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1 Introduction

Three-dimensional black holes, lost and found. Lowering the dimensionality of
spacetime simplifies the study of gravity, but often at a hefty price: black holes are wont
to depart the scene. This follows from simple dimensional arguments. In three spacetime
dimensions, which will be the focus of this article, if we can only use Newton’s constant G3,
then the presence of a massive object does not by itself introduce any length scale, since
G3M is a dimensionless quantity.1 Therefore, there cannot be any black hole horizon solely

1We always set the speed of light equal to one.
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determined by the mass of an object. Instead, the gravitational effect of a particle coupled
to gravity becomes manifest only as a scale-free conical deficit [1].

A cosmological constant can remedy this and allow black holes with a size proportional
to the radius of three-dimensional Anti-de Sitter (AdS) space [2, 3]. However, although a
length scale is necessary to have a horizon, it is not sufficient: some form of gravitational
attraction is also needed. The tendency to collapse in AdS does it, but in de Sitter (dS)
space the effect goes the other way around, and only a cosmological horizon, not a black hole,
results from the cosmological length scale. Explicitly, in dS3 with cosmological constant
Λ3 = 1/R2

3, the geometry for a particle of mass M at the pole is, in static coordinates [4],

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dφ2 , f(r) = 1− 8G3M −
r2

R2
3
. (1.1)

This contains a conical singularity at r = 0, with deficit angle

δ = 2π
(
1−

√
1− 8G3M

)
, (1.2)

and no black hole. In fact, since constant time slices in dS3 are two-spheres, globally there
are two conical singularities in the maximal extension of (1.1), one at every pole of the
two-sphere.

A more subtle way of introducing a length scale is via quantum effects: with ~ 6= 0, the
Planck length

LP = ~G3 (1.3)

makes an appearance.2 But even before knowing how this scale may enter to yield black
holes, one may fear that it will fail to do so in a sensible way. If the black hole size must
be proportional to the Planck length, then quantum gravitational effects might render the
semi-classical description unreliable. To understand that this need not be so, note, first, that
the presence of ~G3 in this discussion does not immediately imply that quantum gravity
must be important, but only that both gravitational and quantum effects are at play, e.g.,
with quantum fields coupled to classical gravity. When a large number c� 1 of these fields
are introduced, the energy of their combined quantum effects, ∝ c~, may gravitate to give
rise to a large semi-classical black hole horizon of radius ∼ G3c~ = cLP � LP , near which
quantum gravity effects would be relatively small. In the limit where c→∞ and LP → 0
with cLP fixed, such effects are absent, while the classical gravitational backreaction of
the quantum fields remains finite. It is then conceivable that this backreaction results in
a black hole of radius ∼ cLP .3,4 Interestingly, its Bekenstein-Hawking entropy will then
be ∼ c, with no factors of ~, which indicates that it originates from microscopic one-loop
effects in quantum field theory.

2In contrast, there is no notion of a three-dimensional Planck mass.
3In all dimensions, classical Einstein gravity coupled to scale-invariant matter (quantum or classical) is

itself a scale-invariant theory, such that in the setup described one can always choose units where cLP = 1.
4The large number of fields also lowers the cutoff energy scale of the quantum theory down to 1/(cLP ).

The consequences in this context were discussed in [5] and will be reviewed later below.
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Quantum backreaction. This mechanism was realized in [5] to obtain black holes in
three-dimensional asymptotically locally flat space, as well as AdS3 black holes with masses
lower than the BTZ black holes (see also [6]). Here we will employ it in three-dimensional
de Sitter space. It can be convenient to envisage it as a two-step process. First, one solves
for a quantum field in the spacetime (1.1). The conical periodicity conditions give rise to a
Casimir effect. For a free conformal scalar, we find that this results in a renormalized stress
tensor of the form

〈Tµν〉 = F (M)
8πr3 diag(1, 1,−2) , (1.4)

with F (M) > 0. Therefore, the Casimir energy density in (1.4) is negative, but when, in
the next step, we compute its backreaction on the geometry, we find

δgtt = 2LPF (M)
r

> 0 , (1.5)

which means that the gravitational effect is attractive [7, 8].5 Then, if a large number
of fields are present, a semi-classical black hole horizon may appear. To prove this, the
backreaction of the large number of fields must be non-linearly accounted for, that is, one
must simultaneously solve the quantum field and the gravitational equations. The only
framework that we know of where this can be consistently done in three or more dimensions
is braneworld holography.

In this setup, classical dynamics in an AdSd+1 bulk with a d-dimensional brane holo-
graphically encodes the quantum dynamics of the dual d-dimensional conformal field
theory coupled to a d-dimensional gravitational theory on the brane. In our context,
the semi-classical Einstein equations in a four-dimensional AdS bulk are recast in the
three-dimensional form

Gµν + 1
R2

3
gµν + · · · = 8πG3〈Tµν〉 , (1.6)

where gµν is the metric induced on the brane, with curvature radius R3 and Einstein
tensor Gµν , and the dots denote higher curvature terms which can be systematically
computed order by order [6, 10]. These can be regarded, in dual terms, as induced by
integrating out the holographic CFT degrees of freedom above the ultraviolet cutoff that
the brane represents. The CFT below this cutoff gives rise to a renormalized 〈Tµν〉, with
a large central charge c � 1 given by the AdS4 radius in four-dimensional Planck units.
Crucially, the bulk solution exactly encodes the quantum backreaction of the CFT on the
three-dimensional geometry.

Quantum black hole in dS3. In this article, we apply this holographic approach to
obtain black holes from quantum backreaction in three-dimensional de Sitter space. As
in [5, 6], we use an exact solution of a black hole in an AdS4 braneworld, but now with a
brane with large enough tension such that the effective cosmological constant on the brane
is positive.6

5Briefly, the reason is the following. A region of localized negative energy has a repulsive effect in its
exterior, but the more one enters the region, the less repulsion is felt. As a result, at finite r there is an
effective attraction from the energy in (1.4). We elaborate on this explanation in appendix A.

6A black hole solution was found in [9] for a massive gravity theory in dS3. Although the “new massive
gravity” action of that article contains a term of the same form as the quadratic curvature term in our brane
effective action, the two theories differ, and in particular our theory of gravity in dS3 is not massive.
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Using this solution, we find that the holographic non-linear backreaction changes the
conical geometry (1.1) to have

f(r) = 1− 8G3M −
r2

R2
3
− 2cLPF (M)

r
. (1.7)

It is easy to verify that the quantum 1/r term gives rise to a black hole horizon. This
“quantum Schwarzschild-dS3” (qSdS) solution is exact to all orders in the backreaction,
in the planar limit of the CFT. The corrections are proportional to the central charge
c of the CFT, and the function F (M) is now obtained by demanding regularity of the
four-dimensional bulk. It differs from that of free scalars in (1.4), where c = 1, but the
radial 1/r dependence (which is natural from the four-dimensional holographic perspective)
and the tensorial structure of the corrections are the same in both cases.

Observe also that the physical range of masses in the conical spacetime (1.1) is
bounded above,

0 < M <
1

8G3
, (1.8)

with the maximum mass reached when the conical deficit eats up all the space. The mass
of the black holes in (1.7) is also bounded above, but now the effect is due to the black
hole horizon becoming as large as the cosmological horizon. This is a Nariai limit [11, 12]
analogous to the one in Schwarzschild-de Sitter solutions in d ≥ 4, and it gives an upper mass
bound that is lower (or equal) compared to (1.8). Since this limit is due to the appearance of
the 1/r term in the metric, we expect that it is not exclusive of the holographic construction,
but instead a generic property of quantum black holes in dS3.

Thermodynamics. A central focus of this article is the thermodynamics of the quantum
black hole. This depends on the specific form of F (M), so our results for the horizon
entropies are dependent on the holographic realization of the solution, but the form of the
first laws below is expected to hold generically for semi-classical de Sitter gravity.

From the bulk perspective, the classical four-dimensional Bekenstein-Hawking entropy
of each horizon is holographically understood to be the generalized entropy S(3)

gen in three
dimensions [6, 13]. The separation of the high- and low-energy CFT degrees of freedom
also delimit the generalized entropy into the Wald entropy SWald (accounting for higher
curvature corrections), and entanglement entropy Sout generated by the CFT living outside
of each horizon,

S(3)
gen = SWald + Sout . (1.9)

Further, each horizon of the quantum Schwarzschild-de Sitter black hole obeys a first law
of thermodynamics,

dM = ThdS
(3)
gen,h , dM = −TcdS(3)

gen,c , (1.10)

where Th,c = κh,c

2π refers to the Gibbons-Hawking temperature of the two horizons, with
surface gravities κh,c defined with respect to the time translation Killing vector ∂t, and
M is the mass. Importantly, the generalized entropy is an exact classical four-dimensional
quantity, while the mass M , and temperatures Tc,h are all three-dimensional quantities
measured on the brane. Thence, as with the first law of the quantum BTZ black hole [6],
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the first laws (1.10) represent a non-trivial test of braneworld holography. Adding the two
first laws yields

0 = ThdS
(3)
gen,h + TcdS

(3)
gen,c , (1.11)

a three-dimensional analog of the semi-classical first law in dS2 explored in [14],7 and a
semi-classical generalization of the usual first law of higher dimensional SdS black holes [15].
Notably, the first laws (1.10) and (1.11) hold to all orders in backreaction and higher
curvature corrections.
Outline. This article is structured as follows. In section 2 we consider a massless scalar
field conformally coupled in a conical dS3 background and derive the quantum corrected
geometry perturbatively. In section 3 we describe the bulk AdS4 geometry including a brane
with a dS3 slicing. We briefly review the gravitational theory induced on the brane, and
uncover the semi-classical gravitational equations of motion, at least to second order in the
strength of backreaction. Section 4 is devoted to finding the black hole solution localized on
the brane, which is interpreted as the quantum three-dimensional Schwarzschild-de Sitter
black hole. We also detail the Nariai limit of the qSdS solution, which is nearly identical to
the Nariai limit of the classical four-dimensional SdS black hole. In section 5 we analyze the
thermodynamics of the quantum black hole. We find the three-dimensional thermodynamic
quantities S(3)

gen, T , and M behave similar to their classical four-dimensional counterparts.
In section 6, we compute the entropy deficit between the generalized entropies of the dS3
and the qSdS3 horizons surrounded by a CFT, which extend arguments hinting at a matrix
model description of dS spacetimes and are also used to calculate the nucleation rate of a
(quantum) black hole appearing in dS3. In section 7 we comment on a possible realization
of dS/CFT which naturally arises from holographic braneworlds. We conclude in section 8,
where we outline multiple future research avenues.

To keep this article self-contained we include multiple appendices. In appendix A
we explain how the negative Casimir energy generated by a conical defect leads to an
attractive gravitational potential. In appendix B we provide the computational details of
the quantum backreaction due to a massless conformally coupled scalar field in a dS3 conical
defect background. Appendix C shows that in the limit of zero backreaction the AdS4
bulk geometry is equal to the hyperbolic AdS4 black hole upon a double Wick rotation.
Appendix D provides computational details of the entropy deficit of quantum de Sitter
black holes.

2 Perturbative backreaction of quantum fields in conical dS3

Consider a massless scalar field Φ conformally coupled to Einstein gravity in three dimensions,

I = 1
16πG3

∫
d3x
√
−g[R− 2Λ]− 1

2

∫
d3x
√
−g

[
(∇Φ)2 + 1

8RΦ2
]
. (2.1)

We are interested in the renormalized stress-energy tensor of the field in the geometry (1.1)
of a conical defect in dS3. It can be computed using a method analogous to that of the
AdS3 case in [16], and here we only sketch it, deferring the details to appendix B.

7In the two-dimensional context the generalized entropy arises from including the 1-loop Polyakov action
to describe the backreaction effects of a two-dimensional (not necessarily holographic) CFT.
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Generically, the Green’s function for the scalar field equation in dS3 is

G(x, x′) = 1
4π

1
|x− x′|

+ λ

4π
1

|x+ x′|
, (2.2)

where |x− x′| ≡
√

(x− x′)a(x− x′)a is the chordal or geodesic distance between x and x′

in the four-dimensional embedding space R2,2. The parameter λ corresponds to different
boundary conditions imposed on G(x, x′), namely ‘transparent’ (λ = 0), Neumann (λ = 1),
or Dirichlet (λ = −1) boundary conditions [17, 18]. We will focus on the case of transparent
boundary conditions. These are analogous to the definition in AdS3, where they correspond
to the case where the scalar field modes defined with respect to the time translation Killing
vector are smooth on the Einstein static universe, obtained from an appropriate conformal
transformation of dS3. The holographic approach that we will employ later naturally selects
these conditions too.

If we consider that the conical spacetime is a ZN orbifold, then the Green’s function in
it can be computed by summing over the N images under the discrete action of ∂φ. With
that, the renormalized quantum stress tensor 〈Tµν〉 can be derived by appropriately taking
point-split derivatives, and a finite result is obtained after subtracting the ‘vacuum’ term.
After all this is done, we find a stress tensor of the form (1.4), with

F (M) = ~
γ3

4
√

2

N−1∑
n=1

3 + cos(2πnγ)
[1− cos(2πnγ)]3/2

, (2.3)

where the parameter
γ =

√
1− 8G3M (2.4)

is related to the deficit angle (1.2) as δ = 2π(1− γ).
We can now compute the gravitational effect of this stress-energy by coupling it to the

Einstein equations

Gµν + 1
R2

3
δµν = 8πG3〈Tµν〉 , (2.5)

and solving these perturbatively in G3~ = LP around the conical defect metric (1.1).
Analogous to the computation of quantum backreaction in conical AdS3 [19, 20], we consider
a static and circularly symmetric background with the metric ansatz in circle-radius gauge,
such that gφφ = r2,

ds2 = −A(r)dt2 +B(r)dr2 + r2dφ2 . (2.6)

The tt, rr and φφ components of the semi-classical Einstein equations (2.5) are, respectively,

− B′

2rB2 + 1
R2

3
= LPF (M)

r3 ,

A′

2rAB + 1
R2

3
= LPF (M)

r3 ,

2ABA′′ −AA′B′ −BA′2

4A2B2 + 1
R2

3
= −2LPF (M)

r3 .

