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1 Introduction

String theory compactified on a d-torus has an O(d, d; Z) T-duality symmetry. When we
take the string coupling to zero this is ‘enhanced’ to a continuous O(d, d; R) symmetry of
the dimensionally reduced low-energy effective action (to all orders in ') [1-3]. Double
Field Theory (DFT) [4-6] is an attempt to re-formulate the (tree-level) string effective
action so that this symmetry becomes manifest already before dimensional reduction.’ To
do this one doubles the spacetime dimension D — 2D, which allows for a formulation with
an O(D, D) global symmetry acting on the coordinates. An O(D, D) invariant ‘section
condition’ is then imposed which, when solved, reduces the physics to be D-dimensional.
A priori it is not clear that such a re-formulation of the string low-energy effective
action should be possible. But surprisingly it was found that supergravity can indeed be
reformulated with a manifest O(D, D) symmetry. The next surprise was that it is also
possible to cast the first o/ correction to the heterotic and bosonic string in manifestly
O(D, D) invariant DFT form [7] (see also [8-13]). However, in hindsight the existence of
an O(D, D) invariant description of the first o/ correction is not so surprising. The reason

1One can also consider a DFT description of the dimensionally reduced theory only, but this is not what
we have in mind here.



is that this correction can be generated from an uncorrected DFT action by a version of a
trick originally introduced by Bergshoeff and de Roo [14]. They considered supergravity
coupled to vectors and observed that the supersymmetry transformations of the vectors
and a suitably shifted spin connection take the same form. It is therefore consistent to
identify them and in doing so generate a higher-derivative Riemann squared correction
from the standard F? kinetic term for the gauge field. They applied this trick to the
heterotic string effective action to generate the first two o’ corrections. The same trick
can be applied in DFT. One first has to couple DFT to vectors, which is easily done
by starting in a higher dimension and dimensionally reducing. These vectors can then
be identified with components of the generalized spin connection. This was carried out
in [15, 16] and it was shown that one recovers the first o’ correction of [7] (a somewhat
different approach was discussed earlier in [17]). Unlike in the supergravity setting this
‘generalized Bergshoeff-de Roo trick can be implemented exactly, i.e. there is no need to add
additional o' corrections. Instead the recursive form of the identification leads to an infinite
series of o’ corrections. It is natural to think of these as the T-duality completion of the first
order correction required by the Green-Schwarz anomaly cancellation mechanism for the
heterotic string [18] (though this works also for the bosonic string). Since this formulation
implicitly contains all orders in ' it is in principle straightforward to extract the action
and transformations to any order one is interested in (of course the string effective action

contains also other corrections, the first being the ((3)a’® Riemann*

correction, which likely
cannot be captured by DFT [19]). This was carried out to order o’? in [16] by solving the
implicit identification recursively. Unfortunately, doing this in the most straightforward way
leads to enormously long expressions already at this order. For example the DFT action
they found for the heterotic case consisted of around 200 terms at order o/?! It was later
shown in [20] that these expressions were highly redundant and many terms either canceled
or could be removed by field redefinitions and that going to supergravity these expressions
produced the correct cubic terms (Riemann cubed in the bosonic case and no cubic term in
the heterotic case).

It is therefore clear that the story of the o/? corrections in DFT could be simplified a
lot, but it is not clear exactly how much. There also remains the question of matching the
full expression to supergravity. Here we will address these two questions focusing mainly on
the heterotic case. Instead of starting from the generalized Bergshoeff-de Roo approach we
construct the o/ correction directly by starting with the known action at order o/ and the
corresponding correction to the double Lorentz transformations. The second order action
should then be such that its lowest order variation cancels against the corrected variation
of the order o’ action, after some suitable corrections to the transformations at order o/2.
We find that this problem is relatively easy to solve in the heterotic case leading to quite
a simple action and transformations for DFT up to order /2. In the notation of [16] the
action up to this order takes the form

g — /dX o2y — /dX o—2d (R L aROD L RO | 2R02) L R bQR(Q,O)) 7
(1.1)

where the parameters a,b are proportional to o/ with (a,b) = (—a’,0) for the heterotic



string and (a,b) = (—o/, —a’) for the bosonic string. Here we find that in the heterotic case
the full Lagrangian up to this order can be written as

L=—9 (aa_Fa) <8b_Fb> Mab+2aanMab_FachadeMbnde
_'_% (Fabc+aMabc) (Fdef+aMdef> MadeeMcf_%RabcdRedeMaebe

2 2
—aF 0! 4o PO g MO MY S P 4 RY 4 F? 1R g4 5 F 10 FC g P o0 Fae

(1.2)
where we have defined
Mab — Fachbdc’ Mabc — Faderechfd (13)
and introduced the new “metric”
b a " b ey G (3 2\
v — —M =% - —M*4+ — (M 1.4
M (n+ 5 ) ] 0= MY T (M2)T (1.4)

The DFT notation is explained in the next section. The form of this action, which mostly
consists of dressing the lower order action by M, suggests that it probably captures several
of the terms at higher orders in o/ as well, but it cannot be the full answer at order o/
since we know that there should be a quartic Riemann term present in that case [21]. The

correction to the double Lorentz transformations takes the form
a _
SE™M Byns = 500Acalca + a*(Da — Fo) (9pA 791 D F5g) - (1.5)

There is a price to be paid for this simplicity of the action and transformations, namely the
Lagrangian is not invariant but transforms by a total derivative

5L = 4a2(0, — F,) (Rbda[cg| o D P fg) (1.6)

and the double Lorentz transformations close only up to equations of motion at this
order. On the other hand, the Lagrangian and transformations obtained by the generalized
Bergshoeff-de Roo identification [15] must be invariant and close off-shell. In section 4.2 we
show how to obtain a Lagrangian and transformations with these properties, which take a
more complicated form, directly from our results and verify that the transformations agree
with those found in [15].

The above DFT action and transformations are shown to reproduce the action and
transformations of the heterotic string (setting the gauge fields and fermions to zero) to
order /2. We also discuss a version of the generalized Bergshoeff-de Roo identification,
which leads to some simplifications compared to [16], which leads directly (upon certain
field redefinitions) to the above action and transformations. Finally we derive also the DFT
action for the case of the bosonic string (up to total derivative terms), but that case turns
out to be considerably more involved.

The rest of this paper is organized as follows. Section 2 gives a summary of the double
field theory notation and identities that we will use in the rest of the paper. In section 3 we



describe the first o correction to DFT, while section 4 contains the extension of this result
to the next order for the heterotic case. We show, in section 5, that the DFT action and
transformations reproduce the tree-level effective action for the heterotic string up to order
a'?. Section 6 gives a brief description of the generalized Bergshoeff-de Roo identification
and we find the field redefinitions relating a version of this identification to the results
of section 4. Finally we describe, in section 7, the additional terms needed in the DFT

2

description of the bosonic string at order o/*. We end with some conclusions. Certain

details of the calculations in the last two sections can be found in the appendix.

2 DFT notation and identities

We will use the so-called flux formulation of DFT [22, 23] (see also [24]). The basic fields
are the generalized vielbein, which we parametrize as

1 e(+)am — e(+)aanm €(+)am
V2

EM =

2.1
) _Onp o Om (21)

—€am — €a

and the generalized dilaton

e 2 =22/ Q. (2.2)

In this formulation there is a global O(D, D) symmetry which rotates the doubled coordinate
indices M, N, ... and a local double Lorentz O(D — 1,1) x O(D — 1,1) symmetry rotating
the doubled Lorentz indices A, B, . ... The two vielbeins (&) for the metric Gy, transform
only under the first, respectively second, Lorentz group factor. The standard supergravity
description is recovered by fixing the gauge e(*) = (=) = ¢, leaving only the diagonal copy of
the Lorentz group (and solving the section condition to remove the dual coordinates). In this
formulation a global O(D, D) symmetry will be manifest. Instead, the local double Lorentz
symmetry O(D — 1,1) x O(D — 1,1), required for consistency, will not be manifest and
needs to be verified explicitly. Let us note that, as we will see later, when we include higher
derivative corrections the fields e, B, ® above will be related to the standard supergravity
fields by certain non-covariant field redefinitions.

There are two constant metrics, the O(D, D) metric n*Z and the generalized metric
HAB | which take the form?

AB Nab 0 AB Nab 0
= 5 H — 5 23
n ( 0 _nab ) ( 0 nab ) ( )

where n = (—1,1,...,1) is the D-dimensional Minkowski metric. We use the O(D, D)
metric to raise and lower doubled indices. The projection operators

pAB % (17 £ 1AP) (2.4)

2The O(D, D) metric with lower indices takes the same form, while changing to coordinate indices it

nZWN — 0 631
& 0

takes the form

and similarly with lower indices.



are easily seen to project on upper and lower indices respectively. The analog of the spin
connection and derivative of the dilaton are the “generalized fluxes”
Fapc = 304E™Ecpy Fiy=204d—0"Eaum, 94 =Es Moy . (2.5)
They are the only generalized diffeomorphism? scalars that can be constructed from one
derivative of E and d. They can be seen to satisfy the following Bianchi identities
40aFpcp) = 3Fas" Fope 2004Fp) = — (30 - FC) Fapc, (2.6)
while the commutator of two derivatives with a Lorentz index is
[8,4,83] = FAgcac. (2.7)
In terms of these derivatives the section condition takes the form*
P @oa=0, (0= F*)oa=0. (2.8)
Under a (general) variation of the generalized vielbein the fluxes transform as
SEFapc =3040Epc)+30Ea" Fpoip, 0pFa=0P0Epa+0EapFP, 0Esp=0Es"Epun.
(2.9)
Using the (constant) projection operators (2.4) we can split the capital Lorentz indices into

upper/lower indices, A = (¢, ,), in an invariant way. Under this splitting we see that for
example F4pc consists of four independent fields

Fabc ) Fabc ) Fabc ’ Fape - (210)

Note that we are not allowed to raise/lower these indices in DFT. Furthermore we see
from (2.3) that a contracted A index leads to a sum of a term with two upper indices
contracted with the usual Minkowski metric minus a term with two lower indices contracted
with the Minkowski metric. It is convenient to use a convention where repeated upper(lower)
indices are understood to be contracted with the D-dimensional Minkowski metric, e.g.

FAF, = F°F* — F,F,. (2.11)

The nontrivial symmetry in this formalism is the local double Lorentz symmetry, since
this is not manifest and must be checked by hand. This consists of two factors of the
usual Lorentz group and we denote the corresponding infinitesimal parameters 3 and Aabs
respectively. The generalized fluxes transform as follows

S = 38[(1be] + 3X[a|d|Fbc]d ) 0 Fupe = 3a[aAbc] - 3A[a|d|Fbc}d )
OF,Y = 0o\ = Mg Fa + 2XF, M 6F %, = 070y + X 0 — 200F g
SF® = PN 4 X Fb 0Fa = —0pApq — Aap b -

(2.12)
Notice that contracted lower indices are always accompanied by extra minus signs as in (2.11).

3The generalized diffeomorphisms encode the standard diffeomorphisms plus B-field gauge transformations.
The generalized vielbein transforms as

SEAMEpy = 20(aVp) — FapcVE,

with the parameters encoded in the generalized vector Va.
4The ® notation means that the two derivatives act on different factors in an expression.



