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1 Introduction

The fundamental theory of quantum gravity is expected to manifest itself at low energies
via a series of higher-derivative curvature corrections to the universal two-derivative theory.
Investigating the structure of such corrections and determining how they affect the physical
observables is key for gaining insight into the UV complete theory. For instance, studying
the consistency of the low-energy effective theory led to bounds on the corrections and was
a motivation for the weak-gravity conjecture [1, 2].

One avenue to make progress in this arduous endeavour is to concentrate on setups
allowing for enhanced control. For instance, imposing supersymmetry the higher-derivative
terms are greatly constrained, and can in principle be constructed systematically whenever
an off-shell formulation of supergravity is available. Further, when considering supergravity
in asymptotically AdS spaces one can combine the principles of holography with exact
quantum field theory results to obtain a valuable guidance in exploring the gravitational
higher-derivative effective theory.

The present paper builds on this approach and focuses on the higher-derivative cor-
rections to five-dimensional minimal gauged supergravity and the thermodynamics of its
asymptotically AdS black hole solutions. Some steps in this direction have previously been
taken in [3–5], see also [6] for a study starting from α′ 3 corrections to type IIB supergravity
on S5.1

Both supersymmetric and non-supersymmetric asymptotically AdS black hole solutions
to five-dimensional minimal gauged supergravity are known [10, 11]. Via holography, the
microstates accounting for the entropy of such black holes are expected to correspond to
states of four-dimensional N = 1 superconformal field theories (SCFT’s) at large N . Since
minimal gauged supergravity arises as a consistent truncation around any supersymmetric
AdS5 solution to ten- or eleven-dimensional supergravity, one can see the black hole as a
universal deformation of such higher-dimensional solutions, obtained by turning on suitable
chemical potentials for angular momentum and graviphoton charge. The corresponding
field theory statement is that the dual microstates should exist in any holographic N = 1
SCFT, and furthermore that they are counted by a generating function depending on the
same chemical potentials as the black hole.

In the last few years, there has been a lot of progress in defining and studying the
SCFT partition function counting the microstates for supersymmetric black holes in AdS
spaces, see e.g. [12] for a review. Starting with [13–15], different methods have been devised
to address AdS5 black holes and the dual four-dimensional SCFT’s. The relevant SCFT
generating function turns out to be the superconformal index [16, 17] in a regime where the
chemical potentials are complex. This is also computed by the path integral of the theory
on S1 × S3 [18, 19], with sources chosen so as to match the black hole asymptotics [13].
Working at leading order in the large-N limit, it has been possible to isolate the saddles
in the SCFT index corresponding to the contribution of supersymmetric black holes to
the gravitational partition function, and successfully match the corresponding Bekenstein-
Hawking entropy.

1A similar program for asymptotically locally AdS4 solutions has been carried out in [7–9].
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However, the index is given at finite N and should thus compute the full quantum
gravity partition function with the assigned boundary conditions. It should thus be possible
to extract the higher-derivative and quantum corrections to the two-derivative theory by
studying the large-N expansion of the index order by order. This is a hard problem as it has
been found that there exist many competing large-N contributions [15, 20–22], which may
dominate in different regimes of the chemical potentials and are expected to correspond to
different solutions contributing to the gravitational partition function [23].

One way to pick up the black hole saddle we are interested in is to perform a specific
Cardy-like limit of small chemical potentials before taking the large-N limit. The index of
a four-dimensional N = 1 SCFT is a branched function of two complex chemical potentials
ω1, ω2, sourcing the combinations of angular momenta and R-charge that commute with the
supercharge used to define it. One can move from one sheet to the other of this branched
function by making the transformation ω1 → ω1 − 2πi. On the “second sheet”, the index
I may be written as [13, 14, 24, 25]

I = Tr e−πiQR eω1(J1+ 1
2QR)+ω2(J2+ 1

2QR) , (1.1)

where the trace is taken over states in the Hilbert space of the theory that are annihilated by
a chosen supercharge, J1, J2 are the angular momenta in the Cartan of the SO(4) symmetry
of S3, and QR is the U(1) R-charge. Note that as a consequence of shifting ω1, the (−1)F

familiar from the Witten index is replaced by e−πiQR , that is why (1.1) was also dubbed
the “R-charge index” in [26]. Using a three-dimensional effective field theory approach, it
was shown in [26] (see also [27–30] for related results) that under mild assumptions the
small chemical potential regime ω1, ω2 → 0 of (1.1) can be expressed as2

log I = −TrR3 (ω1 + ω2 − 2πi)3

48ω1ω2
+ TrR (ω1 + ω2 − 2πi)(ω2

1 + ω2
2 − 4π2)

48ω1ω2

+ log |G|+ exp-terms ,
(1.2)

where “exp-terms” denotes exponentially suppressed terms, that have not been computed
so far. The expression only depends on the SCFT through the R-symmetry anomaly
coefficients TrR3, TrR, and through the rank |G| of the discrete one-form symmetry group
G that the SCFT may have. The dependence of these quantities on the gauge group rank-
parameter N is sensitive to the details of the SCFT. However, it is always true that for
holographic theories TrR is subleading in the large-N expansion, hence one only keeps
the TrR3 term when working at leading order. It was shown in [31] that the Legendre
transform of this term indeed gives the Bekenstein-Hawking entropy of the supersymmetric
black hole solutions of [10, 11]. The same term was also matched with the supersymmetric
two-derivative on-shell action in [13]. A main point of [13] is that the on-shell action can
be evaluated by imposing supersymmetry without also taking the extremal limit if one
allows for a complexification of the black hole solution; this directly matches the dual
superconformal index at leading order in the large-N expansion.

2The different signs appearing in the first line of this expression compared to the analog expression (1.8)
of [26] are due to the redefinition ωthere

1,2 = −ωhere
1,2 that we made here so as to match the gravity conventions

used below.
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However, since the expression (1.2) is valid at finite N , its large-N expansion provides
a prediction for the higher-derivative and quantum corrections to the semiclassical black
hole contribution to the gravitational partition function.

In the present work we develop the holographic counterpart of this story by matching
the full first line in (1.2) via a gravitational computation. The needed ingredients are
contained in five-dimensional minimal gauged supergravity and its supersymmetric higher-
derivative corrections. In particular, the chiral R-symmetry anomaly controlled by TrR3

is matched by the two-derivative Chern-Simons term εµνρσλFµνFρσAλ constructed out of
the graviphoton Aµ (that is, the U(1) gauge field entering in the minimal supergravity
multiplet), while the mixed gauge-gravitational anomaly controlled by TrR is reproduced
by varying the four-derivative term εµνρσλRµν

αβRρσαβAλ. One can thus suspect that the
supersymmetrization of these terms is all what is needed in order to match the first line
of (1.2). As we will see, this is indeed the case.

Given the intrinsic complication of dealing with higher-derivative supersymmetry in-
variants, we devote the first part of our work to recast the four-derivative supergravity
action in the simplest possible form. In order to do so, we start from off-shell supergravity
in the standard Weyl formulation and eliminate the auxiliary fields. Then we implement a
series of field redefinitions so as to simplify the action. The resulting expression, that will
be the basis of our study, is given in eq. (3.7) below. Here, the corrections are proportional
to a parameter α with dimensions of length2. Their precise contribution to the action de-
pends on two dimensionless parameters, λ1, λ2, reflecting the fact that we have started our
analysis from a generic linear combination of two four-derivative off-shell invariants. The
parameters λ1, λ2 are not fixed in the effective theory and should in principle be determined
from the UV completion. Although a third off-shell supersymmetry invariant exists, we
will provide a physical argument showing that our action is in fact the most general one,
at least for the purposes of the present paper.

Then we evaluate the action at linear order in α for the non-supersymmetric black hole
of [11]. This is possible although we are lacking the corrected black hole solution. Indeed,
adapting to the theory of interest an argument of [32], we show that it is sufficient to
evaluate the action on the uncorrected solution. An important aspect of the proof is that
it requires fixed boundary conditions. (This is in line with the fact that we are working in
the grand-canonical ensemble and thus keep the thermodynamic potentials fixed.) Because
of this requirement, when implementing field redefinitions to simplify our four-derivative
action, we have been careful in restricting to redefinitions that preserve the asymptotic
structure of the metric and gauge field.

In order to remove the divergences from the action integral we use holographic renor-
malization. Although the general set of higher-derivative holographic counterterms for
gravitational theories comprising the metric and a gauge field is not known, we argue
that the ones used e.g. in [33] are sufficient for our purposes. This is because the only
purely gravitational term appearing in our action (3.7) is the Gauss-Bonnet term, for
which both the Gibbons-Hawking boundary term and the holographic counterterms are
known. Moreover, the gauge field is sufficiently suppressed asymptotically so as not to
affect the boundary terms.

– 4 –
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Then, using the approach of [13], we impose just the supersymmetry condition and,
after translating the gravitational couplings into SCFT anomaly coefficients, show that the
resulting on-shell action precisely matches the first line of (1.2).

We then use the on-shell action to study the thermodynamics. In Euclidean quantum
gravity, the renormalized on-shell action with Dirichlet boundary conditions is interpreted
as the logarithm of the thermodynamical partition function in the grand-canonical ensem-
ble [34]. Thus the corrected action provides the corrections to the black hole thermodynam-
ics, both with and without supersymmetry. Assuming that the first law and the quantum
statistical relation continue to hold at linear order in α, we determine the corrected charges
and entropy. Then we obtain their supersymmetric and extremal (BPS) expressions; these
can be found in subsection 5.1 for the case of one independent angular momentum, and in
subsection 5.2 for the case of general angular momenta.

In the BPS limit, the angular momentum and electric charges satisfy a non-linear
relation that corrects to O(α) the relation already known at the two-derivative level. We
also find that the entropy can be nicely expressed in terms of the charges, thus obtaining
its microcanonical form. When converted to field theory units, the BPS entropy reads

S = π

√
3Q2

R − 8a (J1 + J2)− 16 a (a− c) (J1 − J2)2

Q2
R − 2 a (J1 + J2)

, (1.3)

while the non-linear relation between the charges can be written as

[3QR + 4 (2 a− c)]
[
3Q2

R − 8c (J1 + J2)
]

= Q3
R + 16 (3c− 2a) J1J2 + 64a (a− c)(QR + a)(J1 − J2)2

Q2
R − 2a(J1 + J2)

,
(1.4)

where a, c are the SCFT central charges, related to the R-symmetry anomaly coefficients
appearing in (1.2) by the well-known map a = 3

32(3 TrR3−TrR) , c = 1
32(9 TrR3−5 TrR).

The previously known leading-order version of (1.3), (1.4) is recovered by setting a = c, and
the formulae above hold at linear order in a− c. Besides resolving the degeneracy between
these two anomaly coefficients, our result shows that the corrections to the microcanonical
entropy at linear order in the four-derivative corrections is encoded in the corrections to a
and c, as well as in a new term proportional to (J1 − J2)2, which thus vanishes for equal
angular momenta.

In order to verify our result for the BPS entropy we also construct the corrected near-
horizon solution for the black hole of [10]. Evaluating the Wald entropy formula on this
solution we find perfect agreement with the expression obtained from the on-shell action.

We further validate our results by directly performing the Legendre transform of the
supersymmetric on-shell action, or equivalently of the first line of (1.2), at linear order
in TrR. Besides representing a nice consistency check, this computation provides a very
direct way to obtain the BPS entropy, extending to higher-order the method already proven
useful in [13, 35].