(2.7)
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The general solution for A and B will depend on two integration constants, one of which
is set to unity upon reparameterizing the time coordinate. The quantum effects must be
regarded as a perturbation around the conical spacetime, so we must solve the equations as

A = 1− 8G3M −
r2

R2
3
− γtt(r) , (2.8)

B = 1
1− 8G3M − r2

R2
3
− γrr(r)

= 1
1− 8G3M − r2

R2
3

1 + γrr(r)
1− 8G3M − r2

R2
3

+O(LP )2

 ,

(2.9)

with γtt(r) and γrr(r) quantities of first order in LP . Solving the equations to this order gives

γtt = γrr = 2LPF (M)
r

. (2.10)

The fact that γtt > 0 indicates an attractive gravitational effect, which suggest that a black
hole horizon might form where γtt ≈ 1− 8G3M − r2/R2

3. Of course, the perturbative nature
of this solution does not entitle us to definitively reach this conclusion, but it is worth
noticing that if we write the backreacted metric in the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dφ2 , f(r) = 1− 8G3M −
r2

R2
3
− 2LPF (M)

r
, (2.11)

then the redshift factor f(r) has the same form as in the four-dimensional Schwarzschild-de
Sitter solution, which does indeed have a black hole horizon. The interpretation of terms,
however, is different: the 1/r term, which in four dimensions would be associated to the
mass, here is due to quantum corrections, while the three-dimensional mass is given by the
constant terms. This four-dimensional resemblance of the quantum-corrected geometry is
obscure in this setup, but it will become natural within the holographic construction.

3 De Sitter braneworld in AdS4

We turn now to the approach of braneworld holography. We shall start by reviewing the
construction of a de Sitter brane in an AdS4 bulk.

Its main features can be conveniently understood starting from the metric of the
Rindler-AdS4 spacetime, namely

ds2 = −
(
ρ2

`24
− 1

)
dt2R + dρ2

ρ2

`24
− 1

+ ρ2
(
dϑ2 + sinh2 ϑ dφ2

)
. (3.1)

Orbits of ∂tR are trajectories of uniform acceleration, and the surface ρ = `4 is a non-
compact, acceleration horizon, such that AdS4 is not globally covered in these coordinates.
With respect to the canonically normalized time tR, the horizon has a temperature

TR = 1
2π`4

. (3.2)

– 7 –
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Let us now rewrite this spacetime after changing spatial coordinates as

r̂2

R2
3

= ρ2 sinh2 ϑ

ρ2 cosh2 ϑ− `24
, cosh σ = ρ

`4
coshϑ , (3.3)

and (as a matter of mere convenience, which does not change the patches that are covered)
t

R3
= tR
`4
. (3.4)

The metric becomes

ds2 = `24dσ
2 + `24

R2
3

sinh2 σ

−(1− r̂2

R2
3

)
dt2 +

(
1− r̂2

R2
3

)−1

dr̂2 + r̂2dφ2

 . (3.5)

We see that sections of constant σ yield dS3 in static-patch coordinates with radius given
by `4 sinh σ. The acceleration horizon in (3.1) is now at r̂ = R3, which, as σ varies between
0 and ∞, traces out the cosmological horizons of the dS3 sections. That is, the bulk Rindler
horizon induces a cosmological horizon on the dS3 slices of constant σ.

The bulk acceleration horizon is non-compact since it extends all the way to the
asymptotic boundary at σ →∞. It will become a compact horizon if we make our universe
compact by introducing a positive-tension brane at

sinh σb = R3
`4
, (3.6)

which excludes all of the region σ > σb. If the brane action is purely tensional,

Ibrane = −τ
∫
d3x
√
−h , (3.7)

then the Israel junction conditions (i.e., the equations of motion of the brane) demand that
the tension be

τ = cosh σb
2πG4R3

= 1
2πG4

√
1
R2

3
+ 1
`24
. (3.8)

For later convenience, instead of the tension τ we will use the associated length scale

` = 1
2πG4τ

, (3.9)

such that cosh σb = R3/`. Eq. (3.8) becomes
1
`2

= 1
R2

3
+ 1
`24
. (3.10)

Observe that ` < `4, i.e., for fixed `4 the brane tension is bounded below in order for
R2

3 > 0. Branes with lower tension, ` = `4 and ` > `4, would have Minkowski3 and AdS3
worldvolumes, respectively.

The geometry induced on the brane is that of dS3 with radius R3, and the area of the
horizon in the bulk is now finite, with a corresponding finite entropy

S
(4)
BH = AH

4G4
= π`24

2G4
(cosh σb − 1) = π

2G4

R2
3`

R3 + `
. (3.11)

An illustration of the resulting spacetime is presented in figure 1.
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Figure 1. Bulk AdS4 with a de Sitter3 brane. The brane is represented as a (magenta) hyperboloid
(σ = σb in (3.5)), and gravity is induced on it from integrating out the UV degrees of freedom of the
CFT3 excluded by the brane (dashed magenta region). One performs surgery by gluing two copies
of the region σ < σb along the two-sided brane. The brane is following an accelerating trajectory,
and the bulk acceleration horizons give rise to cosmological horizons on the induced dS geometry.
The red dashed line is the bifurcation surface of the Rindler-AdS horizons. When the brane is
introduced, it becomes a compact surface of finite area (3.11).

Induced gravity theory. So far we are considering the spacetime and the brane within
it in a four-dimensional interpretation. However, in these braneworlds, a mode of the bulk
graviton is localized near the brane [21, 22], reproducing a three-dimensional theory of
gravity there; in addition, using holography, the remaining bulk graviton modes can be
described in terms of a dual three-dimensional CFT. As a result, the entire four-dimensional
setup admits a purely three-dimensional description as a classical gravitational theory
coupled to a quantum CFT.

The effective theory of gravity on the brane can be regarded as being induced by
integrating out the holographic UV degrees of freedom of the dual CFT3 down to an energy
cutoff of 1/` [23]. The derivation given in [6] for AdS3 branes is also valid for dS3 branes,
so we skip directly to the result of the integration, namely (see also [10, 24])

Iind = `4
8πG4

∫
d3x
√
−h

[ 4
`4

(1
`
− 1
`4

)
+ R̃+ `24

(3
8R̃

2 − R̃2
µν

)
+ . . .

]
, (3.12)

where g̃µν = hµν and R̃µν are the metric induced on the brane and its Ricci curvature.
From here we identify the effective three-dimensional Newton’s constant as

G3 ≡
G4
2`4

, (3.13)
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and the effective three-dimensional cosmological constant,

2
L2

3
≡ 4
`4

(1
`
− 1
`4

)
. (3.14)

The higher curvature terms in the action are multiplied by higher powers of `4, which plays
the role of the cutoff length scale of the effective three-dimensional theory. More precisely,
in order for the effective three-dimensional theory to be valid we must have

`4 � L3 , (3.15)

which, using (3.10), means that
` ∼ `4 � R3 . (3.16)

From (3.6) we see that this requires that the brane be close to the boundary, σb � 1. We
will often regard `/R3 as the small expansion parameter of the effective theory. Observe
that R3, which is defined as the physical curvature radius of the brane, is not exactly the
same as L3 due to the higher curvature terms. For small ` we find

1
L2

3
= 2
`24

(
`4
`
− 1

)
≈ 1
R2

3
− `2

4R4
3

+O
(
`4/R6

3

)
. (3.17)

The complete three-dimensional effective action I on the brane is the sum of the induced
gravity action Iind and the action ICFT of the boundary CFT3, determined holographically
by the bulk. Using (3.17), to leading order we have

I = 1
16πG3

∫
d3x
√
−h

[
R̃− 2

R2
3

+ `2
(3

8R̃
2 − R̃2

µν

)
+ . . .

]
+ ICFT , (3.18)

where the ellipsis denotes terms of order O(`4) and higher. Further, following [6], we
normalize the central charge c of the boundary CFT as8

c = `24
G4

⇒ 2cG3 = `4 ≈ `
(

1 + `2

2R2
3

+ 3
8
`4

R4
3

+ . . .

)
. (3.19)

Therefore, for fixed c, as ` → 0 gravity on the brane becomes weak (G3 → 0) such that
there is no backreaction due to the CFT. This limit looks singular from the viewpoint of
the bulk, since if we want to keep R3 finite then we must take `4 → 0. In the naive way
of taking this limit we are not only eliminating the backreaction, but removing the CFT3
altogether by removing the bulk. If instead we take the limit `4 → 0 while rescaling the bulk
metric by a factor `24, then the brane is pushed to the boundary and gravitational dynamics
on the brane is turned off, while still keeping a non-trivial state of the non-backreacting
CFT3. This limit is described in appendix C. Note also that, since the three-dimensional
Planck length is LP = G3 (with ~ = 1), we can write (3.19) as

` = 2cLP

(
1 +O

(
cLP
R3

)2
)
, (3.20)

which will often be useful.
8Here we are working in units where ~ = 1. To recover factors of ~, one need only replace c→ c~.
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According to the holographic dictionary, the induced metric on the brane solves the
semi-classical gravitational equations [6]

8πG3〈TCFT
αβ 〉= G̃αβ+hαβ

L2
3

(3.21)

+`2
[
4R̃ γ

α R̃βγ−
9
4 R̃R̃αβ−�R̃αβ+ 1

4∇α∇βR̃+ 1
2hαβ

(
13
8 R̃

2−3R̃2
γδ+ 1

2�R̃
)]

+. . . ,

where the CFT stress-energy tensor sources the effective three-dimensional gravity theory.
With quantum backreaction accounted for by 〈TCFT

αβ 〉, black hole solutions to this model
are quantum-corrected black holes [5], such that the classical dynamics of the bulk four-
dimensional Einstein theory encodes the quantum dynamics of the dual three-dimensional
effective theory.

4 Quantum Schwarzschild-de Sitter black hole

Now we introduce one of the main elements in this work: an exact solution to the bulk
theory that describes a black hole localized on a dS3 brane. According to our previous
discussion, its dual interpretation is as a black hole solution to the semiclassical Einstein
equations (1.6), with the backreaction included exactly, to leading order in the large-c
expansion of the quantum CFT3. Therefore, we can claim that the solution does describe a
quantum black hole in dS3.

Our discussion follows a similar analysis presented in [5] for an AdS3 brane, which led to
the quantum BTZ (qBTZ) black hole, but there are some key differences worth highlighting.

4.1 AdS4 C-metric

We begin with the following solution to Einstein’s equation with negative cosmological
constant, which is a particular case of the Plebanski-Demianski type-D solutions [25]

ds2 = `2

(`+ xr)2

[
−H(r)dt2 + dr2

H(r) + r2
(
dx2

G(x) +G(x)dφ2
)]

, (4.1)

where the metric functions H(r) and G(x) are given by

H(r) = 1− r2

R2
3
− µ`

r
, G(x) = 1− x2 − µx3 . (4.2)

Our conventions largely follow [6], however, we have selected κ = +1 and set `23 = −R2
3

such that the brane we introduce is a dS3 brane of radius R3.
Before introducing the brane, these solutions are well known to describe accelerating

black holes in AdS4 [26, 27]. The parameter µ > 0 would be interpreted as related to the
mass of the four-dimensional black hole, but we will see that for us the interpretation is
different. The parameter ` > 0 is the inverse of the acceleration of the black hole, A = 1/`,
but it is actually the same as the tension length we introduced before: the relation (3.10)
also holds when the bulk metric satisfies RAB = −(3/`24)gAB . The idea is that in our brane
construction the tension of the brane provides the acceleration of the black hole that is
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Figure 2. Left: AdS4 C-metric (4.1) with µ = 0, in (r, x) coordinates in a slice at t = 0 and constant
φ. Lines of constant x are blue arcs; lines of constant r are red arcs (full circles for 0 < r < `). The
thick blue circle x = 0 is where we place the dS3 brane; its interior is 0 < x ≤ 1, with x = 1 the φ
axis of rotation. The exterior region x < 0 is excluded in the braneworld construction. The vertical
red dashed line is the horizon at r = R3. Its intersection with the brane yields a dS3 cosmological
horizon. The coordinates only cover half of the disk, with the other half being obtained through
analytic continuation. Right: construction of black holes on a dS3 braneworld when µ > 0. The
dashed magenta region x < 0 is excluded. The black hole horizon and the cosmological horizon are
at constant r.

attached to it, and we take large enough tension that there is an acceleration horizon in
the bulk.9

The relation between our earlier brane construction and the metric (4.1) becomes
apparent if we consider the case when µ = 0 and perform the coordinate transformation

sinh σ = R3
`4

√
1− x2r2/R2

3

|1 + rx/`|
, r̂ = r

√
1− x2

1− x2r2/R2
3
. (4.3)

Then the metric (4.1) becomes the same as that of Rindler-AdS, eq. (3.5) (see the left
figure 2 for a representation of the (r, x) coordinates).

Each zero of the function G(x) corresponds to an axis for the rotation symmetry, with
possible conical singularities lying there. Particularly, for a range of values of µ, there will
be three distinct zeros to G(x), denoted by {x0, x1, x2}, with each zero leading to a distinct
conical singularity. One of the conical singularities can be removed via the identification,

φ ∼ φ+ 4π
|G′(xi)|

, (4.4)

where xi is one of the select zeros. Once the period of φ has been fixed in this way, say at
x = x1, then φ cannot be readjusted to eliminate the remaining singularities at x = x0, x2.

9The regimes where the tension and the acceleration are small, without an acceleration horizon, are
appropriate for AdS3 branes, as in [6, 27]. Minkowski branes are obtained in the critical case [26].
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Not all of these zeroes of G(x) will be relevant for our discussion, though. We are
interested in introducing a brane, which in the case µ = 0 of empty AdS4 is at (3.6), and in
the coordinates of (4.1) corresponds to x = 0. A feature of the AdS4 C-metric that makes
it especially suitable for braneworld constructions is that, when µ > 0, the surface x = 0
also satisfies the Israel junction conditions for a brane with tension given by (3.9). Thus,
the braneworld we seek is obtained by placing such a brane at x = 0, and keeping only the

x > 0 (4.5)

portion of the bulk geometry. The metric induced on the brane located at x = 0 will be

ds2|x=0 = −
(

1− µ`

r
− r2

R2
3

)
dt2 +

(
1− µ`

r
− r2

R2
3

)−1

dr2 + r2dφ2 , (4.6)

which is strongly reminiscent of the quantum-backreacted geometry (2.11) that we have
encountered before. However, we note two differences. The first one is very significant: the
solution (4.6) is exact, so, unlike in (2.11), the term ∝ 1/r in the metric coefficients does
not need to be treated as a perturbative correction (even though it may be small). The
second one is that it is unclear what are the physical parameters of the solution in (4.6):
what is the three-dimensional mass M , and how is µ related to the quantum corrections
LPF (M)? For this purpose, we must analyze the global properties of the bulk solution.

