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1 Introduction

Yang-Mills theory in two dimensions is unique due to the absence of local gauge-field ex-
citations as propagating degrees of freedom. The theory is solvable on compact Riemann
surfaces of arbitrary topology: its partition function can be exactly computed through
different methods, such as lattice techniques [1–3], nonabelian localization [4] or abelian-
ization [5]. Likewise, observables, such as Wilson-loop correlators, admit nonperturbative
evaluation [2].

Yet, despite its simplicity, the theory retains enough complexity to provide a convenient
testing ground for conjectured properties of higher-dimensional models. Specifically, it can
be used as a toy model to study various features of the large-N dynamics of gauge theories,
such as the analyticity of the strong coupling expansion [6], or the ’t Hooft gauge/string
duality [7]. In fact, two-dimensional Yang-Mills theory has an exact description at large
N in terms of a string theory, with 1/N playing the role of the string coupling constant.
The expression for the 1/N -expansion of the free energy can be computed in terms of
branched covers of the two-dimensional target space, i.e. as string worldsheets of various
windings [8–10].

Further, the partition function on genus-zero manifolds exhibits a large-N phase tran-
sition in the total area a,1 going from a strongly-coupled string-like phase for large a to a
weakly coupled phase for small a. This is a third-order phase transition first observed by
Douglas and Kazakov [11]. Its physical origin can be understood from the weak-coupling

1The ’t Hooft coupling λ and the area a form an adimensional coupling α = λa, which is the proper
coupling of the theory.
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side in terms of instanton condensation [12, 13] or as a divergence of the string expansion
when seen from the strong-coupling region [11, 14].

This analysis has been somehow extended to the so-called generalized two-dimensional
Yang-Mills theory [15, 16]: in two dimensions, an equivalent formulation of the Yang-
Mills action takes the form of a BF-theory action with quadratic potential; yet, theories
with more general potentials can be considered and solved by applying the localization
procedure [4]. In some sense, ordinary Yang-Mills theory belongs to a landscape of pure
gauge theories, obtained by deforming the familiar action through irrelevant operators
constructed from the field strength. The consistency and the solvability of this family are
related to the almost-topological character of the seed theory, still preserved by suitable
perturbations.

In the last few years, a peculiar deformation of general two-dimensional relativistic
quantum field theories has attracted a considerable amount of interest: this is the so-
called T T̄ deformation [17]. It is an irrelevant deformation induced by a particular local
operator, quadratic in the stress-energy tensor. The vacuum expectation value of this
operator has special properties. The effect of its deformation was studied in [18, 19]: after
compactification on a Euclidean circle of radius R, a simple differential equation controls
the evolution of the energy spectrum according to the newly-introduced irrelevant coupling
µ, also referred to as deformation parameter. The solvability of this deformation seems
to provide a consistent way to move against the renormalization-group flow and explore
unconventional dynamics at ultraviolet fixed points [20].

Notably, T T̄ -deformed theories seem intrinsically related to two-dimensional grav-
ity [21–23], to random geometries [24], and can even be reformulated in terms of string
theory [25–27]. It is, therefore quite natural to study the T T̄ deformation in the context of
two-dimensional Yang-Mills theory and, in particular, to explore its effect on the large-N
limit and its string-theory avatar. Moreover, in the case of conformal field theories, T T̄
deformation was observed, inducing a Hagedorn growth of states for large µ > 0 [20] and
a complexification of the spectrum for µ < 0. It is undoubtedly interesting to understand
if and how the deformation modifies the large-N phase diagram.

We initiated a systematic study of T T̄ -deformed gauge theories,2 deriving exact results
for the abelian case [31] and for the nonabelian theory on the sphere [32]. Our results reveal
a truncation of the spectrum for µ > 0 associated with nonanalyticities in the partition
function and the appearance of nonperturbative contribution in the deformation parameter
for µ < 0. It is a challenging task, though, to study the large-N limit of the theory from
the exact expressions obtained at finite N .

In the present paper, we study the deformed theory on the sphere in the limit where
N is large. In taking this limit, one obtains a nontrivial dynamics by keeping finite the
’t Hooft coupling λ and the dimensionless combination τ = µλN2, which can be regarded
as an effective deformation parameter. Having a new coupling τ opens up a new direction
in the phase diagram of the theory, which in the undeformed case was simply the half-line
α > 0 (i.e., λ > 0). Indeed, studying the full structure of this phase diagram is one of the
main goals of this work.

2The T T̄ deformation of gauge fields has also been studied in connection with DBI-like theories [28–30].
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Figure 1. The phase diagram of the theory at large N has three phases: weak coupling, strong
coupling, and mixed coupling. The blue line is the deformed Douglas-Kazakov critical line, associ-
ated with a third-order phase transition. The black line is a critical line associated with a second
order-phase transition. The two lines join at a multicritical point represented by a blue dot. The
thin gray line at τ = 0 corresponds to the undeformed theory.

Summary of results. Contrary to previous investigations on the subject [33, 34], we
follow an approach based on iteratively solving the system of partial differential equations
governing the deformation of the large-N expansion of the free energy. We find exact
solutions at all orders in 1/N . These are obtained by propagating the initial conditions
at τ = 0 associated with both the weak-coupling and the strong-coupling regime along a
system of characteristic curves determined by the leading order F0 of the free energy. These
curves effectively chart the phase diagram of the deformed theory; much of the information
on the large-N dynamics can be obtained by studying their properties. The entire phase
diagram is shown in figure 1.

The characteristic curve emanating from the Douglas-Kazakov critical point acts as
an interface between the characteristics transporting the weak-coupling and the strong-
coupling initial conditions. In other words, the critical point of the undeformed theory
is now a critical line with an associated third-order phase transition. The critical line is
monotonically decreasing as a function of τ . It reaches the α = 0 axis at a value τmax above
which the theory exists only in the strong phase. At such a point, the discontinuity of F ′′′0
diverges.