It would be very interesting to investigate how the expressions (1.3), (1.4) are modified
beyond the first subleading order in the corrections. To test this, one should study higher
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orders in α and incorporate in the gravitational effective action supersymmetric terms
comprising more than four derivatives, as well as quantum corrections. While this is
of course a very hard task, a simpler way to assess it would be to determine the exact
Laplace transform of (1.2). The fact that the four-derivative corrections already match the
full functional form of the first line of (1.2) may indicate some intriguing simplifications,
perhaps based on non-renormalization theorems.

The remainder of the paper is organized as follows. In section 2 we review the solution
of [11] together with its supersymmetric thermodynamics. In section 3 we work out our
four-derivative effective action starting from off-shell Poincaré supergravity and exploiting
field redefinitions. In section 4 we evaluate the four-derivative action at linear order in α

on the black hole solution and match the field theory result (1.2) after imposing supersym-
metry. In section 5 we use the black hole thermodynamical relations to obtain the charges
and the entropy, focusing on their BPS values. This leads us to the microcanonical form
of the BPS entropy. In section 6 we construct the corrected near-horizon geometry for
the black hole of [10] and check our result for the BPS entropy via Wald’s formula. In
section 7 we evaluate the Legendre transform of the supersymmetric on-shell action. We
conclude in section 8. In appendix A we discuss the holographic dictionary between the
gravitational couplings and the SCFT anomaly coefficients, in appendix B we give the non-
supersymmetric charges and entropy, while in appendix C we provide the higher-derivative
equations of motion.

Note added in v1. While the present paper was under completion we became aware
of [36], which has considerable overlap. While our results for the corrected on-shell action
agree, our expression for the BPS entropy disagrees with the one presented there. The
reason may be that in [36] the formula for the entropy is evaluated on the two-derivative
solution.

Note added in v2. The results for independent angular momenta, given in subsec-
tion 5.2, as well as the Legendre transform of the supersymmetric action, discussed in
section 7, have been derived in the revised version of the present paper.

2 The two-derivative solution and supersymmetric thermodynamics

In this section we briefly review the AdS5 black hole solution to minimal five-dimensional
gauged supergravity given in [11], as well as its supersymmetric thermodynamics presented
in [13]. We will only present the features that are important for our discussion, referring
to the original references for further details.

The two-derivative bosonic action is given by3

S = 1
16πG

∫
d5x e

[
R+ 12g2 − 1

4F
2 − 1

12
√

3
εµνρσλFµνFρσAλ

]
, (2.1)

3We are using the same conventions as [11]. The Levi-Civita tensor is defined by ε01234 = −e−1, where
e denotes the determinant of the fünfbein eaµ.
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with equations of motion

Eµν ≡ Rµν + 4g2gµν −
1
2FµρFν

ρ + 1
12gµνF

2 = 0 ,

Eµ ≡ ∇νF νµ −
1

4
√

3
εµνρσλFνρFσλ = 0 .

(2.2)

Here Aµ is an Abelian gauge field, Fµν = 2∂[µAν], and F 2 = FµνF
µν . The parameter g

controlling the cosmological constant is normalized so that the AdS solution has radius 1/g.
This theory arises as a universal consistent truncation of ten- or eleven-dimensional

supergravity on any internal geometry M allowing for a supersymmetric AdS5 ×M solu-
tion (where the product × may be warped) [37, 38]. In particular, it arises as a consistent
truncation of type IIB supergravity on any Sasaki-Einstein five-dimensional manifold, in-
cluding S5.

The most general known asymptotically AdS5 black hole solution to this theory was
given in [11] and reads in the coordinates t, θ, φ, ψ, r:

ds2 = −∆θ [(1 + g2r2)ρ2dt+ 2qν] dt
Ξa Ξb ρ2 + 2q νω

ρ2 + f

ρ4

(∆θ dt
ΞaΞb

− ω
)2

+ ρ2dr2

∆r
+ ρ2dθ2

∆θ

+r2 + a2

Ξa
sin2 θ dφ2 + r2 + b2

Ξb
cos2 θ dψ2 , (2.3)

A =
√

3q
ρ2

(∆θ dt
Ξa Ξb

− ω
)

+ ξ dt , (2.4)

where

ν = b sin2 θ dφ+ a cos2 θ dψ , ω = a sin2 θ
dφ
Ξa

+ b cos2 θ
dψ
Ξb

,

∆r = (r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq
r2 − 2m,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ , ρ2 = r2 + a2 cos2 θ + b2 sin2 θ ,

Ξa = 1− a2g2 , Ξb = 1− b2g2 , f = 2mρ2 − q2 + 2abqg2ρ2 . (2.5)

The angular coordinates φ, ψ are 2π-periodic, while θ ∈ [0, π/2]. The constant ξ appearing
in A parameterizes a gauge choice that needs to be made so that the Euclidean section of
the analytically continued solution is globally well-defined (more later).

The solution depends on the four parameters a, b,m, q, with a2g2 < 1, b2g2 < 1. These
control four independent conserved charges: the energy E, the angular momenta J1, J2
associated with rotations in the φ and ψ directions, respectively, and the electric charge
Q. Their expressions are:

E = mπ(2Ξa + 2Ξb − Ξa Ξb) + 2πqabg2(Ξa + Ξb)
4GΞ2

a Ξ2
b

, Q =
√

3πq
4GΞa Ξb

,

J1 = π[2am+ qb(1 + a2g2)]
4GΞ2

a Ξb
, J2 = π[2bm+ qa(1 + b2g2)]

4GΞ2
b Ξa

. (2.6)

– 7 –
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The position r = r+ of the outer event horizon is the largest positive root of the
equation ∆r(r) = 0.4 This directly enters in the expressions for the thermodynamic po-
tentials, namely the inverse Hawking temperature β, the angular velocities Ω1,Ω2, and the
electrostatic potential Φ,

T ≡ β−1 =
r4

+[(1 + g2(2r2
+ + a2 + b2)]− (ab+ q)2

2π r+ [(r2
+ + a2)(r2

+ + b2) + abq]
, (2.7)

Ω1 =
a(r2

+ + b2)(1 + g2r2
+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
, Ω2 =

b(r2
+ + a2)(1 + g2r2

+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
, (2.8)

Φ =
√

3 q r2
+

(r2
+ + a2)(r2

+ + b2) + abq
. (2.9)

Of course, r+ also appears in the expression for the area of the horizon and thus in the
Bekenstein-Hawking entropy,

S = Area
4G =

π2[(r2
+ + a2)(r2

+ + b2) + abq]
2GΞaΞbr+

. (2.10)

These quantities satisfy the first law of thermodynamics,

dE = TdS + Ω1 dJ1 + Ω2 dJ2 + Φ dQ , (2.11)

as well as the quantum statistical relation

I = βE − S − βΩ1J1 − βΩ2J2 − βΦQ , (2.12)

where I is the Euclidean on-shell action [34]. The divergences contained in the latter can
be renormalized either via the background subtraction method [39], or using holographic
renormalization [40, 41] and subtracting the on-shell action of the AdS5 vacuum; the two
approaches yield the same expression [35]. This reads

I = πβ

4GΞaΞb

[
m− g2(r2

+ + a2)(r2
+ + b2)−

q2r2
+

(r2
+ + a2)(r2

+ + b2) + abq

]
. (2.13)

In evaluating the action, one should fix the gauge so that the following regularity condition
at the horizon is satisfied,

V µAµ|r=r+ = 0 , (2.14)

where V = ∂t + Ω1∂φ + Ω2∂ψ is the Killing vector generating the horizon. The condition
is satisfied by fixing the parameter ξ in (2.4) as

ξ = −Φ , (2.15)
4In practice, since solving for r+ as a function of the parameters a, b,m, q is very cumbersome, we rather

solve ∆r = 0 for m in terms of r+ and the other parameters. This gives

m = (r2
+ + a2)(r2

+ + b2)(1 + g2r2
+) + q2 + 2abq

2r2
+

.

Hence the solution will be regarded as controlled by a, b, r+, q.

– 8 –
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implying that the electrostatic potential can be read from the gauge field at the conformal
boundary of the solution, Φ = −V µAµ|r→∞.

Combining (2.11) and (2.12), one finds that variation of the on-shell action with respect
to the chemical potentials gives the charges,

E = ∂I

∂β
, J1 = − 1

β

∂I

∂Ω1
, J2 = − 1

β

∂I

∂Ω2
, Q = − 1

β

∂I

∂Φ . (2.16)

Hence the on-shell action can be regarded as a saddle of the grand-canonical partition
function, I = − logZgrand, and is a function of the chemical potentials β,Ω1,Ω2,Φ. This
interpretation is in harmony with the one that regards the action of an asymptotically (lo-
cally) AdS solution as a function of the boundary values of the bulk fields (for a Dirichlet
variational problem), see e.g. [42]. Indeed after imposing regularity of the Euclidean solu-
tion, the quantities β,Ω1,Ω2,Φ appear in the boundary data (that is, the boundary metric
and gauge field together with the global identification of the coordinates), and the action
is a function of such boundary values, so that I = I(β,Ω1,Ω2,Φ). For instance, β is given
by the length of the Euclidean time circle, which can be read at the boundary; see e.g. [13]
for a more detailed discussion. This point of view will be important for us later, when
we will need to decide which variables are held fixed while including the higher-derivative
corrections.

The solution above is supersymmetric if

q = m

1 + ag + bg

= −(a− ir+)(b− ir+)(1− igr+) ,
(2.17)

where in the second line we have used the expression of m in terms of r+ and chosen one of
the two roots of the resulting quadratic equation for q (choosing the other root would just
give expressions where i is replaced by −i). This relation does not automatically imply
extremality, namely vanishing of the Hawking temperature. Extremality only follows after
further imposing that the Lorentzian solution is well-behaved [11], and is reached by taking

r+ → r∗ , (2.18)

with the BPS horizon radius being5

r∗ =
√

1
g

(a+ b+ abg) . (2.19)

In this limit, the chemical potentials take the values:

β →∞ , Ω1 → Ω∗1 = g , Ω2 → Ω∗2 = g , Φ→ Φ∗ =
√

3 . (2.20)

It turns out that Ω∗1,Ω∗2,Φ∗ are precisely the coefficients appearing in the superalgebra,6

{Q,Q} ∝ E − gJ1 − gJ2 −
√

3Q , (2.21)
5Following the notation of [13], we call “BPS” and denote by a ∗ the quantities arising by imposing both

the supersymmetry and the extremality conditions.
6This is related to the fact that in the BPS limit the Killing vector V generating the horizon coincides

with the one constructed as a bilinear of the Killing spinor of the solution, see [13] for a comparison.
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Comparing the gravitational and SCFT superalgebras, one can see that the electric charge
Q is related to the canonically normalized R-charge QR appearing in the index (1.1), under
which the supercharge has eigenvalue 1, via

Q =
√

3g
2 QR . (2.22)

It follows from (2.21) that in supersymmetric solutions the conserved charges satisfy
the linear relation

E − gJ1 − gJ2 −
√

3Q = 0 . (2.23)

Using this to eliminate E, the quantum statistical relation (2.12) and the first law (2.11)
restricted to the supersymmetric ensemble become

I = −S − ω1J1 − ω2J2 −
2√
3 g
ϕQ , (2.24)

dS + ω1 dJ1 + ω2 dJ2 + 2√
3 g
ϕ dQ = 0 , (2.25)

where we have introduced the supersymmetric chemical potentials

ω1 = β(Ω1 − Ω∗1) = 2π(ag − 1)(b− ir+)
2(1 + ag + bg)r+ + ig(r2

∗ − 3r2
+)