Bulk regularity. Black holes arise in the AdS4 C-metric (4.1) when µ 6= 0 (see the right
figure 2 and figure 3). Whether we find a black hole horizon depends on the nature of the
roots of the functions H(r) and G(x), where the roots of H(r) correspond to the Killing
horizons generated by the time translation Killing vector ∂t. We desire for positive roots of
H(r), if we are to describe physically acceptable horizons. Meanwhile, real roots of G(x)
correspond to symmetry axes of the Killing vector ∂φ, and they characterize the geometry
of the horizon in the bulk. For instance, a surface of constant r with 0 ≤ x ≤ x1 is a
(distorted) half-sphere with disk topology.

Our strategy is to first consider the roots of G(x), where we look for at least one real
root. This can be established by specifying a range for the parameter µ [26, 27]. When
µ > 0 there will be one positive root, denoted by x1, and we restrict the range of x such
that 0 ≤ x ≤ x1. In this way, there is a single conical singularity at x = x1, which may
be removed by a proper identification of the period for φ, while the remaining conical
singularities simply will be absent via the spacetime surgery of introducing a brane at x = 0.
Following [6], it behooves us to consider the root x1 as a parameter, while µ is “derived”.
That is, from G(x1) = 0 we have

µ = 1− x2
1

x3
1

, (4.7)

with x1 ∈ (0, 1]. We see µ will monotonically decrease from +∞ to zero, where µ = 0
coincides with x1 = 1. Later we will see that when ` 6= 0 the allowed value of µ will be
limited above if we want to have a regular black hole horizon.

The conical singularity at x = x1 is removed via the identification

φ ∼ φ+ ∆φ , ∆φ = 4π
|G′(x1)| = 4πx1

3− x2
1
. (4.8)
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Figure 3. Illustration of the bulk braneworld from the AdS4 C-metric. The brane is placed at
x = 0 (magenta hyperboloid surface). The black lines denote r = 0 and depict the worldlines of the
accelerating black holes described by the C-metric. The AdS interior of the hyperboloid is kept, and
the double-sided brane is glued to another copy of it.

We see for the range of x1, the function G′(x1) = −3−x2
1

x1
< 0, and that ∆φ is independent

of ` and R3. Moreover, ∆φ grows monotonically from 0 to 2π.

4.2 Black hole on the brane

We now understand that, although the metric (4.6) has the form of asymptotically dS3
space, the φ coordinate is not identified with 2π but rather ∆φ (4.8). Then there is a
conical deficit angle which signals the effect of a mass. To make it manifest, we change to
canonical coordinates (t, r, φ)→ (t̄, r̄, φ̄) via

t = ηt̄ , r = r̄

η
, φ = ηφ̄ , (4.9)

where
η ≡ ∆φ

2π = 2x1
3− x2

1
(4.10)

and

ds2|x=0 = −
(
η2 − µ`η3

r̄
− r̄2

R2
3

)
dt̄2 +

(
η2 − µ`η3

r̄
− r̄2

R2
3

)−1

dr̄2 + r̄2dφ̄2 . (4.11)

Since now φ̄ ∼ φ̄+ 2π, we can identify η2 with 1− 8G3M and thus obtain the mass of the
solution. Actually, it is convenient to perform the identification as

8G3M = 1− η2 = 1− 4x2
1

(3− x2
1)2 , G3 ≡

`4
`
G3 , (4.12)

where we have introduced the renormalized Newton’s constant G3, following [6]. This
takes into account the modifications in the definition of the mass due to higher curvature
corrections in the effective gravitational theory, which are then encoded in a ‘renormalized’
Newton’s constant G3 [28].10

10We point out the relation G3 ≡ `4
`
G3 is assumed to hold for all orders in ` and may be interpreted as a

resummation of higher curvature corrections to the mass at all orders in `.
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Figure 4. Penrose diagram of a static, neutral quantum black hole in dS3.

By virtue of (4.7) and (4.8), we can respectively replace µ and η with rational polyno-
mials of x1. Explicitly, the function H(r̄) becomes

H (r̄) = 4x2
1(

3− x2
1
)2 − 8`

r̄

1− x2
1(

3− x2
1
)3 − r̄2

R2
3
. (4.13)

We have related the first term to a mass M and a renormalized Newton’s constant G3; the
additional `/r̄ term characterizes quantum corrections to the black hole. It vanishes when
`→ 0, which is the limit in which the gravitational effects of the CFT are suppressed, and
indeed we recover a classical conical defect in dS3. For finite `, however, the backreaction
leads to a 1/r̄ (quantum) correction to SdS3. Given the relation between x1 andM in (4.12),
we naturally interpret the second term in H(r̄) as a function of the mass F (M),

F (M) ≡ 8
(
1− x2

1
)(

3− x2
1
)3 . (4.14)

Altogether then, we recast the metric on the brane (4.11) as

ds2|x=0 = −H (r̄) dt̄2 +H−1 (r̄) dr̄2 + r̄2dφ̄2 , H (r̄) = 1− 8G3M −
`F (M)
r̄

− r̄2

R2
3
.

(4.15)

4.3 Nariai limit

When µ 6= 0, the metric function H(r) (4.2) takes the same form as the blackening factor
of a four-dimensional Schwarzschild-de Sitter black hole [29]. Thus, we have a (smaller)
black hole horizon r = rh aside from the cosmological horizon r = rc, each as a positive
root of H(r), with rh < rc. Consequently, setting H(rh) = H(rc) = 0, we may express the
de Sitter radius R3 and µ` entirely in terms of horizon radii rh and rc,

R2
3 = r3

c − r3
h

rc − rh
= r2

c + r2
h + rcrh , µ` = rhr

3
c − r3

hrc
r3
c − r3

h

= rcrh(rc + rh)
r2
c + r2

h + rhrc
. (4.16)
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rh,rc

Figure 5. Plot of the horizon radii rh (blue) and rc (red) as a function of µ/µN. The black hole
horizon becomes larger as µ grows, while the cosmological horizon shrinks.

Note the form factor H(r) factorizes in terms of rc and rh

H (r) = 1
R2

3r

(
rR2

3 − r3 − µ`R2
3

)
= 1
R2

3r
(r − rh) (rc − r) (r + rc + rh) . (4.17)

In the limit rh → 0, we recover the pure dS3 slicing (coinciding with µ = 0). Moreover, note
that the curvature singularity at r = 0 is hidden behind the induced black hole horizon (see
the Penrose diagram in figure 4).

As µ` increases, the size of the black hole will increase until eventually it saturates the
size of the cosmological horizon, the well-known Nariai limit [11, 12] of the SdS black hole,
where rc = rh ≡ rN, the Nariai radius. The resulting mass of the black hole forms an upper
bound on (µ`), denoted (µ`)N, to avoid a naked singularity. By setting H(rN) = H ′(rN) = 0,
we find the Nariai radius rN and maximum size of (µ`)N

rN = 1√
3
R3 , (µ`)N = 2

3rN = 2
3
√

3
R3 . (4.18)

Therefore, when ` 6= 0 the Nariai limit places an upper bound on µ.
Note that the relation (4.16) may be inverted to find closed form expressions of rh,c in

terms of µ and rN (see, e.g., [30, 31])

rh = rN(cosω −
√

3 sinω) , rc = rN(cosω +
√

3 sinω) , with ω ≡ 1
3arccos

(
µ

µN

)
.

(4.19)
This relation will prove useful for plotting, see figure 5. Moreover, we see that the horizon
radii are proportional to rN and hence to `, which is much larger than the Planck radius
when R3 � `, cf. (3.19) (see also below).

Thus, in the limit µ`→ (µ`)N, the function H(r) will have a double root at rN. The
region between these two roots describes the finite Nariai black hole solution.11 However,
we cannot use coordinates (t, r) to describe the Nariai metric since H(r) vanishes in the

11See [32, 33] for previous studies of the Nariai-like limit of the C-metric.
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region between the two horizons. To find the correct geometry, we follow [34] and introduce
dimensionful coordinates (τ, ρ) and a real, positive parameter β

τ = εt , ρ = r − rh
ε

, β = rc − rh
ε

, (4.20)

where ε is a dimensionful parameter quantifying the distance between radii rc and rh.
Taking the limit rh, rc → rN and ε→ 0, one finds the Nariai limit of the geometry (4.1),

ds2 = `2

(`+ xrN)2

[
−ρ(β − ρ)

r2
N

dτ2 + r2
N

dρ2

ρ(β − ρ) + r2
N

(
dx2

G(x) +G(x)dφ2
)]

. (4.21)

In these coordinates, the black hole horizon lives at ρ = 0 while the cosmological horizon is
at ρ = β. Further, performing the coordinate transformation

τ̃ = β

2rN
τ , ρ̃ = 2rN

β
(ρ− β/2) (4.22)

brings the line element (4.21) to the form

ds2 = `2

(`+ xrN)2

−(1− ρ̃2

r2
N

)
dτ̃2 +

(
1− ρ̃2

r2
N

)−1

dρ̃2 + r2
N

(
dx2

G(x) +G(x)dφ2
) .
(4.23)

The (τ̃ , ρ̃) geometry is two-dimensional de Sitter space with length scale rN, while the (x, φ)
sector describes (distorted) half-spheres of curvature radius rN.

4.4 Solution parameters and validity range: 4D and 3D views

Let us pause for a moment to compare the two different ways of viewing the solution and the
three parameters that characterize it. From the perspective of the bulk, these are naturally
taken to be

`4 , ` , µ (4.24)

corresponding to the bulk cosmological radius, the brane tension, and the bulk black hole
parameter. In the three-dimensional interpretation it is more natural to take them to be

R3 , cG3 , G3M (4.25)

namely, the dS3 radius, the gravitational backreaction parameter, and the three-dimensional
black hole mass. For convenience, we summarize here the relations between the two sets as

`4 = 2cG3 , or ` = 2cG3
(
1 +O(cG3/R3)2

)
, (4.26)

1
`2
− 1
`24

= 1
R2

3
, (4.27)

and
µ = 1− 1− x2

1
x3

1
, 8G3M = 1− 4x2

1(
3− x2

1
)2 . (4.28)
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The first relation is also given expanded for small backreaction cG3/R3 � 1. The last one
is in parametric form. The ‘renormalized’ Newton’s constant is

G3 = G4
2` = `4

`
G3 = G3 +O(cG3/R3)2 . (4.29)

Bear in mind, though, that the Newton constants, in three or four dimensions, do not enter
as additional independent parameters of the solutions.

As we mentioned above, the effective theory expansion (3.12) indicates that the cutoff
length scale of the three-dimensional effective theory is `4, i.e., cLP . When there is a large
number of quantum fields, c� 1, this length scale is much larger than the quantum gravity
scale LP . In other words, the cutoff energy is much lower than the naive one, a phenomenon
already noted in [5] in the context of braneworld holography, and which is well known in
more generality [35]. The black holes that we have constructed have a size ∝ cLP , and
their length scales never acquire values much larger than cLP , e.g., F (M) is never very
large. Thus, in principle they may be subject to threshold effects of the effective theory.

On the other hand, from the bulk viewpoint there is no problem in considering black
holes with sizes smaller than `4 — only that, since they involve sub-AdS scales, they are
harder to understand from the dual CFT viewpoint. Our viewpoint in this article is that
any AdS space can be viewed as a definition of a cutoff CFT. This does not guarantee
the existence of its ultraviolet completion, but as long as the only degrees of freedom
that are added at the cutoff scale are the KK graviton modes, then our black holes are
accurately described by the bulk solution.12 The classical bulk description is reliable as
long as the black holes are larger than the four-dimensional Planck length, which is the
case when c� 1.

With these caveats in mind, we can regard our black holes as valid solutions of the
quantum backreaction problem.

4.5 Backreaction and quantum black holes

With the metric (4.15) in hand, we can, in principle, systematically compute the renormalized
stress-tensor to all orders in ` using the right-hand side of the equations of motion (3.21).
To do this, we use the expansion of length scales (3.17) and perturbatively expand 〈TCFT

αβ 〉
in powers of `2, such that

〈TCFT
αβ 〉 = 〈TCFT

αβ 〉0 + `2〈TCFT
αβ 〉2 + . . . . (4.30)

The analysis can be piggy-backed on the one in AdS3 via `3 → iR3, so we refer to [6] for
details. The result is

〈Tαβ〉0 = c

8π
F (M)
r̄3 diag(1, 1,−2) , (4.31)

12See [5] for a more extensive discussion.
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where we have substituted ` = 2cG3. This clearly has zero trace. With a little more work,
the stress tensor at O(`2) is

〈Tαβ〉2 = `

16πG3

F (M)
r̄3

(
− 1

2R2
3
diag(1,−11, 10)− 24G3M

r̄2 diag(3, 1,−4)

+ `F (M)
2r̄3 diag(−29,−17, 43)

)
.

(4.32)

This O(`2) contribution 〈Tαβ〉2 has a non-zero trace, thus breaking the conformal symmetry
due to the cutoff `.

We could in principle continue this calculation and derive higher-order contributions to
〈TCFT
αβ 〉, simply by expanding the induced action to higher orders in `. This is a distinct

technical advantage over the more standard approach carried out in section 2. Comparing
to [6], we see this is related to the backreaction on a quantum BTZ black hole background
via the Wick rotation `3 → iR3.

In the limit `→ 0, the metric (4.15) becomes the standard (no black hole) Schwarzschild-
de Sitter solution in three dimensions. Thus, given the above discussion, for ` > 0, it is
natural to interpret (4.15) as a quantum black hole in three-dimensional de Sitter space,
namely, the quantum Schwarzschild-de Sitter solution (qSdS).

There are three special limits of the qSdS solution to consider. One is the Nariai limit,
which we will describe in more detail momentarily. To describe the other two limits, note
that µ and ` are technically independent parameters. This leads to the first important limit
of the qSdS solution. Specifically, from the definition for µ (4.7), recall µ = 0 implies x1 = 1.
Equivalently, via (4.12) and (4.14), x1 = 1 corresponds with M = 0 and F (M) = 0 on the
brane, respectively. Hence µ = 0 removes the O(1/r) term from the blackening factor along
with the black hole horizon. Therefore, µ = 0 (or x1 = 1) yields the three-dimensional
quantum de Sitter spacetime (qdS3), accounting for the backreaction of quantum fields
outside of the cosmological horizon when ` 6= 0. Lastly, in the infinite R3 limit, the O(r2/R2

3)
in the blackening factor is negligible, leading to a quantum Schwarzschild black hole. In the
next section we will be more careful with this limit, where we see small qSdS black holes
(with R3 � rh) behave thermodynamically like a flat Schwarzschild solution.

