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1 Introduction

String theory compactified on a d-torus has an O(d, d;Z) T-duality symmetry. When we
take the string coupling to zero this is ‘enhanced’ to a continuous O(d, d;R) symmetry of
the dimensionally reduced low-energy effective action (to all orders in α′) [1–3]. Double
Field Theory (DFT) [4–6] is an attempt to re-formulate the (tree-level) string effective
action so that this symmetry becomes manifest already before dimensional reduction.1 To
do this one doubles the spacetime dimension D → 2D, which allows for a formulation with
an O(D,D) global symmetry acting on the coordinates. An O(D,D) invariant ‘section
condition’ is then imposed which, when solved, reduces the physics to be D-dimensional.

A priori it is not clear that such a re-formulation of the string low-energy effective
action should be possible. But surprisingly it was found that supergravity can indeed be
reformulated with a manifest O(D,D) symmetry. The next surprise was that it is also
possible to cast the first α′ correction to the heterotic and bosonic string in manifestly
O(D,D) invariant DFT form [7] (see also [8–13]). However, in hindsight the existence of
an O(D,D) invariant description of the first α′ correction is not so surprising. The reason

1One can also consider a DFT description of the dimensionally reduced theory only, but this is not what
we have in mind here.
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is that this correction can be generated from an uncorrected DFT action by a version of a
trick originally introduced by Bergshoeff and de Roo [14]. They considered supergravity
coupled to vectors and observed that the supersymmetry transformations of the vectors
and a suitably shifted spin connection take the same form. It is therefore consistent to
identify them and in doing so generate a higher-derivative Riemann squared correction
from the standard F 2 kinetic term for the gauge field. They applied this trick to the
heterotic string effective action to generate the first two α′ corrections. The same trick
can be applied in DFT. One first has to couple DFT to vectors, which is easily done
by starting in a higher dimension and dimensionally reducing. These vectors can then
be identified with components of the generalized spin connection. This was carried out
in [15, 16] and it was shown that one recovers the first α′ correction of [7] (a somewhat
different approach was discussed earlier in [17]). Unlike in the supergravity setting this
‘generalized Bergshoeff-de Roo trick can be implemented exactly, i.e. there is no need to add
additional α′ corrections. Instead the recursive form of the identification leads to an infinite
series of α′ corrections. It is natural to think of these as the T-duality completion of the first
order correction required by the Green-Schwarz anomaly cancellation mechanism for the
heterotic string [18] (though this works also for the bosonic string). Since this formulation
implicitly contains all orders in α′ it is in principle straightforward to extract the action
and transformations to any order one is interested in (of course the string effective action
contains also other corrections, the first being the ζ(3)α′3 Riemann4 correction, which likely
cannot be captured by DFT [19]). This was carried out to order α′2 in [16] by solving the
implicit identification recursively. Unfortunately, doing this in the most straightforward way
leads to enormously long expressions already at this order. For example the DFT action
they found for the heterotic case consisted of around 200 terms at order α′2! It was later
shown in [20] that these expressions were highly redundant and many terms either canceled
or could be removed by field redefinitions and that going to supergravity these expressions
produced the correct cubic terms (Riemann cubed in the bosonic case and no cubic term in
the heterotic case).

It is therefore clear that the story of the α′2 corrections in DFT could be simplified a
lot, but it is not clear exactly how much. There also remains the question of matching the
full expression to supergravity. Here we will address these two questions focusing mainly on
the heterotic case. Instead of starting from the generalized Bergshoeff-de Roo approach we
construct the α′2 correction directly by starting with the known action at order α′ and the
corresponding correction to the double Lorentz transformations. The second order action
should then be such that its lowest order variation cancels against the corrected variation
of the order α′ action, after some suitable corrections to the transformations at order α′2.
We find that this problem is relatively easy to solve in the heterotic case leading to quite
a simple action and transformations for DFT up to order α′2. In the notation of [16] the
action up to this order takes the form

S =
∫
dX e−2dL =

∫
dX e−2d

(
R+ aR(0,1) + bR(1,0) + a2R(0,2) + abR(1,1) + b2R(2,0)

)
,

(1.1)
where the parameters a, b are proportional to α′ with (a, b) = (−α′, 0) for the heterotic
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string and (a, b) = (−α′,−α′) for the bosonic string. Here we find that in the heterotic case
the full Lagrangian up to this order can be written as

L=−2(∂a−F a)
(
∂b−F b

)
Mab+2∂aF bMab−FabcFadeMbdMce

+ 1
3

(
F abc+aMabc

)(
F def+aMdef

)
MadMbeMcf− a2R

ab
cdRef cdMaeMbf

−aF abC∂CF f deF gdeMafMbg− a
2

4 F
a
deRbcdeF afgRbcfg+ a2

2 F
a
fg∂

bF cfgF
b
de∂

aF cde ,

(1.2)
where we have defined

Mab = F acdF
b
dc , Mabc = F adeF

b
efF

c
fd (1.3)

and introduced the new “metric”

Mab =
[(
η + a

2M
)−1

]ab
= ηab − a

2M
ab + a2

4
(
M2

)ab
+ . . . . (1.4)

The DFT notation is explained in the next section. The form of this action, which mostly
consists of dressing the lower order action byM, suggests that it probably captures several
of the terms at higher orders in α′ as well, but it cannot be the full answer at order α′3

since we know that there should be a quartic Riemann term present in that case [21]. The
correction to the double Lorentz transformations takes the form

δEaMEbM = a

2∂bλcdF
a
cd + a2(Dd − Fd)

(
∂[bλ|fg|Dd]F

a
fg

)
. (1.5)

There is a price to be paid for this simplicity of the action and transformations, namely the
Lagrangian is not invariant but transforms by a total derivative

δL = 4a2(∂c − Fc)
(
Rbd∂[cλ|fg|Dd]F

b
fg

)
(1.6)

and the double Lorentz transformations close only up to equations of motion at this
order. On the other hand, the Lagrangian and transformations obtained by the generalized
Bergshoeff-de Roo identification [15] must be invariant and close off-shell. In section 4.2 we
show how to obtain a Lagrangian and transformations with these properties, which take a
more complicated form, directly from our results and verify that the transformations agree
with those found in [15].

The above DFT action and transformations are shown to reproduce the action and
transformations of the heterotic string (setting the gauge fields and fermions to zero) to
order α′2. We also discuss a version of the generalized Bergshoeff-de Roo identification,
which leads to some simplifications compared to [16], which leads directly (upon certain
field redefinitions) to the above action and transformations. Finally we derive also the DFT
action for the case of the bosonic string (up to total derivative terms), but that case turns
out to be considerably more involved.

The rest of this paper is organized as follows. Section 2 gives a summary of the double
field theory notation and identities that we will use in the rest of the paper. In section 3 we
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describe the first α′ correction to DFT, while section 4 contains the extension of this result
to the next order for the heterotic case. We show, in section 5, that the DFT action and
transformations reproduce the tree-level effective action for the heterotic string up to order
α′2. Section 6 gives a brief description of the generalized Bergshoeff-de Roo identification
and we find the field redefinitions relating a version of this identification to the results
of section 4. Finally we describe, in section 7, the additional terms needed in the DFT
description of the bosonic string at order α′2. We end with some conclusions. Certain
details of the calculations in the last two sections can be found in the appendix.

2 DFT notation and identities

We will use the so-called flux formulation of DFT [22, 23] (see also [24]). The basic fields
are the generalized vielbein, which we parametrize as

EA
M = 1√

2

(
e(+)a

m − e(+)anBnm e(+)am

−e(−)
am − e(−)

a
nBnm e

(−)
a

m

)
(2.1)

and the generalized dilaton
e−2d = e−2Φ√−G . (2.2)

In this formulation there is a global O(D,D) symmetry which rotates the doubled coordinate
indices M,N, . . . and a local double Lorentz O(D − 1, 1)×O(D − 1, 1) symmetry rotating
the doubled Lorentz indices A,B, . . .. The two vielbeins e(±) for the metric Gmn, transform
only under the first, respectively second, Lorentz group factor. The standard supergravity
description is recovered by fixing the gauge e(+) = e(−) = e, leaving only the diagonal copy of
the Lorentz group (and solving the section condition to remove the dual coordinates). In this
formulation a global O(D,D) symmetry will be manifest. Instead, the local double Lorentz
symmetry O(D − 1, 1) × O(D − 1, 1), required for consistency, will not be manifest and
needs to be verified explicitly. Let us note that, as we will see later, when we include higher
derivative corrections the fields e,B,Φ above will be related to the standard supergravity
fields by certain non-covariant field redefinitions.

There are two constant metrics, the O(D,D) metric ηAB and the generalized metric
HAB, which take the form2

ηAB =
(
ηab 0
0 −ηab

)
, HAB =

(
ηab 0
0 ηab

)
, (2.3)

where η = (−1, 1, . . . , 1) is the D-dimensional Minkowski metric. We use the O(D,D)
metric to raise and lower doubled indices. The projection operators

PAB± = 1
2
(
ηAB ±HAB

)
, (2.4)

2The O(D,D) metric with lower indices takes the same form, while changing to coordinate indices it
takes the form

ηMN =
(

0 δn
m

δm
n 0

)
and similarly with lower indices.
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are easily seen to project on upper and lower indices respectively. The analog of the spin
connection and derivative of the dilaton are the “generalized fluxes”

FABC = 3∂[AEB
MEC]M , FA = 2∂Ad− ∂MEAM , ∂A ≡ EAM∂M . (2.5)

They are the only generalized diffeomorphism3 scalars that can be constructed from one
derivative of E and d. They can be seen to satisfy the following Bianchi identities

4∂[AFBCD] = 3F[AB
EFCD]E , 2∂[AFB] = −

(
∂C − FC

)
FABC , (2.6)

while the commutator of two derivatives with a Lorentz index is

[∂A, ∂B] = FABC∂
C . (2.7)

In terms of these derivatives the section condition takes the form4

∂A ⊗ ∂A = 0 ,
(
∂A − FA

)
∂A = 0 . (2.8)

Under a (general) variation of the generalized vielbein the fluxes transform as

δEFABC = 3∂[AδEBC]+3δE[A
DFBC]D , δEFA = ∂BδEBA+δEABF

B , δEAB ≡ δEA
MEBM .

(2.9)
Using the (constant) projection operators (2.4) we can split the capital Lorentz indices into
upper/lower indices, A = (a, a), in an invariant way. Under this splitting we see that for
example FABC consists of four independent fields

F abc , Fa
bc , F abc , Fabc . (2.10)

Note that we are not allowed to raise/lower these indices in DFT. Furthermore we see
from (2.3) that a contracted A index leads to a sum of a term with two upper indices
contracted with the usual Minkowski metric minus a term with two lower indices contracted
with the Minkowski metric. It is convenient to use a convention where repeated upper(lower)
indices are understood to be contracted with the D-dimensional Minkowski metric, e.g.

FAFA = F aF a − FaFa . (2.11)

The nontrivial symmetry in this formalism is the local double Lorentz symmetry, since
this is not manifest and must be checked by hand. This consists of two factors of the
usual Lorentz group and we denote the corresponding infinitesimal parameters λab and λab,
respectively. The generalized fluxes transform as follows

δF abc = 3∂[aλ
bc] + 3λ[a|d|

F bc]d ,

δFa
bc = ∂aλ

bc − λadFdbc + 2λ[b|d
Fa

d|c] ,

δF a = ∂bλ
ba + λ

ab
F b ,

δFabc = 3∂[aλbc] − 3λ[a|d|Fbc]d ,

δF abc = ∂aλbc + λ
ad
F dbc − 2λ[b|dF

a
d|c] ,

δFa = −∂bλba − λabFb .
(2.12)

Notice that contracted lower indices are always accompanied by extra minus signs as in (2.11).

3The generalized diffeomorphisms encode the standard diffeomorphisms plus B-field gauge transformations.
The generalized vielbein transforms as

δEA
MEBM = 2∂[AVB] − FABCV

C ,

with the parameters encoded in the generalized vector VA.
4The ⊗ notation means that the two derivatives act on different factors in an expression.
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At the two-derivative level there is only one double Lorentz invariant, dubbed the
generalized Ricci scalar5

R = 4∂aF a − 2F aF a − FabcFabc + 1
3F

abcF abc . (2.13)

Indeed, the DFT action
S =

∫
dX e−2dR (2.14)

reproduces the usual NSNS sector of the supergravity action (see below). Using (2.9) the
variation with respect to the generalized vielbein and dilaton gives

δER = 4 (∂a − F a) (Db − Fb) δEab − 4δEabRab ,

δd
(
e−2dR

)
= e−2d (8 (∂a − F a) ∂aδd− 2δdR) ,

(2.15)

where the first term in both expressions gives a total derivative when we take the e−2d

factor into account, so the DFT equations of motion are

Rab = 0 , R = 0 . (2.16)

Here we have introduced the generalized Ricci tensor

Rab = ∂aFb − (∂c − Fc)F abc + Fc
daF dcb . (2.17)

Defining Rab in the same way but with upper and lower indices exchanged (and remembering
the extra minus signs for each pair of contracted lower indices) one finds from the Bianchi
identities that Rba = Rab.

It is useful to define also a DFT analog of the Riemann tensor. Following [25] we define6

Rabcd = 2∂[aF b]cd − F abeF ecd + 2F [a
ceF

b]
ed . (2.18)

It is important to note that, unlike the generalized Ricci tensor, this object does not
transform in a covariant way. Instead one finds its double Lorentz transformation to be

δRabcd = 2λ[a|e|R|e|b]cd − 2λ[c|eRabe|d] − ∂eλ
ab
F ecd − Feab∂eλcd , (2.19)

where the last two terms would be absent for an object transforming covariantly. This is
consistent with general arguments that there is no standard notion of a Riemann tensor in
DFT [26]. Nevertheless this ‘generalized Riemann tensor’ turns out to be very useful.

We also find it convenient to introduce “semi-covariant” derivatives acting on a gener-
alized vector as follows

DaV
b = ∂aV

b − FabcV c , DaV b = ∂aV b − 1
2F

abcV c ,

DaVb = ∂aVb + 1
2FabcVc , DaVb = ∂aVb + F abcVc .

(2.20)

5This is equal to the same expression with the positions of the indices reversed, as follows by computing
∂AFA using the definition of FA. This can therefore be thought of as an extra Bianchi identity for FA.

6Defining Rab
cd in the same way with upper and lower indices exchanged (and an extra sign for each

pair of contracted lower indices) we have from the Bianchi identities that Rcd
ab = −Rab

cd.
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Note that for example DaV
b transforms covariantly under the λ transformation if V b

transforms covariantly, but DaV b does not. These derivatives satisfy[
Da, Db

]
Vc = −Fdab∂dVc +RabcdVd , (2.21)

[Dc, D
a]V b = −1

2D
dFc

abV d +D(aFc
b)dV d . (2.22)

In the last expression we have defined D to be the semi-covariant derivative with the
connection acting only on the lower indices, e.g.