There is a second endpoint of this critical line where F ′′′0 again diverges. This happens
at τmcp < 0. We can interpret this behavior by observing that the Douglas-Kazakov
line tangentially joins a novel critical line associated with a second-order phase transition
on such a point. This curve is an envelope for the characteristics of both the strong
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coupling and the weak-coupling phase and effectively acts as a boundary for both phases.
From the point of view of the differential equation, this limits the region that can be
accessed by propagating the initial condition at τ = 0. This phenomenon has to do with
nonperturbative corrections in τ , which cease to be suppressed in the large-N limit upon
crossing the envelope. We had already observed in [32] how such corrections introduce
ambiguities that can be fixed by imposing a second boundary condition. In the new region,
which we refer to as mixed phase, the hierarchy between instantons in α, typical of the
weak-coupling phase, is also lost.

Figure 1 can then be interpreted as a diagram in which each phase represents a dif-
ferent regime for the instantons. In the weak-coupling phase, all instanton corrections
are suppressed. In the strong phase, the instantons in α contribute to the result, while
the instantons in τ are suppressed. Finally, in the mixed phase, both types of instantons
contribute.

We mentioned earlier that at finite N , the theory exhibits nonanalyticities in the free
energy associated with the truncation of the spectrum and with the presence of nonper-
turbative corrections in the deformation parameter. We can explain the absence of such
feature at large N with the way τ scales with N , which makes such a limit well-defined.
For τ > 0, the scaling has the effect of restoring an infinite spectrum or, equivalently, of
pushing towards τ → +∞ the points of nonanalyticity. On the other hand, if α > 0, we
notice from the phase diagram that there always exists a region for small τ < 0 where the
nonperturbative corrections in τ are suppressed,3 thus ensuring the analyticity of the free
energy at τ = 0.

Outlook. The phase diagram of large-N Yang-Mills theory on the sphere displays an in-
triguing interplay between different types of nonperturbative contributions. In particular,
the discovered second-order phase transition sharply deviates from the familiar third-order
Douglas-Kazakov transition, signaling a genuine new effect due to the TT deformation.
A natural follow-up of the present investigations would consist in deriving an effective
description of the mixed phase: in that region of parameters, we expect a behavior dom-
inated by degrees of freedom quite different both from the Gross-Taylor string and from
the perturbative gauge fluctuations, typical of the weak-coupling phase.4

The other obvious extension of our work concerns the study of the large-N Yang-Mills
theory on the torus. The undeformed theory has been studied from different points of view
over the years. In particular, it admits an accurate string description in the Gross-Taylor
approach [8, 9], and it is equivalent to a topological string theory on a non-compact toric
manifold [35]. It would certainly be interesting to understand how these properties are
deformed along the TT flow and if a string-theory picture survives after the deformation.
The torus topology also offers a possible connection with the well-studied case of TT -
deformed conformal field theories: it is well known that Yang-Mills theory on the torus has

3These corrections have the form eN
2α/2τ and are thus suppressed at large N for small τ and large α,

consistently with the picture emerging from the phase diagram in figure 1.
4We already noticed in [32] how the expression for the individual flux sector becomes ill-defined below

a certain bound at τmin.
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a large-N description in terms of an interacting compact boson [36] with subtle modular
properties [37, 38]. We expect that the TT deformation could be implemented and studied
as some nontrivial interaction potential in this effective theory.

Finally, the large-N theory on the sphere has a dual description in terms of a vicious
walkers model [39]. The Douglas-Kazakov phase transition has been studied in this con-
text [40]. It would be nice to extend this duality along the TT flow, possibly gaining new
understanding of the second-order phase transition.

2 Yang-Mills theory in two dimensions

The partition function for pure Yang-Mills theory in two dimensions on an orientable
Riemann surface Σ of genus g and area a can be expressed by the so-called heat-kernel
expansion [1, 2]

Z =
∑
R

(dimR)2−2g e−g
2
YMaC2(R)/2 , (2.1)

where gYM is the Yang-Mills coupling. The sum runs over the equivalency classes R of an
irreducible representation of the gauge group G, up to isomorphisms. In the above, C2(R)
indicates the eigenvalue of the quadratic Casimir of R.

The theory is known to be almost topological, i.e. its partition function depends on
the underlying geometry only through the total area a of the Riemann surface. In this
paper, we will study the case of G ' U(N) in the limit where N is large. It is convenient
to express the partition function in terms of the effective adimensional coupling α = λa,
where λ = g2

YMN is the usual ’t Hooft coupling.
In the large-N limit, the theory is conjectured to be dual to some string theory with

target space Σ [8, 9, 41]. Specifically, the Yang-Mills free energy should compute the
partition function of a string winding on Σ with coupling gs = 1/N and tension λ. Evidence
for the duality is given by the fact that the 1/N -expansion of the free energy takes the
form

F (α) = logZ(α)

=
∞∑
`=g

N2−2` F`(α) . (2.2)

This is consistent with the fact that, according to the Riemann-Hurwitz formula, there are
no covering maps between a worldsheet of genus ` and a two-dimensional target space of
genus g, if ` < g.

2.1 Genus zero

We will now focus on the case where g = 0. It is useful to write (2.1) in a less abstract
way by labelling each irreducible representations R of U(N) through its highest weights

– 5 –
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n1 ≥ n2 ≥ . . . ≥ nN in terms of which

dimR =
∏
i<j

(
1− ni − nj

i− j

)
, (2.3)

C2(R) =
N∑
i=1

ni(ni − 2i+N + 1) . (2.4)

We can then conveniently substitute ni = −hi + i− (N + 1)/2, and find that, in terms of
the h′s, which now obey h1 < h2 < . . . < hN , we have

Z(α) = eα(N2−1)/24

G2(N + 1)
∑

h1<...<hn

∏
i<j

(hj − hi)2 e−
α

2N |h|
2
, (2.5)

where G is the Barnes function. The sum runs over integers for odd N and over half-integers
for even N .