Comparing 〈Tαβ〉. The renormalized stress-energy tensor for the non-backreacted con-
formal fields turns out to have the form of (1.4), whether we obtain it using holography
or solving the quantum theory of a free conformal scalar in a conical geometry. Even
though the two methods of calculation are completely different, they only differ in the
mass dependence of the function F (M), which is actually expected since each approach has
different field content — and actually, the shapes of F (M) do not differ strongly, as we can
see in figure 6.

We can understand that in both cases 〈Tαβ〉 ∝ 1/r3. This behavior is natural given
the scale invariance of the system, but it is not automatically dictated by it, since in a
dS3 geometry the stress tensor could, in addition to depending on G3M , also depend on
R3/r. However, as shown in [7], the stress tensor for a conformal field in conical dS3 can be
obtained, by a Weyl transformation, from the stress tensor in conical Minkowski spacetime,

– 19 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
3

0.0 0.2 0.4 0.6 0.8 1.0
83M0.00

0.05

0.10

0.15

0.20

0.25

0.30

F(M)

0.0 0.2 0.4 0.6 0.8 1.0
8G3M0.000

0.005

0.010

0.015

0.020

F(M)

Figure 6. Left: form factor F (M) computed holographically. When backreaction is present, the
upper bound in the mass, set by the Nariai limit, is lower. Right: F (M) found from renormalized
stress tensor of a single conformal scalar in conical dS3. For comparison, the holographic result must
be multiplied by the central charge c� 1.

and in the latter case, conformal symmetry does dictate the 1/r3 dependence. Observe that
this radial dependence of the stress tensor gives rise to the 1/r corrections in the metric.

The stress tensors also have the same tensorial structure diag(1, 1,−2). Conformal
invariance requires tracelessness, but this would still allow for another independent tensor
structure, e.g., diag(−2, 1, 1) (which would correspond to a thermal state). The agreement
between our holographic and free field calculations simply reflects that in both cases the
fields have transparent boundary conditions. For free fields, this was an explicit choice we
made in (2.2), while these conditions are naturally selected in the holographic setup, since
bulk fluctuations (dual to conformal field excitations) can freely travel in the bulk.

Nariai limit of the qSdS solution. A chief difference between the quantum BTZ [6]
and qSdS solutions is that the latter has both a cosmological and black hole horizon. This is
also in contrast to the classical three-dimensional SdS solution, which only has a cosmological
horizon. Further, as we reviewed in the bulk geometry, there is a Nariai limit (4.18) for
which the black hole and cosmological horizons coincide, leading to the Nariai geometry
of the AdS4 C-metric (4.23). This geometry is also imprinted on the brane, such that the
qSdS system has a well-defined Nariai limit. Following the same steps leading to (4.23),
we can likewise find the Nariai limit of the quantum SdS black hole (4.15). Specifically,
one finds

ds2|x=0 = −
(

1− ρ̃2

r̄2
N

)
dτ̃2 +

(
1− ρ̃2

r̄2
N

)−1

dρ̃2 + r̄2
Ndφ̄

2 , (4.33)

where τ̃ = β̄
2r̄N

τ and ρ̃→ ηρ̃. The geometry describes dS2 × S1, where the curvature radii
of dS2 and the circle S1 are r̄N.

As is well known for the classical four-dimensional SdS black hole, the Nariai limit of the
qSdS solution yields an upper bound on the mass, denotedMN. The mass can be determined
as follows. First invert the definition of µ (4.7) to express x1(µ). Upon substituting x1(µ)
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into the definition of the mass (4.12), we have M(µ). The Nariai mass is then MN = M(µN),
where µN = 2

3
√

3(R3/`). While the resulting expression is complicated, it is a monotonically
increasing function which is consistent with the range (1.8), i.e., MN < 1/(8G3), which
comes from demanding that the conical deficit is less than 2π. Precisely, for R3/` → ∞
(with R3 > `), then the function MN(R3/`) is approximated by,

8G3MN ≈ 1− 24/3

3
1

(R3/`)2/3 + . . . , (4.34)

where the ellipsis corresponds to higher inverse powers of (R3/`). Moreover, in the limit
R3 ≈ `, we find a non-zero lower bound on the Nariai mass,

8G3MN ≈
11
27 + 160

729(R3/`− 1) + . . . . (4.35)

Combined, the Nariai mass lies in the range

11
27 < 8G3MN < 1 . (4.36)

Thus, the Nariai boundM < MN is more stringent than the conical defect boundM < 1/8G3
for finite R3/`, coinciding only when R3/` → ∞. Consequently, due to gravitational
quantum backreaction there is a limit on the amount of mass that one can put in dS3, which
does not saturate the maximum conical deficit angle. Since this is only due to the existence
of a Nariai limit on the black hole solutions, it is likely to be present for non-holographic
quantum black holes. However, the specific value of the mass bound depends on the details
of the quantum theory.

Lastly, the Nariai solution places a bound on the quantum backreaction due to the CFT
for which a quantum black hole in dS3 exists. Particularly, for non-vanishing backreaction
there exists a maximum value of F (M) (or equivalently µ) via (4.18), and thus a maximum
value of ∆φ. If the deficit angle grows too large, then the backreaction creates a black hole
too large to fit inside dS3, such that the mass exceeds the Nariai bound. For such deficits,
the quantum SdS solution no longer exists, but rather a naked conical defect spacetime
with an unexcited CFT. This means that in figure 6 the curve for F (M) only extends in
mass up to the Nariai bound, which depends on the backreaction parameter.

5 Thermodynamics of the quantum SdS black hole

Above we found a black hole solution on the brane x = 0, which, from the brane perspective,
is naturally interpreted as a quantum dS3 black hole, whose black hole horizon is generated
due to the presence of a backreacting CFT. The form of the metric is reminiscent of the
classical four-dimensional SdS solution, owing to its origin as a black hole in a classical
four-dimensional bulk.

Here we further our analysis of the qSdS solution by studying its horizon thermody-
namics. In a certain respect, the qSdS thermodynamics is richer than the thermodynamics
of the quantum BTZ solution since the qSdS solution has both a cosmological and black
hole horizon. Consequently, we will find an entropy and temperature associated with each
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horizon, and explore the interplay between each system. The analysis below not only
provides an important case study of the thermodynamics of quantum de Sitter black holes,
it lends another non-trivial consistency check of braneworld holography.

Mass. As discussed above, the system has three parameters, and once we fix a scale, there
only remain two dimensionless parameters to characterize it. It is natural to take them as
measuring the black hole size and the backreaction length scale ` in units of the dS3 radius.
Thus, we follow [6, 27] and introduce

z ≡ R3
r+x1

, (5.1)

and
ν ≡ `

R3
, (5.2)

as convenient dimensionless parameters. The latter obviously measures the strength of
backreaction for fixed R3, while z, which is real and non-negative, is conveniently defined
in terms of r = r+, a positive real root of H(r) for a horizon, and x1, which characterizes
the pole of the horizon along the bulk symmetry axis. We emphasize r+ represents either
the black hole horizon rh or the cosmological horizon rc. Correspondingly, we often write
zh,c = R3

rh,cx1
.

Two limits worth noting are: the limit of empty quantum de Sitter, which corresponds
to µ = 0, i.e., x1 = 1 and r+ = R3, so we recover it for z = 1; and the zero-backreaction
limit, `→ 0, in which there is no black hole, i.e., rh = 0, and zh → +∞.

We can now express x1, µ, and r+ solely in terms of parameters (5.1) and (5.2). Solving
H(r+) = 0 for x2

1 yields

x2
1 = 1

z2
1 + νz3

1 + νz
. (5.3)

Rearranging z (5.1), squaring and substituting in x2
1 (5.3) leads to

r2
+ = R2

3
1 + νz

1 + νz3 . (5.4)

Similarly, from µ = (1− x2
1)/x3

1, we find

µx1 = z2 − 1
1 + νz3 . (5.5)

Notice the quantities (5.3), (5.4), and (5.5) are the Wick rotated counterparts of the qBTZ
solution [6].13 Lastly, in terms of ν and z, the relation between the bare Newton’s constants
G4 and G3 is

G4 = 2`4G3 = 2G3`√
1− ν2

, (5.6)

while the renormalized Newton’s constant (4.12) is

G3 = `4
`
G3 = G3√

1− ν2
. (5.7)

13Specifically, with `2
3 → −R2

3, we have z2 → −z2, ν2 → −ν2 and νz → νz.
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Putting together the relations (5.3), (5.4), (5.5), the mass M (4.12) is recast as

M = 1
8G3

√
1− ν2

(
z2 − 1

) (
9z2 − 1 + 8νz3)

(3z2 − 1 + 2νz3)2 . (5.8)

Further, the function F (M) (4.14) in terms of z and ν is

F (M) = 8z4 (z2 − 1
)

(1 + νz)2

(3z2 − 1 + 2νz3)3 . (5.9)

In the quantum de Sitter limit, where z = 1, we have M = 0 and F (M) = 0, as
expected. It is also worth pointing out that the mass M will vanish at large z,

lim
z→∞

M ≈ 1
4G3νz

+O
(
1/z2

)
. (5.10)

For fixed x1 6= 1 and for z = zh, it is natural to think of the large zh limit as a small quantum
Schwarzschild black hole, where R3 � rhx1. We will revisit this special case momentarily.

There are two additional limits of the mass (5.8) worth emphasizing. First, in the limit
of vanishing backreaction, ν → 0, the mass M simplifies to

lim
ν→0

M = 1
8G3

(
z2 − 1

) (
9z2 − 1

)
(3z2 − 1)2 . (5.11)

We will utilize this relation below shortly. Second, recall that the black hole has a Nariai
limit (4.33), where (µ`) attains a maximum (4.18), such that

µN = 2
3
√

3
1
ν
. (5.12)

Since in the Nariai limit, rh = rc = rN, we can introduce a zN,

zN = R3
rNxN

1
=
√

3
xN

1
, (5.13)

where xN
1 is the particular value of x1 in the Nariai limit, found by solving µN = (1−x2

1)/x3
1

for x1. For arbitrary ν, there will generally be two complex solutions of x1 and one real
solution, which for small ν takes the form

xN
1 =
√

3
(
ν

2

)1/3
−
√

3
2 ν +O

(
ν5/3

)
, (5.14)

and vanishes in the limit ν → 0. The mass of the Nariai solution MN is therefore defined
by MN ≡M |z=zN . Further, in the limit ν → 0, we find MN = 1

8G3
, which is equivalent to

the large-z limit of (5.11).

Temperature. From the brane perspective, the black hole and cosmological hori-
zons will appear to emit radiation at the Hawking and Gibbons-Hawking temperatures
Th, Tc, respectively,

Th,c = κh,c
2π , (5.15)

– 23 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
3

where κh,c are the associated surface gravities, defined by ξµ∇µξν = κξν , where ξ is the
time-translation Killing vector, ξ = ∂t̄. Thus, in terms of ν and z,

Th,c = |H
′(r̄+)|
4π = 1

4π

∣∣∣∣µ`η3

r̄2
+
− 2r̄+

R2
3

∣∣∣∣ = z

2πR3

|2 + 3νz − νz3|
3z2 − 1 + 2νz3 . (5.16)

More explicitly, the temperatures Th and Tc are given by

Th = − zh
2πR3

2 + 3νzh − νz3
h

3z2
h − 1 + 2νz3

h

, Tc = zc
2πR3

2 + 3νzc − νz3
c

3z2
c − 1 + 2νz3

c

. (5.17)

In the limit ν → 0, the black hole temperature vanishes, since zh blows up in that case.
The cosmological horizon temperature reduce in that limit to

lim
ν→0

Tc = 1
πR3

zc
3z2
c − 1 . (5.18)

Further, for non-zero ν 6= 0, we see the cosmological horizon of the quantum de Sitter solution
is simply the Gibbons-Hawking temperature, Tc|z=1 = 1/(2πR3), i.e., the backreaction does
not alter the temperature in qdS3.

Since rh < rc, we have zc < zh, and, consequently, the black hole horizon is hotter than
the cosmological horizon Th > Tc. Thus, as usual for Schwarzschild-de Sitter spacetimes,
the black hole and cosmological horizons are not in thermal equilibrium. Only in the Nariai
limit do the temperatures agree with each other, where the system is in thermal equilibrium.

The Nariai limit, however, is subtle because the surface gravities associated with the
Killing vector ∂t̄ vanish in this limit. To see this, note that the surface gravities κh and κc
for the normalization ξ = ∂t̄ are

κh = 1
2H
′ (r̄h) = 1

2r̄hr2
N

(
r̄2

N − r̄2
h

)
, κc = −1

2H
′ (r̄c) = − 1

2r̄cr2
N

(
r̄2

N − r̄2
c

)
, (5.19)

which vanish in the limit r̄h,c → r̄N. Consequently, Th,c → 0 as r̄h,c → r̄N. If, however,
the Killing vector is normalized as ξ2 = −1 at the radius r̄0 where the blackening factor
H(r̄) obtains a maximum, then the surface gravities are non-vanishing in the Nariai
limit [36]. Specifically,

H ′(r̄0) = 0 → r̄3
0 = 1

2`F (M)R2
3 = r̄+

2
(
3r̄2

N − r̄2
+

)
. (5.20)

Then,

H(r̄0) = 1− 8G3M −
`F (M)
r̄0

− r̄0
2

R2
3

= 1
r2

N

(
r̄2

N − r̄2
0

)
. (5.21)

The new temperature T̄ , which was introduced in [36], is

T̄ = T√
H(r̄0)

. (5.22)

In terms of the horizon radii r̄h,c, we have

T̄h,c = ∓ 1
4πrNr̄h,c

r̄2
N − r̄2

h√
r̄2

N −
(
r̄h,c

2 (3r̄2
N − r̄2

h,c)
)2/3

, (5.23)
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Figure 7. Plot of the temperature as a function of mass M for ν = 1/3. The blue and red curves
correspond to temperatures Th and Tc, respectively, while the magenta and orange curves correspond
to T̄h and T̄c, respectively. The green curve represents the temperature of the Schwarzschild limit,
where R3 � rh, coinciding with Th for small mass qSdS black holes.

where the minus sign corresponds to the black hole temperature, and the plus sign to the
cosmological horizon temperature. Carefully taking the limit r̄N ≈ r̄h,c, the temperature
T̄h,c of both horizons approaches the Nariai temperature TN = 1/(2πrN) (see appendix B
in [14]). The expression for T̄ in terms of z is cumbersome, however, in the small ν limit
we have

T̄ |ν≈0 = 1
2πR3

1 + 3
2

(
z(z2 − 1)ν

2

)2/3

+O(ν) + . . .