,

ω2 = β(Ω2 − Ω∗2) = 2π(bg − 1)(a− ir+)
2(1 + ag + bg)r+ + ig(r2

∗ − 3r2
+)

,

ϕ =
√

3g
2 β(Φ− Φ∗) = 3π(a− ir+)(b− ir+)

2(1 + ag + bg)r+ + ig(r2
∗ − 3r2

+)
,

(2.26)

which measure the departure from the extremal values. These satisfy the relation

ω1 + ω2 − 2ϕ = 2πi . (2.27)

One can show that this relation is in fact required to ensure regularity of the Killing spinor
in the topology of the Euclidean solution [13]; it also ensures that the combination of the
charges that are defined by varying I with respect to ω1, ω2, that is

− ∂I

∂ω1,2
= J1,2 + 1√

3 g
Q , (2.28)

is supersymmetric (namely, it commutes with the supercharges when promoted to opera-
tor). It further follows that I must be just a function of ω1, ω2. Indeed, using the super-
symmetry condition (2.17), one can check that the on-shell action (2.13) can be expressed
simply as [13]

I = 2π
27Gg3

ϕ3

ω1ω2
, (2.29)

where ϕ can be eliminated via (2.27).
A feature of assuming (2.17) without also taking the extremal limit is that both the

five-dimensional metric and gauge field are complexified. However, after establishing the
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supersymmetric thermodynamics above one can take the BPS limit by sending r+ → r∗;
in these variables the limit is perfectly smooth and gives back a real solution (when Wick-
rotating the Euclidean time back to Lorentzian signature), while the chemical potentials
ω1, ω2 remain complex. The BPS entropy reads

S∗ = π2(a+ b)r∗
2Gg(1− ag)(1− bg)

= π

g

√
4Q∗2 − π

Gg

(
J∗1 + J∗2

)
, (2.30)

where in the second line we have given its expression in terms of the BPS charges [43].
These charges satisfy the non-linear relation(

2
√

3
g
Q∗ + π

2Gg3

)( 4
g2Q

∗2 − π

Gg3 (J∗1 + J∗2 )
)

=
(

2√
3 g
Q∗
)3

+ 2π
Gg3J

∗
1J
∗
2 . (2.31)

The supersymmetric version of the thermodynamics summarized above is key for
matching the index of dual SCFT’s as explained in section 1. The Legendre transform
of (2.29), supplemented by a reality condition, yields both (2.30) and (2.31) [13, 31].

3 The four-derivative effective action

In this section we give the most general four-derivative correction to minimal gauged su-
pergravity which is compatible with its local symmetries, namely diffeomorphism, gauge
invariance and supersymmetry.

We start by supplementing the two-derivative action (2.1) with four-derivative correc-
tions,

S = 1
16πG

∫
d5x e

[
d0R+ 12g2d1 −

d2
4 F

2 − d3

12
√

3
εµνρσλFµνFρσAλ + αL4∂

]
, (3.1)

where L4∂ contains all the possible four-derivative terms constructed out of the low-energy
degrees of freedom which are compatible with the local symmetries of the two-derivative
theory. The parameter α has dimensions of length2 and we assume that αR � 1, where
R here denotes the curvature scale of the solution. This guarantees us that terms with six
or more derivatives can be safely neglected as they will be subleading with respect to the
four-derivative terms that we have included. The most general four-derivative correction
compatible with supersymmetry that we can write down is a linear combination of three
independent supersymmetric invariants {L(i)

4∂}i=1,2,3 ,

L4∂ = λ1 L(1)
4∂ + λ2 L(2)

4∂ + λ3 L(3)
4∂ , (3.2)

where λ1, λ2 and λ3 are dimensionless couplings. In addition to the four-derivative correc-
tions, since αg2 is a dimensionless quantity, we can expect possible corrections to the two-
derivative terms controlled by this parameter (hence, we are also assuming αg2 � 1). This
kind of corrections appear through the dimensionless couplings di, which are of the form

di = 1 + αg2δdi , (3.3)

being δdi a linear combination of λ1, λ2 and λ3, as we will see later.
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The canonical approach to construct a basis of supersymmetric invariants {L(i)
4∂}i=1,2,3

would be to start with the off-shell formulation of N = 2 gauged supergravity, include the
four-derivative invariants [44] and finally integrate out the auxiliary degrees of freedom.7

After this step has been completed, one is free to perform field redefinitions of the form

gµν → gµν + α∆µν , Aµ → Aµ + α∆µ , (3.4)

which allow us to eliminate most of the four-derivative terms, drastically simplifying the
form of the action. Advancing results, we will show that the action (3.1) can be brought
to the following form using field redefinitions,

S = 1
16πG

∫
d5x e

{
c0R+ 12c1g

2 − c2
4 F

2 − c3

12
√

3
εµνρσλFµνFρσAλ

+λ1α

[
RµνρσR

µνρσ− 1
2RµνρσF

µνF ρσ+ 5
36
(
F 2
)2
− 13

24F
4− 1

2
√

3
εµνρσλRµναβRρσ

αβAλ

]}
,

(3.5)
where F 4 = FµνF

νρFρσF
σµ. The coefficients in front of the two-derivative terms are given

by ci = 1 + αg2δci, where

δc0 = 4λ2 , δc1 = −10λ1
3 + 4λ2 , δc2 = 32λ1

3 + 4λ2 , δc3 = −12λ1 + 4λ2 . (3.6)

Note that of the three coefficients in (3.2), only λ1, λ2 appear in (3.5). In fact, below
we will give an argument proving that it is possible to choose the basis of invariants
such that the one controlled by λ3 (whose explicit form has in fact not been worked out
in components in the standard Weyl formulation) yields a vanishing contribution after
implementing appropriate field redefinitions. Alternatively, considering the same basis of
four-derivative invariants as in ref. [5], we obtain

S = 1
16πG

∫
d5x e

{
c̃0R+ 12c̃1g

2 − c̃2
4 F

2 − c̃3

12
√

3
εµνρσλFµνFρσAλ

+λ1α

[
XGB −

1
2CµνρσF

µνF ρσ + 1
8F

4 − 1
2
√

3
εµνρσλRµναβRρσ

αβAλ

]}
,

(3.7)

where XGB = RµνρσR
µνρσ−4RµνRµν+R2 is the Gauss-Bonnet invariant, Cµνρσ = Rµνρσ−

2
3

(
Rµ[ρgσ]ν +Rν[σgρ]µ

)
+ 1

6Rgµ[ρgσ]ν is the Weyl tensor and c̃i = 1 + αg2δc̃i, with

δc̃0 = 4λ2 , δc̃1 = −10λ1 + 4λ2 , δc̃2 = 4λ1 + 4λ2 , δc̃3 = −12λ1 + 4λ2 . (3.8)

We observe that the corrections controlled by λ2 are proportional to the two-derivative
Lagrangian in both (3.5) and (3.7). Thus, they can be simply interpreted as corrections to
the Newton’s constant G, which do not modify the solutions of the two-derivative theory.

We further note that if one ignores boundary conditions, the action (3.7) is equivalent
(up to an ambiguous sign in the mixed Chern-Simons term) to the action presented in
ref. [5]. Indeed we can always rescale the metric and gauge field in a way such that the

7We will see that it is precisely the integration of the auxiliary fields what generates corrections to the
two-derivative terms.
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two-derivative terms can be recast as in the original two-derivative action (2.1), up to a
redefinition of gauge coupling g and the Newton’s constant G. However, these field redefini-
tions are dangerous for our present purposes here as they change the asymptotic structure
of the gauge field. A main consequence of this is that the value of the thermodynamical
quantities is not left invariant by these field redefinitions.8 This would explain why the
authors of [5] obtained a non-vanishing Gibbs free energy for the BPS black hole of [10].
As we will show, this problem does not arise when using either one of (3.5), (3.7). Further-
more, it is not difficult to check that the field redefinitions one needs to bring the action
to these two equivalent forms do not modify the value of the on-shell action, therefore all
the thermodynamical quantities remain invariant. This is a strong consistency check of our
results and of our effective actions (3.5), (3.7).

In what follows, we give the details of the derivation of our main results of this section.
The reader not interested in them can safely ignore the rest of this section. The plan is
the following. In section 3.1 we discuss the general effect of field redefinitions, i.e. without
imposing supersymmetry. In section 3.2 we consider off-shell N = 2 Poincaré supergravity
in the standard Weyl formulation including four-derivative invariants and integrate out the
auxiliary fields in order to obtain the supersymmetric action at linear order in α. Then,
we exploit the power of field redefinitions to show that this action can be mapped to
either (3.5) or (3.7). Some related computations have previously appeared in [3–5, 46].

3.1 Field redefinitions

Field redefinitions of the form (3.4) induce the following terms into the action

S → S − α

16πG

∫
d5x e

[(
Eµν −

1
2gµν E

)
∆µν − Eµ∆µ

]
+O(α2) , (3.9)

where Eµν , Eµ are the two-derivative equations of motion (2.2), and E = gµνEµν . The
induced terms can be used to eliminate all four-derivative terms of the form EµνKµν and
EµLµ by choosing ∆µν and ∆µ appropriately, which amounts to take

∆µν = Kµν −
1
3 gµνK , ∆µ = −Lµ , (3.10)

where K = gµνKµν . In practice, this means that we can use the two-derivative equations
of motion in the piece of the action of order α since all the terms that vanish on-shell can
be eliminated with a field redefinition. Let us consider as an instance a term of the form
RµνK

µν . This term can be replaced in the action by

RµνK
µν → 1

2FµρFν
ρKµν −

(
4g2 + 1

12F
2
)
K , (3.11)

since the difference between the left and right-hand sides is EµνKµν . For the same reason,
a term ∇ρF ρµLµ in the action can be replaced by

∇ρF ρµLµ →
1

4
√

3
εµνρσλFνρFσλLµ . (3.12)

8For the particular case of the Wald entropy, this aspect was discussed in [45].
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In order to implement field redefinitions in a systematic fashion, it is convenient to derive
first a set of replacement rules for all the terms that can appear in (3.1) modulo total
derivatives and the use of Bianchi and Ricci identities. Using (3.11) and (3.12), one can
derive the following rules for particular choices of the tensors Kµν and Lµ:

RµνRµν →
1
4F

4 − 7
144

(
F 2
)2
− 4g2R− 1

3g
2F 2 ,

R2 → 1
144

(
F 2
)2
− 20g2R− 5

3g
2F 2 ,

RF 2 → 1
2
(
F 2
)2
− 20g2F 2 ,

RµνFµρFν
ρ → 1

2F
4 − 1

12
(
F 2
)2
− 4g2F 2 ,

∇ρF ρµ∇σF σµ →
1
3F

4 − 1
6
(
F 2
)2

,

εµνρσλFνρFσλ∇δF δµ →
4√
3
F 4 − 2√

3

(
F 2
)2

.

(3.13)

Using Bianchi identities, integrations by parts and Ricci identities,9 one can further derive
the following rules

F νρ[∇µ,∇ν ]Fµρ → −1
2RµνρσF

µνF ρσ + 1
2F

4 − 1
12
(
F 2
)2
− 4g2F 2 ,

∇µFνρ∇µF νρ → RµνρσF
µνF ρσ − 1

3F
4 − 1

6
(
F 2
)2

+ 8g2F 2 ,

εµνρσλFµνFρ
α∇σFλα → − 1√

3
F 4 + 1

2
√

3

(
F 2
)2

.