A dual representation of the partition function is easily obtained by using the Poisson
summation formula: in doing so, 2.5 is recast as a sum over unstable instantons [4, 13]

Z(α) =
∑

m∈ZN
zm(α) . (2.6)

The sum runs over the m, the Fourier-conjugate of h, which can be interpreted as the
GNO-quantized magnetic flux vector of a classical solution of the Yang-Mills equation on
the sphere. In fact, every term in the sum takes the form

zm(α) = wm(α) e−2π2N |m|2/α , (2.7)

where wm is a polynomial capturing the quantum fluctuations about the classical saddle-
point action that appears at the exponent. By introducing the differential operator

V = (−4π2)−N(N−1)/2 ∏
i<j

(∂mi − ∂mj )2 , (2.8)

we can write

zm(α) = eα(N2−1)/24

N !G2(N + 1) (−1)m
∫
RN

dh1 . . . dhN V e−
α

2N |h|
2−2πim·h

= z0(α) (α/N)ν

N !G(N + 1) (−1)m V e−2π2N |m|2/α , (2.9)

where ν = N(N − 1)/2, and m = (N − 1)(m1 + . . .+ mN ).
The result for the zero-flux and the unit-flux sectors read [13]

z0(α) = CN e
α(N2−1)/24 α−N

2/2 , (2.10)

z1(α) = (−1)N−1N−1 e−2π2N/α L1
N−1(4π2N/α) z0(α) , (2.11)

where we denoted with 1 ∈ ZN a generic unit vector, and we defined

CN = (2π)N/2NN2/2

G(N + 1) . (2.12)

– 6 –
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The former corresponds to the contribution coming from the vacuum sector and describes
the perturbative regime of the theory. The latter captures the contribution of the first
nontrivial solution associated with a monopole configuration of unit flux and classical
action 2π2N/α.

2.2 The large-N limit

At leading order, the large-N limit analysis can be efficiently tackled by approximating the
sum in (2.5) through the functional integral [11]

Z =
∫

[dh] e−N2Seff[h] , (2.13)

Seff[h] = − α

24 −
3
2 + α

2

∫ 1

0
dx h2(x)−

∫ 1

0
dx
∫ 1

0
dy log |h(x)− h(y)| , (2.14)

where the integral is performed over the function h : [0, 1] → R obeying the constraint
h′ ≥ 1. Interestingly, the saddle-point approximation of the above is analogous to that of a
Gaussian matrix model. In fact, the density ρ(h) = ∂x/∂h obeys the saddle-point equation

α

2 h = −
∫

ρ(s)
h− s

ds . (2.15)

What makes this model nontrivial, however, is the presence of the constraint on h′. This
implies that a general solution of the above should be of the form

ρ(s) =


1 for |s| < b ,

u(s) for b ≤ |s| < a ,

0 for a ≤ |s| .
(2.16)

For α < π2, one finds that b = 0, while ρ obeys the typical Wigner semicircle law. For
α > π2, instead, b > 0 and to find the density ρ one should solve

α

2 h− log h− b
h+ b

= −
∫ −b
−a

u(s)
h− s

du+−
∫ +a

+b

u(s)
h− s

du . (2.17)

The saturation of the constraint on h′ is responsible for a third-order phase transition
at α = π2 that the theory undergoes in the large-N limit, first observed by Douglas and
Kazakov [11]. Later, in [13], it was shown that the transition is induced by instantons.
By evaluating the ratio between the unit-flux and the zero-flux partition functions, one
can see that for small values of the effective ’t Hooft coupling, the former is exponentially
suppressed in N/α only for α < π2. Specifically, by taking the large-N limit of (2.10)
and (2.11) below the critical point, one finds

log z1(α)
z0(α) ∼ −

2π2N

α
γ(α/π2) , (2.18)

where

γ(z) =
√

1− z − z

2 log 1 +
√

1− z
1−
√

1− z
. (2.19)

– 7 –
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The function γ(z) is positive for z < 1, i.e. in the weak phase, but vanishes as its argument
reaches the critical value z = 1.

The large-N limit of the theory is characterized by the leading order of the free energy
in the 1/N expansion, which we can write as

F0(α) = 3
4 + α

24 −
logα

2 + Θ(α− π2) ∆F0(α) , (2.20)

where Θ denotes the Heaviside step function. The function ∆F0 captures the behavior
above the transition. Its derivative reads [11]

∂α∆F0(α) = 1
2α −

4(k(α) + 1)K2(k(α))
3α2 − 8(k(α)− 1)2K4(k(α))

3α3 , (2.21)

where k(α) is obtained by inverting

α = 4K(k) (2E(k) + (k − 1)K(k)) . (2.22)

Here, K and E denote elliptic integrals of the first and second kind, respectively. Near the
transition point,

∆F0(α) = −(α− π2)3

3π6 +O((α− π2)4) , (2.23)

which shows, indeed, that the transition is of the third order.
For large values of α, the free energy is given by the expansion [11]

F0(α) = 2e−α/2 + (α2/2− 2α− 1)e−α + (α4/3− 8α3/3 + 4α2 + 8/3)e−3α/2 + . . . ,

(2.24)

that is perfectly consistent with the Gross-Taylor string expansion.