 , (5.24)

while for z = 1, T̄ = 1/(2πR3), the Gibbons-Hawking temperature of dS3, as expected.
In figure 7 we plot the temperatures Tc, Th, and T̄ as a function of mass M . The

behavior of the temperatures are essentially identical to that of classical four-dimensional
Schwarzschild-de Sitter black holes (see, for instance figure 2 of [31]). In particular, notice
for small mass M black holes, the black hole temperature diverges, such that it may be
approximated by the temperature of a (quantum) Schwarzschild black hole,

TSchwarz = 1
2πR3

νz2
h

(
z2
h − 1

)(
−1 + 3z2

h + 2νz3
h

) , (5.25)

which follows from dropping the second term in the first equality of (5.16), using the
approximation R3 � rh. As seen in figure 7, the black hole temperature Th of the qSdS
solution approaches the Schwarzschild temperature (5.25) at small mass. Collectively, our
observations indicate the three-dimensional quantum Schwarzschild-de Sitter system, at
least thermodynamically, behaves like a four-dimensional classical SdS spacetime, reflecting
the holographic character of our setup. We will see additional evidence of this below.

Entropy. For µ 6= 0, the bulk will have two horizons, rh and rc. The entropy S(4)
BH(r+) of

either bulk horizon is given by the (four-dimensional) Bekenstein-Hawking entropy-area

– 25 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
3

relation

S
(4)
BH = Area(r+)

4G4
= 2

4G4

∫ 2πη

0
dφ

∫ x1

0
dxr2

+
`2

(`+ xr+)2

= πR3
G3

z
√

1− ν2

3z2 − 1 + 2νz3 ,

(5.26)

where in the final line we used that G4 is related to G3 via (5.6). Again, here it is understood
z represents either zh or zc, such that the entropy is localized around each horizon.

From the brane perspective, this quantity is interpreted as the sum of the gravitational
entropy plus the entanglement entropy due to the backreacting CFT, i.e., the three-
dimensional generalized entropy S(3)

gen,

S
(4)
BH = S(3)

gen . (5.27)

Note that S(3)
gen is valid to all orders in ν since it is defined as a bulk magnitude, which is

exact, up to bulk quantum corrections. In the limit z = 1, we have the generalized entropy
of the quantum de Sitter solution,

S(3)
gen
∣∣
z=1 = 2πR3

4G3

√
1− ν2

1 + ν
, (5.28)

which is the same as (3.11), and is proportional to the Gibbons-Hawking entropy of the
dS3 cosmological horizon. As a generalized entropy, this quantity represents the sum of
gravitational entropy and entanglement entropy due to the CFT living outside of the
cosmological horizon.

Further, the generalized entropy (5.27) is related to the three-dimensional Bekenstein-
Hawking entropy S(3)

BH of the horizon(s) on the brane as

S(3)
gen =

√
1− ν2

1 + νz
S

(3)
BH , (5.29)

where S(3)
BH = 2πr+η

4G3
. We see S(3)

BH is influenced by the backreaction, thus containing semi-
classical quantum effects. In the limit of vanishing backreaction, the black hole horizon
disappears and for the cosmological horizon we find S

(3)
gen,c and S

(3)
BH,c coincide and are

proportional to the temperature Tc (5.18)

lim
ν→0

S(3)
gen,c = lim

ν→0
S

(3)
BH,c = πR3

G3

zc
3z2
c − 1 = π2R2

3
G3

lim
ν→0

Tc = πR3
2G3

√
1− 8G3M , (5.30)

where to arrive at the last equality we used that the temperature of the cosmological horizon
with conical deficit is Tc|ν=0 = 1

2πR3

√
1− 8G3M . We recognize the entropy in this limit as

the entropy of the classical three-dimensional Schwarzschild-de Sitter solution [37]

SSdS3 = 2πrSdS3
c

4G3
, (5.31)
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Figure 8. Plot of S(3)
gen (red), S(3)

BH (blue) and SSdS3 (green) as a function of mass M . The dashed
curves refer to black hole entropies Sh, while the solid curves denote the entropies associated with
the cosmological horizon Sc. The backreaction parameter is ν = 1/3 (left) and ν = 1/10 (right),
and G3 = R3 = 1. As ν → 0, all solid curves collapse to SSdS3 , while the dashed curves go to zero.

with rSdS3
c = R3

√
1− 8G3M . Finally, in the quantum de Sitter limit (z = 1), the area

entropy is simply equal to the Gibbons-Hawking entropy

S
(3)
BH,c|z=1 = 2πR3

4G3
= 2πR3

4G3

1√
1− ν2

, (5.32)

where G3 is the renormalized Newton’s constant. Therefore, the Gibbons-Hawking entropy
of qdS3 scales like the classical entropy of dS3. A plot of each of these entropies S(3)

gen, S
(3)
BH,

and SSdS3 is given in figure 8. We observe that the sum of the black hole and cosmological
horizon entropies S(3)

gen,h and S(3)
gen,c produces an approximately linear curve always equal

to or less than the entropy of the quantum de Sitter solution (5.28), see figure 9. This is
reminiscent of the observation in [31, 38] for the classical SdS solution that the sum of the
horizon entropies is approximately a linear function of the mass. We will return to this
point in section 6, as it will prove useful when computing the nucleation rate of quantum
dS black holes.

We can read off the leading order effect the CFT has on the Bekenstein-Hawking
entropy by computing the difference between S(3)

BH and SSdS3 ,

S
(3)
BH − SSdS3 ≈

νz
(
z2 − 1

)
(3z2 − 1) SSdS3 +O

(
ν2
)
. (5.33)

Recall from the relation between the central charge c and ν (3.19), that c ≈ νR3
2G3

, and
thus the difference is linear in c. It is thus natural to interpret this difference as the
leading contribution to the entanglement entropy of the CFT. We will see more evidence of
this momentarily.
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Figure 9. Plot of generalized entropies S(3)
gen,h (red dashed curve) and S(3)

gen,c (red solid curve) as a
function ofM = M/MN. Notice the total generalized entropy S(3)

gen,tot (black), given by the sum
of the red solid and dashed curves, is approximately a linear function of the mass. Here we have
set ν = 1/3.

In addition to the leading order effect in ν, the backreaction of the CFT induces
higher curvature corrections, which enter at order O(ν2). From the brane perspective, one
computes the gravitational entropy due to this higher curvature corrections using Wald’s
entropy functional SWald [39]

SWald = −2π
∫
H
dA

∂L
∂Rabcd

εabεcd , (5.34)

where dA = dd−2x
√
q is the area element of a cross-section H of the horizon, with qab

being the induced metric on the cross-section, L is the Lagrangian density defining the
gravitational theory, and εab is the binormal to H. With respect to the induced gravity
action (3.18), the gravitational entropy is [40]

S
(3)
Wald = 1

4G3

∫
dx
√
q

[
1 + `2

(3
4R̃− g

ab
⊥ R̃ab

)
+O

(
`4/R6

3

)]
, (5.35)

with g⊥bd = gbd − qbd being the metric in the directions orthogonal to the horizon. The
dominant contribution is the three-dimensional Bekenstein-Hawking entropy

S
(3)
Wald = 1

4G3

∫
dx
√
q = 1

4G3

∫ 2π

0
dφ̄r̄+ = S

(3)
BH , (5.36)

as expected. Evaluating (5.35) on the qSdS background (t̄, r̄, φ̄), yields

S
(3)
Wald =

[
1 + ν2

2 − ν
3 z(z2 − 1)

(1 + νz) +O(ν4)
]
S

(3)
BH . (5.37)

Clearly, in the limit of no backreaction, S(3)
Wald reduces to S(3)

BH. Also notice the leading order
higher curvature contributions are of order O(ν2), in contrast to the linear order effect of
the CFT in (5.33).
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It is well known that the generalized entropy is equal to the sum of the gravitational
(Wald) entropy plus the fine-grained entropy of matter Sout outside of the horizon. We can
compute the three-dimensional matter entropy S(3)

out by taking the difference of S(3)
gen (5.29)

and the Wald entropy (5.37). To leading order in ν we have,

S
(3)
out = S(3)

gen − S
(3)
Wald ≈ −νzS

(3)
BH . (5.38)

Since this quantity is linear in ν, we see it is proportional to central charge c. Notice for
large z but fixed νz � 1 we find

S
(3)
out ≈ −

2πc
3 , (5.39)

identical to what was found for the qBTZ geometry [6]. As in that case, the overall minus
sign does not imply the von Neumann entropy of the CFT is negative. Rather, S(3)

out only
corresponds to the finite contribution to the CFT entropy upon absorbing the leading term
in the renormalization of G3.

First law. Putting together the mass (5.8), temperature (5.16) and entropy (5.26) for
the black hole horizon, we find

∂zM = Th∂zS
(3)
gen,h . (5.40)

Keeping all other parameters fixed, we thus have the first law of (semi-classical) black hole
thermodynamics

dM = ThdS
(3)
gen,h . (5.41)

Similarly, for the cosmological horizon we have

dM = −TcdS(3)
gen,c . (5.42)

Combining these variational relations we attain

0 = ThdS
(3)
gen,h + TcdS

(3)
gen,c . (5.43)

Thus, the thermodynamic quantities for either the black hole or cosmological horizon
are not independent. Specifically, as the generalized entropy associated with the black
hole increases, the generalized entropy attributed to the cosmological horizon decreases.
Further, the minus sign in the first law for the cosmological horizon (5.42) indicates the
entropy of the cosmological horizon decreases as the mass increases. Consequently, the
(generalized) entropy of quantum dS3 is a maximum entropy configuration such that qdS3
is an equilibrium state with a finite number of degrees of freedom.

Each of the first laws (5.41), (5.42), and (5.43) are precisely what happens for classical
higher dimensional SdS, except here the classical entropies Sh,c have been replaced by
their generalized counterparts Sgen,h,c. The semi-classical first laws above also hold in the
two-dimensional context, where one considers de Sitter JT gravity [14]. Consistent with the
thermodynamics of the quantum BTZ solution [6], our observations here provide further
evidence that, when semi-classical backreaction is accounted for, quantum black holes obey a
first law of thermodynamics where the classical entropy is replaced by the generalized entropy.
Additionally, we see the usual but peculiar minus sign in front of the cosmological first
law (5.42) is present even when backreaction is accounted for, implying the thermodynamic
interpretation of the minus sign is not resolved due to semi-classical modifications.
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6 Entropy deficit and nucleation rate of quantum dS black holes

As with black holes, one expects the thermodynamics of the dS cosmological horizon to
have a microscopic interpretation. A complete understanding of de Sitter geometry is a task
for full-fledged quantum gravity, however, a promising explanation is offered by holography
of the dS static patch [41–47]. Recently it was proposed that the dual microscopic theory
lives on the (stretched) cosmological horizon [47–49].14 Evidence for this comes from
studying, in particular, the entropy deficit generated by nucleating a four-dimensional
classical black hole in de Sitter space, where the nucleation rate is controlled by the deficit.
As we will review, the form of the entropy deficit suggests dS gravity has a matrix theory
interpretation [48, 50, 51], and the de Sitter static patch behaves as a holographic quantum
mechanical system whose degrees of freedom are localized at the horizon.

It is natural to wonder how well this viewpoint holds up in higher and lower dimensions
and when quantum backreaction is accounted for. Here we compare and contrast the central
points of [48] for classical de Sitter black holes with the qSdS solution. Importantly, we
will see the entropy deficit of a quantum SdS black hole takes on a similar form as its
classical four-dimensional counterpart, however, where the classical Bekenstein-Hawking
entropy is replaced by the generalized entropy. Moreover, using the fact that the generalized
entropy is a linear function of the mass, we compute the nucleation rate using the method
of constrained instantons, extending [31] to the case when the backreaction of quantum
fields is included.

6.1 Entropy deficit

Consider first the case of classical black holes. Let S0 denote the entropy of four-dimensional
de Sitter space in the static patch

S0 = 4πR2
4

4G4
, (6.1)

where R4 is the length scale of dS4. This entropy is understood to be the entropy when de
Sitter space is in thermal equilibrium, such that S0 is maximized at a given average energy.
Fluctuations may arise and shrink the cosmological horizon so that the entropy becomes
less than S0. Denote this smaller entropy by S1. The probability P of such fluctuations
depends on the entropy deficit ∆S = S0 − S1,

P ∼ e−∆S . (6.2)

For example, consider a fluctuation in which a small black hole with horizon radius r+
and mass M appears in dS4. The geometry is given by the standard four-dimensional
Schwarzschild-de Sitter solution

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2 , f(r) = 1− r2

R2
4
− 2MG4

r
, (6.3)

14There is another picture of static patch holography, where the dual quantum theory lives on a holographic
screen near the north or south poles of the static patch [43, 44]. The two proposals are consistent if the
cosmological horizon represents the IR of the underlying microscopic theory while the screen near the poles
represents the UV [45].
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where ‘small’ here implies r+ � R4. To lowest order in M , the horizon radius is r+ =
R4 −MG4, and the subsequent entropy S is

S = S0 − 2πR4M = S1 , (6.4)

where in the last equality we identified the entropy S = S1 since including a black hole
lowers the entropy of de Sitter space. The entropy deficit ∆S is then

∆S = 2πR4M =
√
S0s , (6.5)

where s = 4πM2G4 is the entropy of a four-dimensional flat space Schwarzschild black hole.
More generally, for d-dimensional de Sitter black holes, where now

f(r) = 1− r2

R2
d

− 16πGdM
(d− 2)Ωd−2rd−3 , Ωd−2 = 2π(d−1)/2

Γ[(d− 1)/2] , (6.6)

and Rd is the d-dimensional de Sitter radius, the entropy deficit (6.5) for s� S0 becomes

∆S = 2πRdM =
(
d− 2

2

)
S

1
d−2
0 s

d−3
d−2 . (6.7)

Here s is now the entropy of a d-dimensional (flat space) Schwarzschild black hole.
Expressing the entropy deficit as ∆S =

√
S0s is interesting in that it depends on the

entropies of two systems: the black hole and cosmological horizons. Motivated by [50],
ref. [48] argued the entropy deficit (6.5) is reproduced by M(atrix) theory [52], such that the
holographic degrees of freedom of de Sitter space may be represented by N ×N Hermitian
matrices, and the entropy deficit (6.5) follows in a straightforward way (up to an overall
factor of two).15

Matrix model description of quantum black holes. We see that the entropy deficit
for classical black holes (6.7) does not allow us to consider the three-dimensional case. In
the limit of d = 3, one has ∆S = S0/2, where S0 is the entropy of empty dS3. It is clear
that the dependence on s vanishes since there are no classical black holes in dS3. However,
our construction allows us to have such black holes, when they are immersed into quantum
fields. Two questions naturally arise: what is the entropy deficit when backreaction is
accounted for, and does it have a similar matrix model interpretation?