DdFc
ab = ∂dFc

ab + F dceFe
ab . (2.23)

Similarly we define D to act only on the upper indices. The commutators with the
opposite placement of indices are easily found by exchanging upper and lower indices and
keeping in mind that contracted lower indices come with an extra minus sign. Using these
semi-covariant derivatives the Bianchi identities take a simpler form, in particular we have

2D[aF b]cd = −2∂[cF d]ab − FeabFecd − 2Fea[cFe
d]b , (2.24)

DaF
bcd = 3D[bFa

cd] , (2.25)
Rabcd = −Rcdab . (2.26)

We can also use these derivatives to write

Rabcd = (D[a +D
[a)F b]cd , Rab = DaFb −DcF

a
bc . (2.27)

Finally we have the Bianchi identity for the generalized Riemann tensor which takes the form

3D[aRbc]de = −DfF abcF f de − 3Ff [abDfF
c]
de . (2.28)

We also find the following expressions for the divergence of the generalized Riemann and
Ricci tensors

(Da − F a)Rabcd = 2D[cRbd] − F ecd∂eF b − FeabDeF
a
cd , (2.29)

(Db − Fb)Rab = 1
4∂

aR , (Da − F a)Rab = 1
4∂bR . (2.30)

2.1 Reduction to (super)gravity

To reduce the DFT expressions to (super)gravity one should do two things:7

1. Solve the section condition to remove the doubling of coordinates by setting
∂M = (0, ∂m).

2. Gauge fix the double Lorentz transformations down to the diagonal copy, which be-
comes the usual Lorentz group, by setting the two vielbeins in (2.1) equal,
e(+) = e(−) = e.

7As already mentioned, beyond the leading order in α′ additional (non-covariant) field redefinitions are
needed to make contact with standard supergravity.
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Doing this one finds
∂a →

1√
2
∂a , ∂a → 1√

2
∂a . (2.31)

The factor of
√

2 appears since on the l.h.s. we define ∂A = EA
M∂M while on the r.h.s.

we have ∂a = ea
m∂m. This should hopefully not lead to confusion since we will never mix

doubled and standard fields in the same expression. The generalized fluxes become

F a → 1√
2

(
2∂aΦ + ωb

ab
)
, Fa →

1√
2

(
2∂aΦ + ωba

b
)
,

F abc →
1√
2
ω(−)a

bc , Fa
bc → − 1√

2
ω(+)bc
a ,

Fabc →
1√
2

(
3ω(−)

[abc] +Habc

)
, F abc → − 1√

2

(
3ω(+)[abc] −Habc

)
,

(2.32)

where ω(±) = ω ± 1
2H denotes the torsionful spin connections. Finally, the generalized

Riemann and Ricci tensor/scalar reduce to

Rabcd →
1
2
(
R(−)ab

cd + ω(+)eabω
(−)
ecd

)
,

Rab →
1
2
(
2∇(−)a∂bΦ +R(−)ac

bc

)
,

R →R+ 4∇a∂aΦ− 4∂aΦ∂aΦ−
1
12H

abcHabc .

(2.33)

Here we see explicitly the non-covariance of the generalized Riemann tensor, though to
leading order in fields it reduces to the curvature of the torsionful connection. We also see
that the generalized Ricci tensor contains the equations of motion for the metric and B-field
as its symmetric and anti-symmetric part respectively, while the generalized Ricci scalar
coincides with the usual Lagrangian for the NSNS sector fields (up to a total derivative).

3 First order correction: R(0,1)

Here we recall the form of the first α′ correction to the DFT action for the heterotic case.
To the first order in α′ the DFT action takes the form

S =
∫
dX e−2d

(
R+ aR(0,1)

)
. (3.1)

The expression for R(0,1) was first found in [7] (see also [27]), but we will write it in the
simpler form found in [25], which makes use of the generalized Riemann tensor

R(0,1) = (∂a − F a)(∂b − F b)Mab − 1
2R

ab
cdRabcd + F abCF ade∂CF

b
de

−
(
∂aF b − FcdaFcdb + 1

2F
acdF bcd

)
Mab + 2

3F
abcMabc ,

(3.2)

where we have written it even more compactly using the M ’s defined in (1.3) in terms of
traces of the “generalized spin connection”. Let us calculate the double Lorentz variation of
this object. Splitting the transformation into λ and λ terms,

δR(0,1) = δR(0,1) + δR(0,1) , (3.3)

– 8 –
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we find, using (2.12) and (2.19), that

δR(0,1) = 0 (3.4)

while

δR(0,1) = −
(
2∂[aF b] + (∂C − FC)F abC

)
F acd∂

bλcd

− 2(∂a − F a)(Db − Fb) [F acd∂bλcd] + 2RabF acd∂bλcd . (3.5)

The first term vanishes by the Bianchi identity for F a. Comparing the remaining terms to
the variation of the generalized Ricci scalar R in (2.15) we see that they can be canceled by
modifying the double Lorentz transformations by a term proportional to α′ as

δ′EaMEbM = −δ′EbMEaM = aλ̂ab = a

2F
a
de∂bλde . (3.6)

We have discussed the correction to the action and transformations for the heterotic case
only but it is easy to obtain the most general correction by noting that exchanging upper
and lower indices everywhere (taking care of the extra minus sign for contracted lower
indices) we get another solution R(1,0) with corresponding correction to the transformations,
which we can add to the above with a new coefficient b. This gives the complete 2-parameter
deformation at this order.

4 Second order correction: R(0,2)

We will now find the α′2 correction to DFT for the heterotic case, i.e. R(0,2) in (1.1). To do
this we first need to work out the terms obtained from inserting the order α′ correction to
the double Lorentz transformation (3.6) in the order α′ correction to the Lagrangian (3.2).
Our task is then to find an R(0,2) such that its lowest order double Lorentz variation cancels
against these terms, up to terms that can be canceled by modifying the double Lorentz
transformations at order α′2.

It will be convenient to first consider a general variation of the order α′ Lagrangian.
For the generalized Riemann squared term we find, using (2.18),

RabcdδRabcd = Rabcd
(
2DaδF bcd + 2δEaC∂CF bcd − δF abeF ecd

)
, (4.1)

where δEAB ≡ δEA
MEBM is a general variation of the generalized vielbein. Writing the

first term as a total derivative plus a term involving the divergence of R we find, using the
expression for the divergence in (2.29),

RabcdδRabcd = 2(∂a − F a)
[
RabcdδF bcd

]
− 4DcRbdδF bcd + 2∂aF bF acdδF bcd

+Rabcd
(
2δEaC∂CF bcd − F abeδF ecd − δF abeF ecd

)
+ 2FeabDeF

a
cdδF

b
cd .

(4.2)
Using this result we find for the general variation of the order α′ Lagrangian in (3.2)

δR(0,1) = (∂C−FC)
[
δEaC(∂b−F b)Mab−F abCF bdeδF ade+∂aδEbCMab−F aCDδEbDMab

]
+(∂a−F a)

[
δ[(∂b−F b)Mab]−2RabcdδF bcd

]
+4DcRbdδF bcd−2RabdeδEaC∂CF bde

+δFcabF bde∂cF ade+δF abcF ade∂bF cde−δECDF abDF ade∂CF bde+2FcdaδFcdbMab

− 4
3δF

abcMabc−2∂CF aδEbCMab−∂aδEbC∂CMab−δEbCF aCD∂DMab .

(4.3)
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It can be checked that this reproduces the variations found in the previous section (although
starting from the above expressions leads to a longer calculation).

Specifying now to the α′ modification to the double Lorentz transformation (3.6),
dropping equation of motion terms and total derivatives, and keeping for the moment only
the leading terms in the number of F ’s we find

δ′R(0,1) ∼ 2Rabcd∂eF bcdλ̂ae − 2∂aλ̂bcF ade∂cF bde +O
(
F 4
)
. (4.4)

These terms have to be canceled by adding terms of order α′2 to the action. We consider
the following basis of quartic terms constructed only out of F abc

aF afg∂
bF cfgF

c
de∂

bF ade + bF afg∂
bF cfgF

a
de∂

bF cde + cF afg∂
bF cfgF

a
de∂

cF bde

+ dF afg∂
bF cfgF

c
de∂

aF bde + eF afg∂
bF cfgF

b
de∂

aF cde + f∂aF bcd∂
eF bcdF

a
fgF

e
fg

+ g∂aF bcd∂
bF ecdF

a
fgF

e
fg + h∂bF acd∂

bF ecdF
a
fgF

e
fg . (4.5)

After a bit of work one finds that to cancel the terms from the δ′ variation we need to take

b = a− 1
2 , c = −a+ 1

2 , d = −a , e = 1
2 , f = −1

2 , g = 1− a , h = a− 1
2 . (4.6)

The freedom in choosing a corresponds only to the freedom to integrate by parts and make
field redefinitions. Taking a = 0 and writing things in terms of the generalized Riemann
tensor we find

L4 = 1
2R

ab
deRbcdeF afgF cfg −

1
4F

a
deRbcdeF afgRbcfg + 1

2F
a
fg∂

bF cfgF
b
de∂

aF cde . (4.7)

However, at the next order in fields these terms will have a non-zero λ variation, which
must be canceled by terms with 5 F ’s since the δ′ terms involve only λ. We find

δL4 = ∂bλ
ha
F b

de∂
h [F c

deF
a

fg]F c
fg +O

(
F 5)

= 1
2∂

b
[
∂aλ

bc
M cdMda

]
− 1

2∂
b∂aλ

ad
M bcM cd− 3

2∂
[aλ

bc]
∂bF f

deF
a

deM
cf

+ 3
2∂

[aλ
bc]
∂bF a

deF
f

deM
cf + 1

2∂aλ
bc
∂aF

b
deF

f
deM

cf− 1
2∂aλ

bc
∂aF

f
deF

b
deM

cf +O
(
F 5) .
(4.8)

It is now easy to see that to cancel these terms we need to add

L5 = 1
2∂

aF bMacM cb + 1
2F

abc∂bF f deF
a
deM

cf − 1
2F

abc∂bF adeF
f
deM

cf

− 1
2Fa

bc∂aF
b
deF

f
deM

cf + 1
2Fa

bc∂aF
f
deF

b
deM

cf . (4.9)

But now δ(L4 + L5) gives rise also to terms of order F 5 and to cancel these we will need to
add F 6 terms to the Lagrangian. One finds

δ(L4 + L5) = 1
2(∂c − F c)

[
∂aλ

cb
MadMdb

]
− 3

2F
abc∂[dλ

ab]
M ceM ed − 3

2F
cde∂[cλ

ab]
MadM be

+ 3∂[aλ
bc]
M bcdMda + Fa

bc∂aλ
bd
M ceM ed + 1

2Fa
bc∂aλ

de
M bdM ce , (4.10)
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which is easily seen to be canceled by adding

L6 = 1
4F

acdF bcdMaeM eb + 1
4F

abcF cdeMadM be − F acdM bcdMab − 1
2Fc

daFc
dbMaeM eb

− 1
4Fc

abFc
deMadM be . (4.11)

This takes care of the λ variation.
We now look at the remaining λ-terms. With a bit of work one finds, using (4.3), that

δ′R(0,1) + δ(L4 + L5 + L6) =

(∂a − F a)
[
δ′
[(
∂b − F b

)
Mab

]
− 2Rabcd∂cλfgDdF

b
fg

]
+ (∂C − FC)

[
−F abCF bdeδ′F ade − F abC∂[aλdeF

f ]
deM

fb + Fa
bC λ̂daM

db
]

− (∂c − Fc)
(
∂b − F b

) [
λ̂acM

ab
]

+ 2
(
∂cλfgF

b
fgF

c
de + 2δ′F bde

)
DdRbe

− 2∂aλdeF befF cfdMabc .

(4.12)

All terms are either total derivatives or involve the equations of motion except the last one,
which is canceled by a term

L′6 = 1
3M

abcMabc . (4.13)

Collecting the terms in L4, L5, L6 and L′6 together we have

R(0,2) = −1
2R

ac
deRcbdeMab − 1

4F
a
deRbcdeF afgRbcfg + 1

2F
a
fg∂

bF cfgF
b
de∂

aF cde

+ 1
2F

abC∂CF
a
deF

f
deM

bf − 1
2F

abC∂CF
f
deF

a
deM

bf + 1
4F

abCFC
deMadM be

+ 1
2

(
∂aF b − FcdaFcdb + 1

2F
acdF bcd

)
MaeM eb − F abcMabdM cd + 1

3M
abcMabc

+ total derivatives .
(4.14)

Finally we must look at the equation of motion terms in the variation (4.12). They are

4∂[dλ|fg|De]F
b
fgDdRbe . (4.15)

We can now read off, using (2.15), the required α′2 modification to the double Lorentz
transformations which cancels these terms

δ′′Eab = a2(Dd − Fd)
(
∂[bλ|fg|Dd]F

a
fg

)
. (4.16)

The full action up to this order then takes the form (1.2). Note that the first term in the
Lagrangian is a total derivative. Its second order contribution has been added in order to
simplify the transformation of the Lagrangian, which is non-zero at this order and takes
the form of a total derivative (1.6). The corrected double Lorentz transformations up to
this order take the form (1.5).

It is important to note that the corrected double Lorentz transformations we have
found close only on-shell at the second order in α′. Indeed, a short calculation gives

[δλ, δλ′ ]EaMEbM = DaVb −DbV
a + δλ̃E

aMEbM + a2Rac tr
(
∂[bλ∂c]λ

′
)

+O
(
a3
)
. (4.17)
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The first two terms are a generalized diffeomorphism with parameters

Va = a

4 tr(λ′∂aλ)− a2

2 (Dc − Fc) tr(∂aλ′∂cλ)− (λ↔ λ′) ,

V a = a

4 tr(λ′∂aλ)− a2

4 F
a
cd tr(∂cλ′∂dλ)− (λ↔ λ′) ,

(4.18)

the next term a double Lorentz transformation with parameter

λ̃cd = [λ, λ′]cd − a tr
(
∂[cλ

′∂d]λ
)
, (4.19)

while the last term is not of this form but vanishes on-shell. Note that the generalized
dilaton does not transform under the above generalized diffeomorphism, as follows from the
section condition and Bianchi identities.8 This is of course consistent with the fact that the
generalized dilaton does not transform under the corrected double Lorentz transformations
up to this order.

4.1 Alternative action and transformations

When we relate this to supergravity in the next section it turns out to be more convenient to
first modify the action and transformations of the DFT description slightly. The first step
is to rewrite the second order correction to the double Lorentz transformations (4.16) as

a−2δ′′Eab =−1
2Db (Dd−Fd)

(
∂dλfgF

a
fg

)
+ 1

2
(
Dd−Fd

)
Dd

(
∂bλfgF

a
fg

)
− 1

2FbcdDc

(
∂dλfgF

a
fg

)
+ 1

2 (∂c−F c)
(
F cbd∂dλfgF

a
fg

)
+ 1

2F
c
bdDd

(
∂cλfgF

a
fg

)
+ 1

2R
ac
bd∂dλfgF

c
fg

+ 1
4FbcdF

e
cd∂

eλfgF
a
fg−

1
2R

d
b∂
dλfgF

a
fg .