At the two-derivative level there is only one double Lorentz invariant, dubbed the
generalized Ricci scalar®

R =40°F* — 2F°F* — F,"°F," + Lpobepobe, (2.13)

Indeed, the DFT action
S = / dX e 2R (2.14)

reproduces the usual NSNS sector of the supergravity action (see below). Using (2.9) the
variation with respect to the generalized vielbein and dilaton gives

SER = 4(9° — F*) (Dy — Fy) 6E%, — 46E%R%, ,
(2.15)
64 (€72R) = e (8 (0" — F*) 9"3d — 20dR) ,

where the first term in both expressions gives a total derivative when we take the e=2¢

factor into account, so the DFT equations of motion are
R% =0, TR=0. (2.16)
Here we have introduced the generalized Ricci tensor
RY = 0°Fy — (0 — Fo) Fye + F.Fy,. (2.17)

Defining R, in the same way but with upper and lower indices exchanged (and remembering
the extra minus signs for each pair of contracted lower indices) one finds from the Bianchi
identities that Rp®* = R%.

It is useful to define also a DFT analog of the Riemann tensor. Following [25] we define®

R g =200 FY 4y — Fabepe ;4 oFle FY (2.18)

It is important to note that, unlike the generalized Ricci tensor, this object does not
transform in a covariant way. Instead one finds its double Lorentz transformation to be

5Rabcd = 2X[a|e|7z‘e|b}cd - ZA[cle,Rabeld] - 8exabF€Cd - FeabaeAcd ) (2'19)

where the last two terms would be absent for an object transforming covariantly. This is
consistent with general arguments that there is no standard notion of a Riemann tensor in
DFT [26]. Nevertheless this ‘generalized Riemann tensor’ turns out to be very useful.

We also find it convenient to introduce “semi-covariant” derivatives acting on a gener-
alized vector as follows

1
DaVb — C%Vb . Fabcvc, Davb — aavb . 7Fabcvc’
. 2 (2.20)
DV, = 0aVp + §Fabcvvca DV, = 8a%+Fabc‘/c-

5This is equal to the same expression with the positions of the indices reversed, as follows by computing
94 F4 using the definition of Fa. This can therefore be thought of as an extra Bianchi identity for Fa.

5Defining Ras°? in the same way with upper and lower indices exchanged (and an extra sign for each
pair of contracted lower indices) we have from the Bianchi identities that Rea® = —R¥® 4.



Note that for example D,V? transforms covariantly under the X transformation if V?
transforms covariantly, but D®V? does not. These derivatives satisfy

(D%, DY) Ve = —Fy™ 04 Ve + R cqVi, (2.21)
[D., DYV = —%Qchabvd + Dlepbdyd, (2.22)

In the last expression we have defined D to be the semi-covariant derivative with the
connection acting only on the lower indices, e.g.

DF" = 9'F, " + FU F. (2.23)

Similarly we define D to act only on the upper indices. The commutators with the
opposite placement of indices are easily found by exchanging upper and lower indices and
keeping in mind that contracted lower indices come with an extra minus sign. Using these
semi-covariant derivatives the Bianchi identities take a simpler form, in particular we have

2D[an]cd _ _28[0Fd]ab o FeabFecd - 2Fea[cFed]b , (224)
D Fb? = 3plE, (2.25)
Ry = — Rea®. (2.26)

We can also use these derivatives to write
Ry = (Dl + D"YFl,y,  R% = DF, — DF%,. (2.27)
Finally we have the Bianchi identity for the generalized Riemann tensor which takes the form
3DlRY ), = —DIF¥eF! ) — 3F¥D,F . . (2.28)

We also find the following expressions for the divergence of the generalized Riemann and
Ricci tensors

(D" — F*)R™ g = 2D .R’q — Fq0°F® — F.""D F° 4, (2.29)
1 1
(Dy — Fp)RY, = 18“73, (D* — F* )R = Z@;;R. (2.30)
2.1 Reduction to (super)gravity
To reduce the DFT expressions to (super)gravity one should do two things:”

1. Solve the section condition to remove the doubling of coordinates by setting

2. Gauge fix the double Lorentz transformations down to the diagonal copy, which be-

comes the usual Lorentz group, by setting the two vielbeins in (2.1) equal,
() = (=) =
el =el7) =e.

"As already mentioned, beyond the leading order in o’ additional (non-covariant) field redefinitions are
needed to make contact with standard supergravity.



Doing this one finds
1 1
—0q , 0% — —=0°. 2.31
7 7 (2.31)

The factor of v/2 appears since on the L.h.s. we define 94 = E4™ 9, while on the r.h.s.

Oy —

we have d, = €, 0. This should hopefully not lead to confusion since we will never mix
doubled and standard fields in the same expression. The generalized fluxes become

1 1
a - a ab _ b
F —>\/§(28<I>+wb ) Fa—>\/§(28a¢’+wba>,
1 1
F% — ﬁw( %, Fbe = —ﬁwgﬂbﬂ (2.32)
1 (=) abe 1 (+)[abc] abc
Fabc — E (3w[abc] + Habc) y F — —E <3W - H ) s

where w® = w + %H denotes the torsionful spin connections. Finally, the generalized
Riemann and Ricci tensor/scalar reduce to

1 _
Rabcd - 3 (R(—)abcd +w(+)eabw26d)) 7

Ry — % (2v<*>aab<1> T R<*>acbc) : (2.33)

1
R = R+ 4V%0,® — 490°®0,P — EH“bCHabC .

Here we see explicitly the non-covariance of the generalized Riemann tensor, though to
leading order in fields it reduces to the curvature of the torsionful connection. We also see
that the generalized Ricci tensor contains the equations of motion for the metric and B-field
as its symmetric and anti-symmetric part respectively, while the generalized Ricci scalar
coincides with the usual Lagrangian for the NSNS sector fields (up to a total derivative).

3 First order correction: R (%1

Here we recall the form of the first o/ correction to the DFT action for the heterotic case.
To the first order in o the DFT action takes the form

S = /dX e (R+aROD) . (3.1)

(0,1)

The expression for R was first found in [7] (see also [27]), but we will write it in the

simpler form found in [25], which makes use of the generalized Riemann tensor

R(O,l) — (aa _ Fa)(ab _ Fb)Mab _ %RabcdRabcd + FabCFadeachde
_ (aan _F daF db + 1Fachbcd) Mab + 2FabcMabc
c C I
2 3

(3.2)

where we have written it even more compactly using the M’s defined in (1.3) in terms of
traces of the “generalized spin connection”. Let us calculate the double Lorentz variation of
this object. Splitting the transformation into X and ) terms,

SROD — FROD | sROL) (3.3)



we find, using (2.12) and (2.19), that
SRON =0 (3.4)
while
SROD = — (201 F! + (90 — Fo) F™C) F*ead Mg
—2(8% — F*)(Dy — Fy) [FaOpAcg] + 2R FaOpA g - (3.5)

The first term vanishes by the Bianchi identity for F*. Comparing the remaining terms to
the variation of the generalized Ricci scalar R in (2.15) we see that they can be canceled by
modifying the double Lorentz transformations by a term proportional to o’ as

SEMEy,, = -8 EBME), = al?, = gFadeabAde. (3.6)

We have discussed the correction to the action and transformations for the heterotic case
only but it is easy to obtain the most general correction by noting that exchanging upper
and lower indices everywhere (taking care of the extra minus sign for contracted lower
indices) we get another solution RL0) with corresponding correction to the transformations,
which we can add to the above with a new coefficient b. This gives the complete 2-parameter
deformation at this order.
4 Second order correction: R(%2)
We will now find the a'? correction to DFT for the heterotic case, i.e. R(%2) in (1.1). To do
this we first need to work out the terms obtained from inserting the order o’ correction to
the double Lorentz transformation (3.6) in the order o/ correction to the Lagrangian (3.2).
Our task is then to find an R(%2) such that its lowest order double Lorentz variation cancels
against these terms, up to terms that can be canceled by modifying the double Lorentz
transformations at order o'2.

It will be convenient to first consider a general variation of the order o/ Lagrangian.
For the generalized Riemann squared term we find, using (2.18),

R adR™ g = ey (2D6F® og + 20 E*CO0F" e — SF™ F* ) (4.1)

where 6Esp = 0EAM Egy is a general variation of the generalized vielbein. Writing the
first term as a total derivative plus a term involving the divergence of R we find, using the
expression for the divergence in (2.29),

RY R e = 20" = F*) |[R™ 40 ' cg| — ADR a0 F g + 20° FPF e Fley

TR, (26E“G O FP g — FOe5Fe ; — 6F“b6Fecd) 1 2R, %D Fe 0F ..
(4.2)
Using this result we find for the general variation of the order o’ Lagrangian in (3.2)

6R(0,1) — (80 _ FC) |:5EaC(ab _Fb)MCLb —FabCdee(SFade-i-aa(sEbCMab —FaCD(sEbDMab]
+(9%—F) [5[(61’ — Fb)Mrab]— 2Rabcd5Fbcd} 14D RV 46 Fb g — 2R 1. EC O Fby,
+6FcabedeacFade _|_5Fachadeachde —6ECDFabDFadeachde+2cha5chbMab

4
§5 Fabc | [abc 280 Fes EbC i [ab 946 EbCac ) [ab 5 EubC Fac 8D A [ab )
(4.3)



It can be checked that this reproduces the variations found in the previous section (although
starting from the above expressions leads to a longer calculation).

Specifying now to the o/ modification to the double Lorentz transformation (3.6),
dropping equation of motion terms and total derivatives, and keeping for the moment only
the leading terms in the number of F’s we find

FROD o 2RD 9. Fb g7 — 209N F 4, 0. F 40 + O (F4) . (4.4)

These terms have to be canceled by adding terms of order o/? to the action. We consider
the following basis of quartic terms constructed only out of F'%,

aF“fgﬁchngcdeﬁbF“de + bF“fgﬁbFCngadeachde + cF“fgachng“deachde
+ dF“fgachngCdeaande + eFafg(‘)bFCngbde8“che + f&“FbcdaerCdF“ngefg
+ gOUFP g0 FC qF 4, FC g 4 hOPF g0  FC qF 1y FC . (4.5)

After a bit of work one finds that to cancel the terms from the §’ variation we need to take

, c:fa+%, d=—a, e:%, :f%, g=1—a, h:af%.(4.6)

N[

b=a—

The freedom in choosing a corresponds only to the freedom to integrate by parts and make
field redefinitions. Taking a = 0 and writing things in terms of the generalized Riemann
tensor we find

1

1
Ly = 5RabdeRbcdeFa 79F 59— §

1
F3eRY 4 F R 1y + S 1O FC 1 FP g0 FCae . (4.7)

However, at the next order in fields these terms will have a non-zero A variation, which
must be canceled by terms with 5 F’s since the §’ terms involve only A. We find

0Ly = 0N FP 40" [FC 4o F® 1] F€ 14+ O (FP)
1 ~0cC 1 ~a ~0c
= 50" [0 N Metar | - SoPory deCMCd—ga[“/\b "I 4o F g M

e 1, ~be 1, b
+%a[‘u” Job pag I g Mt +§aaxb GandeFfdeMCf—Eaa)\b 0uF7 4o FP g MF +O (F5) .