Clearly, the entropy deficit of nucleating a quantum SdS black hole in (quantum)
de Sitter will account for the entropy of quantum fields, as they make a non-negligible
contribution to the overall state. Heuristically, we expect the entropy deficit to be related
to a difference in generalized entropies,

∆S(3)
gen = S

(3)
gen,0 − S

(3)
gen , (6.8)

where S(3)
gen,0 is the entropy of the dS3 cosmological horizon including quantum fields (the

analog of S0), and S(3)
gen denotes the entropy of nucleating a small quantum SdS black hole

15The entropy deficit for d-dimensional systems (6.7) may also be given a matrix model interpretation,
however, doing so requires the entropy per degree of freedom to depend on the size of N × N matrix,
σ(N) ∼ N−(d−4)/(d−3) [48], which we see is potentially problematic for d = 3.
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(the analog of S1). This deficit may be computed explicitly (see appendix D for details),
however, using braneworld holography we may deduce what to expect.

Holographically, the three-dimensional generalized entropy of the backreacted geometry
on the brane is identified with the classical four-dimensional Bekenstein-Hawking entropy
of the bulk solution,

S
(4)
BH ≡ S

(3)
gen. (6.9)

Without performing an explicit computation, then, we expect the generalized en-
tropy deficit (6.8) will exhibit the same behavior as the classical four-dimensional en-
tropy deficit (6.5),

∆S(3)
gen ∼

√
Sgen,0sgen, (6.10)

where sgen the generalized entropy for a black hole in three-dimensional flat space. The ‘∼’
denotes the fact that we expect the entropy deficit may depend on a proportionality factor
which depends on the relevant scales, namely ` and R3; indeed, we find the relevant factor
is (1 + R3/`)1/2 (see appendix D). Comparing the deficit (6.10) to the four-dimensional
entropy deficit (6.5), suggests the holographic degrees of freedom of quantum de Sitter
space may likewise be represented by N ×N Hermitian matrices, modulo the overall factor.

Similarly, using the fact that the relation between generalized entropy and mass for
holographic conformal fields is the same as for a classical horizon in one more dimension,16

it is natural to extend this modified deficit to arbitrary spacetime dimension,

∆Sgen = F(d, ν)S
1

d−1
gen,0s

d−2
d−1
gen , (6.11)

where F(d, ν) is some constant factor which depends on the number of dimensions and the
backreaction parameter in such a way so that one recovers the classical deficit (6.7). The
lesson one can extract from this simple exercise is that quantum fields play a crucial role in
computing the entropy deficit. Consequently, backreaction due to quantum fields will affect
nucleation rates, as we now describe.

6.2 Nucleation rate

Entropy deficits play a key role in characterizing black hole nucleation rates. For example,
consider the entropy deficit of a classical dS black hole of mass M .

∆S = S0 − Stot = S0
3
(
1− y2

)
. (6.12)

Here Stot is sum of the entropies Sh,c = 4πr2
h,c

4G4
, and y ≡ (rc − rh)/R4 is a dimensionless

length distinguishing the black hole and cosmological horizons in SdS. For 0 < M < MN,
y ∈ [−1, 1], where y = 0 corresponds to the Nariai limit.17 In [48] it is argued that

16We are ignoring the effects of possible additional compact dimensions, AdS ×M.
17Each range y ∈ [−1, 0] and y ∈ [0, 1] can be viewed as physically distinct configurations: for y < 0, the

black hole horizon grows while the cosmological horizon shrinks, until eventually rh = rc (the Nariai limit),
while for y > 0 the horizons swap roles, such that rc > rh.
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the probability to nucleate a black hole of fixed mass follows from integrating ∆S with
respect to y

P ∼
∫ 1

0

d4y

R2
4
e−∆S(y) =

( 3
S0
− 9
S2

0

)
+ 9
S2

0
e−S0/3 . (6.13)

Expressing S0 = πR2
4/G4, one sees the term between brackets is perturbative in G4 and

accounts for the non-universal microphysics of small black holes. Meanwhile, the second
term is non-perturbative in G4 but is universal, representing a saddle point when the
integrand is at y = 0, and thus characterizes a contribution from the Nariai geometry.

While it is intuitive to motivate the nucleation rate (6.13) in terms of the entropy
deficit, the above calculation is unsatisfactory for two reasons. First, the parameter y is
not well physically motivated and expressing ∆S in terms of y for higher dimensional black
holes is technically challenging. Second, the nucleation rate above assumes a fixed mass, but
one is generally interested in the nucleation of arbitrary mass black holes. Further, black
hole nucleation may be naturally understood as a quantum tunneling process, analogous to
bubble nucleation in vacuum decay viz Coleman and de Luccia [53].

Therefore, below we advocate computing the nucleation rate via the difference between
the on-shell Euclidean action of two different spacetimes. The benefit of this approach not
only resolves the aforementioned points (reviewed briefly below), but also easily applies to
the quantum black hole case, allowing us to interpret Euclidean qSdS as a “constrained
instanton”, and show the nucleation rate is controlled by ∆Sgen.

Nucleation of classical dS black holes. In general, one encounters an immediate
obstruction in applying the on-shell action method for de Sitter black hole nucleation.
The reason is that the Euclideanized SdS background has two conical singularities, one
for each horizon. Thus, while one conical singularity may be removed via an appropriate
identification of the Euclideanized time coordinate τ = it, there will remain a conical
singularity.18 However, for d = 4 [54] and d ≥ 4 [31], it was shown the on-shell Euclidean
action of the SdS solution is

IE,SdS = −(Sh + Sc) = −Stot . (6.14)

This holds for an arbitrary periodicity β of the Euclidean time. Now, an important feature
of the total gravitational entropy (6.14) of the SdS solution is that, in any dimension, it is
approximately a linear function of the mass M with a negative slope for M ∈ [0,MN],

Stot ≈ S0 − (S0 − SN) M
MN

, (6.15)

with S0 being the usual entropy of the cosmological horizon in empty de Sitter space.
Heuristically then, the nucleation rate for a black hole of mass M to spontaneously

appear in empty de Sitter is given by

P ∼ e−(IE,SdS−IE,dS) ∼ e−∆S , (6.16)
18Two special cases where there is only a single conical singularity include: (i) pure de Sitter space, where

M = 0, and where τ ∼ τ + βGH, and (ii) the Nariai geometry, where βh = βc = βN, such that τ ∼ τ + βN.
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Figure 10. Left: total generalized entropy (black) and its linear fit (blue). Right: difference δ
between the total generalized entropy and the linear fit. Here we have set ν = 1/3.

where the second equality follows from using that IE,SdS(M = 0) = IdS = −S0. The linear
approximation (6.15) resolves the technical challenge of using the parameter y for higher
dimensional black holes.

Importantly, the probability (6.16) follows from a Euclidean path integral, where
Euclidean SdS black holes represent constrained instantons [31, 55, 56]. More carefully, it is
natural to expect the nucleation rate to be described by instanton effects, particularly given
the non-perturbative behavior expressed in (6.13). However, it is not a standard instanton,
i.e., it is not a solution to the classical Euclidean equations of motion. Rather, the Euclidean
SdS geometry is a “constrained instanton”: a stationary point of the Euclidean action when
a particular constraint is imposed, namely, fixing the mass. Consequently, the probability
rate of creating an arbitrary mass black hole in de Sitter is computed semi-classically via [31]

P ∼
∫ MN

0
dMe−∆S . (6.17)

Implementing the linear approximation (6.15), such that ∆S = (S0 − SN) M
MN

, the inte-
gral (6.17) may be precisely evaluated leading to

P ∼ MN
S0 − SN

[
1− e−(S0−SN)

]
= MN
S0/3

(
1− e−S0/3

)
. (6.18)

This is fairly different from (6.13), because we integrated e−∆S over M instead of over
y. The pair creation rate (6.18) has a constant contribution and a non-perturbative term
coming from the Nariai instanton, but we note the non-perturbative contribution has a
factor 3/S0 in front instead of 9/S2

0 as in (6.13). The overall factor MN appears so that P
has the dimensions of a probability rate per Hubble volume.

Nucleation of quantum dS black holes. Given our holographic set-up, we expect the
qSdS solution to likewise behave as a constrained instanton, such that the probability of
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nucleation is

P ∼
∫ MN

0
dMe−(IE,qSdS−IE,qdS) ≈

∫ MN

0
dMe−∆S(3)

gen

≈ MN

S
(3)
gen,0 − S

(3)
gen,N

[
1− e−(S(3)

gen,0−S
(3)
gen,N)

]
,

(6.19)

analogous to (6.18).
The second equality technically follows from computing the on-shell Euclidean action

of the effective three-dimensional theory (3.18).19 Meanwhile, the final equality follows
because, as in the classical case, the total entropy generalized entropy is nearly linear in
M/MN (figure 9). Thus, we find the total generalized entropy is well approximated by the
linear fit

S(3),tot
gen ≈ S(3)

gen,0 −
(
S

(3)
gen,0 − S

(3)
gen,N

) M

MN
, (6.20)

analogous to (6.15) (see figure 10).
Therefore, the entropy deficit is approximately

∆S(3)
gen ≈

(
S

(3)
gen,0 − S

(3)
gen,N

) M

MN
, (6.21)

which leads to the final line in (6.19).

7 Comments on the holographic dual of de Sitter

Whether de Sitter spacetimes have a holographic description remains one of the most
important outstanding questions in quantum gravity. Inspired by AdS/CFT, multiple and
distinct pictures of de Sitter holography have been proposed, including in particular [41,
43, 45, 46, 48, 57–65]. A distinguishing feature of each proposal is where the dual non-
gravitational microscopic theory lives. On the one hand, the asymptotic fall-off of dS
suggests a dual CFT should reside at asymptotic infinity, the natural analog of standard
AdS/CFT, where the dual theory lives at the timelike conformal boundary. Alternatively,
to better understand the thermodynamics of cosmological horizons, a natural place to put
the dual microscopic theory may be on the (stretched) cosmological horizon, or a York-like
“boundary” near the poles. While none of the proposals are fully satisfactory, the contrasting
features of each make clear that de Sitter holography is an important open problem.

Given the recent successes of models exhibiting double holography [24, 66, 67, 69], it
is natural to wonder whether this viewpoint has the ability to address the problem of de
Sitter holography. That is, we can ask if the doubly-holographic perspective can shed some
light on the nature of a tentative de Sitter dual. Until we find a top-down construction, it
is an effective description and will not reveal the ultraviolet holographic degrees of freedom,
but perhaps it can help with the question of where these degrees of freedom are located.

19Despite not knowing ICFT explicitly, this can be achieved since the effective gravitational contribution
is known exactly (though perturbatively), and ICFT follows via subtracting the gravitational effective action
from the known bulk action.
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Figure 11. Left: an AdS brane embedded into a higher dimensional bulk. The shaded magenta
region, including the dashed line of the AdS boundary, has been integrated out. The two points
in yellow (a circle, when rotated along the symmetry axis) represent two-dimensional defect CFTs,
which are coupled to a bath CFT3. The defect CFT is dual to the brane. Right: a timeslice of the
dS brane embedded into a higher dimensional bulk. The blacked dashed line corresponds to the
part of the boundary which has been integrated out, along with the shaded magenta region.

Let us first recall how the standard double holography works for AdS branes. In this
case, an AdSd brane hits the conformal boundary of a bulk AdSd+1 spacetime at a Sd−2 that
extends in time, as shown in figure 11. This sphere corresponds to a defect CFTd−1, which
interacts with the bath CFTd living at the boundary. In the case of an AdS3 brane, the
defect CFT2 lives on a circle. The reason why this picture is known as double holography is
due to the nature of the brane. Namely, the brane dynamics consists of gravity with AdSd
asymptotics, coupled to the same bath CFTd to which the defect CFTd−1 is coupled. The
CFTd on the brane together with its counterpart on the asymptotic boundary allow for
a higher dimensional bulk. On the other hand, the AdSd asymptotics of the brane allow
for dualization to a CFTd−1, namely, the defect theory. Therefore, if one was to decouple
the defect from the bath, one would simply obtain the usual AdS3/CFT2 setup. In other
words, we can say that the defect CFT holographically describes the brane.

With a dash of speculation, we can claim that all branes can be sourced in terms of
defect CFTs which couple to the bath CFT. What then does such a speculation entail for
the de Sitter setup constructed here?

Looking at a generic time slice of our setup, as shown in the right-hand side of figure 11,
we see that the dS brane appears to be completely independent of the boundary CFT. In
other words, it seems as if it does not reach the boundary. Of course, a single snapshot
can be misleading, since the dS spacetime is described by an expanding hyperboloid, as
shown in figure 1. The hyperboloid hits the boundary again at two distinct spheres, but
now these are moments at finite global time. We can easily see this if we transform the
metric of AdS4 in the dS3 foliation, (3.5), into the conventional global form of AdS4,

ds2 = −
(
1 +R2

)
dT 2 + dR2

1 +R2 +R2dΩ2 (7.1)

(we set `4 = 1 for simplicity), which is obtained from the coordinates in (3.5) by taking

T = arctan
(√

1− r2

R2
3

sinh t

R3
tanh σ

)
, (7.2)
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and

R = sinh σ
√(

1− r2

R2
3

)
sinh2 t

R3
+ 1 . (7.3)

We see that, along a brane at finite σ = σb, the limits t→ ±∞ correspond to reaching the
boundary R→∞ at finite global time T → ±π/2.

Taking the same perspective as in the case for AdS branes, we see that the analogue of
defect CFTs is now played by two Euclidean CFTs, disconnected from the boundary point
of view, but connected in the bulk through the brane. In other words, the Euclidean defect
CFTs holographically describe the brane, or equivalently, the dual to the de Sitter brane is
given by two Euclidean CFTs. Naturally, this picture hints at the dS/CFT construction
of [57, 58]. The main difference here lies in the fact that we have two states which source
the brane, instead of the usual one-state preparation which fuels the dS phase. Regardless,
the two views would seem to be, in terms of calculable observables, equivalent.