(4.20)

We recognize the first term as a generalized diffeomorphism with parameter

V a = a2

2 (Dd − Fd)(∂dλfgF afg) . (4.21)

We can remove this term by performing the opposite generalized diffeomorphism with
parameter −V a. This leads to an extra term in the variation of the Lagrangian,

(δL)1 = −
(
∂A − FA

)
(−VAR) = a2

2 (∂a − F a)
(
(Dd − Fd)

(
∂dλfgF

a
fg

)
R
)

(4.22)

8Indeed,

δd= 1
2(∂a−Fa)Va−

1
2(∂a−F a)V a

=−a
2

4 ∂a∂c tr(∂aλ
′∂cλ)+ a2

4 (∂c−Fc)[Fa tr(∂aλ
′∂cλ)]

+ a2

4 (∂a−Fa)[Fc tr(∂aλ
′∂cλ)]+ a2

8 (∂A−FA)[FAcd tr(∂cλ
′∂dλ)]− a

2

4 ∂[cFa] tr(∂aλ
′∂cλ)−(λ↔λ′) = 0 .
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and a transformation of the generalized dilaton

δd = 1
2
(
∂A − FA

)
(−VA) = −a

2

4 (∂a − F a) (Dd − Fd)
(
∂dλfgF

a
fg

)
. (4.23)

Next we note that the last term in (4.20) is proportional to the equations of motion, since
it involves the generalized Ricci tensor. This term can also be removed by noting that,
using (2.15), it can be replaced with the terms

(δL)2 = 2a2 (∂a − F a) (Db − Fb)
(
Rdb∂dλfgF afg

)
− 2a2RdbRab∂dλfgF afg (4.24)

in the variation of the action. Furthermore, the second of these terms can be removed by
adding to the Lagrangian the term

∆L1 = −a2RacRbcMab , (4.25)

while the first term becomes, using (2.30),

(δL)′2 = a2

2 (∂a − F a)
(
∂dR∂dλfgF afg

)
+ 2a2 (∂a − F a)

[
RdbDb(∂dλfgF afg)

]
. (4.26)

In total the Lagrangian now transforms as

δ(L+ ∆L1) = 2a2(∂a − F a)
[
Rbd∂aλfgDdF

b
fg

]
+ 2a2(∂a − F a)

[
RdbDb∂

dλfgF
a
fg

]
+ 2a2(∂a − F a)

[
Rdb∂dλfgDbF

a
fg

]
− 2a2(∂a − Fa)

[
Rbd∂dλfgDaF

b
fg

]
+ a2

2 (∂a − F a)(Dd − Fd)
[
(∂dλfgF afg)R

]
.

(4.27)
The first two terms are partially canceled by adding to the Lagrangian the term

∆L2 = −2a2(∂a − F a)
[
RbdF afgDdF

b
fg

]
. (4.28)

To summarize, we can take the transformations of the fields to be

a−2δ′′altE
a
b

= 1
2
(
Dd−Fd

)
Dd(∂bλfgF afg)−

1
2FbcdDc

(
∂dλfgF

a
fg

)
+ 1

2 (∂c−F c)
(
F cbd∂dλfgF

a
fg

)
+ 1

2F
c
bdDd

(
∂cλfgF

a
fg

)
+ 1

2R
ac
bd∂dλfgF

c
fg+ 1

4FbcdF
e
cd∂

eλfgF
a
fg

(4.29)
and

δ′′d = −a
2

4 (∂a − F a)(Dd − Fd)
(
∂dλfgF

a
fg

)
, (4.30)

with the Lagrangian

Lalt = L− a2RacRbcMab − 2a2(∂a − F a)
[
RbdF afgDdF

b
fg

]
(4.31)
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now transforming as

δLalt = 2a2(∂a − F a)
[
Rdb∂dλfgDbF

a
fg

]
− 2a2(∂a − Fa)

[
Rbd∂dλfgDaF

b
fg

]
+ 4a2(∂a − F a)

[
RbdF afg∂dλfhF bhg

]
+ a2

2 (∂a − F a)(Dd − Fd)
[(
∂dλfgF

a
fg

)
R
]
.

(4.32)
While this Lagrangian and transformations look more complicated, this form turns out to be
more straightforward for reproducing the corresponding supergravity expressions, as we will
see in the next section. But before that we turn to the question of finding transformations
that close off-shell.

4.2 Invariant action with transformations that close off-shell

The α′2-corrected DFT we have constructed has the unfamiliar property that the Lagrangian
is only double Lorentz invariant up to a total derivative term and the double Lorentz trans-
formations close only on-shell. One would expect there to exist an alternative formulation
where the Lagrangian is invariant and the transformation close off-shell, as happens at order
α′. Indeed, the generalized Bergshoeff-de Roo identification of [15] would automatically
lead to a Lagrangian and transformations with these properties. Here we will see how
such a formulation can be derived from our results by performing field redefinitions and
generalized diffeomorphisms as well as modifying the transformations and Lagrangian. It
turns out that there is a price to pay in that the transformations and, in particular, the
action become considerably more complicated. The calculations involved in this section are
somewhat long and the results are not used elsewhere in the paper so this section can be
skipped by readers not interested in the detailed relation between the two formulations.

To find the right form of the Lagrangian and transformations involves a little bit of
guess work. One way to get to the answer is to start with a slightly different question.
The transformations we found at order α′2 contain several terms linear in the fields, the
same order as the first α′ correction. In the previous section we saw that we could remove
one of these terms by a generalized diffeomorphism obtaining the transformations (4.29)
and (4.30) with fewer linear terms. It is natural to ask whether we could remove more,
or perhaps all, of the terms linear in the fields at order α′2. We will now show that the
answer is yes (later we will see that there is a small caveat). For simplicity we will first do
the calculation dropping all terms of higher order in the number of fields. Then we have
from (4.29) and (4.30)

δ′′altE
a
b = a2

2 ∂
2
(
∂bλefF

a
ef

)
+O

(
F 2
)
, δ′′d = −a

2

4 ∂
a∂d

(
∂dλefF

a
ef

)
+O

(
F 2
)
.

(4.33)
It is easy to see, using the section condition to raise the d index, that

δ′′d = a2

8 δ
(
∂a∂bMab

)
+O

(
F 2
)
, (4.34)

so the leading part of the transformation of the generalized dilaton can be removed by a
field redefinition. For the leading term in the transformation of the generalized vielbein we
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have

∂2
(
∂bλefF

a
ef

)
= ∂2∂bλefF

a
ef+2∂c∂bλef∂cF aef+∂bλef∂2F aef

= ∂2∂bλefF
a
ef+2∂c∂bλef∂cF aef+∂bλef∂cRcaef+∂bλef∂a∂cF cef+O

(
F 2
)

= ∂a
(
∂bλef∂

cF cef
)

+∂b
(
∂2λefF

a
ef

)
−∂2λef∂bF

a
ef−∂a∂bλef∂cF cef

+2∂c∂bλef∂cF aef+∂bλef∂cRcaef+O
(
F 2
)

= ∂a
(
∂bλef∂

cF cef
)

+∂b
(
∂2λefF

a
ef

)
−δ (∂bF aef∂cF cef )+2∂c∂bλef∂cF aef

+2∂bλef∂eRaf+O
(
F 2
)
,

(4.35)
where we used (2.29) in the last step. We see that the first three terms can be removed
by a generalized diffeomorphism and a field redefinition. The fourth term can be further
rewritten as

2∂c∂bλef∂cF aef = ∂c∂bλef∂
cF aef + ∂c∂bλefRcaef + ∂c∂bλef∂

aF cef +O
(
F 2
)

= ∂a
(
∂c∂bλefF

c
ef

)
+ ∂b

(
∂cλef∂

cF aef
)
− δ(F cef∂b∂cF aef )

+ δ(∂bF cefRcaef ) +O(F 2) .

(4.36)

After suitable field redefinitions we therefore have

δ′′Eab = a2

2 ∂
a
[
∂c
(
∂bλefF

c
ef

)]
+ a2

2 ∂b
[
∂c
(
∂cλefF

a
ef

)]
+ a2∂bλef∂eRaf +O

(
F 2
)
.

(4.37)
It is not hard to see that performing the opposite generalized diffeomorphism produces
terms in δ′′d which can again be canceled by a field redefinition and terms in the variation
of the Lagrangian which are of higher order. This leaves the last term in δ′′E, which if we
remove it and put it into the variation of the Lagrangian via (2.15) gives, using (4.32),

δLalt = −4∂a∂b
[
a2∂bλef∂eRaf

]
+O

(
F 2
)

= −4a2δ
(
∂a∂b

[
F bef∂eRaf

])
+O

(
F 2
)
,

(4.38)
which can be removed by modifying the Lagrangian. This shows that we can indeed get
rid of all the linear terms in the transformations at order α′2. Now we will carry out the
corresponding calculation without dropping the higher order terms.

For the leading term in the transformation (4.29) we have(
Dc−Fc

)
Dc

(
∂bλefF

a
ef

)
=DaUb−DbU

a+δ (∆E1)a
b+2∂c∂bλefDcF

a
ef +2∂bλefDeRa

f

+∂cλefF
a

efRc
b−(∂c−F c)

(
∂dλefF

a
efF

c
bd

)
+∂dλef∂

cF a
efF

c
bd

−∂d∂
cλefF

a
efF

c
bd+2∂bλefR

ca
egF

c
gf +2∂bλef∂

cF a
egF

c
gf

+2∂b∂
cλefF

c
egF

a
gf +2∂cλef∂bF

c
egF

a
gf +∂dλefF

a
efF

c
bgFg

cd

(4.39)
where we have defined

(∆E1)ab = F aef∂b(∂c − F c)F cef (4.40)
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and
UA = ∂Aλef (∂c − F c)F cef , (4.41)

while the fourth term can be rewritten as

2∂c∂bλefDcF
a
ef = DaWb −DbW

a + δ (∆E2)a b − 2∂cλefF defRadbc − 2∂cλef∂dF aefF dbc
− 2∂bλefRcaegF cgf − 2∂bλef∂cF aegF cgf − 2∂b

(
∂cλefF

c
eg

)
F agf ,

(4.42)
where

(∆E2)ab = DbF
c
efRcaef +DbF

c
ef∂

cF aef −DcFb
daF cefF

d
ef (4.43)

and
W a =∂c∂aλefF cef + ∂cλefF

d
efFc

ad + ∂cλ
ad
F cefF

d
ef ,

Wb =∂c∂bλefF cef + ∂cλefF
d
efF

d
bc .

(4.44)

Using these results the transformation of the generalized vielbein (4.29) can be written

a−2δ′′Eab = 1
2D

a (Ub +Wb)−
1
2Db (Ua +W a) + 1

2δ (∆E1 + ∆E2)a b

+ ∂bλefDeRaf + 1
2∂

cλefF
a
efRcb

− 1
2∂dλefF

c
efRacbd −

1
2∂cλef∂

dF aefF
d
bc + 1

2∂
DλefDcF

a
efFbcD ,

(4.45)

while the transformation of the generalized dilaton (4.30) can be written

a−2δ′′d = 1
8(∂A − FA)WA + δ∆d (4.46)

with
∆d = 1

8(∂a − F a)(∂b − F b)Mab . (4.47)

We can set the transformation of the generalized dilaton to zero by performing the field
redefinition

d→ d+ ∆d (4.48)

and a compensating generalized diffeomorphism with parameter

V A = −1
2U

A − 1
4W

A (4.49)

(note that the UA piece does not affect the generalized dilaton since (∂A − FA)UA = 0 by
the section condition). After this the transformation of the generalized vielbein becomes

a−2δ′′Eab = 1
4D

aWb −
1
4DbW

a + 1
2δ(∆E1 + ∆E2)ab + ∂bλefDeRaf + 1

2∂
cλefF

a
efRcb

− 1
2∂dλefF

c
efRacbd −

1
2∂cλef∂

dF aefF
d
bc + 1

2∂
DλefDcF

a
efFbcD .

(4.50)
The W -terms in the transformation are awkward since W a involves λ, the Lorentz factor
that should not be modified. We can get rid of these terms by using (4.42) at the price of
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introducing another term linear in the fields into the transformations, which now take the
form

a−2δ′′Eab =∆Eab + ∂bλefDeRaf + 1
2∂

cλefF
a
efRcb + 1

2∂b∂cλefDcF
a
ef

+ 1
2∂bλefR

ca
egF

c
gf + 1

2∂bλef∂
cF aegF

c
gf + 1

2∂b
(
∂cλefF

c
eg

)
F agf ,

(4.51)

where

∆Eab = 1
2F

a
ef∂b(∂c − F c)F cef + 1

4DbF
c
efRcaef + 1

4DbF
c
ef∂

cF aef −
1
4D

cFb
daF cefF

d
ef .

(4.52)
These terms are removed by the field redefinition9

EaM → EaM −∆EabEbM (4.53)

The last four terms in the transformation agree precisely with [15] (exchanging over and
underlined indices in their eq. (3.33)). The second and third term, which are proportional
to the generalized Ricci tensor and lead to the transformations closing only on-shell, can be
removed at the expense of introducing additional terms in the variation of the Lagrangian
via (2.15). Doing this and taking also the generalized diffeomorphism (4.49) into account
one finds from (4.32)

a−2δLalt = −(∂A − FA)(VAR) + 4(∂a − F a)(Db − Fb)
[
−∂bλefDeRaf −

1
2∂

cλefF
a
efRcb

]
− 4

[
−∂bλefDeRaf −

1
2∂

cλefF
a
efRcb

]
Rab + 2(∂a − F a)

[
Rdb∂dλfgDbF

a
fg

]
− 2(∂a − Fa)

[
Rbd∂dλfgDaF

b
fg

]
+ 4(∂a − F a)

[
RbdF afg∂dλfhF bhg

]
+ 1

2(∂a − F a)(Dd − Fd)
[
∂dλfgF

a
fgR

]
= −δ(∆L)

(4.54)
where

∆L= 4(∂a−F a)
(
∂b−F b

)[
F befDeRaf

]
+4(∂a−F a)

[
RadefDeRdf

]
−4DeRafD[eRaf ]

+RacRbcMab+ 1
4 (∂a−F a)

(
∂b−F b

)[
MabR

]
.

(4.55)
Therefore, taking the field redefinitions into account, we have shown that the Lagrangian

L̃=Lalt+a2∆L+a2Lredef =L−4a2DeRafD[eRaf ]+4a2(∂a−F a)(∂b−F b)
[
F befDeRaf

]
+4a2(∂a−F a)

[
RadefDeRdf

]
−2a2(∂a−F a)

[
RbdF afgDdF

b
fg

]
+a2Lredef ,

(4.56)
where

Lredef = 4(∂a − F a)(Db − Fb)∆Eab − 4∆EabRab + 8(∂a − F a)∂a∆d− 2∆dR , (4.57)

9Note the sign of the second term, which is due to the contraction of two lower indices.