(4.8)
It is now easy to see that to cancel these terms we need to add
1 1 1
L5 — 56(1}711)]\4(16]\4017 + §FabcabFfdeFadeMcf _ §FabcabFadeFfdeMcf
1 1
- 5FabcaandeFf ae M + §Fab06aFf deFge M (4.9)

But now (L4 + Ls) gives rise also to terms of order 5 and to cancel these we will need to
add FO terms to the Lagrangian. One finds

1 ~c —a ~a
(5<L4 + L5) _ 5(80 B FC) [aa/\ bMadeb} N ;Fabca[d)\ b]MceMed N chdea[c/\ b}Madee

e - 1 e
+ 391X pvedppda 1 beg X0 ppee pred 4 §Fab"’8a)\d MY e (4.10)

~10 -



which is easily seen to be canceled by adding

Lg = EFGCdeCdMCLeMeb + lFachcdeMadee _ Fachbchab _ lF daF dbMaeMeb
4 4 2°° ¢
1
— ZFca”cheM‘wlee. (4.11)

This takes care of the \ variation.
We now look at the remaining A-terms. With a bit of work one finds, using (4.3), that

§ROND 4 §(Ly + Ls + L) =

(0" = F*) [0 [(8" = F*) M| = 2R 00\ py DaF s,

+ (90 = Fo) [~F"CF 40 F® g — P00 Ny FTlg M 4 F,PON, M| (4.12)
— (8. — F.) (ab - Fb) [X“cM“b} 12 (a@ 1aF? fgFCae + 25’de6) D4R,

_ 28a&lerechfdMabc ]

All terms are either total derivatives or involve the equations of motion except the last one,
which is canceled by a term

1
Ly = gM“‘)CM‘”’C. (4.13)

Collecting the terms in Ly, L5, Lg and Lg together we have
1 1 1
R(0’2) — *inacdeRdeeMab _ ZFadeRbcdeFangbcfg + §Fafgachngbdeaache
1 1 1
+ iFabCaCFadeFfdebe _ iFabCaCFfdeFadebe + ZFabCFCdeMadee

+ % <aan _ chachb + ;Fachbcd> MaeMeb _ FabcMabndd + éMabcMabc

+ total derivatives .
(4.14)
Finally we must look at the equation of motion terms in the variation (4.12). They are

4014) o Dy FP g DaR . . (4.15)

We can now read off, using (2.15), the required o/? modification to the double Lorentz
transformations which cancels these terms

8" By = a*(Da — Fa) (0p 7y D F* 1) - (4.16)

The full action up to this order then takes the form (1.2). Note that the first term in the
Lagrangian is a total derivative. Its second order contribution has been added in order to
simplify the transformation of the Lagrangian, which is non-zero at this order and takes
the form of a total derivative (1.6). The corrected double Lorentz transformations up to
this order take the form (1.5).

It is important to note that the corrected double Lorentz transformations we have
found close only on-shell at the second order in . Indeed, a short calculation gives

(03, Sy JEM Byng = DV — DyV 4 53 B°M Byay + a?R%tr (9p 2090 ) + O (o) . (4.17)
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The first two terms are a generalized diffeomorphism with parameters

2
Va = %tr(AIOaA) - %(Dc - Fc) tr(aaélacA) - (A s A,) ’

2 (4.18)
Vo= TN - TP tr(0:X0a) — (A < X),
the next term a double Lorentz transformation with parameter
S\Cd = [A7 Al]cd —atr (8[CA’6d]A) , (4.19)

while the last term is not of this form but vanishes on-shell. Note that the generalized
dilaton does not transform under the above generalized diffeomorphism, as follows from the
section condition and Bianchi identities.® This is of course consistent with the fact that the
generalized dilaton does not transform under the corrected double Lorentz transformations
up to this order.

4.1 Alternative action and transformations

When we relate this to supergravity in the next section it turns out to be more convenient to
first modify the action and transformations of the DFT description slightly. The first step
is to rewrite the second order correction to the double Lorentz transformations (4.16) as

a 25" B = —%Db (Da—Fa) (0ad o 1) +% (Da—Fu) Da (06 sy F 1)

- %Fbcch (adAngafg) +% (0°—F°) (Fcbdadéngafg>

1 1 (4.20)
+ 5 F0aDa (9 Ao 1g) + 3R badad o F 1y
1 1
5 Fhea " cad A F o= 5Rdbadg raF -
We recognize the first term as a generalized diffeomorphism with parameter
a az a
V= ?(Dd — Fq)(0aA sy Fgg) - (4.21)

We can remove this term by performing the opposite generalized diffeomorphism with
parameter —V®. This leads to an extra term in the variation of the Lagrangian,

(L), = — (aA - FA> (=VaR) = “22 (9% — F%) ((Dd —Fy) (adg 1o F° fg) R) (4.22)

2 2
+ 5 (a— Fu) [Fetr(9a)'0:0)] + %(a“‘ — F™)[Faca tr(9eN 9a))] — %B[CF(L] tr(Ba N BeX) — (A3 X') =0.
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and a transformation of the generalized dilaton
1 a®
6d =5 (04 = F4) (=Va) = — (0" = F*) (Dg — Fy) (GudsyFosy) - (4.23)

Next we note that the last term in (4.20) is proportional to the equations of motion, since
it involves the generalized Ricci tensor. This term can also be removed by noting that,
using (2.15), it can be replaced with the terms

(0L)2 = 2a% (9" = F*) (Dy — Fy) (R0 Ap B 5y ) = 20*RERUON Fopy  (4.24)

in the variation of the action. Furthermore, the second of these terms can be removed by
adding to the Lagrangian the term

AL = —a’R*RE MY (4.25)

while the first term becomes, using (2.30),

a2

(6L), = 5 (0" — F*) (0"ROAf F? g) + 202 (0" = F*) [REGDy(0Ap, F p)| - (4.26)
In total the Lagrangian now transforms as

§(L + ALy) = 2a2(0* — F%) [Rbdaag g DaF" fg} +2a2(0% — F%) [Rdbﬁbadg o F° fg}

+2a%(8% — F) [Rdbadg 14 Do F* fg} —2a%(8, — F,) [Rbdadg 1gDaF? fg}
2

a
+ 5 (0% = F)(Da— Fa) [(0adsgF* )R] -
(4.27)
The first two terms are partially canceled by adding to the Lagrangian the term
ALy = —2a%(9" — F*) [R*aF* 14 DaF" | (4.28)

To summarize, we can take the transformations of the fields to be
a5 B
—lﬁ F;) Dg(0p)\ s, F° 1FD8 e 1GCFCFCO e
—5( d— d) a( b £q fg)‘ﬁ bed c( i fg fg)+§( - )< bd0dA fg fg)

1 1 1
+ §FcbdDd (3CAngafg> + iRadeadAngcfg + ZFbchecdaeAngafg

(4.29)
and
1 a2 a a a
§"d = ~ (9" = F*)(Da — Fy) (PudsgF ) (4.30)
with the Lagrangian
Law = L — @?R* R M™ — 2a%(0" — F*) [R'aF" 1, DaF" | (4.31)
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now transforming as
(SLaM = 2a2(8a — Fa) [RdbadéngbFafg} — 2a2(6a — Fa) {RbdadAnganfg}

2
a
- (0% = F*)(Da — Fua) [(aiéngafg) R} ‘

(4.32)
While this Lagrangian and transformations look more complicated, this form turns out to be

+ 4@2(8a - Fa) [RbdFafg(‘)dAthbhg} +

more straightforward for reproducing the corresponding supergravity expressions, as we will
see in the next section. But before that we turn to the question of finding transformations
that close off-shell.

4.2 Invariant action with transformations that close off-shell

The a'?-corrected DFT we have constructed has the unfamiliar property that the Lagrangian
is only double Lorentz invariant up to a total derivative term and the double Lorentz trans-
formations close only on-shell. One would expect there to exist an alternative formulation
where the Lagrangian is invariant and the transformation close off-shell, as happens at order
o/. Indeed, the generalized Bergshoeff-de Roo identification of [15] would automatically
lead to a Lagrangian and transformations with these properties. Here we will see how
such a formulation can be derived from our results by performing field redefinitions and
generalized diffeomorphisms as well as modifying the transformations and Lagrangian. It
turns out that there is a price to pay in that the transformations and, in particular, the
action become considerably more complicated. The calculations involved in this section are
somewhat long and the results are not used elsewhere in the paper so this section can be
skipped by readers not interested in the detailed relation between the two formulations.
To find the right form of the Lagrangian and transformations involves a little bit of
guess work. One way to get to the answer is to start with a slightly different question.

2 contain several terms linear in the fields, the

The transformations we found at order o’
same order as the first o/ correction. In the previous section we saw that we could remove
one of these terms by a generalized diffeomorphism obtaining the transformations (4.29)
and (4.30) with fewer linear terms. It is natural to ask whether we could remove more,
or perhaps all, of the terms linear in the fields at order o/?>. We will now show that the
answer is yes (later we will see that there is a small caveat). For simplicity we will first do
the calculation dropping all terms of higher order in the number of fields. Then we have

from (4.29) and (4.30)

a® a®
B = 50 (BAcpFecr) +O(F2),  §"d= —= 0", (OadesFoep) + 0 (F2) .
(4.33)
It is easy to see, using the section condition to raise the d index, that

§"d = 6;25 (970" M) + O (F?) (4.34)

so the leading part of the transformation of the generalized dilaton can be removed by a
field redefinition. For the leading term in the transformation of the generalized vielbein we
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have
O (OpAes Fler) = OPOpAep Fep +20°0pAcg0°F o p+ OpAcy 07 F
= PO F e p+20°0pAep O F e p+OpAefO R o +0pD 0" 0°Fe s +0 (F?)
= 0" (02O FCep) 40y (0PAef e ) = 0Py OpF " — 0" Op) O F e
+20°0p A fOF e f+Op A fOR s+ O (F2>
=0 (O Acf O F os) +0y (0PAcp FOep ) =0 (OpF e O F o p) +20°0 0% F g

+20pAc 0. R s+ O (FZ) ;

(4.35)
where we used (2.29) in the last step. We see that the first three terms can be removed
by a generalized diffeomorphism and a field redefinition. The fourth term can be further
rewritten as

200\ fO°F cf = 0°OpA fO°F s + 0°OpAe R ef + 0°O0pAef 0 F s + O (F 2)
= aa (acabAefFCef) + ab (acéefacFaef) _ 5(Fcef8bacFaef) (436)
+ 8(OpFCefR%cp) + O(F?).

After suitable field redefinitions we therefore have

2 2
8By = 0" [0 (OdesFoep)| + 500 [0° (0D Fop) | + a®BuAcfOR" + O (F?) .
(4.37)
It is not hard to see that performing the opposite generalized diffeomorphism produces
terms in ¢”d which can again be canceled by a field redefinition and terms in the variation
of the Lagrangian which are of higher order. This leaves the last term in §” FE, which if we
remove it and put it into the variation of the Lagrangian via (2.15) gives, using (4.32),

OLaw = —40°0, [0 ;0.R s | + O (F?) = 402 (0°0" [F;0.R7y] ) + O (F?)
(4.38)
which can be removed by modifying the Lagrangian. This shows that we can indeed get
rid of all the linear terms in the transformations at order o2. Now we will carry out the
corresponding calculation without dropping the higher order terms.
For the leading term in the transformation (4.29) we have

(De—Fe) D (OpApFef) = DUy —DyU+6 (AEL)" 4 +20.0 A f Do F cp+20p M ; DR
+0N e Fef R —(0°—FC) (9ade fF ey Fba) +0aAe 0 F ey Fbq
—0a0Ne f F e f Fpa+20p A0 f R g F' g g +200 A O F e g F€
F20,0° N FCegF gp 420N, jOpF e F gp 409N, fF o p FCpg Fy

(4.39)
where we have defined

(AEl)ab = F“efab(ac — FC)FCef (4,40)
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and
UA = 040 ;(0° — F°)FCy, (4.41)

while the fourth term can be rewritten as
28081,AefﬁcFaef = D*Wy — Dy2W® +6 (AEg)a b — 280AedeefRadbc — 2acgef8dF“edebc
= 20N R g FCyp = 200 A0 F oy FC g — 205 (90 Foeg) Fgyp

(4.42)
where
(AEQ)ab = EbFCechaef + ﬁchefacFaef - QchdaFcedeef (443)
and —ad
W =00 Ny Flop + Qe Flep B + 0N Feop Fley (4.44)