(3.14)

This set of rules is enough since the four-derivative part of the action (3.1) can always be
written (up to total derivatives) as a linear combination of the following terms

L4∂ = a1RµνρσR
µνρσ + a2RµνρσF

µνF ρσ + a3
(
F 2
)2

+ a4 F
4 + a5 ε

µνρσλRµναβRρσ
αβAλ

+ b1RµνR
µν+ b2R

2+ b3RF
2 + b4R

µνFµρFν
ρ+ b5∇µFνρ∇µF νρ+ b6∇ρF ρµ∇σF σµ

+ b7 F
νρ[∇µ,∇ν ]Fµρ + b8 ε

µνρσλFνρFσλ∇δF δµ + b9 ε
µνρσλFµνFρ

α∇σFλα .
(3.15)

Making use of the replacement rules that we have just derived, one can show that there is
a field redefinition such that the action (3.1) — with L4∂ given by (3.15) — in terms of
the new fields reads

S = 1
16πG

∫
d5x e

[
c0R+ 12c1g

2 − c2
4 F

2 − c3

12
√

3
εµνρσλFµνFρσAλ + αL′4∂

]
, (3.16)

where

L′4∂ = a′1RµνρσR
µνρσ + a′2RµνρσF

µνF ρσ + a′3

(
F 2
)2

+ a′4 F
4 + a′5 ε

µνρσλRµναβRρσ
αβAλ ,

(3.17)
9Our conventions for the Riemann tensor are such that [∇µ,∇ν ]ξσ = −Rµνασξα.
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and
a′1 = a1 ,

a′2 = a2 + b5 −
b7
2 ,

a′3 = a3 −
7b1
144 + b2

144 + b3
12 −

b4
12 −

b5
6 −

b6
6 −

b7
12 −

2b8√
3

+ b9

2
√

3
,

a′4 = a4 + b1
4 + b4

2 −
b5
3 + b6

3 + b7
2 + 4b8√

3
− b9√

3
,

a′5 = a5 .

(3.18)

Finally, the ci = 1 + αg2δci coefficients are given by

δc1 = δd1 + 5
3 (4b1 + 20b2 + δc0 − δd0) ,

δc2 = δd2 + 8b1
3 + 40b2

3 + 80b3 + 16b4 − 32b5 + 16b7 + δc0
3 −

δd0
3 ,

δc3 = δd3 .

(3.19)

When using the basis of four-derivative invariants in (3.7), the resulting action is

S = 1
16πG

∫
d5x e

[
c̃0R+ 12c̃1g

2 − c̃2
4 F

2 − c̃3

12
√

3
εµνρσλFµνFρσAλ + αL′′4∂

]
, (3.20)

where

L′′4∂ = a′′1 XGB + a′′2 CµνρσF
µνF ρσ + a′′3

(
F 2
)2

+ a′′4 F
4 + a′′5 ε

µνρσλRµναβRρσ
αβAλ , (3.21)

with

a′′1 = a1 ,

a′′2 = a2 + b5 −
b7
2 ,

a′′3 = 1
144
(
− 29a1 − 18a2 + 144a3 − 7b1 + b2 + 12b3 − 12b4 − 42b5 − 24b6 − 3b7

− 96
√

3b8 + 24
√

3b9
)
,

a′′4 = 1
12
(
12a1 + 8a2 + 12a4 + 3b1 + 6b4 + 4b5 + 4b6 + 2b7 + 16

√
3b8 − 4

√
3b9
)
,

a′′5 = a5 ,

(3.22)

and

δc̃1 = δd1 −
5
3 (4a1 − 4b1 − 20b2 − δc̃0 + δd0) ,

δc̃2 = δd2 + 1
3 (−8a1 + 24a2 + 8b1 + 40b2 + 240b3 + 48b4 − 72b5 + 36b7 + δc̃0 − δd0) ,

δc̃3 = δd3 .
(3.23)

Let us note that the coefficients in front of the Ricci scalar, controlled by δc0 and δc̃0, are
arbitrary parameters that we can fix at will. This corresponds to adding a term ∼ αg2E
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to the action through a perturbative field redefinition consisting of a constant rescaling of
the metric.

We emphasize that this applies in a general context, since we have not yet imposed
supersymmetry of the action. This is what we will do next.

3.2 Off-shell supersymmetric invariants

We consider the formulation of off-shell N = 2 Poincaré supergravity based on the standard
Weyl multiplet [47]. Out of the three independent supersymmetric invariants, only two are
explicitly known in components in this formulation. These correspond to the supersym-
metric completion of the Weyl squared term C2 [48] and of the Ricci-scalar squared term
R2 [44].10 (They can also be seen as the supersymmetrizations of the εµνρσλRµναβRρσαβAλ
and εµνρσλFµνFρσAλ Chern-Simons terms). We thus consider a linear combination of these
two invariants (setting e.g. λ3 = 0):

L4∂ = λ1 LC2 + λ2 LR2 . (3.24)

As already mentioned, at the end of this section we will give an argument proving that in
doing so there is in fact no loss of generality.

3.2.1 Two-derivative off-shell theory

Our starting point is the action for off-shell N = 2 Poincaré gauged supergravity in five
dimensions as given in [44],11

S
(0)
off-shell = 1

16πG

∫
d5x e

[1
4 (C + 3)R+ 1

4C
′′F 2 + 16

3 (13C − 1)TµνTµν − 8C′FµνTµν

+ 8 (C − 1)D + 2Ṽµij Ṽ µ
ij − 2

√
2VµPµ − 2PµPµ − 2N2 + 1

2C
′′(∂ρ)2 − C′′Y ijYij

+ 1
24C

′′′εµνρσλFµνFρσAλ − 2
√

3 gYijδij − 2
√

6 gAµPµ − 2
√

6 gρN
]
,

(3.25)
where D, ρ, Tµν = T[µν], N, Yij , Pµ, Vµ, Ṽµ

ij are auxiliary fields that we are going to integrate
out (here ij denotes SU(2) triplets). Ṽµij and Vµ correspond, respectively, to the traceless
and trace parts of the SU(2) vector Vµij that gauges the SU(2) R-symmetry in the parent
superconformal theory, namely

Vµ
ij = Ṽµ

ij + 1
2δ

ijVµ , (3.26)

where Vµ = Vµ
ijδij . Finally, the cubic polynomial C is given by C(ρ) ∝ ρ3. We refer to [44]

for additional details on this theory.
We now solve the auxiliary field equations of motion and then plug the solution back

into the action. Let us first note that the scalar ρ is fixed to an arbitrary constant by the
10The third one was given in superspace in [49] and corresponds to the supersymmetric completion of

the Ricci tensor squared term.
11Our normalization of the gauge coupling constant differs from the one used in [44]. The relation between

the two is gthere =
√

2
3 g

here.
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equation of motion of D, which is satisfied by

C = 1 , (3.27)

and which further implies

C′ = 3
ρ
, C′′ = 6

ρ2 , C′′′ = 6
ρ3 . (3.28)

The remaining equations of motion are solved by

Ṽ ij
µ = 0 , Vµ = −

√
3gAµ ,

Pµ = 0 ,

N =−
√

3gρ√
2
,

Yij =− gρ2

2
√

3
δij ,

Tµν = 3
16ρFµν ,

D =− 1
32

(
R− 1

4ρ2F
2 + 20

3 g
2ρ2
)
.

(3.29)

Inserting these expressions back into the action, we find

S(0) = 1
16πG

∫
d5x e

[
R− 3

4ρ2F
2 + 4g2ρ2 + 1

4ρ3 ε
µνρσλFµνFρσAλ

]
, (3.30)

which is nothing but the bosonic action of minimal gauged supergravity. The normalization
for the gauge field Aµ employed in (2.1) is recovered once ρ is fixed to the value

ρ = −
√

3 . (3.31)

Using this value in (3.29), we get

Ṽ ij
µ = 0 , Vµ = −

√
3 gAµ ,

Pµ = 0 ,

N = 3 g√
2
,

Yij = −
√

3 g
2 δij ,

Tµν = −
√

3
16 Fµν ,

D = − 1
32

(
R− 1

12F
2 + 20g2

)
= − 1

32E .

(3.32)
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3.2.2 Four-derivative corrections

Let us now consider the following action,

Soff-shell = S
(0)
off-shell + α

16πG

∫
d5x e

[
λ1 Loff-shell

C2 + λ2 Loff-shell
R2

]
, (3.33)

where S(0)
off-shell is again given by (3.25) and Loff-shell

C2 and Loff-shell
R2 are the off-shell four-

derivative invariants constructed in [44, 48]. In order to obtain the on-shell action, we
repeat the procedure followed in the two-derivative case. It is important to note, however,
that in order to obtain the on-shell action at first order in α, we just need the solution to
the two-derivative equations of motion of the auxiliary fields, eq. (3.32). This is due to the
fact that all the terms that involve the corrections to the auxiliary fields are proportional to
the two-derivative equations of motion of the latter, hence they become effectively of order
O(α2). Therefore, all we have to do in order to obtain the on-shell action is to substitute
the values of the auxiliary fields in the four-derivative invariants.

Let us first consider the Weyl squared invariant, which is given for instance in eq. (7.1)
of [44].12 Substituting the value of the auxiliary fields, integrating by parts and making
use of the Bianchi identities, we obtain

Loff-shell
C2 |(3.32) = RµνρσR

µνρσ + 1
2 RµνρσF

µνF ρσ − 5
32
(
F 2
)2

+ 5
8 F

4

− 1
2
√

3
εµνρσλRµναβRρσ

αβAλ −
4
3 RµνR

µν + 1
6 R

2 + 5
12 RF

2

− 10
3 RµνFµρFν

ρ −∇µFνρ∇µF νρ + 4∇ρF ρµ∇σF σµ

−
√

3
4 εµνρσλFνρFσλ∇δF δµ −

1
2
√

3
εµνρσλFµνFρ

α∇σFλα −
1
6EF

2 + 1
6E

2

+ g2
√

3
εµνρσλFµνFρσAλ .

(3.34)
We observe that the elimination of the auxiliary fields in Loff-shell

C2 gives rise not only to
four-derivative corrections but also to O(αg2) (two-derivative) corrections.

In turn, the evaluation of the R2 term — which is given in eq. (7.4) of [44] — yields13

Loff-shell
R2 |(3.32) = g2

(
R− 12g2 − 3

4F
2 −
√

3
9 εµνρσλFµνFρσAλ + 8

3E
)
− 1

9E
2 . (3.35)

As we can see, the contribution of this invariant to the four-derivative terms is trivial,
as all of the four-derivative terms appear inside E2, which could have been dropped since
it does not contribute to first order in α. This means that, as we are going to discuss
further, the contribution of this invariant boils down to a change in the coefficients of the
two-derivative terms.

12We have absorbed an overall factor of −
√

3
8 in λ1 for convenience.

13Again, there is an overall factor of 9
√

3
4 which we have absorbed in λ2 for convenience.
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At this stage we are ready to extract the coefficients ai and bi in (3.15) from the
four-derivative terms in (3.34). We obtain the following values14

a1 =λ1 , a2 = λ1
2 , a3 = − 5λ1

32 , a4 = 5λ1
8 , a5 = − λ1

2
√

3
,

b1 =− 4λ1
3 , b2 = 1

6λ1 , b3 = 5λ1
12 , b4 = − 10λ1

3 , b5 = − λ1 ,

b6 = 4λ1 , b7 = 0 , b8 = −
√

3λ1
4 , b9 = − λ1

2
√

3
.