– 17 –



J
H
E
P
1
1
(
2
0
2
2
)
0
9
0

with ∆E and ∆d given in (4.52) and (4.47) and L the Lagrangian in (1.2), is invariant
under the double Lorentz transformations with second order correction

δ′′Eab =a2

2
[
∂b∂cλefDcF

a
ef+∂bλefRcaegF cgf+∂bλef∂cF aegF cgf+∂b

(
∂cλefF

c
eg

)
F agf

]
(4.58)

and δd = 0, which close off-shell as shown in [15]. We see that these transformations, and
in particular the Lagrangian, are considerably more complicated than the ones presented in
the introduction.

5 Reproducing the α′2 correction to the heterotic string

In this section we show that the α′2 correction to DFT found above reproduces the known
α′2 correction to the tree-level low-energy effective action for the NSNS fields of the
heterotic string.

Up to this order the corrected double Lorentz transformations take the form

δEaMEbM = λ
ab
, δEa

MEbM = λab , δEaMEbM = −δEbMEaM = ∆a
b , (5.1)

which can also be written as

δEaM = λ
ab
EbM −∆a

bEb
M , δEa

M = −λabEbM −∆b
aE

bM . (5.2)

Here ∆ = a∆′ + a2∆′′ is the correction to the transformations and from (3.6) we have

∆′ab = 1
2∂bλcdF

a
cd (5.3)

and from (4.29)

∆′′ab = 1
2
(
Dd−Fd

)
Dd

(
∂bλfgF

a
fg

)
− 1

2FbcdDc

(
∂dλfgF

a
fg

)
+ 1

2 (∂c−F c)
(
F cbd∂dλfgF

a
fg

)
+ 1

2F
c
bdDd

(
∂cλfgF

a
fg

)
+ 1

2R
ac
bd∂dλfgF

c
fg+ 1

4FbcdF
e
cd∂

eλfgF
a
fg .

(5.4)
Looking at the first equation in (5.2), taking the M -index to be upper and going to
supergravity by setting e(+) = e(−) = e in (2.1), we find the variation of the inverse vielbein

δēamēbm = λ
ab − ∆̄ab , λ

ab + λab = 2∆̄[ab] . (5.5)

Taking the M -index to be lower and using the above relations we find the variation of
the B-field10

δB̄mn = −2∆̄[mn] , ∆̄mn = ēm
aēn

b∆̄ab . (5.6)

Note that we have put a bar on the supergravity fields to emphasize that these fields,
which come from the DFT description, are related by certain field redefinitions to the usual
supergravity fields. In fact they differ by terms proportional to α′ so we write

ēam = eam + ae′am + a2e′′am , ēam = eam − ae′am − a2
(
e′′am − e′ane′bnebm

)
, (5.7)

10For the supergravity fields we use the usual Einstein summation convention.
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where eam is the standard inverse vielbein, transforming as δeam = −λacecm under local
Lorentz transformations, and similarly

B̄mn = Bmn + aB′mn + a2B′′mn . (5.8)

Similarly we allow the transformation parameters to differ at higher orders in α′,

λ = λ+ aλ′ + a2λ′′ , λ = −λ+ aλ
′ + a2λ

′′
.

Note the relative sign at the lowest order. We will now determine the required field
redefinitions up to order α′2 (another approach to determine them, potentially to all orders,
was discussed in [28]).

Restricting to first order in α′ (a) we find from (5.5) and (5.3)

e′a
mebm = e′ab = 1

8Wab , Wab = tr
(
ω(−)
a ω

(−)
b

)
, λ

′
ab = λ′ab = 1

4 tr
(
∂[aλω

(−)
b]

)
(5.9)

and from (5.6)
B′mn = 0 , (5.10)

since
δB̄mn = −a2 tr

(
∂[mλω

(−)
n]

)
(5.11)

is already the correct transformation for the B-field of the heterotic string to first order
in α′. The non-covariance of the B-field being related to the Green-Schwarz anomaly
cancellation mechanism.

At the second order we have contributions from both ∆′ and ∆′′. The former gives rise
to the following terms at order α′ from the expansion of the barred fields

∆′ab→−
1
4 tr(∂bλωa)+ a

4e
′
b
m∂mλcdω

(−)acd+ a

4∂bλ
′
cdω

(−)acd+ a

4∂bλcdω
′(−)acd

= −1
4 tr(∂bλωa)−

a

32Wbc tr
(
∂cλω(−)a

)
− a

32W
ac tr

(
∂bλω

(−)
c

)
+ a

16∂b tr
(
∂cλω

(−)
d

)
ω(−)acd+ a

16∂bλcd∇
(+)cW da− a

32∂bλ
cdHcdeW

ea ,

(5.12)

where we used the fact that the correction to the spin connection coming from the first
correction to the vielbein takes the form

ω
′(−)
acd = 2∇(+)

[c e′d]a +
(
ω

(−)
ecd −Hcde

)
e′ea . (5.13)

For ∆′′ we find from (5.4)

∆′′ab →
1
8(∇d − 2∂dΦ)Hbcd tr(∂cλω(−)a)− 1

8(∇(+)
d − 2∂dΦ)∇(+)

d tr(∂bλω(−)a)

+ 1
8(ω(−) −H)bcd∇(+)

c tr(∂dλω(−)a)− 1
16(ω(−) −H)bcdHcde tr(∂eλω(−)a)

− 1
8R

(−)ac
bd tr(∂dλω(−)c) .

(5.14)

Note that the first term is proportional to the lowest order equation of motion for the
B-field. We do not want this term in the transformation of the vielbein, so we need to
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remove the part of this term that is symmetric in the free indices a, b as this is the part
relevant to the transformation of the vielbein. Because this term is proportional to the
equations of motion it can be moved to the transformation of B̄ instead as follows. First we
lift the corresponding transformation of the vielbein to a variation of the action using (2.15)
which gives

(δL)1 = −1
4(∇a − 2∂aΦ)(∇b − 2∂bΦ)

[
(∇d − 2∂dΦ)Hbcd tr(∂cλω(−)

a )
]

+ 1
4(∇d − 2∂dΦ)Hbcd

(
Rab + 2∇a∂bΦ− 1

4H
aefHb

ef

)
tr(∂cλω(−)

a ) .
(5.15)

The second term is now canceled by modifying the transformation of the B-field by adding
a term involving the equation of motion for the metric

(δB̄mn)1 = −1
4

(
Rmk + 2∇m∂kΦ−

1
4HmlpHk

lp
)

tr
(
∂nλω

(−)k
)
− (m↔ n) (5.16)

and we are left with the following terms in the variation of the Lagrangian

(δL)′1 = 1
4 (∇a − 2∂aΦ)

[
Habc

(
Rbd + 2∇b∂dΦ−

1
4HbefHd

ef
)

tr
(
∂cλω

(−)d
)]

− 1
4 (∇a − 2∂aΦ)

(
∇b − 2∂bΦ

) [(
∇d − 2∂dΦ

)
Hbcd tr

(
∂cλω(−)

a

)]
.

(5.17)

Together with the transformation of the Lagrangian in (4.32) its total transformation
now becomes

δLalt = −1
4(∇a − 2∂aΦ)

[(
2∇(−)b∂dΦ +R(−)bc

dc

)
∂dλefR

(−)
abef

]
+ 1

2(∇a − 2∂aΦ)
[
Hab

c

(
Rbd + 2∇b∂dΦ−

1
4HbefHd

ef
)

tr
(
∂(cλω(−)d)

)]
− 1

8(∇a − 2∂aΦ)
(
∇(+)
b − 2∂bΦ

) [
tr
(
∂bλω(−)a

)
R
]
.

(5.18)

All these terms, except for the H-contribution from ∇(+) in the last term, are canceled by
adding the following terms to the Lagrangian

∆L = 1
4(∇a − 2∂aΦ)

[(
2∇(−)b∂dΦ +R(−)bc

dc

)
ω(−)defR

(−)
abef

]
+ 1

16(∇a − 2∂aΦ)(∇b − 2∂bΦ) [WabR]

− 1
4(∇a − 2∂aΦ)

[
Hab

c

(
Rbd + 2∇b∂dΦ−

1
4HbefHd

ef
)
W cd

]
,

(5.19)

leaving only the transformation

δ(Lalt + ∆L) = 1
16(∇a − 2∂aΦ)

[
Habc tr

(
∂bλω(−)c

)
R
]
. (5.20)

Going back to the variation of the vielbein in (5.5) we find that the l.h.s. becomes, at
the second order in α′,

δēa
mēbm → δe′′ab + 2λ(a

ce′′b)c −
3
32∇[a tr

(
∂cλω

(−)
d]

)
ω

(−)cd
b − 3

32∇[b tr
(
∂cλω

(−)
d]

)
ω(−)cd
a

− 1
64Wbc tr

(
∂aλω

(−)c
)
− 1

64Wbc tr
(
∂cλω(−)

a

)
,

(5.21)
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where we used the first order results (5.9). Note the third and fourth term on the r.h.s.
which come from the anomalous Lorentz transformation of the B-field, (5.11). Using this
together with the terms coming from ∆ at this order, (5.12) and (5.14) minus the first term,
we find that, after performing another diffeomorphism

δe(a
meb)m = −∇(avb) , va = − 1

16Hacd tr
(
∂cλω(−)d

)
, (5.22)

the second order correction to the (inverse) vielbein becomes11

e′′ab = 1
32
(
∇(+)
c −2∂cΦ

)
∇(+)cWab+

1
32RacbdW

cd− 1
32Ha

cdΩbcd−
1
32
(
ω(−)−H

)
a

cd∇cWdb

+ 1
64ω

(−)
acdHb

ceWe
d− 3

128HacdHb
ceW d

e+
3

256W
2
ab+(a↔ b) .

(5.23)
Here we have introduced the Lorentz-Chern-Simons form

Ωklm = 3 tr
(
ω

(−)
[k ∂l ω

(−)
m]

)
+ 2 tr

(
ω

(−)
[k ω

(−)
l ω

(−)
m]

)
. (5.24)

The extra diffeomorphism (5.22) leads to a total derivative term in the variation of the
Lagrangian, which together with (5.20) gives the total Lorentz transformation of the
Lagrangian

δ(Lalt + ∆L) =(∇a − 2∂aΦ)(vaR) + 1
16(∇a − 2∂aΦ)

[
Hacd tr

(
∂cλω(−)d

)
R
]

= 0 ,
(5.25)

so the Lagrangian is now Lorentz invariant, as it should be in supergravity. The diffeomor-
phism also leads to extra terms in the transformations of Φ and B

(δB̄mn)2 = vkHmnk , (δΦ)2 = vm∂mΦ , va = − 1
16Hacd tr

(
∂cλω(−)d

)
. (5.26)

For the dilaton this implies, together with the transformation (4.23), that

δd̄→ 1
16
(
∇(+)a − 2∂aΦ

) (
∇(+)b − 2∂bΦ

)
tr
(
∂bλω(−)a

)
+ ∂aΦva −

1
2∇av

a

= 1
32 (∇a − 2∂aΦ)

(
∇b − 2∂bΦ

)
δW ab .

(5.27)

Expressing this in terms of the dilaton, rather than the generalized dilaton, we find that
the DFT dilaton is related to the standard one as

Φ̄ = Φ + 1
4 ln

(
Ḡ

G

)
+ 1

32 (∇a − 2∂aΦ)
(
∇b − 2∂bΦ

)
W ab . (5.28)

11For completeness the correction to the Lorentz parameter is

λ
′′
ab = 1

32Rabcd tr
(
∂cλω(−)d

)
− 1

32∇(cHd)ab tr
(
∂cλω(−)d

)
+ 3

32ω
(−)cd
a ∇[b tr

(
∂cλω

(−)
d]

)
− 1

8ω
(−)
acd∇

c tr
(
∂dλω

(−)
b

)
− 1

16∂aλ
cd∇cWbd+ 3

32Hacd∇c tr
(
∂dλω

(−)
b

)
+ 1

32Hacd∇c tr
(
∂bλω

(−)d
)
− 1

64Hace∂bλ
cdWd

e

− 1
16ωacdωb

ce tr
(
∂eλω

(−)d
)
− 1

32ωb
cdHac

e tr
(
∂(dλω

(−)
e)

)
− 1

32HacdHb
ce tr

(
∂dλω(−)

e

)
− 1

64HabeH
ecd tr

(
∂cλω

(−)
d

)
+ 3

128Wac tr
(
∂cλω

(−)
b

)
− 1

128Wac tr
(
∂bλω

(−)c
)
−(a↔ b) .
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Finally we turn to the B-field. From (5.6) we get, using (5.12) and (5.14) and including
the diffeomorphism (5.26) and extra modification (5.16), the second order transformation

(δB̄mn)(2)

= 1
8∇m

[
ωncd tr

(
∂cλω(−)d

)]
− 1

8(∇d − 2∂dΦ)∇d tr
(
∂mλω

(−)
n

)
− 1

8Rmncd tr
(
∂cλω(−)d

)
− 1

4
(
Rkm + 2∇k∂mΦ

)
tr
(
∂[nλω

(−)
k]

)
+ 1

16∂mλ
cdΩcdn

+ δ

[ 1
16
(
ω(−) −H

)
m

cd∇cWdn −
1
32ω

(−)cd
m HnceW

e
d + 1

32∇cHdmnW
cd − 1

16ω
(+)cd
m Ωncd

+ 1
16
(
∇d − 2∂dΦ

)
Hm

cdWcn −
1
8

(
Rkm + 2∇k∂mΦ− 1

4H
klpHmlp

)
Wkn

]
− (m↔ n) .

(5.29)
The first term is canceled by a B-field gauge transformation. The second term is trickier
but it can be rewritten as follows(

∇d − 2∂dΦ
)
∇d tr

(
∂mλω

(−)
n

)
− (m↔ n)

= 3
(
∇l − 2∂lΦ

)
∇[l tr

(
∂mλω

(−)
n]

)
− 2∇m(∇l − 2∂lΦ) tr

(
∂[nλω

(−)
l]

)
−Rmnkl tr

(
∂kλω

(−)
l

)
− 2(Rmk + 2∇m∂kΦ) tr

(
∂[nλω

(−)
k]

)
− (m↔ n) .