Wy =000t FCep + 0o Fler Fe .
Using these results the transformation of the generalized vielbein (4.29) can be written
—2 5/ ha 1 a 1 a a 1 a
a 0" E% = §D (Ub+Wb)—§Db(U + W )+§(5(AE1+AE2) b
1
+ OpAef DR ¢ + iacAEfF“echb (4.45)
1 1 1 —
- iadAEchefRacbd - iacéefadFaedebc + iaDAEchFaebecD ;

while the transformation of the generalized dilaton (4.30) can be written

a=20"d = é(aA — FAO)WA +6Ad (4.46)
with 1
Ad= (0" - F)(8° — FhYyMme®. (4.47)

We can set the transformation of the generalized dilaton to zero by performing the field
redefinition
d—d+ Ad (4.48)

and a compensating generalized diffeomorphism with parameter
A Loa 14

(note that the U4 piece does not affect the generalized dilaton since (94 — Fa)U4 =0 by
the section condition). After this the transformation of the generalized vielbein becomes
=25/ ha 1 a 1 a 1 a a 1 c a c
a 0 F p= ZD Wb — ZDbW + ié(AEl + AEQ) b+ abAefDe'R f + 58 AefF efR b

- %%AefFCefRacbd — %80AefadFaedebc + éaDAefﬁcFaebecD -
(4.50)
The W-terms in the transformation are awkward since W involves ), the Lorentz factor
that should not be modified. We can get rid of these terms by using (4.42) at the price of
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introducing another term linear in the fields into the transformations, which now take the
form

1 1 —

a 25" E% =AE", + 9\, ;DR + 50N PR + 50 0eAe DeF wsh
4.51

1 1 1

+ 50 R egF g+ SO0 F e F g + 505 (00 Feeg) P25,

where

1 1— 1— 1
AB"y = S F%p0y(0° = F)Fep + T DyF e R e + 7 DyFep0°F ey — TD R Feop Pl
(4.52)
These terms are removed by the field redefinition?

EM _, paM _ AR M (4.53)

The last four terms in the transformation agree precisely with [15] (exchanging over and
underlined indices in their eq. (3.33)). The second and third term, which are proportional
to the generalized Ricci tensor and lead to the transformations closing only on-shell, can be
removed at the expense of introducing additional terms in the variation of the Lagrangian
via (2.15). Doing this and taking also the generalized diffeomorphism (4.49) into account
one finds from (4.32)

— a a a 1 C a C
a 26 Ly = — (0% — FY(VAR) + 4(0° — F*)(Dy — F) {—Bb)\efDeR £ = A F R b]
1 C a C a . a
—4 {—abAGfDeRa £ = 30 e R b] R, +2(0" — F*) [R0A 7, Dy F 1]
—2(8, — F,) [Rbdadg gD F? fg] +4(0° — F9) [RbdF“ 90dA thbhg}

1
+ 50" = F*)(Dy — Fy) [adg 1o F° ng] = —§(AL)

(4.54)
where

AL=4(0"—F) (0"—F") [F*.; DR ;| +4 (9"~ F*) [R* ;DR ;| ~4D.R* s D R
1
+ROR M+ (9"~ F) (6" —F") [MR] .
(4.55)
Therefore, taking the field redefinitions into account, we have shown that the Lagrangian
T 2 2 _ 2 a a 2/9a a b b b a
L =Lai+0*AL+0? Lycaer = L—4a* DR D R" jy+4a* (9"~ F*) (8" — F*) [ F ;DR

+4a2(0° — F*) [R* s DeR | —20%(0" ~ F*) [RV4F* 1y DaF" g5] +0* Lycaes
(4.56)

where

Lredet = 4(0% — F*)(Dy, — Fy)AE®, — ANE“R%, + 8(0° — F*)9°Ad — 2AdR,  (4.57)

9Note the sign of the second term, which is due to the contraction of two lower indices.
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with AFE and Ad given in (4.52) and (4.47) and L the Lagrangian in (1.2), is invariant
under the double Lorentz transformations with second order correction
a® —

5By =" [0 DeF e+ A R eq g5+ 0uAe O F e Fg 405 (9N Feg) F ]
(4.58)

and dd = 0, which close off-shell as shown in [15]. We see that these transformations, and

in particular the Lagrangian, are considerably more complicated than the ones presented in

the introduction.

5 Reproducing the a’? correction to the heterotic string

In this section we show that the o/ correction to DFT found above reproduces the known
a'? correction to the tree-level low-energy effective action for the NSNS fields of the
heterotic string.

Up to this order the corrected double Lorentz transformations take the form
SEMEY ) =X SEMEn =)y,  SEMEn = 6B E™M =AY, (5.1)
which can also be written as
SEM = XM _ At M sEM = ), B — AV P (5.2)
Here A = aA’ + a2A” is the correction to the transformations and from (3.6) we have
A%y = %&,Achacd (5.3)
and from (4.29)

A"y = % (Ed_Fd) Dy (@;Angafg) - %Fbcch (%Ang“fg) —i—% (0°—F°) (FcbdadAfQFafg>
1
_|_ —

1 ol cadApg ¥ gg.

1
F0aDa (0° A1y 1) + 5 R 0a0a sy F* g+
(5.4)
Looking at the first equation in (5.2), taking the M-index to be upper and going to

supergravity by setting e(*) = (=) = ¢ in (2.1), we find the variation of the inverse vielbein

ab

5éamébm — X Aab’ Xab + Aab — 2A[ab] . (5'5)

Taking the M-index to be lower and using the above relations we find the variation of
the B-field'”

6an = _QA[mn] ) Amn = émaénbAab . (56)

Note that we have put a bar on the supergravity fields to emphasize that these fields,
which come from the DFT description, are related by certain field redefinitions to the usual
supergravity fields. In fact they differ by terms proportional to o/ so we write

— / 11, — / /1 / /
eMm = MM 4 g/ 4 2" vm €%, = €%, — ae'®,, — a* (e ¢ —€e%e b”ebm) , (5.7)

OFor the supergravity fields we use the usual Einstein summation convention.
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where e is the standard inverse vielbein, transforming as §e®™ = —A\%.e“™ under local
Lorentz transformations, and similarly

Byin = By + aB!, +a*B. . (5.8)
Similarly we allow the transformation parameters to differ at higher orders in o/,
A=A+a)N +a2)",  X=-A+ta\N +a2)\".

Note the relative sign at the lowest order. We will now determine the required field
redefinitions up to order o’ (another approach to determine them, potentially to all orders,
was discussed in [28]).

Restricting to first order in o/ (a) we find from (5.5) and (5.3)
1 /

_ o) (=) v oy 1 )
gWab, Wab =tr (U.)((l )wb ) s )\ab = ~;b = Z tr (8[a>\wb} ) (59)

/'m _
6a €bm—6ab—

and from (5.6)
B, =0, (5.10)
since
B _a (=)
0B = —3 tr (FpmAr”) (5.11)

is already the correct transformation for the B-field of the heterotic string to first order
in /. The non-covariance of the B-field being related to the Green-Schwarz anomaly
cancellation mechanism.

At the second order we have contributions from both A’ and A”. The former gives rise
to the following terms at order o’ from the expansion of the barred fields

Ae, —%tr(3b>\w“)+zeémamécdw(_)a6d+Zablcdw(_)ac‘iwLZabécdw/(_)acd
1 a a
— “_ W CAw(a) - Zpprac (=) 5.12
4tr(6b)\w ) 3 e tr ((3 Aw ) 39 tr ((91,)«.06 ) ( )
a (=) (—)acd | @ (+)eyyrda @ cd ea
+gOtr (0Awg ) w et - OV W = N H g W

where we used the fact that the correction to the spin connection coming from the first
correction to the vielbein takes the form

wt/z(cji) = 2v(+)eii]a + (wéc_d) - Hcde) elea . (513)

le

For A" we find from (5.4)

A"a, é(vd — 20%9®) Hyeq tr(0°Mw(T)0) — %(ij’ — 204®) V" tr(9pAw %)
+ %(w(i) - H)bcdv£+) tr(ad)‘w(i)a) - %(w(i) - H)bcdHcde tr(ae)\w(i)a) (5'14)

— éR(—)acbd tr(&d)\w(_)c) .

Note that the first term is proportional to the lowest order equation of motion for the
B-field. We do not want this term in the transformation of the vielbein, so we need to
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remove the part of this term that is symmetric in the free indices a, b as this is the part
relevant to the transformation of the vielbein. Because this term is proportional to the
equations of motion it can be moved to the transformation of B instead as follows. First we
lift the corresponding transformation of the vielbein to a variation of the action using (2.15)
which gives

(5L);, = %(va —20°®)(V® — 20°®) [(v" — 20"®) Hyeq tr(f)cAwé_))]
(5.15)
+ %(vd — 209®) Hyeq (R“b +2Ve9PP — iH“ef Hbef> tr(0°Aw ™).

The second term is now canceled by modifying the transformation of the B-field by adding
a term involving the equation of motion for the metric

(6Byn)1 = —i (Rmk + 2V, 0P — iHmlkalp> tr (8n)\w(_)k) —(m < n) (5.16)

and we are left with the following terms in the variation of the Lagrangian

1 1
(6L), = = (V4 — 20,9) {Habc (Rbd + 2V, 04P — 4HbefHdef) tr (acmﬂﬂ

! (5.17)
(V- 20) (V0 - 20°) [(V - 20") it (90 )]

Together with the transformation of the Lagrangian in (4.32) its total transformation

now becomes

0Laun = —i(va —20°9) [(2V(*)badq> 4 p(ee dc) P Ré_e)f}

+ =(Vgq — 20,0) [H“bc (Rbd +2V,0,P — %Hbefof ) tr <6(C/\w(_)d))} (5.18)

1
2
1

B g(va ~20,0) (vl()Jr) _ 231,(13) {tr (ab)\w(—)ll) 7?,] .

All these terms, except for the H-contribution from V(*) in the last term, are canceled by
adding the following terms to the Lagrangian

1 a a — —)oc —)ae -
AL = (V* = 20°) [ (2V0,@ + RO ) D R |

1

+ 15V - 20°®)(V? — 20°®) [W,,R] (5.19)
1 1

— i(v“ —20,9) {H“bc (Rbd + 2V 0q® — szefHdef ) ch} ,

leaving only the transformation
1

6(La + AL) = 1.(V" — 20°9) [Habc tr (abm—)c) R} . (5.20)

Going back to the variation of the vielbein in (5.5) we find that the 1.h.s. becomes, at
the second order in o/,

— m= c 3 - - 3 - —)e
060 e —+ 8¢y + 2Xa"Ch) — 55 Via tr (acAwfl] >) WO 3 v (8cAw§] >) e

— G%Wbc tr (8a)\w(_)c) — 6i4Wbc tr (80)\w£_)) ,
(5.21)
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where we used the first order results (5.9). Note the third and fourth term on the r.h.s.
which come from the anomalous Lorentz transformation of the B-field, (5.11). Using this
together with the terms coming from A at this order, (5.12) and (5.14) minus the first term,
we find that, after performing another diffeomorphism

de " eym = —V(alp) » Vg = _%Hacd tr (86)\00(_)‘1) , (5.22)
the second order correction to the (inverse) vielbein becomes!!
€l = 5 (V) —20,8) VW b oo Rugsa W H g (00— ) VW,
+ 6%1%(;62 Hy W, — %Hacdl-[bcewde—i- %Wfb—k (ab). .
Here we have introduced the Lorentz-Chern-Simons form .
et = 3tr (w0, i)+ 280 (w e Dl (5.24)

The extra diffeomorphism (5.22) leads to a total derivative term in the variation of the
Lagrangian, which together with (5.20) gives the total Lorentz transformation of the
Lagrangian