(3.36)

In turn, from the coefficients in front of the two-derivative terms in (3.34) and (3.35), we
can read the δdi coefficients, getting

δd0 = λ2 , δd1 = −λ2 , δd3 = 3λ2 , δd4 = −12λ1 + 4λ2 . (3.37)

Therefore, we are ready to use (3.18), (3.19), (3.22) and (3.23) in order to obtain

a′1 = λ1 , a′2 = − λ1
2 , a′3 = 5λ1

36 , a′4 = − 13λ1
64 , a′5 = − λ1

2
√

3
,

a′′1 = λ1 , a′′2 = − λ1
2 , a′′3 = 0 , a′′4 = λ1

8 , a′′5 = − λ1

2
√

3
,

(3.38)

and, choosing δc0 = δc̃0 = 4λ2,

δc1 = −10λ1
3 + 4λ2 , δc2 = 32λ1

3 + 4λ2 , δc3 = −12λ1 + 4λ2 ,

δc̃1 = −10λ1 + 4λ2 , δc̃2 = 4λ1 + 4λ2 , δc̃3 = δc3 ,
(3.39)

as anticipated in (3.1) and (3.7).
So far we have checked that the corrected action can be written as we anticipated

in (3.7) when the third supersymmetric invariant is not taken into account.15 However, we
have not explained yet how we have come to the conclusion that this is in fact the most gen-
eral action compatible with supersymmetry. This is not obvious given that (3.7) contains
two independent parameters λ1,2 while the most general four-derivative Lagrangian com-
patible with supersymmetry (3.2) contains three. Let us explain it. On general grounds,
the third invariant will give us two types of corrections with four and two derivatives, as
we have seen. The four-derivative corrections can always be reduced upon the use of field
redefinitions to the same combination as in (3.7), up to a shift in λ1. As for the two-
derivative terms, which are encoded in the c̃i coefficients, a naive expectation would be
that supersymmetry only fixes one of these coefficients in terms of the other two, therefore
the final action would depend on three parameters which can always be traced back to the
original λ1, λ2 and λ3 in (3.2). However, we have checked that actually supersymmetry
fixes two parameters in terms of the third one, say c̃3, hence the final action only depends
on two paramaters, which one can always choose as in (3.7). The way in which this has

14We ignore the contributions from EF 2 and E2 since they can be directly eliminated with a field redefi-
nition without changing the rest of the action.

15What we are going to say equally applies to the alternative form (3.5) of the action.
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been checked is by imposing the vanishing of the Gibbs free energy for the black hole
of [10].16 Further details are given at the end of section 5.

4 Matching the supersymmetric black hole action with the dual index

In this section we compute the on-shell action for the black hole of [11] at order α. Then
we impose supersymmetry and match the dual index at the corresponding order in the
large-N expansion.

4.1 The two-derivative solution is enough for evaluating the action

When setting up the computation of the on-shell action at linear order in α, there are two
crucial points that should be kept in mind. The first is that since we are working in the
grand-canonical ensemble, the inverse temperature β and the chemical potentials, Φ, Ω1,
Ω2, must be held fixed to their zeroth-order values given in section 2. Another way to
say this is that we hold fixed the values of the supergravity fields at the boundary of the
asymptotically AdS solution, so as to maintain the original Dirichlet variational problem.
On the other hand, the action, the entropy and the conserved charges are allowed to receive
corrections.

The second point is that the corrections to the bulk metric and gauge field are not
needed in order to compute the O(α) corrections to the thermodynamics, as recently argued
in [32]. It is worth revisiting the argument of [32], adapting it to the case at hands.

At zeroth-order in α, the renormalized Euclidean action has three contributions:

I(0) = I
(0)
bulk + I

(0)
GH + I

(0)
count . (4.1)

The first is the bulk contribution, which in our case is given by

I
(0)
bulk = − 1

16πG

∫
M

d5x e

(
R+ 12g2 − 1

4F
2 − 1

12
√

3
εµνρσλFµνFρσAλ

)
. (4.2)

The second is the Gibbons-Hawking boundary term that renders the Dirichlet variational
problem for the metric well posed,

I
(0)
GH = − 1

8πG

∫
∂M

d4x
√
hK , (4.3)

where h is the determinant of hµν = gµν − nµnν , the induced metric at ∂M, and K =
hµνKµν is the trace of the extrinsic curvature Kµν = ∇(µnν), being nµ is the unit normal
to the boundary. Finally, I(0)

count denotes the boundary counterterms needed to remove the
divergences due to the non-compactness of the space,

I
(0)
count = 1

8πG

∫
∂M

d4x
√
h

(
3g + 1

4g R
)
, (4.4)

16When doing so we are assuming that the corrected non-extremal black hole admits a BPS limit in
presence of the third invariant.
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where R is the Ricci scalar of the induced metric hij . Taking now into account the four-
derivative corrections, the full Euclidean action reads

I = I(0) + α I(1) , (4.5)

where I(1) will be again the sum of bulk and boundary contributions, as we will discuss
momentarily. Let us now assume we have a solution to the corrected equations of motion.
This must be of the form,

gµν = g(0)
µν + α g(1)

µν , Aµ = A(0)
µ + αA(1)

µ , (4.6)

being
{
g

(0)
µν , A

(0)
µ

}
a solution of the zeroth-order equations of motion. Evaluating the action

on the corrected solution and expanding in α yields

I = I(0)|α=0 + α
(
∂αI

(0) + I(1)
)
|α=0 +O

(
α2
)
. (4.7)

As we see, out of the three contributions that arise, the corrections to the metric and gauge
field are only needed to compute (∂αI(0))|α=0. However, it is possible to show that this
contribution actually vanishes if one fixes the boundary conditions appropriately [32]. Al-
though the authors of [32] focus on the asymptotically-flat case, they argue (see footnote 6)
that the same will hold in asymptotically locally AdS spacetimes. Let us demonstrate that
this is in fact the case.17 Integrating by parts, one finds that

δI(0) = 1
16πG

∫
M

d5x e

[(
Eµν −

1
2gµν E

)
δgµν + Eµ δAµ

]
+ 1

2

∫
∂M

d4x
√
hTij δh

ij +
∫
∂M

d4x
√
h ji δAi ,

(4.8)

where we have introduced the (zeroth-order) Brown-York energy momentum tensor [51, 52]
Tij and the electric current ji, which are defined as follows

Tij = 2√
h

δI(0)

δhij
, ji = 1√

h

δI(0)

δAi
. (4.9)

Regarding now the corrected solution (4.6) as a perturbation over the leading-order solu-
tion, we immediately see that the bulk term vanishes at order α because of the zeroth-order
equations of motion. This is perhaps less obvious for the boundary terms, though. In the
case at hands, the boundary is the hypersurface r = rbdry, where rbdry is a regulator that
eventually we will send to infinity, rbdry → ∞. The behavior of Tij and ji for large rbdry
in asymptotically locally AdS5 solutions is [40, 41]

√
hTij ∼ O

(
r2
bdry

)
,

√
h ji ∼ O

(
r0
bdry

)
, (4.10)

17We have also made an explicit check of the claim of [32] by computing the O(α) corrections to the
Reissner-Nordström-AdS solution (which at O(α0) is obtained from the general solution in section 2 by
setting a = b = 0). The corrections contain new free parameters that can be chosen so as to ensure that the
boundary metric and gauge field (and therefore the inverse temperature β and the electrostatic potential Φ)
do not receive corrections. An explicit evaluation of I(0) on the corrected solution then shows it is indeed
independent of α. See also [50].
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implying that the boundary terms also vanish if one imposes the following asymptotic
behavior on the corrections,

h
(1)
ij = O

(
r0
bdry

)
, A

(1)
i = O

(
r−2
bdry

)
. (4.11)

The first can always be achieved by a suitable rescaling of the Euclidean time coordinate
τ = it [33], namely

τ → τ

g`
, (4.12)

where ` is the corrected AdS radius. As for the asymptotic condition on the gauge field,
there is always a gauge in which it is satisfied. Let us show that this is also the gauge in
which the Aµ is regular at the horizon. Calling r+ + αδr+ the corrected position of the
horizon, we must verify that

V µAµ|r=r++αδr+ = 0 , (4.13)

where V µ is the Killing vector generating the horizon. Since we are working in the
grand-canonical ensemble, we need to keep the electric potential Φ = V µAµ|r=r++αδr+ −
V µAµ|r=∞ fixed, that is

δΦ = αV µ
(
∂rA

(0)
µ |r=r+δr+ +A(1)

µ |r=r+ −A(1)
µ |r=∞

)
= 0 . (4.14)

Together with (4.11), this leads to

∂rA
(0)
µ |r=r+δr+ +A(1)

µ |r=r+ = V µA(1)
µ |r=∞ = 0 . (4.15)

It follows that
V µAµ|r=r++αδr+ = V µA(0)

µ |r=r+ , (4.16)

implying that the regularity condition is satisfied as it is assumed such in the uncorrected
solution.

We indicate the behavior (4.11) by saying that the corrections preserve the asymptotic
boundary conditions on the fields.

4.2 Higher-derivative boundary terms

Having established that the action can be evaluated on the uncorrected solution, it only
remains to specify the boundary terms that supplement the bulk contribution in the O(α)
action I(1). The boundary terms associated with a generic higher-derivative bulk action
such as (3.15) are not known, although several effective prescriptions have been discussed
in the literature before, see e.g. [33, 53, 54] and references therein. In our simpler effective
action (3.7), the only four-derivative invariant for which the associated Gibbons-Hawking
term I

(1)
GH is known is the Gauss-Bonnet one, [55, 56]. However this is enough for our

purposes here, given the asymptotic behavior of the field strength in the solutions under
study. As a matter of fact, only the Gauss-Bonnet term contains divergences, as previously
noted also in [50] in the static case. Therefore for I(1)

GH we take [55, 56]

I
(1)
GH = λ1

8πG

∫
∂M

d4x
√
h

[2
3K

3 − 2KKijK
ij + 4

3KijK
jkKk

i + 4GijKij
]
,

− λ2g
2

2πG

∫
∂M

d4x
√
hK ,

(4.17)
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where Gij = Rij − 1
2hijR is the Einstein tensor of the induced metric. Regarding the

boundary counterterms, we follow the prescription of [33], which amounts to shift the
coefficients in front of the boundary counterterms already present at zeroth order in α,
namely

I
(1)
count = 1

8πG

∫
∂M

d4x
√
h

(
3µ1g + µ2

4g R
)
, (4.18)

where µ1 and µ2 are chosen so as to cancel the r4 and r2 divergences. For the effective
action (3.7), we find the following values

µ1 = 4g2

3 (−4λ1 + 3λ2) , µ2 = 4g2 (2λ1 + λ2) . (4.19)

Actually, one can check that the sum of the boundary terms I(1)
GH+I(1)

count is independent
of whether we add the Gibbons-Hawking term associated with the Gauss-Bonnet or not.18

Of course, this would change the values of µ1 and µ2 in (4.19), but the final result is exactly
the same. In other words, if we add a control parameter in front of the first term in (4.17),
the finite contribution to I(1)

GH + I
(1)
count is independent of this parameter and, in particular,

it can be set to zero without altering the final result. While we do not expect this to
hold for more general boundary metrics, it does so in the case at hands. This allows us to
evaluate the on-shell action for the effective action (3.5) with the Riemann squared term for
which the associated Gibbons-Hawking term is not known. The results agree with the ones
obtained from the action (3.7), giving evidence of the claim made in section 3 regarding
the invariance of the black hole thermodynamics under the class of field redefinitions we
have used to simplify the four-derivative action.