(5.30)

Using this fact we find, after removing the B-field gauge transformations, that
B̄=B+a2B′′ with

B′′mn = 1
16
(
ω(−) −H

)
m

cd∇cWdn −
1
32ω

(−)cd
m HnceW

e
d + 1

32∇cHdmnW
cd

+ 1
16 (∇d − 2∂dΦ)Hm

cdWcn −
1
8

(
Rkm + 2∇k∂mΦ− 1

4H
klpHmlp

)
Wkn

− 1
16ω

(+)cd
m Ωcdn + 1

8
(
∇l − 2∂lΦ

)
Ωlmn − (m↔ n)

(5.31)

and that B transforms as

δBmn = −a2 tr
(
∂[mλω

(−)
n]

)
+ a2

8 tr
(
∂[mλΩn]

)
, (5.32)

which is the correct transformation for the heterotic string (see below).
Putting the contributions to the Lagrangian together the final Lagrangian becomes

L̃ = L− a2RacRbcMab + L∂ , (5.33)

where L, given in (1.2), and the second term should be expressed in terms of the usual
supergravity fields using (2.32) and (2.33) together with the field redefinitions needed to
go from the barred DFT fields to the standard supergravity fields (5.9), (5.23), (5.28)
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and (5.31). Finally, the extra total derivative terms found above take the form

L∂ = a2

4 (∇a − 2∂aΦ)
[(

2∇(−)b∂dΦ +R(−)bc
dc

)
tr
(
ω(−)a∂dω

(−)
b

)
+
(
2∇(−)b∂dΦ +R(−)bc

dc

)
ω(+)d

beW
ae +

(
2∇(−)b∂dΦ +R(−)bc

dc

)
ω(−)defR(−)a

bef

+ 1
4 (∇b − 2∂bΦ)

[
W abR

]
−Habc

(
Rb

d + 2∇b∂dΦ−
1
4HbefH

def
)
Wcd

]
.

(5.34)
With a bit of work12 one finds that L̃ reduces to the tree-level effective action for the
heterotic string up to order α′2 (with the vectors and fermions set to zero), which takes the
same form as the action up to order α′

Lhet = e−2Φ
(
R+ 4∇a∂aΦ− 4∂aΦ∂aΦ−

1
12ĤklmĤ

klm − a

8 R̂
(−)
abcdR̂

(−)abcd +O
(
α′3
))

,

(5.35)
but where the field strength of the B-field H is replaced by the Lorentz invariant Ĥ , defined
recursively through [14]

Ĥklm = Hklm −
a

2Ω̂klm , (5.36)

which up to second order gives

Ĥklm = Hklm −
a

2Ωklm + 3a2

8
(
∂[k
(
Ωl
npω

(−)
m]np

)
+ Ω[k

npR
(−)
lm]np

)
+O(α′3) . (5.37)

This completes the proof that the DFT Lagrangian (1.2) exactly reproduces the tree-level
correction to the heterotic string [14] (see also [30]) up to order α′2.

6 Generalized Bergshoeff-de Roo identification

A different approach to finding the α′2 correction to DFT was introduced in [15] and
dubbed the ‘generalized Bergshoeff-de Roo identification’. Here we will describe the idea of
this approach and relate it to the result of section 4. We will define the fields somewhat
differently to [15], as this leads to some simplifications, but the basic approach will be the
same. Then we will find the field redefinitions needed to reproduce the α′2 correction to
the DFT action found in section 4. For simplicity we consider only the heterotic case.

The idea of [15] was to start from DFT in a bigger space and perform dimensional
reduction in order to get DFT coupled to vectors. We will parametrize the ‘extended’
generalized vielbein of the bigger space as

EAM =
(
mA

B 0
0 mA′

B′

)(
δB

C −AC′B
ACB′ δB′

C′

)(
EC

M 0
0 EC′

M ′

)
. (6.1)

12The easiest way to do this is to use the fact that the Lagrangian is Lorentz invariant. Therefore one can
just drop all terms where the spin connection ω(−) appears without derivatives (note that dropping ω or
ω(−) must give the same result) and covariantize the result (replacing H → Ĥ) at the end, which simplifies
the calculations a lot. For completeness we have also checked, with the help of Mathematica (in particular
the package FieldsX [29]), that the same result is obtained without using this trick.
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This differs from the parametrization used in [15], but turns out to lead to some simplifica-
tions. Here the index A = (A, A′) runs over the standard DFT directions A and ‘internal’
directions A′ and ECM is the usual generalized vielbein while EC′M

′ is a generalized vielbein
for the internal directions. We take the extended generalized metric to have the form

ηAB =
(
ηAB 0

0 κA′B′

)
, ηMN =

(
ηMN 0

0 κM ′N ′

)
(6.2)

and the condition that these should be related as

ηAB = EAMEBN ηMN (6.3)

fixes mA
B and mA′

B′ in terms of the vectors A as follows(
m−2

)
AB

= ηAB +AC
′

A ABC′ ,
(
m−2

)
A′B′

= κA′B′ +ACA′AB′C . (6.4)

The section condition is

∂M ⊗ ∂M = 0 , ∂M∂M = 0 , ∂M ′ = 0 , (6.5)

corresponding to dimensional reduction of the primed directions.
Because we need the vector fields to be non-abelian we actually have to start from

gauged DFT [23, 31], rather than ordinary DFT, in the extended space. The only difference
is the appearance of structure constants in some formulas. In particular, under a general-
ized diffeomorphism and double Lorentz transformation the extended generalized vielbein
transforms as

δEAM = VN∂NEAM + EAN
(
∂MVN − ∂NVM + gfMKNVK

)
+ λA

BEBM . (6.6)

Here VM = (VM , V M ′) is an extended generalized vector field. Note the extra structure
constant term, proportional to the gauge coupling g of dimension [length]−1, which is non-
zero only for all indices primed. Restricting to diffeomorphisms and Lorentz transformations
involving the ‘internal’ directions, we find that the gauge field transforms as

δ
[
(mA)B′A EB′M

′] = EAN
(
∂NV

M ′ − gfM ′K′NVK′
)
− λAB

′
mB′

C′EC′
M ′ . (6.7)

Since we are interested in the heterotic case, where we only need to modify one of the
double Lorentz factors, we will let the internal indices A′, B′, . . . take only lower values
a′, b′, c′, . . ., i.e. these are effectively not doubled (however M ′, N ′ are still doubled). It then
follows that the last term is non-zero only when the index A is lower a. We now impose the
gauge fixing condition

AaB′ = 0 , (6.8)

which lets us solve for the mixed components of the extended double Lorentz transformations,
λab′ (note that this gauge implies ma

B = ηa
B). Similarly we may fix the purely internal

components λa′b′ of the extended double Lorentz transformation by taking the internal
generalized vielbein to be constant

EA′
M ′ = constant . (6.9)
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We find13

λab′ = −λb′a =
(
m−1

)
b′c′

∂aVc′ ,

λa′b′ =
(
δmm−1

)
a′b′
− gma′c′

(
m−1

)
b′d′

fc′d′e′Ve′ + (mA)ca′∂cVc′
(
m−1

)
c′b′

.
(6.10)

Note that the symmetric part of the r.h.s. of the last equation vanishes automatically, as
it should. The fields now transform as follows under double Lorentz transformations and
internal generalized diffeomorphisms

δ(mA)ab′ = mac∂cVb′ + gfb′c′d′Vc′(mA)ad′ + λ
ac(mA)cb′ ,

δEa
MEbM = λab ,

δEaMEbM = λ
′ab = −

(
m−1

)ac
δmcb −Aac′∂bVc′ +

(
m−1

)ac
λ
cd
mdb ,

δEa
MEbM = −δEbMEaM = ∂aVa′A

b
a′ .

(6.11)

Again the symmetric part of the r.h.s. in the definition of λ′ab in the third line vanishes, as
it must. Note the non-standard induced transformation for the generalized vielbein in the
last line.

Let us now compare the transformation of the gauge field found above to the transfor-
mation of the generalized flux Fab̂ĉ (the generalized analog of the spin connection), where
the hatted lower index runs over both ‘external’ and ‘internal’ directions, b̂ = (b, b′). The
latter transforms as (cf. (2.12))14

δFab̂ĉ = mad∂dλb̂ĉ + 2λ[b̂|d̂|F
a
|d̂|ĉ] + λ

adFdb̂ĉ . (6.12)

Assuming the existence of constants
ta′b̂ĉ , (6.13)

which translate between a primed index and a pair of anti-symmetric indices b̂ĉ, one sees
that the identification

(mA)ad′td′b̂ĉ = g−1Fab̂ĉ , Vc′tc′âb̂ = g−1λâb̂ , (6.14)

is consistent with the transformations of the fields provided that

ta′b̂ĉtb′b̂ĉ = Cκa′b′ , [ta′ , tb′ ] = fa′b′c′tc′ , (6.15)

for some constant C. We see that the t’s are generators of SO(D +K) in the fundamental
representation, where K is the range of the internal index a′. Taking κ to be the Killing form

κa′b′ = −fa′c′d′fb′c′d′ , (6.16)
13The components of m, λ and V are taken with respect to mAB = mA

CηCB, λAB = λA
BηAB and

VC = ECMV
M.

14Contracted hatted indices include an extra sign for the ‘external’ piece, e.g. in the second term

λ[b̂|d̂|F
a
|d̂|ĉ] = −λ[b̂|d|F

a
|d|ĉ] + λ[b̂|d′|F

a
|d′|ĉ] ,

where in the first the contraction is with η and in the second with κ.
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then fixes the constant C to C = 1
D+K−2 . Note that we are identifying a′ with â = (a, a′),

which is clearly not possible for finite K, so this construction is somewhat formal. However,
this does not lead to any issues as long as one truncates at some finite order in g−1. We
just keep C finite in the calculations and take it to zero only at the end, in this way it acts
as a regulator. The identification (6.14) is implicit since the r.h.s. involves the object on
the l.h.s., but it can be solved recursively order by order in g−1. For further details of this
identification we refer the reader to [15].

Before we make this identification we will first determine the action. It is given by the
usual expression (we take d̂ = d)

S =
∫
dX e−2dR̂ , (6.17)

where the ‘extended’ generalized Ricci scalar is given by

R̂ = 4∂̂aFa − 2FaFa −FabcFabc + Fa′bcFa′bc + 1
3F

abcFabc . (6.18)

To find the explicit form of the action we need to compute the generalized fluxes. Using
the ansatz (6.1) in the definition

FABC = 3∂̂[AEBMEC]M + gEAKEBLECMfKLM (6.19)

we find

FABC = m[A
DmB

EmC]
F
(
FDEF − gADd′AEe′AFf ′fd′e′f ′ + 3∂DAEe′AFe′

− 3
(
∂Dm

−1m−1
)
EF

)
,

Fa′BC = ma′d′m[B
EmC]

F
(
ADd′FDEF − 2∂EAFd′ + gAEe′AFf ′fd′e′f ′ +AGd′∂GAEc′AFc′

−ADd′
(
∂Dm

−1m−1
)
EF

)
,

Fa′b′C = m[a′|d′|mb′]e′mC
F
(
− gAFf ′fd′e′f ′ +ADd′A

E
e′FDEF + 2ADd′∂DAe′F +Ae′D∂FA

D
d′

−
(
∂Fm

−1m−1
)
d′e′

)
,

(6.20)
while the expression for Fa′b′c′ will not be needed. The components entering in the action
become

Fabc = mbdmce
(
Fa

de + ∂aA
[d
c′A

e]
c′ −

(
∂am

−1m−1
)[de]

)
,

Fa′bc = −ma′d′m
bdmce

(
F ded′ −A

f
d′∂

fA
[d
c′A

e]
c′ +Afd′

(
∂fm−1m−1

)[de]
)
,

Fabc = madmbemcf
(
F̂ def + 3∂[dAec′A

f ]
c′ − 3

(
∂[dm−1m−1

)ef ]
)
,

(6.21)

where we have introduced the ‘field strength’ of the gauge field (Da was defined in (2.20),
in particular we take it not to act on the primed indices)

F abc′ = 2D[aA
b]
c′ − gfc′d′e′A

a
d′A

b
e′ (6.22)
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and defined

F̂ abc = F abc − gfd′e′f ′Aad′Abe′Acf ′ . (6.23)

Finally we need the generalized flux with one index which takes the form

Fa = mabF b − ∂bmab (6.24)

and a short calculation gives

∂̂aFa = −
(
∂b − F b

)
(m∂am)ab + ∂aF b

(
m2
)ab

+ F abD (∂Dmm)ab + ∂bmac∂cmab . (6.25)

Putting these results together we find that many terms cancel and the generalized Ricci
scalar (6.18) simplifies to

R̂ = −2 (∂a − F a)
(
∂b − F b

) (
m2
)ab

+ 2∂aF b
(
m2
)ab
− FabcFade

(
m2
)bd (

m2
)ce

+ 1
3 F̂

abcF̂ def
(
m2
)ad (

m2
)be (

m2
)cf

+ F bca′ F
de
d′ m

2
a′d′

(
m2
)bd (

m2
)ce

+ 2FAbc∂AAdc′Aec′
(
m2
)bd (

m2
)ce

+ 2∂cAbc′Aac′∂dAed′A
f
d′(m

2)ad(m2)be(m2)cf .

(6.26)

This Lagrangian, together with the vector gauge transformations and double Lorentz
transformations in (6.11), gives DFT coupled to (non-abelian) vectors.

We now wish to use this action to construct α′ corrections to the heterotic DFT action
by imposing the generalized Bergshoeff-de Roo identification (6.14). Even before doing this
one notices a striking similarity to the DFT action up to second order in α′ in (1.2). The
identification tells us to set

madAda′ta′b̂ĉ = g−1Fab̂ĉ . (6.27)

The components of the generalized flux appearing on the r.h.s. become, using (6.20),

Fabc = madF dbc , Fabc′ = madmc′d′DbA
d
d′ ,

Fab′c′ = madm[b′|d′|mc′]e′
(
−gAdf ′fd′e′f ′ + 2Aed′DeAde′ −Aed′∂dAee′ −

(
∂dm−1m−1

)
d′e′

)
.

(6.28)
Setting Aaa′ta′b̂ĉ ≡ A

a
b̂ĉ

the identification takes the form

Aabc = g−1F abc , Aabc′ = g−1mc′d′DbA
a
d′ ,

Aab′c′ =−mb′d′mc′e′A
a
f ′fd′e′f ′+g−1m[b′|d′|mc′]e′

(
2Aed′DeAae′−Aed′∂aAee′−

(
∂am−1m−1

)
d′e′

)
.

(6.29)
The advantage of defining A in the way we did is that the r.h.s. of Aabc is independent of
A. For the other components A appears on the r.h.s. and the identification must be solved
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recursively. To see how this works let’s compute A2 to lowest order in g−1. We have(
A2
)ab

=Aac′A
b
c′

=C−1Aa
ĉd̂
Ab
ĉd̂

=−C−1g−2Mab−2C−1g−2 (mDcA
a)d′

(
mDcA

b
)
d′

+C−1Aaa′fa′b′c′
(
m2
)
b′d′

(
m2
)
c′e′

fd′e′f ′A
b
f ′

−2C−1g−1Aaa′fa′b′c′
(
m2
)
b′d′

(
m2
)
c′e′

(
2Aed′DeAae′−Aed′∂aAee′−

(
∂am−1m−1

)
d′e′

)
+C−2g−2(m2)b′d′(m2)c′e′

(
2Ae[b′D

eAac′]−A
e
[b′∂

aAec′]−
(
∂am−1m−1

)
[b′c′]

)
·
(

2Ae[d′D
eAbe′]−A

e
[d′∂

bAee′]−
(
∂bm−1m−1

)
[d′e′]

)
.