§(Latt + AL) =(Va — 20,8)(1°R) + %(va —20°®) [Hyca tr (900 R] = 0,
(5.25)
so the Lagrangian is now Lorentz invariant, as it should be in supergravity. The diffeomor-
phism also leads to extra terms in the transformations of ® and B

(6Bmn)2 = 0" Hypie,  (6®), =000 ®, vy = —%Hacd tr (9°A) L (5.26)

For the dilaton this implies, together with the transformation (4.23), that

_ 1 1

od — — (VI —207@) (VP — 2000 tr (0P Aw( ) + 0,007 — SV 0"
%6 2 (5.27)

_ = a a b b ab

= 55 (V' —20"2) (V" - 200) Wb

Expressing this in terms of the dilaton, rather than the generalized dilaton, we find that

the DFT dilaton is related to the standard one as

= 1 G 1 a a b b ab
<I>_<I>+4ln<G>+32(V —23(1))(V —26(1))W . (5.28)

HEor completeness the correction to the Lorentz parameter is

ng = éRabcd tr (Bc)\w(f)d) — %v(cHd)ab tr (E)CAw(f)d) + %wc(f)CdV[b tr (ac/\w;]*)) — %wi;zvc tr <6d>\wl(:)>

1 e 3 c — 1 c - 1 c e
— 15 0a XV eWeat o Haca V< tr (amg >)+§Hacdv tr (O A ) = = HaceDpA ™' W
1 — 1 — 1 —
— Ewacdwbce tr (86)\0.1( )d) — 3—2wadHacetr (a(d)\wi) )) -5 wed Hp € tr (8d)\w£ ))
1

L ecd AR xw™)
€'4HabeH tr(@c)\wd >+128Wactr<8 Aw, )

1

- ﬁWac tr (81,)\0.)(7)6) —(a<>b).
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Finally we turn to the B-field. From (5.6) we get, using (5.12) and (5.14) and including
the diffeomorphism (5.26) and extra modification (5.16), the second order transformation

(6 Byn)@

= SV [t tr (0 X )] — (T~ 20%0) Vit (DA ) — ¢ Roeatr (020

Lok k (-) Lo yed
=1 (Bfm +29%0,2 ) tr (9 heoyy ) + 15 0m A Qean
1 1 1 1
) (—) - H cd . _ (—)Cdane e cH cd (+)CdQ
" [16 (¢ ), W = e R A T

1 1 1
+ — (vd - 2ad<1>) H,p, Wy, — 3 (ka +2V*9,,® — 4HklpHmlp) W,m] —(m < n).

16
(5.29)
The first term is canceled by a B-field gauge transformation. The second term is trickier
but it can be rewritten as follows

(V4= 2070) Vytr (mAwl)) = (m < n)

=3 (V' = 20'0) Vytr (9 el)”)
=2V, (V! = 20'0) tr (92w ) = R tr (92} )
= 2(Rp* + 29,0°®) tr (O wyy ) ) = (m 2 ).

(5.30)

Using this fact we find, after removing the B-field gauge transformations, that
B=B+da’B" with

1 1 1
B! =— (w5 —H) “VWa — —=wH, Wy + — YV H gy W
=16 (¢ ), W = ek 1% 3y Velld
1 1 1
+ 15 (Va = 2049) H,, Wy, — 3 RE,, +2V%9,,® — 4HklpHmlp) Win  (5.31)
1 1
- Ewﬁrj)Cdchn + g (vl - 261(1)) Qmn — (m AN n)

and that B transforms as

which is the correct transformation for the heterotic string (see below).

Putting the contributions to the Lagrangian together the final Lagrangian becomes
L=L—-ad*R*RP.M™+ Ly, (5.33)
where L, given in (1.2), and the second term should be expressed in terms of the usual

supergravity fields using (2.32) and (2.33) together with the field redefinitions needed to
go from the barred DFT fields to the standard supergravity fields (5.9), (5.23), (5.28)
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and (5.31). Finally, the extra total derivative terms found above take the form

Ly = ‘f (Vo — 20,9) KQV(‘)”Bde) + RO ) tr (w0l )

+ (Qv(—)bad(p + R(—)bcdc) wHd, wee 4 (Qv(—)bad¢> + R(—)bcdc) w(—)dEfR(—)abef

1 1
+ 7 (Vo —20,9) [Wﬂbn} _ pebe (Rbd 19V, 040 — 1 Hbe sH! > ch} .
(5.34)
With a bit of work!? one finds that L reduces to the tree-level effective action for the

heterotic string up to order a/? (with the vectors and fermions set to zero), which takes the
same form as the action up to order o’

N . ALY A
Lot = 22 <R 4V 9, — 40" D0y ® — - Hygy ™ gRg ) R(Habed L 0 (a’3)) ,
(5.35)
but where the field strength of the B-field H is replaced by the Lorentz invariant H, defined

recursively through [14]
A a ~
Hymn = Hym = 5%t (5.36)

which up to second order gives

2

A a 3a
Hypm = Hipr, — §lem +—

g (0 (uvwl),) + Q™R ) + 0™ . (5.37)

Inp Im]np
This completes the proof that the DFT Lagrangian (1.2) exactly reproduces the tree-level
correction to the heterotic string [14] (see also [30]) up to order o'2.

6 Generalized Bergshoeff-de Roo identification

A different approach to finding the o/? correction to DFT was introduced in [15] and
dubbed the ‘generalized Bergshoeff-de Roo identification’. Here we will describe the idea of
this approach and relate it to the result of section 4. We will define the fields somewhat
differently to [15], as this leads to some simplifications, but the basic approach will be the
same. Then we will find the field redefinitions needed to reproduce the o/? correction to
the DFT action found in section 4. For simplicity we consider only the heterotic case.

The idea of [15] was to start from DFT in a bigger space and perform dimensional
reduction in order to get DFT coupled to vectors. We will parametrize the ‘extended’
generalized vielbein of the bigger space as

B C c’ M
ma 0 1) —A Ec 0
EaM = p )| g 5.0 w ) - (6.1)
0 m AB’ 53/ 0 EC/

12The easiest way to do this is to use the fact that the Lagrangian is Lorentz invariant. Therefore one can

just drop all terms where the spin connection w™) appears without derivatives (note that dropping w or
w(™) must give the same result) and covariantize the result (replacing H — H) at the end, which simplifies
the calculations a lot. For completeness we have also checked, with the help of Mathematica (in particular
the package FieldsX [29]), that the same result is obtained without using this trick.
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This differs from the parametrization used in [15], but turns out to lead to some simplifica-
tions. Here the index A = (A, A’) runs over the standard DFT directions A and ‘internal’
directions A’ and EcM is the usual generalized vielbein while Ec+™' is a generalized vielbein
for the internal directions. We take the extended generalized metric to have the form

NAB = (77,43 0 ) s NMN = (nMN / ) (6.2)

0 R A B! 0 KM N?

and the condition that these should be related as

nas = EaMESN (6.3)
fixes maZ and ma B in terms of the vectors A as follows
(m72>AB =NAB + AgIABC/ s (miz)A’B/ =KAa'pB + Ag/AB/C . (64)
The section condition is
M@ oy =0, oMoy =0, o =0, (6.5)

corresponding to dimensional reduction of the primed directions.

Because we need the vector fields to be non-abelian we actually have to start from
gauged DFT [23, 31], rather than ordinary DFT, in the extended space. The only difference
is the appearance of structure constants in some formulas. In particular, under a general-
ized diffeomorphism and double Lorentz transformation the extended generalized vielbein
transforms as

SEAM = VN E M+ 4N (8MVN — VM + ngKNVIC> +Aa48esM. (6.6)

Here VM = (VM yM /) is an extended generalized vector field. Note the extra structure
constant term, proportional to the gauge coupling g of dimension [length]~!, which is non-
zero only for all indices primed. Restricting to diffeomorphisms and Lorentz transformations
involving the ‘internal’ directions, we find that the gauge field transforms as

5 [(mA)] Ep| = N (VM = gf M 5 Vir) = MaP mp @ B (6.7)

Since we are interested in the heterotic case, where we only need to modify one of the
double Lorentz factors, we will let the internal indices A’, B, ... take only lower values
a b/, ..., ie. these are effectively not doubled (however M’ , N’ are still doubled). It then
follows that the last term is non-zero only when the index A is lower a. We now impose the
gauge fixing condition

Aup =0, (6.8)

which lets us solve for the mixed components of the extended double Lorentz transformations,
A (note that this gauge implies mq® = n,?). Similarly we may fix the purely internal
components )\, of the extended double Lorentz transformation by taking the internal
generalized vielbein to be constant

Ex™M' = constant . (6.9)
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We find!?
Aay = —Ayg = (m71>b/c’ 0V

Aaryy = (5mm—1)a,b, — gimae (m) (6.10)

fc’d’e’VYG’ + (mA)Z’ac‘/C' (m_l)clb/ :

yd
Note that the symmetric part of the r.h.s. of the last equation vanishes automatically, as
it should. The fields now transform as follows under double Lorentz transformations and

internal generalized diffeomorphisms
S(mA)E = m Vi + gfyeoa Ve (mA)% + X (mA)

SEMEyyr = Ay
(6.11)

1ab ac ac

SEMEL ) =N = — (m_l) om® — A%V + (m_l) )\Cdmdb,
SEME )y = —6E"™M Ey 5 = 0,V AY, .

Again the symmetric part of the r.h.s. in the definition of V" in the third line vanishes, as
it must. Note the non-standard induced transformation for the generalized vielbein in the
last line.

Let us now compare the transformation of the gauge field found above to the transfor-
mation of the generalized flux F%;, (the generalized analog of the spin connection), where
the hatted lower index runs over both ‘external’ and ‘internal’ directions, b= (b,b'). The
latter transforms as (cf. (2.12))

a ad ad a yad

Assuming the existence of constants

t (6.13)

a'bé’
which translate between a primed index and a pair of anti-symmetric indices l;é, one sees
that the identification

(mA) gty =9~ F e Vetuah =9 Aap (6.14)
is consistent with the transformations of the fields provided that
taielyse = Chatr tarsty] = favete (6.15)

for some constant C'. We see that the t’s are generators of SO(D + K) in the fundamental
representation, where K is the range of the internal index a’. Taking & to be the Killing form

Ka'yy = _fa’c’d’fb’c’d’a (6‘16)

13The components of m, A and V are taken with respect to mas = manes, Aas = Aa’nas and
Ve = EemVM

c = Lem .

M Contracted hatted indices include an extra sign for the ‘external’ piece, e.g. in the second term

AparF jdie = — g e+ e I

where in the first the contraction is with 1 and in the second with k.
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then fixes the constant C' to C' = ﬁ. Note that we are identifying ¢’ with a = (a, a’),
which is clearly not possible for finite K, so this construction is somewhat formal. However,
this does not lead to any issues as long as one truncates at some finite order in g~!'. We
just keep C finite in the calculations and take it to zero only at the end, in this way it acts
as a regulator. The identification (6.14) is implicit since the r.h.s. involves the object on
the Lh.s., but it can be solved recursively order by order in g—'. For further details of this
identification we refer the reader to [15].