3 T T̄ -deformation

The flow of the Yang-Mills partition function along the T T̄ deformation is controlled by
the partial differential equation [32, 42–44]

1
λ

∂Z

∂µ
+ 2α ∂

2Z

∂α2 = 0 , (3.1)

where λ = α/a is the ’t Hooft coupling. For µ > 0, we showed in [32] that the deformed
partition function is given by a formula analogous to the heath-kernel expansion (2.1),
namely

Z =
∑

C2(R,µ)>0
(dimR)2 e−

α

2N C2(R,µ) , (3.2)

where each representation is weighted by the “deformed quadratic Casimir”

C2(R,µ) = C2(R)
1− µλC2(R)/N , (3.3)

– 8 –
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and the sum is restricted over the representations for which the above is positive. In other
words, whenever the deformation parameter reaches a critical value µR = N/(λC2(R)),
the associated representation R is removed from the sum in (3.2). As a consequence,
Z is nonanalytic yet smooth for µ ∈ {µR}. Furthermore, for any µ > 0, only a finite
number of representations R contribute to the partition function, i.e. such that µR < µ.
The only representation always present in the sum is the trivial representation since it has
C2 = 0. Next, we find that the two U(N) representations with the smallest Casimir are
the fundamental and the antifundamental representation, namely

nF = (+1, 0, . . . , 0) , (3.4)
nA = (0, . . . , 0,−1) , (3.5)

both of which have C2 = N . This means that for every N , the theory becomes completely
trivial when µ > 1/λ.

A large-N theory with a finite number of states would necessarily bear no resemblance
to the two-phases undeformed theory described in the previous section. To obtain a de-
formed theory with rich dynamics at large-N , one should find an appropriate double-scaling
limit where µ → 0 when N → ∞, so that the sum over an infinite number of representa-
tions is restored. The flow equation (3.1) suggests the correct scaling. If we consider just
the leading order in the large-N expansion of the free energy, namely logZ ∼ N2F0, the
corresponding differential equation reads

1
λ

∂F0
∂µ

+ 2N2α

(
∂F0
∂α

)2
+ 2α ∂

2F0
∂α2 = 0 . (3.6)

By defining as in [32, 44] the rescaled adimensional deformation parameter τ = µλN2 we
provide the right scaling so that the representations contributing to the leading order of the
free energy are still present. At the same time, the deformed Casimir remains nontrivial
over such a set when N is large. The flow equation for F0 in terms of τ then reads

∂F0
∂τ

+ 2α
(
∂F0
∂α

)2
= 0 . (3.7)

For µ < 0, the deformed partition function receives nonperturbative corrections carry-
ing an overall factor of eN2α/(2τ), thus making the partition function nonanalytic at τ = 0.
While we refer the reader to [32] for more detail on the finite-N result, here we notice that
at large-N , because of the chosen scaling in N , one expects these instanton-like corrections
to be suppressed for small τ , thus making F0 analytic at τ = 0. In the next section, we
will see that this is indeed the case.

Let us now quickly review some features of the deformed theory at finite N . In [32],
the deformed partition function on the sphere was computed by first finding the correct
solution of the flow equation associated with each deformed zm(α, τ), and by then summing
over m. The partition functions of the various flux sectors are conveniently expressed in

– 9 –
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terms of the variables

X = N2(N2 − 1)α
2(N2(12 + τ)− τ) , (3.8)

Y = N2(12 + τ)− τ
24τ , (3.9)

W = 6N4α

τ(N2(12 + τ)− τ) , (3.10)

and read

zm(α, τ) =



CN e
X Y N2/2

∞∑
s=0

pm,s
s! (−Y )s U(N2/2 + s, 0,W ) for τ > 0 ,

−πCN WeX(−Y )N2/2

×
∑
s∈K

(−1)2s pm,s
s! Γ(s+N2/2) (−Y )s 1F1(N2/2 + s+ 1; 2;W ) for τ > 0, N odd ,

(3.11)

with K = {1 − N2

2 , 2 −
N2

2 , . . . ,−
1
2 , 0,

1
2 , 1, . . .}. With U and 1F1 we denote, respectively,

the Tricomi and the Kummer confluent hypergeometric functions. For simplicity, we will
not deal with the case of even N when τ < 0. The coefficients that appear in the solutions
are given by

pm,s =


δs,0 for m = 0,

(−1)m+νN s

N !G(N + 1)
Γ(s+ 1)

Γ(s+ 1 + ν) V
(
2π2|m|2

)s+ν for m 6= 0,
(3.12)

where ν = N(N − 1)/2. This ensures that the limit

lim
τ→0

zm(α, τ) = z0(α, 0)
∞∑
s=0

pm,s
s! (−α)−s (3.13)

matches the correct expression for the undeformed flux sector (2.9).

4 The large-N expansion of the free energy

In the last section, we have determined the correct scaling of the effective deformation
parameter τ , deriving the flow equation that governs the leading order of the free energy
in the large-N limit. The goal now is to study further the flow equation, to obtain exact
results for all orders in the 1/N -expansion, and to identify the main features of the phase
diagram of the theory for both positive and negative values of τ .

We first need to write down the flow equation acting on the deformed free energy
F (α, τ) = logZ(α, τ). Eq. (3.1) induces a partial differential equation for F (α, τ) which
takes the form

N2∂τF + 2α(∂αF )2 + 2α∂α2F = 0 . (4.1)

– 10 –
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Before expanding in powers of N , it is useful to transform (4.1) into an equation with
constant coefficients by replacing F with

F (α, τ) = N2G(
√
α, τ) + logα

4 , (4.2)

thus obtaining for G(z, t)

∂τG+ 1
2(∂zG)2 + 1

2N2 ∂z
2G = 3

8N4z2 . (4.3)

Finally, we assume that F , and thus G, possess an expansion in powers of 1/N2, as in the
case of the undeformed theory. In particular, we denote

G(z, τ) =
∞∑
`=0

N−2`G`(z, τ) . (4.4)

Let us now start by considering the leading order at large N . Instead of directly dealing
with the equation for G0,

∂τG0 + 1
2(∂zG0)2 = 0 , (4.5)

it is easier to study the equivalent problem for E = ∂zG0, which is described by the well-
known inviscid Burgers’ equation

∂τE + E ∂zE = 0 . (4.6)