4.3 Results

Given the setup above, it is technically demanding but otherwise straightforward to eval-
uate the action on the two-derivative solution (2.3), (2.4). The next step is to impose
supersymmetry. We do so by imposing the same condition as at the two-derivative level,
that is (2.17). One way to see that this is the correct condition even at order α is that
the linear relation (2.27) between ω1, ω2, ϕ must be satisfied, and none of these quanti-
ties depend on α. After imposing the supersymmetry condition, we find that remarkably
the action only depends on the combinations of the parameters a, b, r+ which enter in
the supersymmetric chemical potentials ω1, ω2 and ϕ = 1

2(ω1 + ω2 − 2πi) given in (2.26).
Specifically, we obtain

I = 2π
27Gg3

(
1− 4(3λ1 − λ2)αg2

) ϕ3

ω1ω2
+ 2παλ1

3Gg
ϕ
(
ω2

1 + ω2
2 − 4π2)

ω1ω2
. (4.20)

The fact that β drops out of this expression indicates the validity of the supersymmetric
thermodynamics reviewed in section 2 at linear order in the corrections. We can now
convert this result in field theory units. The dimensionless quantities Gg3, αg2 have a
holographic counterpart in the dual SCFT central charges a, c, or equivalently in the

18Actually, the same occurs with the standard Gibbons-Hawking terms if we leave the coefficients in front
of the counterterms free and fix them afterwards imposing the cancellation of the divergences.
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R-symmetry anomaly coefficients TrR3, TrR. In appendix A we show that for the bulk
action (3.7) we have been studying, the dictionary between the gravitational and the field
theory coefficients is

TrR3 = 16
9 (5a− 3c) = 4π

9Gg3

(
1− 4(3λ1 − λ2)αg2

)
,

TrR = 16(a− c) = −16παλ1
Gg

.

(4.21)

Plugging this in (4.20) and eliminating ϕ via (2.27) yields

I = TrR3 (ω1 + ω2 − 2πi)3

48ω1ω2
− TrR (ω1 + ω2 − 2πi)

(
ω2

1 + ω2
2 − 4π2)

48ω1ω2
, (4.22)

which precisely reproduces the prediction from the index on the second sheet reported in
section 1 upon identifying I = − log I.

In the remainder of this subsection we illustrate the computation further by providing
some details in the more manageable case where a = b. In this case the angular U(1)×U(1)
symmetry of the solution is enhanced to SU(2)×U(1), hence there is only one independent
angular momentum. Then the two-derivative solution reviewed in section 2 reduces to the
one first given in [57] (also discussed in [58]). In the BPS limit, it gives the supersymmetric
black hole of [10].

For the non-supersymmetric on-shell action we find

I = πβ
(
1 + 4λ2αg

2)
4GΞ2

a

[
m− g2(r2

+ + a2)2 −
q2r2

+
(r2

+ + a2)2 + a2q

]
+ πλ1αβ

GΞ2
a

{
− 3g2q2

r2
+ + a2

+
−9m2 + a2g2q2

(
9 +
√

3ξ
)

(
r2

+ + a2) 2 +
12mq2 + 4a2 [(2m+ q)2 − a2g2q2] (2 + ξ√

3

)
(
r2

+ + a2) 3

−
3q4 + 8a4(m+ q)2

(
3 +
√

3ξ
)

+ a2q2
[
8m

(
3 +
√

3ξ
)

+ q
(
15 + 4

√
3ξ
)]

(
r2

+ + a2) 4

+
√

3a2q2 [3q2 + 8a2(m+ q)
]
ξ(

r2
+ + a2) 5 −

a4q4
(
−3 +

√
3ξ
)

(
r2

+ + a2) 6

 ,

(4.23)
where m and ξ are fixed in terms of r+, q, a as given in Footnote 4 and in eq. (2.15),
respectively. In the above expression for the on-shell action, the contribution of the AdS
vacuum has been subtracted, the latter being

IAdS = 3πβ
32Gg2

(
1 + 4λ2αg

2
)

= 3gβ
4 a , (4.24)

where in the second equality we have made use of (A.11) to observe en passant that it
computes the corrected superconformal anomaly coefficient a. At this stage, everything is
settled to impose supersymmetry, which amounts to fix the parameter q as in (2.17), which
we quote here again for the sake of convenience,

q = −(a− ir+)2(1− igr+) . (4.25)
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Now, from (2.26) one can find r+ in terms of ω = ω1 + ω2 and a,

r+ = 4π (−1 + ag)− iω (1 + ag)
3gω , (4.26)

and, substituting this expression in the Euclidean on-shell action, verify that all the depen-
dence on the parameter a (and therefore on β) disappears, yielding the simple expression

I = π

27Gg3

(
1− 4(3λ1 − λ2)αg2

) (ω − 2iπ)3

ω2 + 2παλ1
3Gg

(ω − 2iπ)
(
ω2 − 8π2)

ω2 . (4.27)

which is just (4.20) with ω1 = ω2 ≡ ω/2 and 2ϕ = ω − 2πi.

5 Corrected BPS charges and entropy from the on-shell action

Assuming that the first law (2.11) and the quantum statistical relation (2.12) remain valid
at linear order in the four-derivative corrections, we can derive the non-supersymmetric
charges and the entropy by varying the Euclidean on-shell action I(β,Ω1,Ω2,Φ) (or the
Gibbs free energy G(T,Ω1,Ω2,Φ) = I/β) with respect to its arguments, as in (2.16).
Concretely, this is done by varying with respect to the independent parameters r+, a, b, q,
and using the chain rule to express these in terms of variations of the thermodynamic
potentials. The resulting expressions are quite cumbersome; we provide them in appendix B
for the simpler case where a = b.

We have checked that after imposing supersymmetry through (2.17), the corrected
energy, charge and angular momenta, which now depend on a, b and r+, satisfy the super-
symmetric relation (2.23), while β is still finite. Because of the choice (2.17), all quantities
have complex values in this case.

In the rest of this section we focus on the supersymmetric and extremal (BPS) limit
of the conserved charges and entropy. The BPS solution is found by imposing the condi-
tions (2.17) and (2.19) on the parameters. The limiting procedure is however not unique
and certain quantities such as the Euclidean on-shell action depend on it, as discussed
in [13]. The prescription to take the limit that we follow here is the same as in [59], namely
we fix q to its BPS value, that is q = q∗ = g−1(a + b)(1 + ag)(1 + bg), and parametrize
deviations with respect to the BPS locus by setting

r+ = r∗ + ε , (5.1)

where r∗ is given in (2.19) and ε is the expansion parameter. Recall that the expression
for the temperature is the same as at zeroth order in α, hence the extremality condition
remains the same.

5.1 Equal rotation parameters

In this subsection we discuss the case where a = b, which gives one independent angular
momentum J ≡ J1 = J2, with conjugate angular velocity Ω ≡ 2Ω1 = 2Ω2. In the ε → 0
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limit, all the charges remain real and finite, and read

Q∗ =
√

3πa
2Gg(1− ag)2

[
1 + 4λ2αg

2 + 4λ1αg
2 1 + 8ag + 36a2g2 + 44a3g3 + 19a4g4

ag (−1 + 8ag + 11a2g2)

]
, (5.2)

J∗ = πa2(3 + ag)
2Gg(1− ag)3

[
1 + 4λ2αg

2 + 24λ1αg
2 1 + 9ag + 29a2g2 + 25a3g3 + 8a4g4

ag(3 + ag) (−1 + 8ag + 11a2g2)

]
, (5.3)

E∗ = 2gJ∗ +
√

3Q∗, (5.4)

with E∗ satisfying the supersymmetry relation (2.23), while the entropy is

S∗ = π2a
√
ag(ag + 2)

g2G(1− ag)2

[
1 + 4λ2αg

2 + 48λ1αg
2 2a2g2 + 5ag + 2
11a2g2 + 8ag − 1

]
. (5.5)

Let us note that, at the zeroth-order in α, these agree with the BPS limit of the charges
and the entropy given in section 2, as they should.

We find that the BPS entropy as a function of the charges is given by

S∗ = π

g

√
4Q∗2 − 2π

Gg
J∗

[
1− 2λ2αg

2
2π
GgJ

∗

4Q∗2 − 2π
GgJ

∗

]
, (5.6)

which, remarkably, agrees with the O(α) expansion of

S∗ = π
√

3(Q∗R)2 − 16 a J∗ , (5.7)

where we have also used the canonically normalized R-charge (2.22) for the ease of com-
parison with field theory expressions.

In addition to this, we have been able to find the O(α) corrections to the non-linear
relation between the BPS charges given in (2.31). The corrected relation reads[

2
√

3Q∗

g
+ π

2Gg3

(
1− 8λ1αg

2 + 4λ2αg
2
)] [4Q∗2

g2 − 2πJ∗

Gg3

(
1 + 8λ1αg

2 + 4λ2αg
2
)]

=

= 8Q∗3

3
√

3g3 + 2πJ∗2

Gg3

(
1 + 24λ1αg

2 + 4λ2αg
2
)
.

(5.8)
We note that this is only valid at linearized level in α, so one has to ignore both explicit
and implicit O

(
α2) corrections. In field theory language, this relation translates into

[3Q∗R + 4 (2a− c)]
(
3Q∗R2 − 16c J∗

)
= Q∗R

3 + 16 (3c− 2a) J∗2 , (5.9)

where again we have made use of (2.22).

5.2 Independent rotation parameters

We next give the more involved expressions of the corrected BPS quantities for the case
with two independent rotation parameters, a 6= b.19 Here we set g = 1 for simplicity.

19These results have been added in the v2 of the present paper.
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The electric charge reads

Q∗ =
√

3π(a+ b)
4G(1− a)(1− b)

[
1 + 4λ1α∆Q∗ + 4λ2α

]
, (5.10)

with

∆Q∗ = 2
3D

[
a7 (5b2 + 4b− 1

)
− a6 (7b3 + 34b2 + 57b+ 26

)
− b(b+ 1)2 (b4 + 24b3 + 31b2 + 14b+ 3

)
− a5 (55b4 + 244b3 + 427b2 + 322b+ 80

)
− a4 (55b5 + 400b4 + 985b3 + 1142b2 + 586b+ 100

)
− a3 (7b6 + 244b5 + 985b4 + 1688b3 + 1410b2 + 516b+ 62

)
+ a2 (5b7 − 34b6 − 427b5 − 1142b4 − 1410b3 − 844b2 − 220b− 20

)
+ a

(
4b7 − 57b6 − 322b5 − 586b4 − 516b3 − 220b2 − 44b− 3

) ]
,

and

D = (1+ a)(1+ b)(a+ b)2[a4 − 2a3(b+1)− 3a2
(
3b2 + 8b+ 3

)
− 2a

(
b3 + 12b2 + 12b+1

)
+ b4 − 2b3 − 9b2 − 2b+ 1] .