Before we make this identification we will first determine the action. It is given by the
usual expression (we take d = d)

S = /dX e MR, (6.17)
where the ‘extended’ generalized Ricci scalar is given by
» Aa Ta a Ta be T be be be 1 abc Tabe
R =40"F* = 2F°F* — F,Fo " + For “For™“ + g]: Fe. (6.18)

To find the explicit form of the action we need to compute the generalized fluxes. Using
the ansatz (6.1) in the definition

Fase = 3048 + 94 E"EM freom (6.19)
we find

Fapc = m[ADmBEmC]F (FDEF — 9Apa Ape Aryp farer 1 + 30D Aper Ape

_ 1 -1

3 (8D mom )EF) ’
Fupo = E F(ADF —20pA Apa A ACOGApa A
«BC = Mgamp - meg" (Ag FpEr EAra + 9Ape Arp fare pr + AgOgApe Ape
D -1 -1
— Ad’ (8Dm m )EF) 5

Fave = m[a’|d’|mb/]e’mC’F< — gAFf/fd/e/f/ + AC?AEFDEF + 2A§8DA61F + Ae/D(?FAg

N (aFm_lm_l)d'e'> ’
(6.20)

while the expression for F,/ will not be needed. The components entering in the action
become

de
Fab® = m"m (Fade +0,41449 — (9m~tm)' ]) :
de
fa/bc = *ma’d’mbdmce <Fc(lie - A(J;afA[inl + Af/ (5fm_1m_1)[ ]> s (621)
Fobe = mdmbemes (Fdef +301445 47 — 3 (a[dm—lm—1)8ﬂ> ’

where we have introduced the ‘field strength’ of the gauge field (D® was defined in (2.20),
in particular we take it not to act on the primed indices)

F% = 2Dl A — gfu 0 A% AL, (6.22)
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and defined
Fabc = Fabc — gfd/e/f/AglAl;lA?/ . (623)

Finally we need the generalized flux with one index which takes the form
Fo=m®Fb — gbmab (6.24)
and a short calculation gives
Aa Ta b b a ab a b 2 ab abD ab b.__acaqc. ab
0"F* = = (8" = F*) (md"m)™ + 0"F" (m?)" + PP (9pmm)*® + 0'md'm™ . (6.25)

Putting these results together we find that many terms cancel and the generalized Ricci
scalar (6.18) simplifies to

R=-2(0"—F) (" - (m2>a +28“Fb< 2)* O plep,de (m2)bd (m?)”
3F“chdef (m ) (m? be( ) + Fbepden?, (mQ)bd (mQ) (6.26)

)
+ 2R, A% A ( )bd (m2) +20°Ab A% AS IAgl(mQ)ad(m%be(mQ)cf‘

This Lagrangian, together with the vector gauge transformations and double Lorentz
transformations in (6.11), gives DFT coupled to (non-abelian) vectors.

We now wish to use this action to construct o’ corrections to the heterotic DFT action
by imposing the generalized Bergshoeff-de Roo identification (6.14). Even before doing this
one notices a striking similarity to the DFT action up to second order in o/ in (1.2). The
identification tells us to set

m ALt i =97 F.. (6.27)

a’“a’be

The components of the generalized flux appearing on the r.h.s. become, using (6.20),

J—'ubc = maddec’ fabc/ = madmc/d’DbAzll’ 5

fablc/ = madm[b/|d/|mcf]e/ (_gA(]i”fd/e’f’ + QAZ/DeAg — flﬁdAgf — (8dm_1m_1>d/e,) .
(6.28)
Setting Ag’ta’i)e = Agé the identification takes the form

1 1
Ae=9" " F%:, A =g " meg DyAy

Aab’c’ = _mb’d/mc’e/A?’fd’e’f/ +g_1m[b’\d’\mc’]e’ (2A2’D6Ag’ _Afl’aaAg’ - (8am_1m_1)d/e,) :

(6.29)
The advantage of defining A in the way we did is that the r.h.s. of A% is independent of
A. For the other components A appears on the r.h.s. and the identification must be solved
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recursively. To see how this works let’s compute A? to lowest order in g—!. We have
2\ b
(42)" = Az AL
_ 1 b
=0 A
= —Clg M 20 g 2 (mDA") , (mDA)

+CTHAY fare (m2)b,d, (m2>de, faerpr AGs
207l Ay fawe (), (), (245 D" A5 — A5 0" A= ("m~ ™))

d/

+C 2972 (m2)ya (m?) e (QA[eb’DeAZ’] — Ay Ay (0"t ) [b'c’])

e e Ab e aqb e b, —1,,—1
'(QAWD Ay = A0 4Gy = (0Pm ™ )w'eq)'

(6.30)
Noting that A is of order g~! we have, using (6.4) and (6.16),
ab ab
(42)" = —clg2met — ¢ (42) T+ 0 (g7 (6.31)
and rearranging this we find
N _ 97w 4 ~2 3 rab 4
(A) =M +O(g )—>—g M +O(g ) (6.32)

where we noted that at the end we should take K — oo which gives C — 0. From the
definition of m in (6.4) we get

(mz>ab — b <A2)ab Lo (9_4) — b 4 g 20 4 O (9—4) ’ (6.33)
which coincides with M (1.4) provided we set

g t=—==—. (6.34)

It is easy to extend this calculation to show that one recovers precisely the action (1.2) and
transformations (1.5) at lowest order in /.

It is remarkable that the simple action (6.26) can capture, after the generalized
Bergshoeff-de Roo identification, an infinite series of o/ corrections. However, while it is
in principle straightforward to compute the action and transformations to some desired
order in o the expressions quickly become extremely long due to the complicated form
of the identification (6.29) and the need to apply it recursively. Below we carry out
the identification to order o/> and show that, after suitable field redefinitions, we again
recover the action and transformations presented in the introduction. It turns out that the
calculations can be simplified by modifying the original Bergshoeff-de Roo identification to

((mA) + g R )ty = 97" Fog (6.35)
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where ¢ is a constant to be fixed. Here R%, is the mixed components of the extended
generalized Ricci tensor which takes the form

Ry =m0 Fy = (e — Fo) Flye + (mA)R0! = Fu) Flyer + FF gy — Fo® Floy
(6.36)
where

Fo=F,, Fu=-— (8b - Fb) (mA)®, (6.37)

and the other generalized fluxes are given in (6.21) and (6.28). The fact that R is a
(extended) generalized diffeomorphism scalar and transforms covariantly under double
Lorentz transformations means that mA + ¢~2R transforms in the same way as mA, so
this form of the identification is also admissible. Note however that since A appears in the
transformation of the generalized vielbein in (6.11) changing the identification in this way
could result in the algebra only closing on-shell (the modification vanishes on-shell). But
this is precisely what we want in order to reproduce the transformations in (1.5), which also
have this property. For this reason it is natural to expect that a certain non-zero choice of
¢ would reproduce the action and transformations presented in the introduction, whereas
the standard identification with ¢ = 0 should reproduce the more complicated action and
transformations found in section 4.2. We will now show that this is indeed what happens.

2

6.1 Reproducing the previous a’? result

Here we will drop terms of order o/® (¢°) or higher. We will use the modified generalized
Bergshoeff-de Roo identification (6.35). Using (6.36) we find

R = (De— F)DeAfy — 0 (8" = F*) Al + gfyoa A% (0 — F*) A4

_ Ab abAa Ab ab 2 (638)
9fvea c d’+gfb’0’d’ o Fa + 0 (a :

Looking at (6.30) we find that taking ¢ = C~! in (6.35) leads to some cancellations and we
find a relatively simple expression for A2

(A% = g72 (=M — (D, — F.)D, (A" A") 4 2400P (0 — F9)A) + O (*)  (6.39)

In the A* terms in the expansion of the Lagrangian (6.26) we effectively replace A by F%.
and it is not hard to see that this reproduces all the corresponding terms at order o/?
in (1.2). But the identification produces extra terms of the form §?F? from A? as above.
We will now show that the corresponding terms in the action can be canceled by suitable
field redefinitions. These terms come from considering the additional terms produced by

the identification in the ‘order o/’ terms in the Lagrangian (6.26), namely

_ 99t b (A2>“b 4 oF,befp b (A2)Cd _ prabe pabd (Az)Cd

2

(6.40)
— gnglbcAa [Ab,AC] + FabFab + QFAbCaAAbAC,

where we suppressed the primed index on Ajf, for readability. The terms in the first line,
which don’t involve a derivative of A or a commutator, give rise, using (6.39), to the extra
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terms (up to total derivatives)
g72(~2D.0" F*D, (A" A") +4F, D F, D, (A°A®) —2P* D F**' D, ( A°A")

_4a(an)Aaab (ac_Fc) Ac_|_4FachabdAcad (86_F6) A¢ _2FachabdAcad (ae _Fe) Ae) )
(6.41)
For the remaining terms in (6.40) the identification (6.35) gives

g Fabe pa [ Ab7 Ac}
—g2 (—2F“bCF“derdch fe—6F™CF®, DAY D, A —6g % A [DdAb, DdAC} (6.42)
—~3gF Dy~ Fq) DgA® | A", A°| +3g P01 (9"~ ") A% [ AP, 4] ) 4+ O (o)
and
FAbg AP A° = g2 (FA04 Pl Fege — 2P (04, Dy APD4A® + 2Dg 470, AP Dy A°
+ 201 FY A" (D — Fo) DAY = 9(0° — FO)A° 4 g |A¥, (0° — F9)A°))
+ 284 Ab (9707 - FhA? — g [ac, (07 — F7) A1]) )

+ total derivatives + O (oz'g) ,
(6.43)
while the term involving the field-strength of A is more involved but eventually one finds
(useful intermediate results are given in appendix A)

FF = g2 (4R™ R ey +AR™ (D A" Dy A" ~8 D" D, AY[D*, D] A"
+8Dla gl [DC,E“] D A" +4g[D", D, A’ D, [A“,Ab] —4g [DC,E“] DAY [Aa,Ab}
+4D F®qDgA"F** +4D"F,.D A" F**+2F .y Foqe D A" F*
—AD"APF0y(0° — F©) A°—4g D" (6° — F°) A° [ A°, A" )
+total derivatives+QO (o/g) .
(6.44)
Putting these results together one finds after some work, evaluating the commutators of

derivatives using (2.22) and in particular the Bianchi identity (2.25), that the extra terms
from (6.40) reduce to the following terms proportional to the generalized Ricci tensor

4972 (R, Dy A°F*— DR A" D A"~ R, A0,(0° — F°) A°) +total derivatives+0 (/) .

(6.45)
Using (2.15) we see that these terms are canceled by the field redefinition
EAM — EaM + pAPERM, (6.46)
with
p% = g2 (DyAF* + (D — F©)(A°DyA%) — A%9,(0° — F€)A°) . (6.47)
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This completes the matching of the Lagrangian (6.26) with that in (1.2) up to the second
order in o'.

Finally we want to match the form of the corrected double Lorentz transformations
in (1.5). Before the field redefinition (6.47) the relevant transformation of the generalized
vielbein, given by the last line in (6.11), is (suppressing the primed index on V and A® for
readability)

SEMEy = 0,V A"
= g 20, A g Fleq — 297 20,0,V DAY — g710,0°V [Ab, AC]
— g0V [ AL, 0,4°| — 29720,V ((De — F.) DA - 9(0° — F9)A°

S ([ ] -] [ <0 ().
(6.48)
After taking the redefinition (6.47) into account the transformation becomes

SEME" ) = DoVP — DMV, + g 20, A g Flea + 49~ 2(D, — F,) (a[cmd,|Da]Ag,) ) (9—5) .
(6.49)
The first two terms can be canceled by a generalized diffeomorphism.’® and we are left with

5EaMEbM = gizaaAchbcd + 4974(Dc - Fc) (8[cA|de\Ea]dee) + 0O (0/3> ) (650)

in agreement with (1.5) upon setting g~2 = —a/2 (note that the overall sign compared

to (1.5) is accounted for by the different index placement).

7 Second order correction: R

For completeness we work out also the DFT correction for the case of the bosonic string.
This turns out to be considerably more complicated than the heterotic case, due to the
presence of a Riemann cubed correction in this case. This section can be skipped by readers
interested only in the heterotic string.