Standard solutions are obtained by studying the characteristics of the differential operator
D = ∂τ +E ∂z, i.e. the solutions of the ordinary differential equation dz/dτ = E . According
to (4.6), E is constant along the characteristics, which are then given by

z = ξ + τ ϕ(ξ) , (4.7)

where ϕ(ξ) = E(ξ, 0) and ξ is some integration constant. The original equation (4.6) is
solved by simply inverting (4.7), from which one can write the explicit solution

E(z, τ) = ϕ(ξ(z, τ)) . (4.8)

It is not difficult at this point to derive the equations for the subleading terms in the
large-N expansions:

DG1 = −1
2 ∂z

2G0 ,

DG2 = −1
2 ∂z

2G1 −
1
2 (∂zG1)2 + 3

8z2 ,

DG` = −1
2 ∂z

2G`−1 −
1
2

`−1∑
k=1

∂zGk ∂zG`−k , for ` ≥ 2. (4.9)
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This recursive system can be conveniently integrated by changing variables with

G̃`(ξ, τ) = G`(z(ξ, τ), τ) , (4.10)

in terms of which (4.9) becomes

∂τ G̃` = τ ϕ̈ ∂ξG̃`−1
2(1 + τ ϕ̇)3 −

∂ξ
2G̃`−1 + S`

2(1 + τ ϕ̇)2 + 3δ`,2
8z2 , (4.11)

where S1 = 0, while for ` ≥ 2,

S`(ξ, τ) =
`−1∑
k=1

∂ξG̃k(ξ, τ) ∂ξG̃`−k(ξ, τ) . (4.12)

The solutions are now easy to find:

G̃0(ξ, τ) = −1
2

∫ τ

0
dt E2(z(ξ, τ), t) + F0(z2(ξ, τ), 0) , (4.13)

G̃`(ξ, τ) =
∫ τ

0
dt
(
t ϕ̈(ξ) ∂ξG̃`−1(ξ, t)

2(1 + t ϕ̇(ξ))3 − ∂ξ
2G̃`−1(ξ, t) + S`(ξ, t)

2(1 + t ϕ̇(ξ))2

)
− log ξ δ`,1

2 + 3τ δ`,2
8ξ(ξ + τ ϕ(ξ)) + F`(ξ2, 0) , for ` ≥ 1. (4.14)

In the second identity, we made use of

F`(z2(ξ, τ), τ) = G̃`(ξ, τ) + δ`,1
2 log (ξ + τ ϕ(ξ)) , (4.15)

which is a trivial consequence of (4.2). Conversely, we can recover the free energy from the
solutions (4.13) and (4.14) with

F`(α, τ) = G̃`(ξ(
√
α, τ), τ) + δ`,1

logα
4 . (4.16)

4.1 The phase diagram

As a direct application of the previous formulas, one can read off the large-N expansion of
the free energy in the weak-coupling phase,5 taking as boundary condition the undeformed
zero-flux partition function (2.10)

F0(α, 0) = 3
4 + α

24 −
logα

2 , (4.17)

F1(α, 0) = − α

24 , (4.18)

F`(α, 0) = 0 , for ` ≥ 2. (4.19)

A peculiar feature of the undeformed theory is that at weak coupling, only F0 and F1 are
nontrivial. As we will see in a moment, this property ceases to hold at finite τ .

5We have neglected inessential constant terms contributing to subleading orders in 1/N .
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To show this, we simply apply the algorithm previously described. The first step is to
use (4.17) to compute

ϕ(ξ) = E(ξ, 0) = ξ

12 −
1
ξ
. (4.20)

We then plug this in (4.7) and find

ξ = 6 z +
√
z2 − αw

τ + 12 , (4.21)

which, in turn, from (4.8) and defining αw = −τ(12 + τ)/3, gives

E(z, τ) = z

τ + 12 − 2 z −
√
z2 − αw
αw

. (4.22)

Before computing the deformed large-N expansion of the free energy, we should discuss
the bounds on the validity of the solution (4.22). A first bound comes from the fact that
the initial condition we imposed so far holds in the weak-coupling phase, i.e. when α < π2

for the undeformed theory. Therefore, this initial condition can only be propagated in the
region of parameters covered by characteristics that cross the τ = 0 axis in the interval
α ∈ (0, π2). In other words, the characteristic

α =
[
π + τ

(
π

12 −
1
π

)]2
(4.23)

represents a bound for the validity of the solution of the Burgers’ equation (4.6) at weak
coupling. We see that for τ > τmax, where

τmax = 12π2

12− π2 , (4.24)

the theory is always in the strong-coupling phase for any value of α.
Furthermore, we notice that ξ and, as a consequence, E are real for α ≥ αw. The set

of points where the last inequality saturates is the envelope of the system of characteris-
tics (4.22). This means that the parabola

α− αw = 0 (4.25)

represents another bound for (4.6) at weak coupling. In the next section, we will see what
the origin of said bound is and how to make sense of the deformed Yang-Mills partition
function beyond the envelope.

As can be seen in figure 2, the two parabolas (4.23) and (4.25) are tangent at the
multicritical point

αmcp =
( 24π

12 + π2

)2
, τmcp = − 12π2

12 + π2 . (4.26)
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Figure 2. The diagram shows the system of characteristics associated with both the weak-coupling
phase (red lines) and the strong-coupling phase (orange lines). The blue line is the characteristic
that acts as a critical line between the two phases and crosses the τ = 0 axis at α = π2. The critical
line ends on the multicritical point (αmcp, τmcp). The black parabola delimiting the weak-coupling
phase is the envelope of the weak-coupling characteristics and corresponds to α = αw. The black
line delimiting the strong-coupling phase is the envelope of the strong-coupling characteristics and
has coordinates (αs, τs).