A key advantage one might try to extract from our perspective is the possibility of
utilizing double holography in our favor. Namely, one can use the higher-dimensional bulk
as a means for computing relevant observables, instead of relying on somewhat ill-defined
Euclidean CFT computations, as in the usual dS/CFT setup. However, one immediately
comes to a halt.

The braneworld setup described here can be interpreted in terms of vacuum decay, as
was done in [70] (see also [71, 72]). Recall that vacuum decay from false vacuum to true
vacuum á la Coleman and de Luccia [53] is understood as a tunneling process through the
nucleation of a bubble of true vacuum which then expands and “eats up” the false vacuum.
In our picture, the true vacuum is the AdS4 bulk, the bubble is given by the dS brane, and
the false vacuum can be seen as nothing.20 Therefore, starting from some t = 0 slice in the
middle of our hyperboloid, we are evolving towards a fully completed AdS vacuum.

The vacuum decay as described in [53] and [70] leads to a Big Bang/Big Crunch
singularity in the past and the future of the Euclidean CFT slices, respectively. One can
understand the appearance of the singularity in the following sense: the dS brane is an
accelerating brane, and as such it radiates at the quantum level. However, the brane time
is infinite, since we are reaching the asymptotic infinities of the dS spacetime. Therefore,
the amount of radiation such a brane will give off is infinite as well, creating a piling of rays
at the future Cauchy horizon, as shown in figure 12. Thus, we see that the formation of the
singularity is essentially the same phenomenon that enforces Strong Cosmic Censorship at
the inner Cauchy horizon in charged or rotating black holes. It will also happen for the past
Cauchy horizon.21 Hence, it is not clear in what way we can exploit the doubly-holographic
setup, since such a singularity might decouple the Euclidean CFTs from the rest of the
Lorentzian CFT3 bath.

20Alternatively, one can consider adding Minkowski patches to the sides of the de Sitter hyperboloid, in
which case the false vacuum is simply given by Minkowski space.

21One might wonder why such an event does not happen in usual AdS spacetimes, given that we can have
the same dS slicing of empty AdS as well. The key difference lies in the amount of radiation one produces:
in order to model the brane radiation, one would need to employ infinite shocks from the boundary in order
to produce the same singular effect. Of course, such a state would be pathological to begin with, and so we
have no (naturally formed) Big Bang and Big Crunch singularities.
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Figure 12. A possible dS/CFT setup via braneworlds. Left: bulk viewpoint. A bulk AdSd+1
cylinder (in blue) has a holographic CFTd dual living at the boundary. The dSd braneworld, with
cutoff surfaces in magenta, lives inside AdSd+1. One might envisage dualizing the dSd gravity with
a Euclidean CFTd−1 living at I− and I+ of the de Sitter hyperboloid (yellow). Bulk quantum
corrections are expected to drive the braneworld model to incur big bang and big crunch-like
singularities (red), replacing the upper and lower Lorentzian cylinders. Alternatively, one could avoid
the singularities altogether by preparing the ‘in’ and ‘out’ states on I− and I+ via a Euclidean path
integral with suitable sources turned on. This would entail replacing the cylinders by appropriate
Euclidean submanifolds, closing the contour of the path integral à la Schwinger-Keldysh [73–75].
Right: the dual quantum mechanical picture, with time running upwards.

Nevertheless, we can take the picture we obtained at face value. The duals claimed here
arise as a result of a pure AdS/CFT construction. Therefore, we can see that the AdS/CFT
construction itself hints that something like dS/CFT might supply an appropriate notion for
a de Sitter dual (if one exists).22 One interesting thing to note is the necessity of correlating
the boundary conditions associated to the Euclidean CFTs — otherwise, we would not have
an emergent geometry connecting the two theories. Usually, this would be interpreted as
a problem for factorization. However, as in the case of low-dimensional AdS/CFT, one
might resort to ensemble averaging of some sort in order to deem the correlated boundary
conditions more natural. We plan to investigate this viewpoint in the future.

8 Conclusion

While it is well known there are no classical black holes in dS3, we have demonstrated
quantum backreaction effects can generate a quantum black hole in dS3. Our main analysis
relied on AdS4/CFT3 braneworld holography, where the induced gravity action on a three-
dimensional de Sitter brane admits a quantum Schwarzschild de Sitter black hole, with
backreaction due to the holographic CFT3. A more conventional approach of computing
the renormalized stress-tensor due to quantum matter, as carried out in section 2 (and

22One can take this observation a step further (or back) and see a similar story holds for asymptotically
flat branes. In that case, the dual would be given in terms of null defects coupled to the Lorentzian bath.
There might be subtleties involving high energy shocks from the tip of the null defect, although it is not clear
a singularity of the Coleman-de Luccia type would exist. We thank Jamie Sully for emphasizing this point.
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appendix B), points to a gravitationally attractive effect that is suggestive of black hole
formation. However, this calculation is only reliable to linear order in the Planck length,
while our holographic computation holds to all orders in the strength of backreaction (at
planar order for the CFT), and therefore the presence of the horizon is well established.

We explored the thermodynamics of the qSdS solution, where we found the solution
largely behaves like a classical, four-dimensional SdS black hole; however, importantly, all
classical entropies are replaced by their generalized counterparts. In particular, we found
it natural to interpret the quantum de Sitter black hole as a non-equilibrium constrained
state of a thermodynamic system comprised of a bath (the quantum de Sitter background)
and a subsystem (the quantum black hole). Equivalently, the qSdS black hole behaves as a
constrained instanton where the probability of nucleating a black hole inside a quantum de
Sitter background is controlled by the generalized entropy deficit.

Our thermodynamic analysis also provides insights into the nature of the underlying
microscopic degrees of freedom describing the quantum black hole and quantum de Sitter
systems. The generalized entropy deficit points to a matrix model description of quantum
de Sitter space, where the holographic degrees of freedom of the cosmological horizon
are represented by Hermitian matrices, in line with the classical SdS system in four
dimensions [48]. In fact, our inclusion of backreaction suggests a quantum generalization of
the matrix model conjecture of [48], even in higher dimensions.

A particularly novel feature of our braneworld construction is that it leads to a
framework for which we can study dS/CFT. Specifically, the de Sitter gravity theory on
the brane is dual to a (defect) Euclidean CFT at I− and I+. Advantageously, perhaps, via
double-holography one can use the controlled setting of the bulk for computing observables
of a typically ill-defined Euclidean CFT.

Lastly, here we focused on quantum dS3 black holes, a counterpart to the quantum
AdS3 black holes studied in [6]. In the limit of large de Sitter radius R3, but finite `, we
recover quantum Schwarzschild black holes, with horizon radius rh = µ`, in asymptotically
locally Minkowski space in three dimensions. These solutions were studied in [5, 13].

There are a number of interesting research avenues worth pursuing, as we now describe.

Rotating, charged quantum de Sitter black holes: it is reasonably straightforward
to include rotation, thus leading to rotating quantum de Sitter black holes in three dimensions.
Similar to the rotating qBTZ solution [6], the starting point would be the rotating AdS4
C-metric, however, with parameters tuned such that the brane has a positive cosmological
constant. With the addition of rotation, it is expected that the quantum Kerr-dS black
hole will have a trifecta of correlated horizons (outer and inner black hole horizons and
the cosmological horizon), leading to another extremal or “lukewarm” limit [76–78], where
the temperatures of the black hole and cosmological horizons coincide and are in principle
distinct from the Nariai limit. One may also consider adding charge to the quantum
black hole, starting from, for example, the charged AdS4 C-metric. Although there is
no need for counterterms for the Maxwell field in AdS4, a Maxwell action is nevertheless
generated on a brane at finite distance in the bulk [79], which modifies the geometry of the
quantum-corrected black hole. On a de Sitter brane, lukewarm and cold charged instantons
are expected.
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Euclidean action, quasi-local thermodynamics, and stability of quantum de
Sitter: a first principles method for analyzing the thermodynamics of black holes is to
directly compute the canonical partition function using a saddle-point approximation of the
Euclidean gravitational path integral, à la Gibbons and Hawking [80]. However, the standard
treatment by Gibbons-Hawking suffers from ambiguities for de Sitter spacetime, since
Euclidean de Sitter has no asymptotic boundary where a temperature may be specified to
define the canonical ensemble (see [81] for an in depth discussion on this point). Alternatively,
one may adapt the quasi-local formalism of York [82] to de Sitter backgrounds and analyze
quasi-local thermodynamics. This was recently accomplished in two-dimensional de Sitter
JT gravity [14], where backreaction was accounted for exactly and the cosmological system
was found to have a negative heat capacity and is thus thermodynamically unstable. It
would be interesting to carry out a similar analysis for the quantum SdS solution, and see
whether quantum de Sitter is thermodynamically stable.

Holographic complexity in quantum de Sitter space: models of double holography
have recently been used to explore various proposals for information theoretic descriptions
of quantum gravity. In particular, the ‘complexity=volume’ and ‘complexity=action’
conjectures have been analyzed in braneworld models [69], where the braneworld gravity
was given a holographic description in terms of a defect CFT. More recently, the effects
of quantum backreaction were accounted for in these braneworld scenarios in the context
of the quantum BTZ black hole [83], with the ‘complexity=volume’ being considerably
more favorable over the ‘complexity=action’ scenario. Thus far, however, little attention
has been given to studying complexity in de Sitter space (see, e.g., [84–86]). It would
be very interesting to see whether the braneworld setup developed here could be used to
efficiently study the aforementioned proposals in a quantum de Sitter background where
backreaction effects are incorporated, analogous to the qBTZ analysis [83]. Doing so would
require a better understanding of the relation between the dual CFT3, and the defect
ECFT2 replacing the gravity on the dS3 brane. Alternatively, our picture of de Sitter
braneworlds, may, in principle, be naturally incorporated into the description of complexity
in terms of holographic state preparation [87–89], where complexity may be understood
as the minimum number of ‘Lorentzian threads’ attached to unitaries preparing a tensor
network state. From this perspective, the de Sitter hyperboloid would represent the time
evolution of a dual boundary state prepared by a Euclidean path integral, replacing the
standard Lorentzian AdS cylinder. Nonetheless, Lorentzian threads can just as easily extend
through the hyperboloid, the number density of which is expected to capture a measure of
complexity, leading to a possible connection to the tensor network construction of de Sitter
space advocated in [90].

Entanglement wedge islands and radiation entropy: braneworlds and models of
double holography act as a useful arena to study the black hole information paradox, by
computing the fine grained entropy of Hawking radiation using the ‘island rule’ [24, 67, 68],
an extremization prescription of semi-classical generalized entropy. Analogous information
paradoxes arise in cosmological and de Sitter backgrounds [91–93], where quantum extremal
surfaces and islands play a key role. Since the qSdS solution uncovered here naturally
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incorporates the effect of backreaction, we have analytic control over the extremization
of the generalized entropy on the brane to study detailed aspects of quantum extremal
islands in dS.
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A Gravitational attraction from negative energy

It seems paradoxical that the negative Casimir energy created by a conical defect generates
an attractive gravitational potential. However, this is an instance of a wider phenomenon
that is present, only in reverse, in a much better known setup, so we will begin with it.

Apparent gravitational repulsion from positive energy. Let us write the Reissner-
Nordström solution as

ds2 = −
(

1− 2M(r)
r

)
dt2 + dr2

1− 2M(r)
r

+ r2dΩ2 , (A.1)

where
M(r) = M − Q2

2r . (A.2)

The function M(r) can be regarded as the “effective mass” that acts on a neutral test
particle at radius r. We see that the electric field of the black hole decreases the gravitational

– 41 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
3

force on such a particle, relative to a neutral black hole with the same mass M . Indeed,
the acceleration of a neutral particle at fixed position (following an orbit of ∂t) is smaller if
we increase the charge Q of the background geometry while keeping M fixed. Thus, the
electric field would seem to have a repulsive gravitational effect, despite the fact that its
energy density,

ρel = −T tt = Q2

2r4 , (A.3)

is positive.
The correct interpretation, however, is different. The asymptotic mass M measures the

gravitational effect of all the energy sources that are inside a sphere at infinity,23 including
also the electromagnetic field energy. Thus, if we put a test particle on the surface of a
sphere at finite radius, then the electromagnetic energy that lies outside this sphere will
not have any gravitational pull on the particle. When computing the actual mass that
attracts the particle at r, the electromagnetic energy outside the sphere of radius r must be
subtracted from M , resulting in (A.2).

Thus we see that the apparent repulsive gravitation of the electromagnetic field energy
merely reflects a reduced attraction due to the lower energy that is enclosed as we move to
spheres of smaller radii.

Gravitational attraction from negative Casimir energy in 2+1 dimensions. The
previous argument easily explains how the negative Casimir energy density (1.4)

ρCas = −〈T tt〉 = −~F (M)
8πr3 (A.4)

gives rise to gravitational attraction. The only subtlety is that, in 2 + 1 dimensions, a
classical localized mass does not generate any gravitational attraction itself, only a deficit
angle. This deficit, measured on circles at large radii, is related to the mass as in (1.2). In
our quantum-corrected solutions, considering for simplicity the asymptotically locally flat
limit R3 →∞, we could define an effective mass

M(r) = M + ~F (M)
4r , (A.5)

which indicates that the quantum corrections enhance the gravitational effects at finite
r, not only increasing the deficit angle at finite r, but also accelerating neutral particles
towards smaller radii.

We now know how to understand this attraction. The asymptotic mass M measures
the gravitational effect of all the energy enclosed in a circle at infinity, including the Casimir
energy. The attraction at finite r is a consequence of having less negative energy enclosed
in a circle of radius r < ∞ than in one at infinity. What makes the effect perhaps more
surprising is that in 2 + 1 dimensions the leading asymptotic mass term M does not result
in any attraction, while the finite-r correction does. But its origin is the same as we have
seen above.

23Readers who feel uneasy about the ‘energy sources’ of the non-linear Schwarzschild or Reissner-Nordström
solutions can sidestep the issue by linearizing gravity and considering localized mass sources. Our arguments
equally go through.
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It can easily be seen that the explanation for the effect given in [8] reduces to the
argument that we have presented here, only in a more elaborate form (accounting for an
explicit mass source near r = 0), but which is possibly less transparent.