While in the heterotic case the parameter b in (1.1) is zero and the full second order
correction is given by R(®?) in the bosonic case we have instead a = b = —a/. We have
already determined R(2) and R(29 is easily obtained from this result since it differs only
by raising and lowering indices (and appropriate sign changes). This leaves R to be
determined, which is what we will do in this section. Since the calculations are much longer
than for R(%2) we will work only up to total derivatives and relegate some of the longest
expressions to the appendix.

For the bosonic string we need to correct both factors in the double Lorentz transfor-
mations at order o/, both corrections taking the form (3.6)

b

SEME ;= a)’y = %&)AdeF“de, SEME, ., = bh = _§aaxderd6. (7.1)

15The explicit expressions are
Vo=—g 2 ((D° — F) [0V Ap] + 0o Vs (9° — F)AG)
VP =—g7% ((De = F.) [0V Aly ] + 0"V (0° — F©)AY)
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To derive R(®2) we used the first correction in ROV, To get R4 we must instead use
the second correction in RO, Using the expression for ROD in (4.3) and dropping total

derivatives we find
b ROY — 9N ORW® 9Py — ONCOF 10 F e — 2N 3o 0° 0 F g,
— N Pl 0. g + AN O Fp P FO 4 0 F
. 2icd o Fda ppab 2icd Fdagbpreb 4 icb F,0,M® )
L NS FIBRdap eb | o) dpb , Fdapgeb _ gy o pbe ppabe
FONFY 0, F g FP 4 2N AF, AN P EY — o) aMaRY,
+ 89N DR g + XL FoeaDeR g + 8XCF DR, .

One can show, following [20], that this can not be canceled unless one includes a cubic
Riemann term. There is only one cubic Riemann term we can write, namely

1
R3 = gnabcdnaecmbedf : (7.3)

We therefore need to compute the leading order A-variation of this term. We find
TR = —0N " P9 4R R gy = 30N FI Ry RY g+ 207N P9 4R R

= 3013 9 R8P FC 4+ 30N F9 R 105 FP 4y + 20N FI R ;0P F*
— 20N 9 4R 0" F g — 300N FI R R g+ 20X U FI R R gy

= 20" NI F9 g0 RY @ g+ 30P 0N I RO € gy — 2000 N FI R 1 FC o
- ga[gxab] O R g F9oqF g+ 30X 00 FY (RI L Fe o — ;aea[ﬁ“” R pFI gy
— 209N OO (R FC g+ OIN O RD f FI g FC g — ga[gx"b] F9,q019RY s F g
60N P9 400 RY e gy — ga[ﬂ“b] F9,4(0°— F€)R® s Fy
+ 8“ng F9,4(0°— Fe)Raecf def _ pbeH 8ngaRabcf F9. Fedf

1 — 1 -
+ ZFegHﬁH)\angcdRabchedf _ ZFabHaH)\egRabchgchedf

301X P9 R FE g FP 20" N FI g R FE g F* — 30N F9 R /R o
+ 209N 9 dR%. fR’bedf +total derivatives.
(7.4)
Here R'*_; denotes the subleading terms in R® 4, i.e.
R =Ry — 201°FY 4. (7.5)

The first thing to note is that all terms in (7.2) (except those proportional to equations of
motion) contain two ‘traces’ (pairs of contracted anti-symmetrized indices), one explicit

and one inside X. Therefore we need to manipulate the terms above and add other pieces

~32 -



to the would be R until this variation also contain at least two traces. From this point
on the calculations become very long. Therefore we will only write explicitly the leading
order terms in the number of fields in the following. The subleading terms can be found in
appendix B.

To start with we note that the first three terms in (7.4) are the only ones that don’t
involve a trace at the leading order in fields. The first step is to rewrite the first term, let’s
call it Y, as follows

T = —20° NI F9 q0°RYf FC g = 200N TRY 0% (F9 g F o)
+ 2(‘3“8“ng7€1’6ch9ch6# - 28“ngRbechgch6dfF“ + total derivatives
= — 40X 0 Fy0" (FO oy F ) — 207N R 0% (F9 g F* p)
+ 28“8“ngRbechgchedf - 28“ngRbechgch6dfF“ + total derivatives
_ 48“80ngFfb66a (F[ngFe]df) + 48“ngFfb68“86 (F[gche} df)
+ 2000 N IR Py P gy + 40N Fy* B0y (190 P )
n 4FcaHaHXb9Ffbeaa (F[gche} df) _ 26axb9RICfbeaa(Fgchedf)
— 40N FyP0" (FlI0 Py ) B — 20°X " RY o F90q P F® + total derivatives .

With some work we can write this as the variation of something plus left over terms. Note
that whatever we add to R? should be anti-symmetric under exchanging upper and lower
indices and adding an extra minus sign for each pair of contracted indices. This is equivalent
to symmetry under exchanging the Py projections (2.4) and ensures that the action contains
only even powers of Hg,.. Defining

Ly = 0° (FcbgFfeb> 9% (F[gche]df> — D (FcbgFfeb) D° (F[gche}df>

_ _ (7.7)
- Da (FcbgFfEb) Da (F[gche]df) - 8F[abhFc]btheafF[gche]df7
we find
YT=061, +8“8“ng7€1’6ch9ch6#+‘I’+T4,0+T5,0+T4,o,q>+T5,o,q>+Te.o.m. (78)
+total derivatives. '
Here we have defined the combination of terms
U = —49,X78,F;*D, (F[gcheldf) — 200N F;D, (F[gche} df)
+ 204000 Fo" Do (FU9 o F g ) + 20X B F,0, (F9oq Felyp)
(7.9)

— 20 X" F,PIE 0, (FUqF g ) — 403" F 9" Fyet0, (FU )y )
— 46aXbQFaethhb80 (F[gche} df) + 48“X69Fh6bF“fhac (F[ngFe]df) ,

which, in particular, contains all the terms cubic in the fields. The remaining terms are
grouped according to the number of fields and the number of traces, e.g. T4 contains
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the quartic terms with no traces. The terms containing the dilaton, i.e. Fj, (F'*) are listed
separately, e.g. quartic terms containing the dilaton and without traces are contained in
Y4,0,6. Finally, terms proportional to the equations of motion are contained in Ye¢ o m.. The
explicit expressions can be found in appendix B.

The next step is to manipulate the W-terms. After some work one finds that they can
be organized as follows

VU =W31+V3o+Wyo+Wy1+Vsuo+V50+¥51+¥300+ Y310+ Vaoe+ VYa1e

4+ Weom. + total derivatives.
(7.10)

We will give only the cubic terms here. The rest can be found in appendix B. The terms

with one trace are

1

2
1 —

- iag)\CfaeFefd (FabgRCdab_2F[Cabang]ab> )

W31 = A 0 Fy ! (Fug Ry —2F a0 F Uy ) +50°0° X Fyf? (Fupg R0y —2F 100, F Y 0y

(7.11)
while those with two traces take the form

W5 =20,00 X0, F e F19) g Foge — 0501IN? 0, F, ¢ F19) g s+ 00001 N F e FI9 Ly
1, + 1. - 1 _
+ 5agA“*’agafFabe1?*3(;(11?,%: - 1afx“’agagFabeFeCC,F,;df + Zagagxa”a IS S o
1, + 1. - 1 _
- §8gAabangFfabFechcdf + Z8f)\abangFg“bFechcdf - ZagagkaerFf“bFeCchdf .

(7.12)
The cubic terms containing the dilaton (F'* or F,) and no trace are

U309 = 40,1 Y0, Ff P Fle s DI F, + 20%0° X Fye Fle o DI Fy — 20,370, F, " Fle s DI
(7.13)
and those with one trace

_ 1 1.
U319 = —OgN  F9oyFogs0aDpFP + 5afAbgFg(;chdfaaDan _ §aaaaA"gFgchcdebe.

(7.14)
Finally one finds, after a lot of work, that
abdRIY + g ROD = —46" EYyRY, — 25" dR (7.15)
where
RO — D) + ROLD (7.16)
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with
— 1 1
R(Ll) — éRabcdRaechbedf _ Rabcd [F, F]becda(aFe) - 7MachabDaDFc

ab b D) b b ab
+ (R oF"a — (Do + Do + Fe) Ry — 5 (DY FY) [F, F] cd)
1 !
< (GFUTR 2R+ FETDUET ) = S0P a0, P, FY

1 1
+ DO [F, Flap™ D*[F, F]* 0y = [F, Flap™ (R 7= 351" a fR) [P, )%y

1
- §8a(FF)b08a(FF)Cb + D*(FF),*D*(FF)

1 1
— (FF)° (RCdab — 8nabncd7z> (FF)%, + ﬁagMaaagMbb

1 1

- I—%MMM%R + a (F“F“ + 6F“beF“be) Dy <FF + 6chch#>
1 1

32 6

1 _

(FF) bDa (Fde(a - )F Cd) + ZQQFeab[Fa F]efangchcdf + Le.o.m. )

1 1
(FaFa Fachabc) (FdFd + 6Fd€deef> R — gaaMbbFacd(ae _ Fe)Fecd

(7.17)
where we have introduced the following shorthand notation
[F, F]®. = 2F1" . F" g, [F, Flap™ = 2, Fy*?

(7.18)

1
(FF),’ = F,b°Fe + 2F Clped (FF)'y = FpeFe = 5 FcaFeay

The extra terms proportional to the equations of motion take the form

3

_ 1
Leom = —20"F'RRc = SR™cq (R%Rbd - Rabcdn) +2FYRS,DRY,

16

+ FURA DRy + 2RI (4D F "R 4 + [F, F™cq (R R’ — 6RabcdR>

1 1 — 1

4M(za (Rchcb . 16R2> + DadecMadec + ZMaadecDbRCd

1 1

§F abMabcRcd + *Feddeab(ac . FC)Fcabee + QF[CbgR[bd}Fe] chegfd
1 1 1

8F0df R Foon R 1 — gFe VbRt F RS+ S P R R

1

1
5 (FF S L ) (FF)*,R%,

1
— (FF)A[F, F]%.gRb; + FO[F, F]*.4D./R%; + gF;“’(@d — F))F;"°RF,

1
— PFRYGR — (FF)D° (Rded) 1

1 1 1
— 5 F"eadiRR" - gFabgRabchgcdR + ch“erFd“bF%dR

1
— chef FRI R

(7.19)
These terms, which could be canceled by field redefinitions, are included in order to simplify
the form of the corresponding a/? correction to the double Lorentz transformations which,
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with this choice, takes the form

_ b _ _ _ _

5 d= %6 (4acA“”Fdaba(ch) 20N P Fy Fe+ 0N F e Fe gy oy — I N et F@adeab)
(7.20)

and

_ b _ _ _ _

3 B, = —% (23%‘” FCuDyFY g+ 8 (Dc - F) (adx"f F o Fb)“d)
—4(De = De) (03 Fyl Fooa) — 20y (9 Fu!) Foog = 20X Ry
+ acxefR/efbdFacd . acxefR/efchabd + 8gX6chethchagh

N LY oy Foo + O N FL eI F9 oy Fhoq + 409N RS chc) . (7.21)

The expressions for E(l’l) and L

L., are related to the ones above by exchanging upper

and lower indices and including a sign for each pair of contracted indices plus one, for
completeness the explicit expressions are given in appendix B. Of course, the form of the
action and transformations presented here is probably not the most economical, though it
seems to have an interesting structure.

8 Conclusions

We have constructed the two-parameter DFT action and transformations (1.1) to order o2
We did this by direct calculations which led to vastly simpler expressions than those found
in [16] using the generalized Bergshoeff-de Roo identification. We also showed that, at least
in the heterotic case, the two approaches give the same result, the two being related by
rather complicated field redefinitions, generalized diffeomorphisms and modifications of the
transformations and Lagrangian. We have also demonstrated that in the heterotic case
the DFT action reproduces the tree-level string effective action to order o/?, extending the
results of [20] beyond the leading order in the fields.