We can now apply (4.13) and (4.14) to recursively generate any term in the large-N
expansion of the deformed free energy. The first few terms read

F0(α, τ) = 3
4 + α̃

24 −
log α̃

2 + τ(12− α̃)2

288α̃ , (4.27)

F1(α, τ) = − α̃

24 −
1
4 log

(
1− αw

α

)
, (4.28)

F2(α, τ) = τ2

72

(
α̃2

α̃αw − 4τ2 + 12α̃τ(5τ − 36)
(α̃αw − 4τ2)2 + 48τ2(21α̃αw − 4τ2)

(α̃αw − 4τ2)3 − 108
α̃αw + 4τ2

)
,

(4.29)

where

α̃ = α
1− αw/2α+

√
1− αw/α

2(1 + τ/12)2 . (4.30)

Notice that the critical line α̃ = π2 is not only a characteristic for the weak phase
but also for the strong phase. This is simply due to the fact that E(z, 0) is a continuous
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function at z = π, since the transition is of the third order. Therefore, the line of equation

z = π + τϕ(π) (4.31)

is a characteristic shared by both phases. We will discuss the transition in more detail in
the next section.

We start now to explore the deformation of the original strong-coupling phase. The
relevant characteristics can be obtained in implicit form. From (2.20), (2.21), and (2.22)
we find

ϕ(ξ) = ξ

12 −
8(k + 1)K2

3ξ3 − 16(k + 1)2K4

3ξ5 , (4.32)

where

ξ2 = 4K(2E + (k − 1)K) . (4.33)

The corresponding curves are plotted in figure 2. We see that, as it happens for the weak-
coupling phase, the strong-coupling characteristics have an envelope for some range of
negative values of τ . To find such a curve, we need to solve 1 + τϕ̇(ξ) = 0 on the solutions
of the characteristics equation (4.7). This is easily done in parametric form. In fact, while
it is not possible to invert (4.33) in closed form, one can still use it to obtain k′(ξ) as a
function of k itself obtaining

αs =
(

384(k − 1)2K4ξ

ξ6 − 32(k + 1)K2ξ2 + 320(k − 1)2K4

)2

,

τs = − 12ξ6

ξ6 − 32(k + 1)K2ξ2 + 320(k − 1)2K4 , (4.34)

in terms of the parameter k ∈ [0, 1). The range corresponds to ξ ∈ [π,∞). The envelope has
one extremum, namely the point at k = 0, that coincides with the multicritical point (4.26):
it connects nicely with the envelope for the weak-coupling characteristics, α = αc, thus
creating a continuous line. It is also tangent to both the envelope for the weak-coupling
characteristics and the critical line for the Douglas-Kazakov phase transition, as the three
curves all share the same derivative at the multicritical point

dα
dτ

∣∣∣∣
mcp

= 4− 96
12 + π2 . (4.35)

At large α, as already remarked in (2.24), the leading order of the undeformed free
energy scales exponentially as F0(α, 0) ∼ 2e−α/2 . Because

E(z, 0) = −z G0(z, 0) ∼ −2z e−z2/2 (4.36)

is exponentially suppressed in z, the characteristic equation (4.7) reads z ∼ ξ for large z.
In other words, as z increases, the E dependence on τ gets weaker and weaker, and the
characteristics become, essentially, vertical lines in figure 2.
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In this regime, it is convenient to solve the characteristic equation by expanding ξ as
a power series in τ and then by fixing the coefficients of the expansion order by order. The
solution,

ξ = z + 2zτ e−z2/2 + (z5τ − 4z3τ2 − 6z3τ + 4zτ2 + 2zτ) e−z2

+ (z9τ − 6z7τ2 − 32z7τ/3 + 12z5τ3 + 48z5τ2 + 28z5τ − 28z3τ3 − 60z3τ2

− 16z3τ + 8zτ3 + 8zτ2 + 8zτ) e−3z2/2 + . . . , (4.37)

gives, in turn, a power-series expression for E(z, τ). Upon integration, we find

F0(α, τ) = 2e−α/2 + (α2/2− 2α− 1− 2ατ) e−α

+ (α4/3− 8α3/3 + 4α2 + 8/3− 2α3τ + 12α2τ − 4ατ + 4α2τ2 − 4ατ2) e−3α/2

+ . . . , (4.38)

which is the τ -deformed version of (2.24). Some comments are now in order to interpret the
above result. The undeformed expression captures the Gross-Taylor string theory on the
genus-zero target space [10], the leading order corresponding to connected covering maps
of the type S2 → S2. The exponential terms of the form e−nα/2 represent the contributions
of coverings of degree n, while the associated polynomials are obtained by integrating over
the positions of various types of singularities [9, 10]. In this regime, the τ deformation
affects the polynomial part and acts as a perturbation of the original string expansion: one
could conjecture that the deformation provides a refinement for the maps contributing to
the string theory, similarly to the generalization induced by higher Casimirs [16, 41], but
a precise interpretation of the new terms and their geometrical meaning are beyond the
scope of the present paper.

5 The deformed Douglas-Kazakov phase transition

In the last section, we have seen that the deformed theory exhibits the critical line (4.23),
separating the weak-coupling phase from the strong-coupling phase, which is the continua-
tion of the Douglas-Kazakov critical point of the undeformed theory.6 The associated phase
transition remains of the third order. In fact, from (2.23) we see that near the critical line

∆E(z, 0) = 2z ∂α∆F0(α, 0)
∣∣
α=z2 (5.1)

= − z

π6 (z2 − π2)2 +O((z2 − π2)3) . (5.2)

Let us consider the second derivative

∂2
z∆E = ∆ϕ̈(ξ) (∂zξ)2 + ∆ϕ̇(ξ) ∂2

zξ , (5.3)

6In [33], the same phase transition was studied by considering the matrix-model of [11] with a τ -deformed
potential.
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and evaluate it on the characteristic with ξ = π. The second term vanishes since ∆ϕ̇(π) = 0,
and we are left with

∂2
z∆E(z(π, τ)) = ∆ϕ̈(π) (1 + τϕ̇(π))−2

= −16
π3

(
τmcp

τ − τmcp

)2
. (5.4)

The discontinuity of the third derivative of the free energy on the critical line is easily
obtained as

Disc ∂3
αF0 = 2

π6

(
τmcp

τ − τmcp

)2( τmax
τ − τmax

)3
, (5.5)

which generalizes the undeformed result in (2.23). This expression diverges at both τmcp
and τmax, i.e. as one approaches both the multicritical point (4.26) and the limit value after
which the theory is in the strong phase for any α.