(5.11)
The angular momentum J1 is given by

J∗1 = π(a+ b) (b+ 2a+ ab)
4G(1− a)2(1− b)

[
1 + 4λ1α∆J∗1 + 4λ2α

]
, (5.12)

where

∆J∗1 = −2
D(b+2a+ab)

[
a8 (−3b2−2b+1

)
+ a7 (4b3+38b2+68b+30

)
+2a6 (19b4+111b3+238b2+196b+50

)
+2a5 (24b5+184b4+543b3+707b2+377b+63

)
+2a4 (6b6+109b5+509b4+1032b3+917b2+324b+33

)
+a3 (−2b7+36b6+402b5+1398b4+2026b3+1234b2+294b+24

)
+a2 (−b8 − 2b7+58b6+428b5+1074b4+1076b3+442b2+76b+5

)
+2ab

(
−b7+23b5+118b4+204b3+131b2+32b+3

)
− b8+12b6+48b5+52b4+16b3+b2

]
.

The angular momentum J2 is obtained from J1 by exchanging the rotational parameters,
a↔ b. The mass E∗ satisfies the supersymmetric relation (2.23), while the entropy is

S∗ = π2(a+ b)
√
a+ b+ ab

2G(1− a)(1− b)
[
1 + 4λ1α∆S∗ + 4λ2α

]
, (5.13)

with

∆S∗ = 2
D

[
a7(b+1)− a6(b+1)− a5 (12b3+48b2+63b+23

)
− a4 (26b4+156b3+312b2+245b+59

)
− a3 (12b5+156b4+496b3+620b2+313b+45

)
− a2 (48b5+312b4+620b3+504b2+159b+11

)
+ ab

(
b6−b5−63b4−245b3−313b2−159b−26

)
+b2 (b5−b4−23b3−59b2−45b−11

) ]
.
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We find that the BPS entropy can be written in terms of the BPS charges as

S∗ = π

√
4Q∗2 − π

G
(1+4λ2α)(J∗1 +J∗2 ) + 3π2

2G2λ1α
(J∗1 − J∗2 )2

Q∗2 − 3π
16G(J∗1 + J∗2 )

. (5.14)

As before, this expression is understood to be valid at O(α). Using the holographic dictio-
nary (A.11) together with (2.22), this can be re-expressed as

S∗ = π

√
3Q∗R2 − 8a(J∗1 + J∗2 )− 16 a(a− c) (J∗1 − J∗2 )2

Q∗R
2 − 2a(J∗1 + J∗2 ) . (5.15)

Moreover, we find that the non-linear constraint on the BPS charges now becomes

[3Q∗R + 4 (2 a− c)]
[
3Q∗R2 − 8c (J∗1 + J∗2 )

]
= Q∗R

3 + 16 (3c− 2a) J∗1J∗2 + 64a (a− c)(Q∗R + a)(J∗1 − J∗2 )2

Q∗R
2 − 2a(J∗1 + J∗2 ) .

(5.16)

5.3 Generality of effective action

Finally, we close this section giving the details of the physical reasoning to argue that
the effective action (3.7) is the most general one compatible with supersymmetry, already
anticipated in section 3. To this aim, we note that the linear supersymmetric relation on
the charges (2.23) further implies that the Gibbs free energy G = I/β must identically
vanish in the BPS limit, as indeed occurs for the action (3.7). This a highly non-trivial test
of the supersymmetric nature of the effective action (3.7). As a matter of fact, if we now
consider an action such as (3.7) but with arbitrary coefficients c̃i = 1 + αg2δc̃i, we obtain
that the Gibbs free energy does not vanish unless they are related by

δc̃1 = −1
3 (54λ1 − 5δc̃0 + 2δc̃3) , δc̃2 = 1

3 (36λ1 + δc̃0 + 2δc̃3) , (5.17)

Choosing δc̃0 = 12λ1+δc̃3, we note that this is nothing but a reparametrization of the effec-
tive action (3.7) in terms of δc̃3 instead of λ2. This physical argument completes our proof
that it is always possible to absorb λ3 (the coupling in front of the third supersymmetric
invariant) in a redefinition of λ1 and λ2. Then, (3.7) is the most general four-derivative
action compatible with supersymmetry.

6 Wald entropy from the near-horizon geometry

It is well known that in higher-derivative gravity the entropy is given by the Wald for-
mula [60, 61]. However, in order to be able to use this formula we need to first find the
corrected black hole solution.20 In the case at hands this is a very arduous task even in
the a = b case, and therefore we leave it for future investigations. This issue can be cir-
cumvented by studying corrections to the near-horizon geometry for the black hole of [10],

20In particular, given our boundary conditions in the grand-canonical ensemble, we must allow the position
of the horizon to fluctuate when including the higher-derivative corrections.
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which can be obtained from the general solution of [11] by taking a = b and then the BPS
limit. The near-horizon geometry of this BPS black hole with a single angular momentum
involves a compact space with SU(2)×U(1) isometry, compatible with the geometry of a
three-sphere squashed by the rotation along an axis, fibred over an AdS2 factor.

In what follows we find the corrected near-horizon solution of the equations of motion
from the action (3.7) — which we derive in appendix C — and then we use it to compute
the black hole entropy, showing that the result obtained from this alternative method nicely
agrees with the computation from the action presented in the previous section.

6.1 Near-horizon geometry

Assuming the isometries of the solution are not spoiled by the corrections, the corrected
solution must fit into the following ansatz

ds2 = v1

(
−%2dt2 + d%2

%2

)
+ v2

4
[
σ2

1 + σ2
2 + v3 (σ3 + w % dt)2

]
, (6.1)

A = e % dt+ p (σ3 + w % dt) , (6.2)

where the σ’s are the left-invariant Maurer-Cartan 1-forms of SU(2),21

σ1 = cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dφ̂ ,

σ2 = − sin ψ̂ dθ̂ + cos ψ̂ sin θ̂ dφ̂ ,

σ3 = dψ̂ + cos θ̂ dφ̂ ,

(6.3)

while

v1 = χ2

4g2 (1 + 3χ2) + α δv1 , v2 = χ2

g2 + α δv2 , v3 = 1 + 3χ2

4 + α δv3 ,

p =
√

3χ2

4g + α δp , w = 3χ
(1 + 3χ2)

√
4 + 3χ2 + α δw ,

e =
√

3χ
g (1 + 3χ2)

√
4 + 3χ2 + α δe ,

(6.4)

contain the deviations from the α = 0 solution. Here, the (dimensionless) parameter χ is
related to the only parameter R0 of the solution in [10] by χ = g R0. The relation between
χ and the parameter a (= b) of the BPS solution of [11] is

χ2 = 2ag
1− ag . (6.5)

Working perturbatively in α, the problem of solving the equations of motion reduces
to a linear system of algebraic equations,

MX = N , (6.6)
21The coordinates θ̂, φ̂, ψ̂ are Euler angles on S3, and are related in a simple way to those used in the

rest of this work.
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where M = M(χ; g) is a degenerate 6 × 6 matrix, X = (δv1, δv2, δv3, δp, δe, δw)T and
N = N (χ; g) is a vector which encodes the contribution to the equations of motion of the
corrections. The general solution to this equation is

X = XH + XP , (6.7)

where XH is the homogeneous solution,MXH = 0, and XP is a particular solution. The
latter carries information about the new physics while the homogeneous solution (which is
non-trivial since the matrixM is not invertible) parametrizes the freedom that we still have
to fix the boundary conditions.22 This will be used later on to fix the electric potential and
angular velocity at the horizon but, before doing so, let us write down the general solution.
Solving the homogeneous system in terms of δe and δw yields the following solution

δvH1 = χ
(
9χ6 − 12χ4 − 68χ2 − 48

)
δe

2g
√

9χ2 + 12 (27χ8 + 162χ6 + 144χ4 + 4χ2 − 12)

− χ3 (9χ6 + 78χ4 + 154χ2 + 88
)
δw

4g2
√

3χ2 + 4 (27χ8 + 162χ6 + 144χ4 + 4χ2 − 12)
,

δvH2 = 4
(
1 + 3χ2

)2
δvH1 ,

δvH3 = −
√

3gχ3 (3χ2 + 4
)3/2 (45χ4 + 66χ2 + 17

)
δe

2 (3χ4 + 16χ2 + 6) (9χ4 + 6χ2 − 2)

− 3χ
(
3χ2 + 1

) (
3χ2 + 4

)3/2 (3χ6 + 7χ4 + 2
)
δw

4 (3χ4 + 16χ2 + 6) (9χ4 + 6χ2 − 2) ,

δpH = χ
(
3χ2 + 1

)√
3χ2 + 4

(
9χ6 − 48χ4 − 62χ2 − 6

)
δe

2 (3χ4 + 16χ2 + 6) (9χ4 + 6χ2 − 2)

− χ
(
3χ2 + 1

)√
9χ2 + 12

(
9χ8 + 69χ6 + 70χ4 + 10χ2 + 4

)
δw

4g (3χ4 + 16χ2 + 6) (9χ4 + 6χ2 − 2) ,

δeH = δe ,

δwH = δw ,

(6.8)

while a particular solution is given by

δvP1 = λ1
(
18χ6 + 21χ4 + 14χ2 + 2

)
27χ6 + 27χ4 − 2 ,

δvP2 = 4λ1
(
36χ6 + 51χ4 + 10χ2 + 6

)
9χ4 + 6χ2 − 2 ,

δvP3 = − λ1g
2 (3χ2 + 4

) (
63χ4 + 78χ2 − 38

)
2 (9χ4 + 6χ2 − 2) ,

δpP =
√

3λ1g
(
3χ2 + 4

) (
27χ4 − 6χ2 + 10

)
4 (9χ4 + 6χ2 − 2) ,

δeP = 0 ,
δwP = 0 .

(6.9)

22Here we have already fixed the temperature to zero.
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As discussed in [62, 63] building on the formalism of [64, 65], the variables e and w are
identified with the thermodynamical variables conjugated to the electric charge and angular
momentum. Thus, if we want to obtain the corrections in the grand-canonical ensemble,
we must impose the following choice of boundary conditions,

δe = 0 , δw = 0 , (6.10)

in which case the homogeneous part of the solution vanishes and the solution is simply
equal to the particular one in (6.9).

6.2 Black hole entropy

Having found the corrected near-horizon geometry, we can now compute the entropy of
the black hole. As anticipated, the black-hole entropy S in higher-derivative gravity can
be computed by means of the Wald formula [60, 61],

S = −2π
∫

Σ
d3x
√
γ EµνρσR εµνερσ , (6.11)

where γ is the determinant of the induced metric on an arbitrary space-like cross-section
of the horizon Σ, εµν is the binormal normalized so that εµνεµν = −2 and EµνρσR is obtained
varying the action with respect to the Riemann tensor as if it were an independent field.
Using results derived in appendix C, we get

EµνρσR ≡ δS

e δRµνρσ
= 1

16πG (Pµνρσ + Πµνρσ) , (6.12)

where

Pµνρσ =
(
1 + 4λ2αg

2
)
gµ[ρgσ]ν + αλ1

[
2Rµνρσ − 4

(
Rµ[ρgσ]ν −Rν[ρgσ]µ

)
+ 2gµ[ρgσ]νR

− 1
2F

µνF ρσ − 1
12g

µ[ρgσ]νF 2 + 1
3
(
FµαF [ρ

αg
σ]ν − F ναF [ρ

αg
σ]µ
) ]

,

(6.13)
and

Πµνρσ = −αλ1√
3
εµναβγRαβ

ρσAγ . (6.14)

The tensor Πµνρσ is the contribution from the mixed Chern-Simons term in the action, and
as such it depends explicitly on the gauge field A. This means that the entropy obtained
using Wald’s formula would not be gauge invariant in general.23 In the case at hands,
there is only one gauge transformation which affects the entropy, which is A → A + dψ̂.

