion of Γcusp(φ).

Next, we calculate the Dirac traces and simplify expressions with FORM [28] and perform
the color algebra in terms of color invariants with COLOR [29] ending up with a set of scalar
integrals.

Due to the presence of linear propagators (2.1), we need to perform partial fraction
decomposition of linear dependent propagators. With the implementation based on the
package TopoID [30] and the private version of the LiteRed package, we obtain expressions
containing integrals with an independent set of scalar products only which can be mapped
on the set of 19 auxiliary topologies considered in [18]. For reduction to master integrals
calculated in [18], we use FIRE6 [31] in combination with LiteRed [32, 33].

All diagrams up to the three-loop order as well as the four-loop diagrams needed
for Ghh are calculated keeping the full dependence on gauge-fixing parameter ξ, but to
reduce required calculation time, we perform expansion in ξ to leading order in four-loop
diagrams Gghh and G[hh]hh, since corresponding renormalization constants (2.8) extracted
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from these functions are gauge-parameter independent and cancelation of the ξ dependence
in the expanded form is a sufficient check on the validity of the obtained result.

4 Results and discussion

From the results for renormalization constants obtained in the previous section, we derive
anomalous dimensions by taking logarithmic derivatives in the renormalization scale:1

γh = d logZhh
d logµ = 2βas

∂ logZhh
∂as

+ 2βaξ
∂ logZhh
∂aξ

, (4.1)

Γcusp(φ) = −d logZcusp(φ)
d logµ = −2βas

d logZcusp(φ)
das

. (4.2)

Here as = αs/(4π) and aξ = 1 − ξ, the strong coupling beta-function βas was introduced
in (2.10) and the beta-function of the gauge fixing parameter aξ is defined as follows:

βaξ = daξ
d logµ2 = −βas

aξ∂as logZaξ
1 + aξ∂aξ logZaξ

. (4.3)

The complete result for the HQET field anomalous dimension up to four-loop order is

γh=−2asCF (3−aξ)+a2
sCF

{32
3 nfTF−CA

(179
6 −4aξ−

1
2a

2
ξ

)}
+a3

s

{
C2
FnfTF (102−96ζ3)+CF

(160
27 (nfTF )2+CAnfTF

(782
27 +96ζ3−

17
2 aξ

)
− C2

A

(23815
216 + 123

4 ζ3+ 4
15π

4−
(271

16 −
4
45π

4+6ζ3

)
aξ−

(39
16 + 3

4ζ3

)
a2
ξ−

5
8a

3
ξ

))}
+a4

s

{
C2
F

[
(nfTF )2

(
−3296

27 −
32
15π

4+384ζ3

)
+CAnfTF

(21703
27 + 88

15π
4−928ζ3−480ζ5−

(767
6 −

4
15π

4−88ζ3

)
aξ

)]
− d

abcd
F dabcdF

N
nf

(512
3 π2−256ζ3−

512
3 π2ζ3+320ζ5

)
−C3

FnfTF

(560
3 +592ζ3−960ζ5

)
+CF

[
(nfTF )3

(256
27 −

256
9 ζ3

)
−CA(nfTF )2

(2054
81 −

32
15π

4+384ζ3+
(2152

243 −
32
3 ζ3

)
aξ

)
+C2

AnfTF

(30617
81 − 16

3 π
2− 3097

540 π
4+ 5506

3 ζ3+ 104
9 π2ζ3−96ζ2

3−
1534

3 ζ5

−
(37957

1944 −
1
15π

4+82ζ3+ 16
27π

2ζ3−
4
9ζ5

)
aξ−

(109
36 −

1
180π

4+ 7
3ζ3

)
a2
ξ

)
−C3

A

(471001
648 − 781

36 π
2+ 10501

2160 π
4− 850

1701π
6+ 212237

288 ζ3+ 709
36 π

2ζ3−
451
4 ζ2

3−
3859
12 ζ5

−
(1690475

15552 −
2
9π

2− 9109
4320π

4+ 472
8505π

6+ 3839
48 ζ3+ 164

27 π
2ζ3+ 11

4 ζ
2
3−

272
9 ζ5

)
aξ

−
(6707

576 + 1
12π

2− 121
1080π

4+ 653
48 ζ3+ 13

36π
2ζ3−

169
48 ζ5

)
a2
ξ−
(149

48 −
1

480π
4+ 21

16ζ3

)
a3
ξ

−
(19

32 + 1
96ζ3+ 5

48ζ5

)
a4
ξ

)]
1For historical reasons, we take derivatives in log µ rather than in log µ2 for γh and Γcusp(φ).
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− d
abcd
F dabcdA

N

[16
3 π

2− 128
15 π

4− 224
405π

6− 569
4 ζ3−

320
3 π2ζ3+384ζ2

3 + 4815
4 ζ5

−
(16

3 π
2− 884

2835π
6−11ζ3−

128
3 π2ζ3+24ζ2

3 +540ζ5

)
aξ−

(3
2ζ3−

75
2 ζ5

)
a2
ξ

+3ζ3a
3
ξ+
(7

4ζ3−
5
4ζ5

)
a4
ξ

]}
+O

(
a5
s

)
(4.4)

The terms up to α3
s agree with the results of the three-loop HQET calculation [34] and

results obtained as a byproduct of the three-loop QCD on-shell renormalization [35]. The
analytical result for the four-loop part is new and in full agreement with the results of nu-
merical calculation [17] and partial four-loop results for fermionic contributions calculated
in [9, 11]. We note also that the terms proportional to aL−kξ with L > 2 and k = 0, 1 coin-
cide, including the new terms for L = 4, with the corresponding terms in quark anomalous
dimension γq, [23].