(6.30)
Noting that A is of order g−1 we have, using (6.4) and (6.16),

(
A2
)ab

= −C−1g−2Mab − C−1
(
A2
)ab

+O
(
g−4

)
(6.31)

and rearranging this we find

(
A2
)ab

= − g−2

1 + C
Mab +O

(
g−4

)
→ −g−2Mab +O

(
g−4

)
, (6.32)

where we noted that at the end we should take K → ∞ which gives C → 0. From the
definition of m in (6.4) we get

(
m2
)ab

= ηab −
(
A2
)ab

+O
(
g−4

)
= ηab + g−2Mab +O

(
g−4

)
, (6.33)

which coincides withMab (1.4) provided we set

g−2 = −a2 = α′

2 . (6.34)

It is easy to extend this calculation to show that one recovers precisely the action (1.2) and
transformations (1.5) at lowest order in α′.

It is remarkable that the simple action (6.26) can capture, after the generalized
Bergshoeff-de Roo identification, an infinite series of α′ corrections. However, while it is
in principle straightforward to compute the action and transformations to some desired
order in α′ the expressions quickly become extremely long due to the complicated form
of the identification (6.29) and the need to apply it recursively. Below we carry out
the identification to order α′2 and show that, after suitable field redefinitions, we again
recover the action and transformations presented in the introduction. It turns out that the
calculations can be simplified by modifying the original Bergshoeff-de Roo identification to(

(mA)ab′ + cg−2Rab′
)
tb′ĉd̂ = g−1Faĉd̂ , (6.35)
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where c is a constant to be fixed. Here Rab′ is the mixed components of the extended
generalized Ricci tensor which takes the form

Rab′ = mad∂dFb′ − (∂c −Fc)Fab′c +
(
(mA)dc′∂d −Fc′

)
Fab′c′ + FcdaFdcb′ −Fc′daFdc′b′ ,

(6.36)
where

Fa = Fa , Fa′ = −
(
∂b − F b

)
(mA)ba′ (6.37)

and the other generalized fluxes are given in (6.21) and (6.28). The fact that R is a
(extended) generalized diffeomorphism scalar and transforms covariantly under double
Lorentz transformations means that mA + g−2R transforms in the same way as mA, so
this form of the identification is also admissible. Note however that since A appears in the
transformation of the generalized vielbein in (6.11) changing the identification in this way
could result in the algebra only closing on-shell (the modification vanishes on-shell). But
this is precisely what we want in order to reproduce the transformations in (1.5), which also
have this property. For this reason it is natural to expect that a certain non-zero choice of
c would reproduce the action and transformations presented in the introduction, whereas
the standard identification with c = 0 should reproduce the more complicated action and
transformations found in section 4.2. We will now show that this is indeed what happens.

6.1 Reproducing the previous α′2 result

Here we will drop terms of order α′3 (g5) or higher. We will use the modified generalized
Bergshoeff-de Roo identification (6.35). Using (6.36) we find

Rab′ = (Dc − Fc)DcA
a
b′ − ∂a

(
∂b − F b

)
Abb′ + gfb′c′d′A

a
c′

(
∂b − F b

)
Abd′

− gfb′c′d′Abc′∂bAad′ + gfb′c′d′A
b
c′F

ab
d′ +O

(
α′2
)
.

(6.38)

Looking at (6.30) we find that taking c = C−1 in (6.35) leads to some cancellations and we
find a relatively simple expression for A2

(A2)ab = g−2
(
−Mab − (Dc − Fc)Dc

(
AaAb

)
+ 2A(a∂b)(∂c − F c)Ac

)
+O

(
α′3
)

(6.39)

In the A4 terms in the expansion of the Lagrangian (6.26) we effectively replace A by F acd
and it is not hard to see that this reproduces all the corresponding terms at order α′2

in (1.2). But the identification produces extra terms of the form ∂2F 2 from A2 as above.
We will now show that the corresponding terms in the action can be canceled by suitable
field redefinitions. These terms come from considering the additional terms produced by
the identification in the ‘order α′’ terms in the Lagrangian (6.26), namely

− 2∂aF b
(
A2
)ab

+ 2FabcFabd
(
A2
)cd
− F abcF abd

(
A2
)cd

− 2
3gF

abcAa
[
Ab, Ac

]
+ F abF ab + 2FAbc∂AAbAc ,

(6.40)

where we suppressed the primed index on Aab′ for readability. The terms in the first line,
which don’t involve a derivative of A or a commutator, give rise, using (6.39), to the extra
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terms (up to total derivatives)

g−2
(
−2Dc∂

aF bDc

(
AaAb

)
+4FabcDeFa

bdDe

(
AcAd

)
−2F abcDeF

abdDe

(
AcAd

)
−4∂(aF b)Aa∂b (∂c−F c)Ac+4FabcFabdAc∂d (∂e−F e)Ae−2F abcF abdAc∂d (∂e−F e)Ae

)
.

(6.41)
For the remaining terms in (6.40) the identification (6.35) gives

gF abcAa
[
Ab,Ac

]
= g−2

(
−2F abcF adeF bdfF cfe−6F abcF adeDdA

bDeA
c−6gF abcAa

[
DdA

b,DdA
c
]

−3gF abc(Dd−Fd)DdA
a
[
Ab,Ac

]
+3gF abc∂a(∂d−F d)Ad

[
Ab,Ac

])
+O

(
α′3
) (6.42)

and

FAbc∂AA
bAc = g−2

(
FAbc∂AF

b
deF

c
de − 2FAbc[∂A, Dd]AbDdA

c + 2DdF
Abc∂AA

bDdA
c

+ 2∂[aF b]Aa
(
(Dc − Fc)DcA

b − ∂b(∂c − F c)Ac + g
[
Ab, (∂c − F c)Ac

])
+ 2FAbc∂AAb

(
∂c(∂d − F d)Ad − g

[
Ac,

(
∂d − F d

)
Ad
]) )

+ total derivatives +O
(
α′3
)
,

(6.43)
while the term involving the field-strength of A is more involved but eventually one finds
(useful intermediate results are given in appendix A)

F abF ab = g−2
(
4RabcdRabcd+4RabcdDcA

aDdA
b−8D[aDcA

b][Da,Dc]Ab

+8D[aAb]
[
Dc,D

a
]
DcA

b+4g[Da,Dc]AbDc

[
Aa,Ab

]
−4g

[
Dc,D

a
]
DcA

b
[
Aa,Ab

]
+4DcF

a
cdDdA

bF ab+4DaFcDcA
bF ab+2F acdFcdeDeA

bF ab

−4DaAbFd
ab∂d(∂c−F c)Ac−4gDa∂b(∂c−F c)Ac

[
Aa,Ab

])
+total derivatives+O

(
α′3
)
.

(6.44)
Putting these results together one finds after some work, evaluating the commutators of
derivatives using (2.22) and in particular the Bianchi identity (2.25), that the extra terms
from (6.40) reduce to the following terms proportional to the generalized Ricci tensor

4g−2
(
RabDbA

cF ac−DaRbcAaDcA
b−RabAa∂b(∂c−F c)Ac

)
+total derivatives+O

(
α′3
)
.

(6.45)
Using (2.15) we see that these terms are canceled by the field redefinition

EA
M → EA

M + ρA
BEB

M , (6.46)

with
ρab = g−2 (DbA

cF ac + (Dc − F c)(AcDbA
a)−Aa∂b(∂c − F c)Ac) . (6.47)
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This completes the matching of the Lagrangian (6.26) with that in (1.2) up to the second
order in α′.

Finally we want to match the form of the corrected double Lorentz transformations
in (1.5). Before the field redefinition (6.47) the relevant transformation of the generalized
vielbein, given by the last line in (6.11), is (suppressing the primed index on V and Ab for
readability)

δEa
MEbM = ∂aV A

b

= g−2∂aλcdF
b
cd − 2g−2∂a∂cV DcA

b − g−1∂a∂
cV
[
Ab, Ac

]
− g−1∂cV

[
Ab, ∂aA

c
]
− 2g−2∂aV

(
(Dc − Fc)DcA

b − ∂b(∂c − F c)Ac
)

− g−1∂aV
(
2
[
Ab, (∂c − F c)Ac

]
−
[
Ac, ∂cAb

]
+
[
Ac, F bc

])
+O

(
g−5

)
.

(6.48)
After taking the redefinition (6.47) into account the transformation becomes

δEa
MEbM = DaV

b −DbVa + g−2∂aλcdF
b
cd + 4g−2(Dc − Fc)

(
∂[cV|d′|Da]A

b
d′

)
+O

(
g−5

)
.

(6.49)
The first two terms can be canceled by a generalized diffeomorphism.15 and we are left with

δEa
MEbM = g−2∂aλcdF

b
cd + 4g−4(Dc − Fc)

(
∂[cλ|de|Da]F

b
de

)
+O

(
α′3
)
, (6.50)

in agreement with (1.5) upon setting g−2 = −a/2 (note that the overall sign compared
to (1.5) is accounted for by the different index placement).

7 Second order correction: R(1,1)

For completeness we work out also the DFT correction for the case of the bosonic string.
This turns out to be considerably more complicated than the heterotic case, due to the
presence of a Riemann cubed correction in this case. This section can be skipped by readers
interested only in the heterotic string.

While in the heterotic case the parameter b in (1.1) is zero and the full second order
correction is given by R(0,2), in the bosonic case we have instead a = b = −α′. We have
already determined R(0,2) and R(2,0) is easily obtained from this result since it differs only
by raising and lowering indices (and appropriate sign changes). This leaves R(1,1) to be
determined, which is what we will do in this section. Since the calculations are much longer
than for R(0,2) we will work only up to total derivatives and relegate some of the longest
expressions to the appendix.

For the bosonic string we need to correct both factors in the double Lorentz transfor-
mations at order α′, both corrections taking the form (3.6)

δ′EaMEbM = aλ̂
a
b = a

2∂bλdeF
a
de , δ

′
EaMEbM = bλ̂

a

b = − b2∂
aλ

de
Fb

de . (7.1)

15The explicit expressions are

Va = −g−2 ((Dc − F c) [∂aVd′Ac
d′ ] + ∂aVd′ (∂c − F c)Ac

d′ ) ,

V b = −g−2 ((Dc − Fc)
[
∂cVd′Ab

d′
]

+ ∂bVd′ (∂c − F c)Ac
d′
)
.
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To derive R(0,2) we used the first correction in R(0,1). To get R(1,1) we must instead use
the second correction in R(0,1). Using the expression for R(0,1) in (4.3) and dropping total
derivatives we find

b−1δ
′R(0,1) = −2λ̂caRabde∂cF bde − 2λ̂ca∂bF bde∂cF ade − 2λ̂caF bde∂b∂cF ade

− 2λ̂f aF bcfF [a
de∂cF

b]
de + 4λ̂f cFf abF ade∂[bF c]de

− 2λ̂cd∂bFcdaMab − 2λ̂cdFcda∂bMab + λ̂c
bF acd∂dM

ab

+ 2λ̂cfF fdbFcdaMab + 2λ̂f dF bcfFcdaMab − 4λ̂f aFf bcMabc

+ 2λ̂caF bde∂cF adeF b + 2λ̂cdFcdaMabF b − 2λ̂caMabRbc

+ 8∂[cλ̂d]
bDcRbd + 4λ̂ebFecdDcRbd + 8λ̂ceFdbeDcRbd .

(7.2)

One can show, following [20], that this can not be canceled unless one includes a cubic
Riemann term. There is only one cubic Riemann term we can write, namely

R3 = 1
3R

ab
cdRaecfRbedf . (7.3)

We therefore need to compute the leading order λ-variation of this term. We find

δR3 =−∂gλabF gcdRaecfRbedf =−3∂[gλ
ab]
F gcdRaecfRbedf+2∂aλbgF gcdRaecfRbedf

=−3∂[gλ
ab]
F gcdRaecf∂bF edf+3∂[gλ

ab]
F gcdRaecf∂eF bdf+2∂aλbgF gcdRaecf∂bF edf

−2∂aλbgF gcdRaecf∂eF bdf−3∂[gλ
ab]
F gcdRaecfR′bedf+2∂aλbgF gcdRaecfR′bedf

=−2∂aλbgF gcd∂aRbecfF edf+3∂b∂[gλ
ab]
F gcdRaecfF edf−2∂b∂aλbgF gcdRaecfF edf

− 3
2∂

[gλ
ab]
∂eRabcfF gcdF edf+3∂[gλ

ab]
∂aF bcdRgecfF edf−

3
2∂

e∂[gλ
ab]RabcfF gcdF edf

−2∂gλab∂aF bcdRgecfF edf+∂gλab∂eRabcfF gcdF edf−
9
2∂

[gλ
ab]
F gcd∂

[aRbe]cfF edf

+6∂aλbgF gcd∂[aRbe]cfF edf−
3
2∂

[gλ
ab]
F gcd(∂e−F e)RaecfF bdf

+∂aλbgF gcd(∂e−F e)RaecfF bdf−F beH∂Hλ
gaRabcfF gcdF edf

+ 1
4F

egH∂Hλ
ab
F gcdRabcfF edf−

1
4F

abH∂Hλ
egRabcfF gcdF edf

−3∂[gλ
ab]
F gcdRaecfF edfF b+2∂aλbgF gcdRaecfF edfF b−3∂[gλ

ab]
F gcdRaecfR′bedf

+2∂aλbgF gcdRaecfR′bedf+total derivatives .
(7.4)

Here R′abcd denotes the subleading terms in Rabcd, i.e.

R′abcd = Rabcd − 2∂[aF b]cd . (7.5)

The first thing to note is that all terms in (7.2) (except those proportional to equations of
motion) contain two ‘traces’ (pairs of contracted anti-symmetrized indices), one explicit
and one inside λ̂. Therefore we need to manipulate the terms above and add other pieces
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to the would be R(1,1) until this variation also contain at least two traces. From this point
on the calculations become very long. Therefore we will only write explicitly the leading
order terms in the number of fields in the following. The subleading terms can be found in
appendix B.

To start with we note that the first three terms in (7.4) are the only ones that don’t
involve a trace at the leading order in fields. The first step is to rewrite the first term, let’s
call it Υ, as follows

Υ = −2∂aλbgF gcd∂aRbecfF edf = 2∂aλbgRbecf∂a(F gcdF edf )

+ 2∂a∂aλbgRbecfF gcdF edf − 2∂aλbgRbecfF gcdF edfF a + total derivatives

= −4∂aλbg∂cFf be∂a
(
F [g

cdF
e]
df

)
− 2∂aλbgR′cf be∂a(F gcdF edf )

+ 2∂a∂aλbgRbecfF gcdF edf − 2∂aλbgRbecfF gcdF edfF a + total derivatives

= 4∂a∂cλ
bg
Ff

be∂a
(
F [g

cdF
e]
df

)
+ 4∂aλbgFf be∂a∂c

(
F [g

cdF
e]
df

)
+ 2∂a∂aλbgRbecfF gcdF edf + 4∂aλbgFf beFcaH∂H

(
F [g

cdF
e]
df

)
+ 4FcaH∂Hλ

bg
Ff

be∂a
(
F [g

cdF
e]
df

)
− 2∂aλbgR′cf be∂a(F gcdF edf )

− 4∂aλbgFf be∂a
(
F [g

cdF
e]
df

)
Fc − 2∂aλbgRbecfF gcdF edfF a + total derivatives .