B Renormalized stress tensor of conical defect in dS3

Here we provide the details for computing the renormalized quantum stress-energy tensor
of a conformally coupled massless scalar field to the Einstein-Hilbert action for a conical
defect in dS3. Our treatment below follows standard techniques using point-splitting, as
described in, for instance, [7, 16, 94].

Conical defect in dS3. Static, circularly symmetric solutions to the Einstein-Hilbert
action in three dimensions with pointlike matter sources and a positive cosmological constant
Λ = +1/R2

3 may be parameterized as

ds2 = −
(

1− 8G3M −
r2

R2
3

)
dt2 +

(
1− 8G3M −

r2

R2
3

)−1

dr2 + r2dφ2 , (B.1)

with −∞ < t <∞, 0 ≤ r ≤ ∞, and the angular coordinate φ is 2π-periodic. The value ofM
lends two distinct scenarios: (i) M = 0 corresponds to pure dS3 in static patch coordinates
with a cosmological horizon rc = R3, and (ii) for 8G3M < 1 we have the Schwarzschild-de
Sitter (SdS) solution. Case (ii) does not describe a black hole in dS3, but rather a conical
defect with a cosmological horizon at rc = R3

√
1− 8G3M . To see appreciate this point,

define the parameter γ2 ≡ 1− 8G3M , and perform the following coordinate rescaling,

t̃ = γt , r̃ = γ−1r , φ̃ = γφ . (B.2)

The dS3 line element (B.1) becomes

ds2 = −
(

1− r̃2

R2
3

)
dt̃2 +

(
1− r̃2

R2
3

)−1

dr̃2 + r̃2dφ̃2 . (B.3)

This looks like dS3 in static patch coordinates, however, with the notable difference that
now the angular variable has a different periodicity: φ̃ ∼ φ̃ + 2πγ. Thus, this spacetime
exhibits a conical defect, if 0 ≤ γ < 1, with a deficit angle δ = 2π(1− γ). One may interpret
this solution as a massive point particle sourcing the curvature, producing a curvature
singularity as a delta function source at the pole of the static patch of dS3. In fact, a conical
deficit at the north pole also induces a conical deficit at the south pole, since timeslices of
dS3 are closed. Hence, conical dS3 solutions have two point particles, one at each pole.

Finally, we want to compare the metric in (B.1) with the original metric found by
Deser-Jackiw to describe two point particles in dS3 [4]. By performing the following
coordinate transformation

r = R3γ

cosh(γ ln z) = 2γR3
zγ + z−γ

, or zγ =
γ −

√
γ2 − r2/R2

3

r/R3
, (B.4)
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the metric (B.1) of conical dS3 turns into

ds2 = −γ2 tanh2 (γ ln z) dt2 + γ2R2
3
(
dz2 + z2dφ2)

z2 cosh2 (γ ln z)
, (B.5)

= −γ2
(
zγ − z−γ

zγ + z−γ

)2

dt2 + 4γ2R2
3
(
dz2 + z2dφ2)

z2 (zγ + z−γ)2 . (B.6)

This agrees with the metric which Deser-Jackiw use for conical dS3, see eqs. (3.5) and (3.8)
in [4]. For γ = 1 the spatial part describes a round sphere in stereographic coordinates.

Adding a massless conformally coupled scalar field. Consider a massless scalar
field Φ conformally coupled to the Einstein-Hilbert action in three dimensions (2.1), whose
classical matter stress-energy tensor Tµν is given by

Tµν = 3
4∇µΦ∇νΦ− 1

4gµν(∇Φ)2 − 1
4Φ∇µ∇νΦ + 1

4gµνΦ�Φ + ξGµνΦ2 , (B.7)

where Gµν is the Einstein tensor and ξ = 1
8 . When the background is maximally symmetric

we have Gµν = −gµνΛ. Meanwhile the scalar field equation of motion is

(�− ξR)Φ = 0 . (B.8)

Here R = 6
R2

3
when we are in dS3. Upon invoking (B.8), it is straightforward to verify the

classical stress-energy tensor (B.7) is traceless and conserved, gµνTµν = ∇µTµν = 0.
The Green function GCdS3(x, x′) which solves the scalar field equation of motion (B.8)

for a conical defect in dS3 may be computed using the method of images, analogous to
conical AdS3 [16]. Generically, the Green function G(x, x′) with transparent boundary
conditions imposed is [17, 18]

G(x, x′) = 1
4π

1
|x− x′|

, (B.9)

where |x− x′| ≡
√

(x− x′)a(x− x′)a is the chordal or geodesic distance between x and x′

in the four-dimensional embedding space R2,2. For pure dS3, the embedding coordinates
xa = (X1, X2, T1, T2)T are

T1 =
√
r2 −R2

3 cosh(t/R3) , T2 =
√
r2 −R2

3 sinh(t/R3) , X1 = r cosφ , X2 = r sinφ .
(B.10)

It is easy to verify
− T 2

1 + T 2
2 +X2

1 +X2
2 = R2

3 , (B.11)

and
ds2 = −dT 2

1 + dT 2
2 + dX2

1 + dX2
2

= −
(

1− r2

R2
3

)
dt2 +

(
1− r2

R2
3

)−1

dr2 + r2dφ2 .
(B.12)

Then,

|x− x′| =
[
2R2

3 + 2
√
r2 −R2

3

√
r′2 −R2

3 cosh
(
t− t′

R3

)
− 2rr′ cos

(
φ− φ′

)]1/2
. (B.13)
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Further, one can show (
�− 3

4R2
3

)
GdS3(x, x′) = 0 , (B.14)

when x 6= x′, and where GdS3(x, x′) refers to the Green function with respect pure dS3 in
static patch coordinates.

One may construct the Green function GCdS3(x, x′) for the conical defect spacetime (B.3)
via the method of images. That is, one uses the fact that the conical defect spacetime
corresponds to discrete identifications of dS3. Specifically, analogous to the AdS3 case (see,
e.g., [94]), identified points are related by an element H ∈ SO(1, 3) on the embedding space
coordinates (B.10), except where φ ∼ φ+ 2πγ, with γ ≡ 1/N for some positive integer N ,

H =


cos(2πγ) sin(2πγ) 0 0
− sin(2πγ) cos(2πγ) 0 0

0 0 1 1
0 0 0 1

 . (B.15)

The Green function GCdS3(x, x′) for the conical defect spacetime then follows from the
image sum

GCdS3(x, x′) =
∞∑

n=−∞
GdS3(x,Hnx′) = 1

4π
∑
n∈Z

1
|x−Hnx′|

, (B.16)

with

|x−Hnx′| =
[
2R2

3 + 2
√
r2 −R2

3

√
r′2 −R2

3 cosh
(
t− t′

R3

)
− 2rr′ cos

(
φ− φ′ + 2πn

N

)]1/2
.

(B.17)
Crucially, in the conical defect spacetime, the infinite sum becomes a finite sum,

GCdS3(x, x′) = 1
4π

N−1∑
n=0

1
|x−Hnx′|

, (B.18)

which follows from the fact there exist only a finite number N of geodesics connecting two
points on a cone [95]. Upon a Wick rotation L = iR3, one recovers the scalar field Green
function in conical AdS3 [94].

Quantum stress tensor for a conical defect in dS3. We can now obtain the renor-
malized quantum stress tensor 〈Tµν〉 from G(x, x′) using the point-splitting method [7, 16,
94, 96, 97]. Specifically,

〈Tµν(x)〉 = lim
x′→x

(3
4∇

x
µ∇x

′
ν G−

1
4gµνg

αβ∇xα∇x
′
β G−

1
4∇

x
µ∇xνG+ 1

16R2
3
gµνG

)
, (B.19)

where G(x, x′) = GCdS3(x, x′) is the Green function (B.18), the metric gµν is a function
of spacetime point x, ∇xµ denotes a covariant derivative with respect to point x, and ∇x′µ
denotes a derivative with respect to the point x′. Moreover, the limit x→ x′ is the coincident
limit, which amounts to evaluating the resulting expression at x′ = x. Note that while
normally the renormalization of the stress tensor is difficult, here one simply subtracts off
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the n = 0 term in the image sum in the coincident limit; indeed, the n = 0 term includes
the divergent contribution.

To evaluate each component of the renormalized stress tensor in the conical defect
background, we recognize G(x, x′) is a symmetric biscalar, while its covariant derivatives
are examples of bitensors. Consequently, one invokes a generalization of Synge’s theorem
for bitensors developed by Christensen [96] (also see eq. (54) of [98]):

lim
x′→x

(∇x′µ Aα1) = ∇xµ lim
x′→x

(Aα1)− lim
x′→x

(∇xµAα1) , (B.20)

where Aα1 is a bivector with equal weight at both x and x′, whose coincidence limit exists.
Consequently, applying Synge’s rule (B.20) to the quantum stress tensor (B.19) we have:

〈Tµν (x)〉= 3
4

[
∇xν lim

x′→x

(
∇xµG

)
− lim
x′→x

(
∇xν∇xµG

)]
− 1

4gµνg
αβ

[
∇xβ lim

x′→x
(∇xαG)− lim

x′→x

(
∇xβ∇xαG

)]
+ lim
x′→x

(
−1

4∇
x
µ∇xνG+ 1

16R2
3
gµνG

)
. (B.21)

Evaluating this in the conical defect spacetime (B.1), we find all off-diagonal components
vanish, leaving only non-zero diagonal contributions (1.4) with form factor F (γ) (2.3)

C Bulk dual of a CFT in conical dS3

Here we show the bulk dual description of a holographic CFT in conical dS3 is equal to a
double Wick rotation of the hyperbolic AdS4 black hole. To see this, consider the limit of
vanishing backreaction `→ 0 of the AdS4 C-metric (4.1),

ds2 = `2

x2r2

−(1− r2

R2
3

)
dt2 +

(
1− r2

R2
3

)−1

dr2 + r2
(
G−1 (x) dx2 +G (x) dφ2

) ,
(C.1)

where G(x) = 1 − x2 − µx3. In the limit ` → 0, the AdS4 cosmological constant yields
`4 = `. Clearly, along boundary x = 0, where G(x) = 1, the above geometry is conformally
equivalent to conical dS3. Under the following double Wick rotation,

t = −iR3Φ , r = R3
cosh u , x = 1

ρ̂
, φ = −iT̂ , (C.2)

with u ∈ R+ and Φ ∈ [0, 2π], the line element (C.1) becomes

ds2 = `24

[
−
(
ρ̂2 − 1− µ

ρ̂

)
dT̂ 2 +

(
ρ̂2 − 1− µ

ρ̂

)−1
dρ̂2 + ρ̂2(du2 + sinh2(u)dΦ2)

]
. (C.3)

Observe that when taking the limit `→ 0 with R3 fixed, we are also sending `4 → 0, so the
entire metric shrinks to zero size. We can nevertheless effectively blow up the metric to
finite size again by rescaling

ρ̂ = ρ

`4
, T̂ = T

`4
, µ = 2mG4

`4
. (C.4)
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Then we recover the line element for the hyperbolic (or topological) AdS4 black hole [99],

ds2 = −f (ρ) dT 2 + f−1 (ρ) dρ2 + ρ2
(
du2 + sinh2 (u) dΦ2

)
, f (ρ) = ρ2

`24
− 1− 2mG4

ρ
.

(C.5)
Here the parameter m is related to the ADM mass M via

M = mω2
4π = ω2

8πG4
ρ+

[(
ρ+
`4

)2
− 1

]
, (C.6)

where ρ = ρ+ is the location of the horizon, and ω2 = 2π
∫∞

0 sinh(u)du is the volume of
hyperbolic space with unit radius. The Bekenstein-Hawking entropy and temperature,
meanwhile, are

S
(4)
BH =

ω2ρ
2
+

4G4
, TH = 1

4πρ+

(
3ρ2

+
`24
− 1

)
. (C.7)

This gravitational entropy is generally divergent due to the infinite extent of the H2

hyperbolic space ω2, in accordance with the entanglement entropy of the dual CFT, and
may be regulated by introducing a cutoff.

D Entropy deficit of small quantum dS black hole

Consider the generalized entropy (5.26) of the cosmological horizon evaluated about r+ =
R3 − µ`

2 at small µ, where we keep ` fixed, but ν is still assumed to be small. Then,

S(3)
gen ≈

πR2
3

2G3(`+R3) −
πR3µ`

2G3(`+R3) +O
(
µ2
)
, (D.1)

where we used x1 ≈ 1 at small µ. In the limit `→ 0, we find S(3)
gen = πR3

2G3
, the entropy of

empty dS3. The entropy (D.1) is the analog of the classical entropy S1 and is less than
the maximum entropy S(3)

gen,0 = πR2
3

2G3(`+R3) , the entropy of the cosmological horizon of dS3

including matter field fields (5.28). The entropy deficit ∆S(3)
gen is therefore,

∆S(3)
gen = S

(3)
gen,0 − S

(3)
gen ≈

πR3µ`

2G3(`+R3) ≈ 2πR3M , (D.2)

where in the last equality we used that M ≈ µ`
4G3(`+R3) in the limit r+ = R3− µ`

2 for small µ.
We observe the deficit of the generalized entropy for the qSdS solution is precisely of

the same form as the classical entropy deficit (6.5), however, here the deficit vanishes in the
case of vanishing backreaction. Note that had we instead considered a conical deficit in
three-dimensional de Sitter space, the form of the entropy deficit would be the same, where
the mass M would be identified with the ‘mass’ of the conical defect.

Further, we may write the deficit as

∆S(3)
gen = SdS3(2G3M) , (D.3)

with SdS3 = 2πR3
2G3

. This is the analog of the classical four-dimensional result (6.5). Alter-
natively, the generalized entropy of a small black hole sgen is proportional to M2. To see
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this, note that the black hole horizon of our qSdS black hole increases linearly in µ`. This
follows from expanding (4.16) about rh = 0, such that at leading order,

R2
3 ≈ r2

c

(
1 + rh

rc

)
, µ` ≈ rh . (D.4)

Then, let sgen denote the value of S(3)
gen evaluated at r+ ≈ µ`, expanded about small µ,

sgen ≡ S(3)
gen|r+=µ` ≈

`πµ2

2G3
. (D.5)

Notice sgen vanishes in the limit of zero backreaction, as expected. Further, the mass
M (5.8) goes as

M |r+=µ` ≈
µ

4G3
, (D.6)

such that
sgen

8πG3`
= M2 . (D.7)

Consequently, we may alternatively recast the entropy deficit (D.2) as

∆S(3)
gen =

√
(1 +R3/`)S(3)

gen,0sgen . (D.8)

which has a similar form as the four-dimensional deficit (6.5).
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