The main result of the present paper, namely the small angle expansion of the cusp
anomalous dimension has the following form:

Γcusp(φ) = Γ(2)φ2 + Γ(4)φ4 +O(φ6) (4.5)

and the complete results for the first two terms of the small-angle expansion of the cusp
anomalous dimension up to four-loop order derived from (4.2) read

Γ(2)=−4
3asCF−a

2
sCF

{
CA

(376
27 −

8
9π

2
)
−80

27nfTF
}

+a3
s

{
C2
FnfTF

(220
9 −

64
3 ζ3

)
+64

81CF (nfTF )2

−CFC2
A

(946
9 −

1360
81 π2+8

9π
4+40

9 ζ3

)
+CFCAnfTF

(3112
81 −

320
81 π

2+224
9 ζ3

)}
+a4

s

{
dabcdF dabcdF

N
nf

(640
27 π

2+320
27 π

4−1024
9 π2ζ3

)

+dabcdF dabcdA

N

(64
27π

2−512
27 π

4−128
135π

6+2176
9 π2ζ3

)
−C2

F (nfTF )2
(9568

243 + 64
135π

4−2560
27 ζ3

)
+CF (nfTF )3

(256
243−

512
81 ζ3

)
+C2

FCAnfTF

(103772
243 −880

27 π
2+176

135π
4−10880

27 ζ3+256
9 π2ζ3−

320
3 ζ5

)
−CFCA(nfTF )2

(7340
243 −

2432
729 π

2−224
405π

4+8960
81 ζ3

)
+CFC2

AnfTF

(96322
243 −

59072
729 π2+352

81 π
4+57776

81 ζ3−
896
27 π

2ζ3−
1760

9 ζ5

)
−CFC3

A

(178022
243 −143624

729 π2+9682
405 π

4−80
81π

6+19024
81 ζ3−

256
27 π

2ζ3−
1240

9 ζ5

)
−C3

FnfTF

(1144
27 +1184

9 ζ3−
640
3 ζ5

)}
+O

(
a5
s

)
, (4.6)
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Γ(4)=− 4
45asCF−a

2
sCF

{
CA

(364
405−

8
135π

2
)
−16

81nfTF
}

+a3
s

{
C2
FnfTF

(44
27−

64
45ζ3

)
+ 64

1215CF (nfTF )2

−CFC2
A

(18074
6075 −

320
243π

2+ 8
135π

4+3512
675 ζ3

)
+CFCAnfTF

(328
135−

64
243π

2+224
135ζ3

)}
+a4

s

{
dabcdF dabcdF

N
nf

(
−1472

225 −
10048
2025 π

2+3136
2025π

4+18176
225 ζ3−

4096
675 π

2ζ3−
1024

9 ζ5

)

+dabcdF dabcdA

N

(512
243−

53696
3645 π

2−1984
675 π

4− 128
2025π

6+36224
405 ζ3+9344

225 π
2ζ3−

896
9 ζ5

)
−C2

F (nfTF )2
(9568

3645+ 64
2025π

4−512
81 ζ3

)
+CF (nfTF )3

( 256
3645−

512
1215ζ3

)
+C2

FCAnfTF

(99812
3645 −

176
81 π

2+ 176
2025π

4−10496
405 ζ3+256

135π
2ζ3−

64
9 ζ5

)
−CFCA(nfTF )2

(20804
10935−

2432
10935π

2− 224
6075π

4+1792
243 ζ3

)
+CFC2

AnfTF

(224414
273375−

286696
54675 π

2+ 4688
30375π

4+2389232
30375 ζ3−

1664
675 π

2ζ3−
1504
135 ζ5

)
+CFC3

A

(9434794
273375 +216896

18225 π
2−5782

3375π
4+ 16

243π
6−5252768

30375 ζ3+2912
675 π

2ζ3+4168
45 ζ5

)
−C3

FnfTF

(1144
405 +1184

135 ζ3−
128
9 ζ5

)}
+O

(
a5
s

)
(4.7)

The terms up to α3
s agree with the full angle-dependent results [6, 7] expanded in φ2.