The simple form for the DFT action to second order in o’ presented here should be useful
for various applications. One example would be to find the a/? correction to (generalized)
T-duality transformations and related integrable deformations of strings following [32]
and [33-35] (for early works on corrections to standard abelian T-duality see [36, 37]).

While the generalized Bergshoeff-de Roo identification seems more complicated in this
case, it is still very interesting since it captures an infinite series of o’ corrections. It would
be very interesting to try to use it beyond order o/, for example to see that one recovers the
quartic Riemann terms found in [21] at order /3. Another interesting question is including
the gauge vectors, and fermions and supersymmetry, [15] in the DFT description of the
heterotic string [38], see [39] for a detailed account at order «'.
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A Details of comparison to generalized Bergshoeff-de Roo identification

Here we give some useful intermediate results for section 6.1. The identification (6.35) gives
Dla gt pagb — g*Q(ﬁ“F’ﬂ D Ft oy — 2D D AYD" D, A
— 2Dl AN D" ((De — Fo)D A" = P(0° — F) A + g | AP, (0° — F*)A°]) )
+0 () . (A1)
We also find
gDla AY [Aa,Ab} —g2 (—2E[“Fb} aFOuFb.y—2D " F¥ D, A D AP
+4D“D AY Fa,. D, A —24D" D A D, 4, 4" ~2gD" 4" [D, A", D, A"]
—gD" ((De=Fo) DAY~ 0" (0°— F°) A%+ g [ A", (9°— F°) A°] ) [ A7, A"]
~2gDI" A" [ A, (Do~ F,) DA~ 8" (0° — F©) A+ g[ A", (9°~ F*) A°] )
+0(a?) (A.2)
and
92 [Aa’Ab] [Aa’Ab]
=972 (2F1 PV g PO o FP oy 4 AF 1% FY g DA Dy AP~ 8F L Dy AV F° . D A"
—2¢°D, [AG,A”} D. [Aa,Ab} +8gF%.D.A'D, [Aa,Ab} —4g? [Aa,Ab} [DeAa, DeAb}
—4g? [A, AY] [A%, (Do~ F) D A" =" (0"~ F©) A| )+ 0 () . (A.3)

B Details of R calculation

The terms of higher order in fields in (7.8) take the form
Tyo = —40NIRY 1 o, FI9 4 F e 4+ 20989 F Y0, PO oy F19 0 F
+ 20, N FIM R T qF g + 20,0 T F, PRI 9,0 FC gp + 0N 0 1,9 MO
20N 0 PO F9 (g FC 4y Fppy — Op N2 0u Fy e 9 (g FC g Fo
+ 3a3axbthbngchedchfh , (B.1)

Y50 = —40"NIF B R Fke Pl Bl e 4 40" N PO B FpohE B
+ 20N F O B e F g Fopr, + 204Xy BN D, (FU el i)
~bh — ~bh -
— 20 X" F,YF, D, (F[gchel df) — 40, X" F, 9" FD, (F[gchd df)
_ 4('3@ng Faeh thbﬁfc ( F[gc J Fel df) + 39}11' Foe Fhek MYk 4 3gjab F,a¢ thk M9ek
+20°NY B, 9k Fybe phoe 4 29, X F 9 B F Py By
4 26aXbQFaethth[gche]dchfk; + akXbHFabhFaheF[gche} df Frek
SN ST AU oD Y (B.2)
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where D" denotes the connection terms only, i.e. D), = D, — O,
Y09 = 40X 0, Ff e Fl9 g F¥ o F, + 20,0,X Fb Fl9 ,Fe 0 F,
— 20, N0, F, P Fl9 yF 4 F, — 20, F* D, (F[gche} df) F,
— 20N 0 (FU9qFl ) By + 0N "R o F9oq e g F

_ 8axbgRbechgchedfFa 4 2aaxb9FfbeEC (F[gche} df) Fo (B.3)

Y500 = 40N F M FP 9 Fo o F, + 40, N F, P Fl ,pel ) F,

+ 20N Ee P F Py — 20X FP9F, e P19 Py Py

— 20 X" Py E, P yF y Fy — 20X Fy EOF e o B

— 40N B Fe B ey By — 9PN R ER F P F,

= NI Y By Fy g Fy — 0N FW PR (g FC gy Ly FO

OGN e FI Gy FC g F iy Fy — 20,3 Yy Fl9 , Pl FL F,

+ 20 NIF, Pl ey FLF, (B.4)

while the equations of motion terms are

Teom. = 40N F 4 F DERY . 4 499X FbeRa Flo , pel o 4 20" N FpebRE PO F e
(B.5)
The terms of higher order in the fields in (7.10) take the form

Wyg=—20,N 2 0uF Y F9 o FE g Fogp — 0" 0NV F¥ F9 o, F® g Fogs
HON Y 0, F e F,, Fep g Fogy (B.6)
Wy 1 =N B E (P RS ca—2F 1 00 P,y
— O NI (chfngecd —2Fl9 49, F°) Cd)
— 0N Fy By (Foag R ca—2F 170 o)
1 ~bh b he e e
- §3f>\ F,F, (chng cd—2FY 40¢F ]cd>
1 b9 17 bh o he ge lg el
+ 30N EME, (R caFogp—2F9 40, F Cd)
—20, N0, Fy* FyMopel y ity
_8a8axbgFfbeth[gFe} Cthcd+afxbgaaFabeth[gFe] chhcd
_;'_agxathbeRaethgchcdf_i_abxathbe@thangchcdf
1 — 1 .
— §8eaf)\bgFabhFahngCchdf—I— §8h)\bgaaFaheFfbngchcdf
1_,— _
+ §3hAb98aFabeFfethchcdf _aa)\bthebé‘.gFahngchcdf
1. — _
— §af)‘bhFaheagFaengchcdf _ aa)\bgRbeafFeghFthchf

— 38[”ng] theRaethgchCdf - ahxbeFabgRaethgchcdf ) (B7)
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Uy = —%agX“bag (Fpetpet) Fechcderian“bag (B F™) Fe oy
- iagagX“bFfehF“bhFechcdf — 201l g NI Byt e, FI9) gy
—20° N7 O P F 1y FI9) g Frgy+ 0% 0N Fy 9 FC oy Frgy
_ % ahxbg 90 frabh FpI°F€ g Fogp — % ahxbg X Fabe Fy gh F®.qF g
N0, F Y B9 Fe oy Fogy + 201 0,3 F, 9" Fy 0 FI91 4 F gy
4ol N F Fhe Pl F g — 0,8 F, 950" F P 9 o Fogy

1. — _
+ iaf)\bgFaheagFabhFechcdf—i—aa)\bgRabthhegFechcdf , (B.S)

W5 0= 40N F oy B Ehe Pl g el g — 403" FO o B e P Pl By
20 X F Fy P g Fop— 20X F,M F D (FU Py )
+20 N F B D, (FI9eF ) + 40,3 F, " Fy D, (P10 Py )
+40, X M E D, (F10 P g ) =20, B,y 9 0 F g Frag
20N Fy M M P9 FC g Fop+ 0N P Fy P F,1 F9  FC )y Flgs
SETONG LD RS 2 o (B.9)

\115’1 — aaxbgFhebFfek:Fathgchkcd_ 8axb9FhebngkFathechkcd
NI T NGY ORLY o TR S L) oL, Yo W o5 R L s CO X Ly oL
—20, N F, M Fy Py h 20, X F, e R Bl ER,
- 8axbthaeRIhfbngchcdf + 8“ngtheR’“ethgchcdf
_8axb9theR/agthechcdf+aaxbthebFathgekchchdf
_ 1
+23a)\bthebFath[gche] feFear+ Eaa)\bgFfbaFkgthheFechcdf
1. — 1
— 5(9(1)\bgFfbthathkngchcdf + 5aa)\bgFfbthakFhngechcdf
_ 1 _
+aa)\bgthkagaerhFechcdf _ 58f)\bhFaheFangebkFgchcdf
_ 1 _
— O NIRRT G F et 591 N E D F e FI 4 F Ly
_8behFangIeFahngchcdf —3fxbthbeﬁ;F[eath} caFear
3. — _
_ 58]0)\bh];1aheQ/[eFabg] FgchcdfJr8,1)\bgFaeththekogchcdf
N F I R F B9 g F g — N F M Yy F9 g Fg
1. — _
— SN EES O o P+ X FM ) F* Y caF oy

N Fp P EC O 9y Fop + 0N Fp F 9" Fe o F9 o Flgy (B.10)
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Uyg.0=—20,N F,P"F," Fle s DI F 420, X" F," F," Fle 4 DI F,
40N F 9 Fy Fle 4 DI+ 40,3 ' F, " F" Fle ;s DI,
— 40N R, F 5, Fle y DIF, (B.11)

Uy o =—0,0'N F, M F Py o+ %afagngFabhFaheFechcdf
S ONI D O g Fog 40X M D F Yy
+ONTFfM DE B FS g F gy — 0N Fy P DIF, 9" F® 4 F iy
FON" F " DO F ORI gy — O\ Fy* DO F3 1 B9 F
PN T D F9) o Frgp +- 0N, P19 g F
— N F L F e P PR, — 20,8 B0 Fy P P9 g PO E
20N F M E S g F ) F g4 20N By F p, FU g FF
—20, N0, Ff F19 g F Frpgy — 0" 0" X Fy Y U9y FF
HON O, F e Fl9 I FL (B.12)
while the equations of motion terms are
Uoom = —40,3 10, FfP*RI 4 F y — 200N PR, el 4
+ 20N 0u F, R 4F gy + 0N 0, RY 1 FI g F gy
- éafx”gaanbaFgchcdf + %aaaaxbgRb 1F9 4 F oy _—_
+ 20X FE R Ry — 20,3 F R R e '
— AN E I ORI, F e — 40, NI F e F ORI e
+ 40X B, P F 5, R e g
The underlined version of (7.17) is
RV = %RabcdRaechbedf — Ry [F, Flpe“ 0o Foy+ %MabCFabDaDFc
+ (R B 9104 (DE+ DIt FOYRY 45 (Dy— Fy ) [, Flp™)
% (5 Faef R +2F 0 R — F oy Do Fep) = £ 0c[F, Flay 0. [F, FI“,
+ 51 De[F, Flay™ D[ F, FI*ay— [F, Flap™ (R0 — 550100 R ) [F, F1%4
5 0a(FF),0,(FF) y+ Da( FF)y Da(FF)%,
~(FF)q" (RMe— 5iaen®R ) (F F)+ 50, Myq 8y M
— 135 Maa MR+ 50y (FOF+ 5 F 1) 9y ((FoFot 5 Foap gy )
+3i2 (F“F“+éF“ch“bc> (FdFd—k%Fdedeef) R— %aaMbbFacd (9. —F,) F.*

1 ) e e e 1+ e e Ci c
_Q(FF)abDa (Fbccl(6 —F )F cd)_ZDgF ab[FvF] fang ‘F df+Le.o.m.7
(B.14)
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where

L
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Leom = 20,4 R R — %Rabcd (RacRder %RabcdR) —2F.4 R DR

oY 1
— FogR™aD"R = 2R 1, Dy P R+ [F, Flog™ (R R a = 75 R™ caR )
1

1 1
— Mo (RER = 15 R?) = DO FyP M™R g = Moo P DR

1 1
_ §FdabMabcRdc _ §F€ddeab(8c _Fc)FcabRef +2F[cbgR[bd] Fe] chegfd
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