(7.6)

With some work we can write this as the variation of something plus left over terms. Note
that whatever we add to R3 should be anti-symmetric under exchanging upper and lower
indices and adding an extra minus sign for each pair of contracted indices. This is equivalent
to symmetry under exchanging the P± projections (2.4) and ensures that the action contains
only even powers of Habc. Defining

L1 = ∂a
(
Fc

bgFf
eb
)
∂a
(
F [g

cdF
e]
df

)
−Da

(
Fc

bgFf
eb
)
Da

(
F [g

cdF
e]
df

)
−Da

(
Fc

bgFf
eb
)
Da

(
F [g

cdF
e]
df

)
− 8F[a

bhFc]
bgRheafF [g

cdF
e]
df ,

(7.7)

we find

Υ = δL1+∂a∂aλbgRbecfF gcdF edf+Ψ+Υ4,0+Υ5,0+Υ4,0,Φ+Υ5,0,Φ+Υe.o.m.

+total derivatives .
(7.8)

Here we have defined the combination of terms

Ψ = −4∂aλ
bg
∂aFf

beDc

(
F [g

cdF
e]
df

)
− 2∂a∂aλbgFf beDc

(
F [g

cdF
e]
df

)
+ 2∂fλ

bg
∂aFa

beDc

(
F [g

cdF
e]
df

)
+ 2∂fλ

bg
Fa

bhFa
he∂c

(
F [g

cdF
e]
df

)
− 2∂fλ

bh
Fa

bgFa
he∂c

(
F [g

cdF
e]
df

)
− 4∂aλ

bh
Fa

ghFf
eb∂c

(
F [g

cdF
e]
df

)
− 4∂aλ

bg
Fa

ehFf
hb∂c

(
F [g

cdF
e]
df

)
+ 4∂aλbgFhebF afh∂c

(
F [g

cdF
e]
df

)
,

(7.9)

which, in particular, contains all the terms cubic in the fields. The remaining terms are
grouped according to the number of fields and the number of traces, e.g. Υ4,0 contains
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the quartic terms with no traces. The terms containing the dilaton, i.e. Fa (F a) are listed
separately, e.g. quartic terms containing the dilaton and without traces are contained in
Υ4,0,Φ. Finally, terms proportional to the equations of motion are contained in Υe.o.m.. The
explicit expressions can be found in appendix B.

The next step is to manipulate the Ψ-terms. After some work one finds that they can
be organized as follows

Ψ = Ψ3,1 + Ψ3,2 + Ψ4,0 + Ψ4,1 + Ψ4,2 + Ψ5,0 + Ψ5,1 + Ψ3,0,Φ + Ψ3,1,Φ + Ψ4,0,Φ + Ψ4,1,Φ

+ Ψe.o.m. + total derivatives .
(7.10)

We will give only the cubic terms here. The rest can be found in appendix B. The terms
with one trace are

Ψ3,1 = ∂eλ
cf
∂eFg

fd
(
FabgRcdab−2F [c

ab∂gF
d]
ab

)
+ 1

2∂
e∂eλ

cf
Fg

fd
(
FabgRcdab−2F [c

ab∂gF
d]
ab

)
− 1

2∂gλ
cf
∂eFe

fd
(
FabgRcdab−2F [c

ab∂gF
d]
ab

)
,

(7.11)
while those with two traces take the form

Ψ3,2 =2∂a∂[e|λ
bg
∂aFf

beF |g]cdFcdf−∂f∂[e|λ
bg
∂aFa

beF |g]cdFcdf+∂a∂a∂[e|λ
bg
Ff

beF |g]cdFcdf

+ 1
2∂gλ

ab
∂g∂fF

abeF ecdFcdf−
1
4∂fλ

ab
∂g∂gF

abeF ecdFcdf+ 1
4∂

g∂gλ
ab
∂fF

abeF ecdFcdf

− 1
2∂gλ

ab
∂gD

eFf
abF ecdFcdf+ 1

4∂fλ
ab
∂gD

eFg
abF ecdFcdf−

1
4∂

g∂gλ
ab
DeFf

abF ecdFcdf .

(7.12)
The cubic terms containing the dilaton (F a or Fa) and no trace are

Ψ3,0,Φ = 4∂aλ
bg
∂aFf

beF [e
dfD

g]Fd + 2∂a∂aλbgFf beF [e
dfD

g]Fd − 2∂fλ
bg
∂aFa

beF [e
dfD

g]Fd
(7.13)

and those with one trace

Ψ3,1,Φ = −∂aλ
bg
F gcdFcdf∂aDfF

b + 1
2∂fλ

bg
F gcdFcdf∂aDaF

b − 1
2∂

a∂aλ
bg
F gcdFcdfDfF

b .

(7.14)
Finally one finds, after a lot of work, that

abδR(1,1) + aδ
′R(0,1) = −4δ′′EabRab − 2δ′′dR , (7.15)

where

R(1,1) = R(1,1) +R(1,1) (7.16)
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with

R(1,1) = 1
6R

ab
cdRaecfRbedf −Rabcd[F, F ]becd∂(aF e) − 1

2M
abcF abD∂DF

c

+
(
Rab[c|gF bg|d] −

(
D[c +D[c + F[c

)
Rad] −

1
2
(
Db − F b

)
[F, F ]abcd

)
×
(1

2F
aefRef cd + 2FcaeRed + Fc

efDaFd
ef
)
− 1

8∂e[F, F ]abcd∂e[F, F ]cdab

+ 1
4D

e[F, F ]abcdDe[F, F ]cdab − [F, F ]abcd
(
Rceaf −

1
32η

ceηafR
)

[F, F ]debf

− 1
2∂a(FF )bc∂a(FF )cb +Da(FF )bcDa(FF )cb

− (FF )ac
(
Rcdab −

1
8ηabη

cdR
)

(FF )db + 1
32∂gMaa∂gM

bb

− 1
128MaaM

bbR+ 1
8∂g

(
F aF a + 1

6F
abeF abe

)
∂g

(
FcFc + 1

6FcdfFcdf
)

+ 1
32

(
F aF a + 1

6F
abcF abc

)(
FdFd + 1

6FdefFdef
)
R− 1

8∂
aMbbF

a
cd(∂e − F e)F ecd

+ 1
2(FF )abDa

(
Fb

cd(∂e − Fe)Fecd
)

+ 1
4D

gFe
ab[F, F ]ef abF gcdFcdf + Le.o.m. ,

(7.17)
where we have introduced the following shorthand notation

[F, F ]abcd = 2F [a
ceF

b]
ed , [F, F ]abcd = 2F[a

ceFb]
ed ,

(FF )ab ≡ FabcF c + 1
2Fa

cdF cdb , (FF )ab ≡ F abcFc −
1
2F

a
cdFcdb .

(7.18)

The extra terms proportional to the equations of motion take the form

Le.o.m. = −2∂aF bRacRbc −
3
2R

ab
cd

(
RacRbd + 1

16R
ab
cdR

)
+ 2F cdfRf bDcRdb

+ F cdfRcdabDaRf b + 2RghcdDbFc
ghRbd + [F, F ]abcd

(
RacRbd −

1
16R

ab
cdR

)
− 1

4M
aa
(
RcbRcb −

1
16R

2
)

+DaF
d
bcMabRdc + 1

4M
aaFd

bcDbRcd

− 1
2Fd

abMabcRcd + 1
2Fe

dfF dab(∂c − F c)F cabRf e + 2F[c
bgR[b

d]F
e]
cfRegfd

+ 1
8F

cdfRcdabFabhRf h −
1
8Fe

abRabcdF f cdRf e + 1
2F

aFbRacbdRcd

− 1
8FbF

aRabR− (FF )cbDc
(
RdbF d

)
+ 1

2

(
F cF c + 1

6F
cdfF cdf

)
(FF )ahRah

− (FF )ca[F, F ]abcdRbd + F a[F, F ]abcdDcRbd + 1
8Fc

ab(∂d − Fd)FdabRFc

− 1
2F

a
cd∂dRRac −

1
8F

abgRabcdF gcdR+ 1
8Fc

abDeFd
abF ecdR

− 1
8Fc

efF ecgRf gR .
(7.19)

These terms, which could be canceled by field redefinitions, are included in order to simplify
the form of the corresponding α′2 correction to the double Lorentz transformations which,
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with this choice, takes the form

δ
′′
d= ab

16
(
4∂cλ

ab
Fd

ab∂(cFd)+2∂cλdeF cabF dabF e+∂fλ
cd
Ff

ceF eabF
d
ab−∂fλ

cd
F cefF eabF

d
ab

)
(7.20)

and

δ
′′
Eab = −ab8

(
2∂aλefF ecdDbF

f
cd + 8

(
Dc − Fc

) (
∂dλ

ef
F(c

efFb)
ad
)

− 4
(
Dc −Dc

) (
∂[bλ

ef
Fd]

efF acd
)
− 2∂b

(
∂cλ

ef
Fd

ef
)
F acd − 2∂cλ

efR′bdefF acd

+ ∂cλ
efR′ef bdF acd − ∂cλ

efR′ef cdF abd + ∂gλ
ef
Fc

efF hbcF
agh

− ∂hλ
ge
Fh

eaF gcdFbcd + ∂hλ
ae
Fh

egF gcdFbcd + 4∂aλefRef bcFc
)
. (7.21)

The expressions for R(1,1) and Le.o.m. are related to the ones above by exchanging upper
and lower indices and including a sign for each pair of contracted indices plus one, for
completeness the explicit expressions are given in appendix B. Of course, the form of the
action and transformations presented here is probably not the most economical, though it
seems to have an interesting structure.

8 Conclusions

We have constructed the two-parameter DFT action and transformations (1.1) to order α′2.
We did this by direct calculations which led to vastly simpler expressions than those found
in [16] using the generalized Bergshoeff-de Roo identification. We also showed that, at least
in the heterotic case, the two approaches give the same result, the two being related by
rather complicated field redefinitions, generalized diffeomorphisms and modifications of the
transformations and Lagrangian. We have also demonstrated that in the heterotic case
the DFT action reproduces the tree-level string effective action to order α′2, extending the
results of [20] beyond the leading order in the fields.

The simple form for the DFT action to second order in α′ presented here should be useful
for various applications. One example would be to find the α′2 correction to (generalized)
T-duality transformations and related integrable deformations of strings following [32]
and [33–35] (for early works on corrections to standard abelian T-duality see [36, 37]).

While the generalized Bergshoeff-de Roo identification seems more complicated in this
case, it is still very interesting since it captures an infinite series of α′ corrections. It would
be very interesting to try to use it beyond order α′2, for example to see that one recovers the
quartic Riemann terms found in [21] at order α′3. Another interesting question is including
the gauge vectors, and fermions and supersymmetry, [15] in the DFT description of the
heterotic string [38], see [39] for a detailed account at order α′.
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A Details of comparison to generalized Bergshoeff-de Roo identification

Here we give some useful intermediate results for section 6.1. The identification (6.35) gives

D[aAb]DaAb = g−2
(
D

[a
F b]cdD

a
F bcd − 2D[a

DcA
b]D

a
DcA

b

− 2D[aAb]Da
(
(Dc − Fc)DcA

b − ∂b(∂c − F c)Ac + g
[
Ab, (∂c − F c)Ac

]) )
+O

(
α′3
)
. (A.1)

We also find

gD[aAb]
[
Aa,Ab

]
= g−2

(
−2D[a

F b]cdF
a
ceF

b
ed−2D[a

F b]cdDcA
aDdA

b

+4D[a
DcA

b]F aceDeA
b−2gD[a

DcA
b]Dc

[
Aa,Ab

]
−2gDaAb

[
DeA

a,DeA
b
]

−gDa
(
(Dc−Fc)DcA

b−∂b (∂c−F c)Ac+g
[
Ab,(∂c−F c)Ac

])[
Aa,Ab

]
−2gD[aAb]

[
Aa,(Dc−Fc)DcA

b−∂b(∂c−F c)Ac+g[Ab,(∂c−F c)Ac]
])

+O(α′3) (A.2)

and

g2
[
Aa,Ab

][
Aa,Ab

]
= g−2

(
2F [a

cfF
b]
fdF

a
ceF

b
ed+4F [a

ceF
b]
edDcA

aDdA
b−8F [a

cfDfA
b]F aceDeA

b

−2g2Dc

[
Aa,Ab

]
Dc

[
Aa,Ab

]
+8gF aceDeA

bDc

[
Aa,Ab

]
−4g2

[
Aa,Ab

][
DeA

a,DeA
b
]

−4g2
[
Aa,Ab

][
Aa,(Dc−Fc)DcA

b−∂b(∂c−F c)Ac
])

+O
(
α′3
)
. (A.3)

B Details of R(1,1) calculation

The terms of higher order in fields in (7.8) take the form

Υ4,0 = −4∂aλbgRbefhF achF [g
cdF

e]
df + 2∂aλbgFhbe∂hF acfF [g

cdF
e]
df

+ 2∂aλ
bh
Fa

ghRebcfF gcdF edf + 2∂aλ
bg
Fa

ehRhbcfF gcdF edf + ∂aλ
bg
∂hFh

geMabe

+ 2∂aλ
bg
∂aFh

beF gcdF
e
dfFcfh − ∂hλ

bg
∂aFa

beF gcdF
e
dfFcfh

+ ∂a∂aλ
bg
Fh

beF gcdF
e
dfFcfh , (B.1)

Υ5,0 = −4∂aλbgF achFhbkFf keF [g
cdF

e]
df + 4∂aλbhF ackFkbeFf ghF [g

cdF
e]
df

+ 2∂aλbgF akhFhbeF gcdF edfFcfk + 2∂fλ
bg
Fa

bhFa
heD

′
c

(
F [g

cdF
e]
df

)
− 2∂fλ

bh
Fa

bgFa
heD

′
c

(
F [g

cdF
e]
df

)
− 4∂aλ

bh
Fa

ghFf
ebD

′
c

(
F [g

cdF
e]
df

)
− 4∂aλ

bg
Fa

ehFf
hbD

′
c

(
F [g

cdF
e]
df

)
+ ∂gλ

ab
Fh

aeFh
ekM bgk + ∂gλ

ab
Fh

aeFh
bkMgek

+ 2∂aλbgFhakFhbeMkge + 2∂aλ
bh
Fa

ghFk
ebF [g

cdF
e]
dfFcfk

+ 2∂aλ
bg
Fa

ehFk
hbF [g

cdF
e]
dfFcfk + ∂kλ

bg
Fa

bhFa
heF [g

cdF
e]
dfFfck

− ∂kλ
bh
Fa

bgFa
heF [g

cdF
e]
dfFfck , (B.2)
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where D′ denotes the connection terms only, i.e. D′c = Dc − ∂c,