Four-loop part is new and its fermionic contributions are in agreement with the partial four-
loop results from [9, 11]. Results (4.6) and (4.7) are obtained for the QCD-like case, where
heavy quark and massless quarks are in the same representation. For the case of different
representation R of the Wilson line, the result can be easily modified by exchanging the
single power of CF with CR and by replacements dabcdF dabcdF

N → dabcdR dabcdF
NR

and dabcdF dabcdA
N →

dabcdR dabcdA
NR

for quartic Casimir invariants.
It is interesting to compare our result for QCD Γcusp small-angle expansion with avail-

able results in N = 4 SYM. In particular, we compare the Bremsstrahlung function which
is known in N = 4 SYM as an all-order expression [5]. By retaining in front of aLs
only the terms of highest transcendental weight 2L − 2 in QCD Bremsstrahlung function
BQCD = −Γ(2) from eq. (4.6) we obtain

BQCD
MT = 4

3CFas−
8
9CFCAπ

2a2
s + 8

9CFC
2
Aπ

4a3
s−

{
80
81CFC

3
A −

128
135

dabcdF dabcdA

N

}
π6a4

s . (4.8)

Note that all color factors entering BQCD
MT are of the maximal non-abelian nature.
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All-order expression for the BN=4 from ref. [5] reads2

BN=4 = as
2π2∂as log

[
L

(1)
N−1

(
−4π2as

)
e2π2as(1−1/N)

]
, (4.9)

where L(α)
n is the generalized Laguerre polynomial. This Bremsstrahlung function, in ad-

dition to the contribution of gluons, also involves the contribution of auxiliary scalar fields
which leads to different results for BQCD and BN=4 already at one loop: they differ by
a factor of 3/2. Remarkably, the same relation holds at least to the four loops when we
replace BQCD by its maximal transcendentality part:

BN=4 = 3
2B

QCD
MT +O

(
a5
s

)
. (4.10)

Moreover, we have checked that the above relation also holds for arbitrary representation
of Wilson line once we substitute CF → CR and dabcdF dabcdA → dabcdR dabcdA in eq. (4.8) and use
the perturbative result of ref. [36] for BN=4 in representation R. The relation (4.10) can
be interpreted as the manifestation of the maximal transcendentality principle [37, 38].

Finally, let us write the small-angle expansion of Γcusp in a slightly modified form

Γcusp(φ) = −3Γ(2)A(x) + Γ̃(4)φ4 +O
(
φ6
)

= Γ(2) ·
(
φ2 + φ4

15

)
+ Γ̃(4)φ4 +O

(
φ6
)
,

where x = eiφ and A(x) = φ cotφ − 1 is simply the angular dependence of one-loop
cusp anomalous dimension in QCD. The modified coefficient Γ̃(4) = Γ(4) − 1

15Γ(2) has a
substantially simpler form than Γ(4) in eq. (4.7):

Γ̃(4) = 4
135CACFa

2
s+a3

sCF

{
C2
A

(24496
6075 + 16

81π
2− 368

75 ζ3

)
− 32

243CAnfTF
}

+a4
s

{
C2
FCAnfTF

(
−88

81 + 128
135ζ3

)
+CFCA(nfTF )2 1216

10935

+CFC
2
AnfTF

(
−6999736

273375 + 2888
18225π

2− 4112
30375π

4 + 314944
10125 ζ3−

512
2025π

2ζ3 + 256
135ζ5

)
+CFC

3
A

(22786444
273375 −

67432
54675π

2− 3628
30375π

4− 4777168
30375 ζ3 + 7456

2025π
2ζ3 + 11264

135 ζ5

)
+ dabcdF dabcdF

N
nf

(
−1472

225 −
1472
225 π

2 + 512
675π

4 + 18176
225 ζ3 + 1024

675 π
2ζ3−

1024
9 ζ5

)
+ dabcdF dabcdA

N

(512
243−

54272
3645 π

2− 3392
2025π

4 + 36224
405 ζ3 + 17152

675 π2ζ3−
896
9 ζ5

)}
(4.11)

First, we see that Γ̃(4) contains only one color factor dabcdF dabcdF
N which survives in the QED

limit. This fact is quite anticipated agreeing with the results of refs. [10, 12], where ΓQED
cusp (φ)

was represented as ΓQED
cusp (φ) = γ(α)A(x) + (α/π)4nfB(x). Perhaps a less anticipated

observation is that the coefficients of all remaining color structures in Γ̃(4) are now free
from the highest transcendental weight contribution.

2Note that scalar field contribution depends on auxiliary angle θ in “inner” space, and eq. (4.9) corre-
sponds to the case θ = 0.

– 9 –
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5 Conclusion

In the present paper, we have calculated the small angle expansion of the QCD cusp anoma-
lous dimension and the four-loop anomalous dimension of the heavy quark field in HQET.
The obtained results agree with partial analytical and numerical results available in the
literature. We have also performed a stringent test of our calculational setup by indepen-
dent four-loop QCD beta-function derivation from the HQET vertex renormalization. The
obtained results are the first application of the HQET propagator-type master integrals
calculated in ref. [18]. The highly automated setup developed in the course of this work
allows one to obtain yet higher terms in the small-angle expansion of Γcusp (once they are
needed) as well as to calculate similar quantities in the HQET framework. The obtained
missing parts of the full QCD result for Γcusp allowed us to compare the QCD result with
N = 4 SYM predictions for the Bremsstrahlung function and observe the applicability of
the maximal transcendentality principle up to four loops.
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