As mentioned in section 2, the Douglas-Kazakov phase transition of the undeformed
theory is driven by instantons, and this fact was argued in [13] by computing the ra-
tio (2.18). We now want to show that this property still holds in the deformed theory.

The first step is to obtain a convenient representation for the instanton contributions,
suitable to compute the large-N limit of the relevant ratio. We found useful to express the
Tricomi confluent hypergeometric through the following integral representation, that holds
for Re a > 0 and Re z > 0,

U(a, b, z) = 1
Γ(a)

∫ ∞
0

dt e−zt ta−1 (t+ 1)b−a−1 . (5.6)

The instanton partition function (3.11) can be recast as

zm(α, τ) = CN e
X
∞∑
s=0

(−1)s pm,s
s! Γ(N2/2 + s)

∫ ∞
0

dt e−tW

t(t+ 1)

(
tY

t+ 1

)N2/2+s
. (5.7)

To evaluate its large-N limit, we use the Stirling approximation

CN
Γ(N2/2 + s) ∼ e

5
4N

2
( 2
N2

)N2/2+s
, (5.8)

and define

X ∼ N2x , x = α

2(12 + τ) , (5.9)

Y ∼ N2y , y = 12 + τ

24τ , (5.10)

W ∼ N2w , w = 6α
τ(12 + τ) . (5.11)

We then change the integration variable with

1
u

= 2ty
t+ 1 (5.12)
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and by using (3.13) we obtain

zm(α, τ) ∼
∫ ∞

1
2y

du
u
e−N

2ρ(u) zm(u, 0)
z0(u, 0) , (5.13)

where

ρ(u) = w

2uy − 1 − x−
5
4 + 1

2 log u . (5.14)

The function ρ(u) has minimum in u = α̃. Moreover, this saddle point always falls within
the integration range since α̃ > 1/(2y) for τ ≥ 0.

As expected, the zero-flux sector (5.13) reproduces the result of the large-N leading
order at weak coupling computed in (4.27). Namely, ρ(α̃) = −F0(α, τ), so that

z0(α, τ) ∼ eN2F0(α,τ) . (5.15)

For a generic m, we assume that in the large-N limit, the sum is always subleading with
respect to the exponential, i.e. that the sum does not contribute to the fluctuations about
the saddle. Under this assumption, one finds

zm(α, τ)
z0(α, τ) ∼

zm(α̃, 0)
z0(α̃, 0) . (5.16)

In other words, the deformed ratio coincides with the undeformed one upon replacing α
with α̃.7

Let us see how this works concretely in the case when m = 1. From (3.12), one can
compute the coefficients for the one-flux sector, which turns out to be

p1,s = (−1)N−1 (2π2N)s 2F1(−s, 1−N ; 2; 2) . (5.17)

Then, the associated sum can be performed exactly by using the identity
∞∑
s=0

ξs

s! 2F1(−s, a; b;x) = eξ 1F1(a; b;−ξx)

= eξ
Γ(1− a)Γ(b)

Γ(b− a) Lb−1
−a (−ξx) , (5.18)

and as a result, we find
z1
z0
∼ (−1)N−1 e−2π2N/α̃ L1

N−1(4π2N/α̃) , (5.19)

which is the expected result. Therefore, we can simply invoke the argument of [13] and
conclude that the partition function of the unit-flux sector is no longer suppressed in the
large-N limit for α̃ ≥ π2. This confirms the observation of section 4, where we obtained
the same condition for the transition to the strong-coupling phase of the deformed theory.
We remark that the above picture is a smooth deformation of the undeformed case. The
nonperturbative contributions driving the transition are still instantons labeled by the
quantized magnetic flux vector.

7An analogous result for m = 1 was obtained in [33] through a different approach.
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6 Envelopes and nonperturbative corrections

A puzzling feature of the phase diagram in figure 2 is the emergence of an envelope of
characteristics in both the weak-coupling and the strong-coupling phase. This phenomenon
is similar to the emergence of a Douglas-Kazakov phase transition in that instantons drive
both. However, while the Douglas-Kazakov transition is due to instantons in the effective
’t Hooft coupling α, the novel phase transition is due to instantons in the deformation
parameter τ .

To show this, let us first focus on the envelope at α = αw. In this case, the analysis is
more straightforward since the envelope sits at the boundary of the weak-coupling phase
where the zero-flux sector completely dominates the dynamics. We will show that, when
N is large, the nonperturbative corrections in τ , typical of the deformation with τ < 0, are
suppressed only for α > αw.

Again, we use an integral representation for the Kummer confluent hypergeometric
function to conveniently express our zero-flux partition function. For Re a > 0,

1F1(a; b; z) = 1
2πi

Γ(b) Γ(a− b+ 1)
Γ(a)

∫ (1+)

0
dt ezt ta−1 (t− 1)b−a−1 , (6.1)

where the integral is taken over a contour starting and ending in 0 and encircling 1 in
the positive sense. Armed with the above representation, we recast z0(α, τ) at finite N
and τ < 0 in terms of a contour integral and study its large-N limit using a saddle-point
approximation. Starting from (3.11) and (3.12), we find

z0(α, τ) = − iCN
2 Γ(N2/2 + 1) WeX(−Y )N2/2

∮
γ

ds eWs
(

s

s− 1

)N2/2
. (6.2)

The choice of contour γ is shown in figure 3. When N is large, we can write8

z0(α, τ) ∼ iNe
5
4N

2

√
π

α

αw
e−N

2 τ
6
α
αw

(
−12 + τ

12τ

)N2/2 ∮
γ

ds e−N2φ(s) , (6.3)

where

φ(s) = 2 α

αw
s− 1

2 log s

s− 1 . (6.4)

As N →∞ the integral will be dominated by the stationary points of φ(s),

s± =


1
2

(
1±

√
1− αw

α

)
for α > αw ,

1
2

(
1± i

√
αw
α
− 1

)
for α < αw .