Υ4,0,Φ = 4∂aλ
bg
∂aFf

beF [g
cdF

e]
dfFc + 2∂a∂aλ

bg
Ff

beF [g
cdF

e]
dfFc

− 2∂fλ
bg
∂aFa

beF [g
cdF

e]
dfFc − 2∂aλ

bg
Ff

beD
′
c

(
F [g

cdF
e]
df

)
Fa

− 2∂fλ
bg
Fh

be∂c
(
F [g

cdF
e]
df

)
Fh + ∂aλ

bgRbecfF gcdF edfFa

− ∂aλbgRbecfF gcdF edfF a + 2∂aλbgFf beDc

(
F [g

cdF
e]
df

)
F a , (B.3)

Υ5,0,Φ = 4∂aλ
bh
Fa

ghFf
ebF [g

cdF
e]
dfFc + 4∂aλ

bg
Fa

ehFf
hbF [g

cdF
e]
dfFc

+ 2∂cλ
bg
Fa

bhFa
heF [g

cdF
e]
dfFf − 2∂cλ

bh
Fa

bgFa
heF [g

cdF
e]
dfFf

− 2∂cλ
bh
Ff

ebFa
ghF [g

cdF
e]
dfFa − 2∂cλ

bg
Ff

ehFa
hbF [g

cdF
e]
dfFa

− 4∂aλbgFhbeF achF [g
cdF

e]
dfFf − ∂hλ

bg
Fa

beF hcfF
[g
cdF

e]
dfFa

− ∂hλ
bg
Fa

beF gcdF
e
dfFcfhFa − ∂aλ

bg
Fh

beF gcdF
e
dfFcfhF

a

+ ∂aλ
bg
Fh

beF gcdF
e
dfFcfhFa − 2∂aλ

bg
Ff

beF [g
cdF

e]
dfFaFc

+ 2∂fλ
bg
Fa

beF [g
cdF

e]
dfFaFc , (B.4)

while the equations of motion terms are

Υe.o.m. = 4∂cλ
bg
F [g

cdF
e]
dfD

[eRb]f + 4∂aλbgFf beRacF [g
cdF

e]
df + 2∂hλbgFf ebRhcF [g

cdF
e]
df .

(B.5)
The terms of higher order in the fields in (7.10) take the form

Ψ4,0 =−2∂aλ
bg
∂aFf

beF g
chF

e
hdFcdf−∂a∂aλ

bg
Ff

beF g
chF

e
hdFcdf

+∂fλ
bg
∂aFa

beF g
chF

e
hdFcdf , (B.6)

Ψ4,1 = ∂aλ
bg
Fh

ebF a
fh

(
FcdfRgecd−2F [g

cd∂fF
e]
cd

)
−∂aλ

bg
Fa

ehFf
hb
(
FcdfRgecd−2F [g

cd∂fF
e]
cd

)
−∂aλ

bh
Fa

ghFf
eb
(
FcdfRgecd−2F [g

cd∂fF
e]
cd

)
− 1

2∂fλ
bh
Fa

bgFa
he
(
FcdfRgecd−2F [g

cd∂fF
e]
cd

)
+ 1

2∂fλ
bg
Fa

bhFa
he
(
RgecdFcdf−2F [g

cd∂fF
e]
cd

)
−2∂aλ

bg
∂aFf

beFf
h[gF e]

cdF
h
cd

−∂a∂aλbgFf beFf h[gF e]
cdF

h
cd+∂fλ

bg
∂aFa

beFf
h[gF e]

cdF
h
cd

+∂gλabFhbeRaefhF g
cdFcdf+∂bλagFhbe∂fFhaeF g

cdFcdf

− 1
2∂

e∂fλ
bg
Fa

bhFa
heF g

cdFcdf+ 1
2∂

hλ
bg
∂aF aheFf

beF g
cdFcdf

+ 1
2∂

hλ
bg
∂aFa

beFf
ehF g

cdFcdf−∂aλ
bh
Ff

eb∂gFa
heF g

cdFcdf

− 1
2∂fλ

bh
Fa

he∂gFa
ebF g

cdFcdf−∂aλ
bgRbeafF eghF h

cdFcdf

−3∂[aλ
bg]
Fh

beRaefhF g
cdFcdf−∂hλ

be
F abgRaefhF g

cdFcdf , (B.7)
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Ψ4,2 =−1
2∂gλ

ab
∂g
(
Ff

ehF abh
)
F e

cdFcdf+ 1
4∂fλ

ab
∂g
(
Fg

ehF abh
)
F e

cdFcdf

− 1
4∂

g∂gλ
ab
Ff

ehF abhF e
cdFcdf−2∂[e|∂aλ

bg
Fh

ebF a
fhF

|g]
cdFcdf

−2∂aλbg∂[e|Fh
ebF a

fhF
|g]
cdFcdf+∂a∂hλ

bg
Ff

beFh
gaF e

cdFcdf

− 1
2∂

hλ
bg
∂aF abhFf

geF e
cdFcdf−

1
2∂

hλ
bg
∂aFa

beFf
ghF e

cdFcdf

+∂hλbg∂aFf beFaghF e
cdFcdf+2∂[e|∂aλ

bh
Fa

ghFf
ebF |g]cdFcdf

+∂[e|∂fλ
bh
Fa

bgFa
heF |g]cdFcdf−∂aλ

bh
Fa

ge∂hFf
ebF g

cdFcdf

+ 1
2∂fλ

bg
Fa

he∂gFa
bhF e

cdFcdf+∂aλbgRabfhFhegF e
cdFcdf , (B.8)

Ψ5,0 = 4∂aλbgF a
chFh

bhFf
heF [g

cdF
e]
df−4∂aλbhF a

chFh
beFf

ghF [g
cdF

e]
df

−2∂aλbgF a
khFh

beF g
cdF

e
dfFcfk−2∂fλ

bg
Fa

bhFa
heD

′
c

(
F [g

cdF
e]
df

)
+2∂fλ

bh
Fa

bgFa
heD

′
c

(
F [g

cdF
e]
df

)
+4∂aλ

bh
Fa

ghFf
ebD

′
c

(
F [g

cdF
e]
df

)
+4∂aλ

bg
Fa

ehFf
hbD

′
c

(
F [g

cdF
e]
df

)
−2∂aλ

bh
Fa

ghFf
ebF g

ckF
e
kdFcdf

−2∂aλ
bg
Fa

ehFf
hbF g

ckF
e
kdFcdf+∂fλ

bg
Fa

bhFa
heF g

ckF
e
kdFcdf

−∂fλ
bh
Fa

bgFa
heF g

ckF
e
kdFcdf , (B.9)

Ψ5,1 = ∂aλ
bg
Fh

ebFf
ekF a

fhF
g
cdF

k
cd−∂aλ

bg
Fh

ebFf
gkF a

fhF
e
cdF

k
cd

+∂fλ
bg
Fa

bhFa
heF [g

cdFf
e]hF h

cd−∂fλ
bh
Fa

bgFa
heF [g

cdFf
e]hF h

cd

−2∂aλ
bh
Fa

ghFf
ebF [g

cdFf
e]hF h

cd−2∂aλ
bg
Fa

ehFf
hbF [g

cdFf
e]hF h

cd

−∂aλbgFhaeR′hf beF g
cdFcdf+∂aλbgFhbeR′aefhF g

cdFcdf

−∂aλbgFhbeR′agfhF e
cdFcdf+∂aλbgFhebF a

fhF
gekF k

cdFcdf

+2∂aλbgFhebF a
fhF

[g
cdF

e]
fkFcdk+ 1

2∂
aλ

bg
Ff

baFk
ghFk

heF e
cdFcdf

− 1
2∂

aλ
bg
Ff

beFh
akFh

keF g
cdFcdf+ 1

2∂
aλ

bg
Ff

beFh
akFh

kgF e
cdFcdf

+∂aλbgFf hbFkgaFkehF e
cdFcdf−

1
2∂fλ

bh
Fa

heFa
gkF ebkF g

cdFcdf

−∂aλ
bh
Ff

ebFa
gkF ekhF g

cdFcdf+ 1
2∂fλ

bg
Fa

bhD′eFa
heF g

cdFcdf

−∂fλ
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Fa

bgD′eFa
heF g

cdFcdf−∂fλ
bg
Fh

beD
′
aF

[e
ahF

g]
cdFcdf

− 3
2∂fλ
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Fa

heD′[eFa
bg]F g

cdFcdf+∂aλ
bg
Fa

ehFk
hbF e

fkF
g
cdFcdf

−∂aλ
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Fa
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ebF h

fkF
g
cdFcdf−∂aλ

bh
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heFk
bgF e

fkF
g
cdFcdf

− 1
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bhFa
heF e

fkF
g
cdFcdf+∂kλ
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Fa
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heF e

fkF
g
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Ff
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heF g

akF
g
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Ff

ebFa
ghF e

akF
g
cdFcdf , (B.10)
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Ψ4,0,Φ =−2∂fλ
bg
Fa

bhFa
heF [e

dfD
g]Fd+2∂fλ

bh
Fa

bgFa
heF [e

dfD
g]Fd

+4∂aλ
bh
Fa

ghFf
ebF [e

dfD
g]Fd+4∂aλ

bg
Fa

ehFf
hbF [e

dfD
g]Fd

−4∂aλbgFhebF a
fhF

[e
dfD

g]Fd , (B.11)

Ψ4,1,Φ =−∂a∂gλ
bg
Fa

ehFf
hbF e

cdFcdf+ 1
2∂f∂

gλ
bg
Fa

bhFa
heF e

cdFcdf

− 1
2∂fλ

bg
Fa

bhDeFa
heF g

cdFcdf+∂fλ
bh
Fa

bgDeFa
heF g

cdFcdf

+∂aλ
bg
Ff

hbDeFa
ehF g

cdFcdf−∂aλ
bh
Ff

ebDgFa
ghF e

cdFcdf

+∂aλ
bh
Fa

ghDeFf
ebF g

cdFcdf−∂hλ
bg
Ff

beDaFh
[e|a|F g]

cdFcdf

+∂fλ
bg
Fh

beDaF
[e
ahF

g]
cdFcdf+∂fλ

bg
Fa

bhFa
heF [g

cdF
e]Fcdf

−∂fλ
bh
Fa

bgFa
heF [g

cdF
e]Fcdf−2∂aλ

bh
Fa

ghFf
ebF [g

cdF
e]Fcdf

−2∂aλ
bg
Fa

ehFf
hbF [g

cdF
e]Fcdf+2∂aλbgFhebF a

fhF
[g
cdF

e]Fcdf

−2∂aλ
bg
∂aFf

beF [g
cdF

e]Fcdf−∂a∂aλ
bg
Ff

beF [g
cdF

e]Fcdf

+∂fλ
bg
∂aFa

beF [g
cdF

e]Fcdf , (B.12)

while the equations of motion terms are

Ψe.o.m. = −4∂aλ
bg
∂aFf

beR[g
dF

e]
df − 2∂a∂aλbgFf beR[g

dF
e]
df

+ 2∂fλ
bg
∂aFa

beR[g
dF

e]
df + ∂aλ

bg
∂aRbfF gcdFcdf

− 1
2∂fλ

bg
∂aRbaF gcdFcdf + 1

2∂
a∂aλ

bgRbfF gcdFcdf

+ 2∂fλ
bg
Fa

bhFa
heR[g

dF
e]
df − 2∂fλ

bh
Fa

bgFa
heR[g

dF
e]
df

− 4∂aλ
bh
Fa

ghFf
ebR[g

dF
e]
df − 4∂aλ

bg
Fa

ehFf
hbR[g

dF
e]
df

+ 4∂aλbgFhebF afhR[g
dF

e]
df .

(B.13)

The underlined version of (7.17) is

R(1,1) = 1
6R

ab
cdRaecfRbedf−Rcdab[F,F ]becd∂(aFe)+ 1

2MabcFabD∂
DFc

+
(
R[c|g

abFb
g|d]+(D[c+D[c+F [c)Rd]

a+ 1
2

(
Db−Fb

)
[F,F ]abcd

)
×
(1

2FaefR
cd
ef+2F caeRde−F cefDaF

d
ef

)
− 1

8∂e[F,F ]abcd∂e[F,F ]cdab

+ 1
4De[F,F ]abcdDe[F,F ]cdab−[F,F ]abcd

(
Rceaf−

1
32η

ceηafR
)

[F,F ]debf

− 1
2∂a(FF )bc∂a(FF )cb+Da(FF )bcDa(FF )cb

−(FF )ab
(
Rbdac−

1
8ηacη

bdR
)

(FF )dc+
1
32∂gMaa∂gM

bb

− 1
128MaaM

bbR+ 1
8∂g

(
F aF a+ 1

6F
abeF abe

)
∂g
(
FcFc+

1
6FcdfFcdf

)
+ 1

32

(
F aF a+ 1

6F
abcF abc

)(
FdFd+ 1

6FdefFdef
)
R− 1

8∂aM
bbFa

cd (∂e−Fe)Fecd

− 1
2(FF )abDa

(
F bcd(∂e−F e)F ecd

)
− 1

4DgF
e
ab[F,F ]ef abFgcdF cdf+Le.o.m. ,

(B.14)
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where

Le.o.m. =−2∂aFbRcaRcb−
3
2R

ab
cd

(
RacRbd+ 1

16R
ab
cdR

)
−2FcdfRbfDcRbd

−FcdfRabcdDaRbf−2RcdghDbF
c
ghRdb+[F,F ]cdab

(
RacRbd−

1
16R

ab
cdR

)
− 1

4Maa

(
RbcRbc−

1
16R

2
)
−DaFd

bcMabRcd−
1
4MaaF

d
bcDbRdc

− 1
2F

d
abMabcRdc−

1
2F

e
dfFd

ab(∂c−Fc)FcabRef+2F[c
bgR[b

d]F
e]
cfRegfd

+ 1
8F

cdfRcdabFabhRf h−
1
8Fe

abRabcdF f cdRf e+
1
2F

aFbRacbdRcd

− 1
8FbF

aRabR+(FF )cbDc

(
RbdFd

)
− 1

2

(
FcFc+

1
6FcdfFcdf

)
(FF )ahRha

+(FF )ca[F,F ]abcdRdb+Fa[F,F ]abcdDcRdb+
1
8F

c
ab

(
∂d−F d

)
F dabRF c

− 1
2Fc

ab∂aRRbc−
1
8FabgR

cd
abFg

cdR− 1
8F

c
abDeF

d
abFe

cdR

− 1
8Fc

efF ecgRf gR .

(B.15)
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