(6.5)

For τ = 0, the stationary points are at the endpoints s = 0 and s = 1 of the branch cut
of φ(s). As τ decreases, these move towards s = 1/2 where they collide for αw = α. As τ

8For simplicity, we discard an irrelevant overall constant.
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0 1

γ′
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Figure 3. On the left, the integration contour for the original integral in (6.2). This choice is
particularly convenient for α > αw, where both saddles are real (blue dots). On the right, the
deformed contour is associated with the steepest descent approximation for α < αw, where both
saddles are complex (green dots).

decreases further, the stationary points acquire an opposite nonvanishing imaginary part
and move away from the real axis.

When evaluated on the critical points, the second derivative of φ(s) reads

φ′′(s±) =


∓8 α2

α2
w

√
1− αw

α
for α > αw ,

∓8i α
2

α2
w

√
αw
α
− 1 for α < αw .

(6.6)

When α > αw and both s± sit on the real axis, φ′′(s+) < 0, while φ′′(s−) > 0. In other
words, when applying the Laplace approximation method, we only consider the contribu-
tion coming from s−, which is a minimum for φ(s) and corresponds to the perturbative
saddle. On the other hand, the contribution coming from the nonperturbative saddle s+ is
suppressed. We already know what the large-N asymptotics in this regime is, as it is the
result computed in section 4.

The coalescence of the two saddle points is responsible for a critical behavior: when
α < αw, the nonperturbative saddle is no longer suppressed and needs to be considered.
The function φ(s) has the same real part when evaluated on both saddles. Specifically,

φ(s±) = α

αw

(
1± i

√
αw
α
− 1

)
∓ i arctan

(√
αw
α
− 1

)
± iπ2 . (6.7)

The integral can be conveniently computed by deforming the original contour γ into a γ′

that traverses the saddles along the associated steepest-descent path. As shown in figure 3,
γ′ crosses the saddle in s+ with arg s = π/4 and the saddle in s− with arg s = 3π/4. This
gives the large-N asymptotics

z0(α, τ) ∼ e5N2/4

(αw/α− 1)1/4

(
−12 + τ

12τ

)N2/2
exp

(
N2α(6 + τ)
2τ(12 + τ)

)
× cos

(
N2

[
α

αw

√
αw
α
− 1− arctan

(√
αw
α
− 1

)]
− π

4

)
. (6.8)

We observe that the above expression does not have a definite sign. In fact, it oscillates
rapidly whenN is large: it is clear that the full theory cannot be dominated by just the zero-
flux sector for α < αw. This regime is thus characterized by the presence of nonperturbative
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terms both in the effective ’t Hooft coupling α and in the rescaled deformation parameter
τ . We will denote this region of the phase diagram as the mixed phase.9

We can say more: when the system is in the weak-coupling phase and approaches the
critical line at α = αc, we argue that it exhibits a behavior typical of a system in an ordered
phase approaching a second-order phase transition. To this aim, in the following we loosely
identify α as an inverse temperature. We can compute the “specific heat”

C = α2∂2
αF0(α, τ)

= 1
2
√

1− αc/α
, (6.9)

to find that the associated critical exponent is 1/2.
This behavior is not specific to the weak-coupling phase, but rather it is typical of

any envelope of characteristics of the Burgers equation (4.6). In fact, if we write C in the
language of section 4, we find

C = z

4
(
z ∂zE(z, τ)− E(z, τ)

)
= z

4
(
z ϕ̇(ξ(z, τ)) ∂zξ(z, τ)− ϕ(ξ(z, τ))

)
. (6.10)

As mentioned in section 4, the condition leading to an envelope of characteristics is that

1
∂zξ(z, τ) = 1 + τ ϕ̇(ξ(z, τ)) (6.11)

should vanish as z approaches the critical value zc. As a consequence, on every envelope of
characteristics, C diverges. Although its derivative is singular, ξ is finite on the envelope.
We are therefore led to the ansatz

ξ(z, τ) = ξ(zc, τ) + ξ1(τ) (z − zc)γ + . . . (6.12)

where 0 < γ < 1 and the dots represent subleading terms. Now we use (6.11) to fix the
leading power in z − zc and the associated coefficient. In particular, from

(z − zc)1−γ

γ ξ1(τ) + . . . = τ ϕ̈(ξ(zc, τ)) ξ1(τ) (z − zc)γ + . . . , (6.13)

we deduce that

∂zξ(z, τ) ∼ (z − zc)−1/2√
2τ ϕ̈(ξ(zc, τ))

. (6.14)

This, in turn, leads to

C ∼ − z2
c

4τ
√

2τ ϕ̈(ξ(zc, τ))
(z − zc)−1/2 , (6.15)

9The phase diagram at τ < 0 and the role of the nonperturbative saddles was studied in [34], although
the results therein do not quite agree with our findings.
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which, once again, gives C ∼ (α − αc)−1/2. What we have just proven can be checked
to reproduce exactly the result in the weak-coupling phase if we identify αw = z2

c , but
it applies also to the envelope associated with the strong-coupling characteristics upon
identifying αs = z2

c .10 We conclude that the black envelope line in figure 2 at the boundary
of the mixed phase can thus be thought of as a single continuous critical line associated
with a second order phase transition with critical exponent 1/2.
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