23This issue has been recently addressed in [66, 67] in the context of the heterotic superstring theory,
where a gauge-invariant generalization of the Wald formula has been obtained. One way to preserve
gauge invariance, at the expense of breaking diffeomorphisms, would be to start from a five-dimensional
action where the mixed gauge-gravitational Chern-Simons term has been integrated by parts, and use the
prescription of [68] for the entropy. We do not do this, as it would correspond to a scheme where the mixed
gauge-gravitational anomaly manifests itself in the non-conservation of the holographic energy-momentum
tensor, rather than of the R-current. In any case, we have checked that the prescription of [68] yields the
same result as ours, since the total derivative does not contribute in the present case.
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However, this gauge transformation breaks the SU(2)×U(1) symmetry of the near-horizon
solution and in fact is not globally well defined. Hence, it is reasonable to expect that the
direct application of the Wald formula in the gauge we are using should produce the right
result. This is exactly the case, as we are going to show next.

As it is well known, Wald’s formula encodes two types of corrections. On the one hand,
we have the corrections to the area law, which are captured by the O(α) contributions to
the tensor Pµνρσ and by Πµνρσ, which is already of O(α). Clearly, this set of corrections
can be evaluated without knowing the corrected solution. However, there is a second set
for which the previous statement is not true. They come from the first term in Pµνρσ,
which gives rise to the Bekenstein-Hawking term, and from the fact that the area of the
horizon receives O(α) corrections, namely:

AΣ = π2χ3√4 + 3χ2

g3

[
1 + 4λ1αg

2 153χ6 + 228χ4 + 98χ2 + 36
χ2 (9χ4 + 6χ2 − 2)

]
. (6.15)

In order to evaluate the corrections to the Bekenstein-Hawking term, we choose Σ to be a
t = const slice of the horizon, as it is well known that the entropy is independent of this
choice, [45]. Thus, the non-vanishing components of the binormal are

εt% = v1 . (6.16)

The final expression for the Wald entropy is,

S = π2χ3√4 + 3χ2

4Gg3

[
1 + 4λ2αg

2 + 24λ1αg
2 9χ4 + 18χ2 + 8

9χ4 + 6χ2 − 2

]
, (6.17)

which in terms of the parameter a — see eq. (6.5) — reads

S = π2ag
√
ag(ag + 2)

Gg3 (1− ag)2

[
1 + 4λ2αg

2 + 48λ1αg
2 2a2g2 + 5ag + 2
11a2g2 + 8ag − 1

]
, (6.18)

nicely matching the expression obtained from the on-shell action, (5.5). This is a very
robust check of the validity of our results.

Before closing this section, let us remark the fact that the correction to the entropy
is positive (which is what one would naively expect) if the couplings αλ1 and αλ2 are
positive.24 This kind of observations have been previously made in the literature in the
context of the weak gravity conjecture [50], pointing out an intriguing connection with
violations of the Kovtun-Son-Starinets (KSS) bound [69] studied before in [70]. There it
was shown that the latter occur whenever c−a is positive. Using the holographic dictionary,
we find that

c− a
c

= 8λ1αg
2 , (6.19)

hence in our effective theory violations of the KSS bound would occur whenever λ1α > 0.
It would be interesting to see if one can constrain the sign of the second parameter λ2α to
be positive, so as to be able to say something more rigorous about the positiveness of the
corrections to the entropy.

24Strictly speaking, it is positive for a > acrit = 1
11

(
−4 + 3

√
3
)
≈ 0.1087, which is something we have

assumed when deriving the corrected solution. Note that this is always satisfied for large AdS black holes.
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7 The constrained Legendre transform

In this section we match our expression for the entropy by directly evaluating the Leg-
endre transform of the grand-canonical function (4.22), at linear order in TrR.25 As we
have discussed, this function can be seen as either the supersymmetric black hole on-shell
action at linear order in the four-derivative corrections, or as the terms in the log of the
superconformal index on the second sheet that have power-law dependence on ω1, ω2 when
these are taken small, cf. eq. (1.2).

We will show that, interestingly, the procedure of evaluating a constrained Legendre
transform, described in appendix B of [13] for the leading-order term, extends to the
corrected expression. The advantage of this procedure compared to the one followed in
section 5 is that one can directly reach the final expression for the BPS entropy, with no
need to explicitly solve for the relation between the charges and the potentials.

We start by observing that expression (4.22) can be rephrased as a homogeneous
function of degree 1 in terms of the variables ω1, ω2, ϕ. This is done using the constraint

ω1 + ω2 − 2ϕ = 2πi , (7.1)

to eliminate the factors of 2πi (including the term −4π2 = (2πi)2), so that

I = (TrR3 − TrR) ϕ3

6ω1ω2
− TrR ϕ

[
−2ϕ(ω1 + ω2) + ω2

1 + ω2
2 + ω1ω2

]
12ω1ω2

. (7.2)

The entropy is given by the following extremized function:

S = ext{ω1,ω2,ϕ,Λ} [−I − ω1J1 − ω2J2 − ϕQR − Λ(ω1 + ω2 − 2ϕ− 2πi)] , (7.3)

where the Lagrange multiplier Λ implements the linear constraint (7.1).26 The extremiza-
tion equations are:

− ∂I

∂ω1
= J1 + Λ , − ∂I

∂ω2
= J2 + Λ , − ∂I

∂ϕ
= QR − 2Λ , (7.4)

together with (7.1). It follows that

S = ext
[
−I + ω1

∂I

∂ω1
+ ω2

∂I

∂ω2
+ ϕ

∂I

∂ϕ
+ 2πiΛ

]
= ext [2πiΛ] ,

(7.5)

where to reach the second line it is sufficient to recall Euler’s theorem for homogeneous
functions. A real entropy is only obtained if the solution for Λ is purely imaginary. As we
are going to discuss, this means that the equation for Λ has to factorize as (Λ2+X)(rest) = 0
for some positive X. The factorization condition turns out to be equivalent to the non-
linear constraint among the charges.

25This section has been added in v2.
26There is a slightly different way to impose supersymmetry that leads to the replacement i→ −i in the

expressions above. The analysis of this other case is completely analogous to the one we are presenting,
one just has to pick the opposite sign from the pair of purely imaginary solutions for Λ in the final step.
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7.1 Review of the case TrR = 0

It is useful to recall the procedure presented in ([13], appendix B), valid when one sets
TrR = 0 in (7.2). For some theories, such as N = 4 SYM, TrR = 0 is an exact rela-
tion, otherwise more generally this is a consequence of considering a holographic SCFT at
leading-order in the large-N expansion (or, equivalently, of working at the two derivative
level in the gravitational theory). In this case, the equation for Λ is obtained by evaluating
the derivatives of I explicitly and noting that

9
2 TrR3 ∂I

∂ω1

∂I

∂ω2
−
(
∂I

∂ϕ

)3
= 0 , (7.6)

which using (7.4) is equivalent to the cubic

p0 + p1Λ + p2Λ2 + Λ3 = 0 , (7.7)

with coefficients
p0 = −1

8

(
Q3
R + 9

2 TrR3J1J2

)
,

p1 = 1
4

(
3Q2

R −
9
4 TrR3 (J1 + J2)

)
,

p2 = −3
2QR −

9
16 TrR3 .

(7.8)

Now one uses the fact that, assuming the microcanonical charges are chosen real, the
expression for S obtained from (7.5) is real only if one imposes the factorization condition

p0 = p1p2 , (7.9)

so that the cubic becomes
(p1 + Λ2)(p2 + Λ) = 0 (7.10)

and admits purely imaginary roots Λ = ±i√p1 for p1 > 0. Choosing the appropriate sign
so that the resulting entropy is positive, one obtains the expression

S = 2π√p1

= π

√
3Q2

R −
9
4 TrR3 (J1 + J2) .

(7.11)

One also has that (7.9) is the non-linear constraint between the charges, again at leading
order in the expansion.

7.2 Back to TrR 6= 0

We now include the first subleading terms in the large-N expansion, namely we work at
linear order in TrR 6= 0. Equivalently, we can say we work at linear order in the four-
derivative corrections in the gravitational solution. We will see that the same method
works, however with non-trivial corrections. We find that I in (7.2) satisfies

9
2
(
TrR3 − TrR

) ∂I

∂ω1

∂I

∂ω2
−
(
∂I

∂ϕ

)3
− 3

2 TrR
(
∂I

∂ω1
+ ∂I

∂ω2

)
∂I

∂ϕ
− 3

4 TrR
(
∂I

∂ϕ

)2

' 9
8 TrR3 TrR

(
∂I
∂ω1
− ∂I

∂ω2

)2

∂I
∂ϕ

,

(7.12)

– 34 –



J
H
E
P
1
1
(
2
0
2
2
)
0
5
9

where by the symbol ' we indicate that the equality holds up to terms of order (TrR)2.
The same notation is used in the rest of this section.

Using (7.4), the equation above can be written as an equation for Λ,
p−1

Λ− 1
2QR

+ p0 + p1Λ + p2Λ2 + Λ3 ' 0 , (7.13)

where the coefficients are given by

p−1 = 4a (a− c)(J1 − J2)2

p0 = −1
8
[
Q3
R + 12(c− a)QR(QR + 2(J1 + J2)) + 16(3c− 2a)J1J2

]
,

p1 = 3
4Q

2
R − 2a (J1 + J2) ,

p2 = −3
2QR − 2a .

(7.14)

Here, we used the dictionary (A.4) to express the R-symmetry anomaly coefficients TrR3,
TrR in terms of the conformal anomalies a, c, since the resulting expressions are slightly
more compact.

7.2.1 The case J1 = J2

We first consider the case where the angular momenta are chosen equal, J1 = J2 ≡ J . Then
the coefficient p−1 appearing in (7.13) vanishes and the equation for Λ is third order, as in
the two-derivative case. Hence we can proceed precisely as in that case, the only difference
being in the corrected expressions for p0,1,2. The factorization condition p0 = p1p2 now can
be expressed as the non-linear constraint between the charges

[3QR + 4 (2a− c)]
(
3Q2

R − 16c J
)
' Q3

R + 16 (3c− 2a) J2 , (7.15)

while the entropy is given by
S ' 2π√p1

= π
√

3Q2
R − 16a J ,

(7.16)

These match the expressions we found in subsection 5.1.

7.2.2 The case J1 6= J2

We finally come to the case of general angular momenta, where p−1 does not vanish
and (7.13) is a quartic equation for Λ. In analogy with the discussion above, we choose
the microcanonical charges real and require that there exist two purely imaginary roots of
opposite sign, so that a real and positive entropy is obtained. This means that the equation
has to factorize as

(Λ2 +X)(Λ2 + Y Λ + Z) ' 0 . (7.17)

Comparing with (7.13), we can read the coefficients

X =
p0 − 1

2QR p1

p2 − 1
2QR

, Y = p2 −
1
2QR , Z = −1

2QR p2 + p1p2 − p0

p2 − 1
2QR

, (7.18)
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and find the factorization condition,

p−1

(
p2 −

1
2QR

)
− (p1p2 − p0)

(
p1 + 1

4Q
2
R

)
+ (p1p2 − p0)2

p2 − 1
2QR

' 0 . (7.19)

Since p−1 = O(a − c) ∼ O(TrR), we see that the equation is solved demanding that
p0− p1p2 = O(a− c) too. Then the last term is higher-order and should be dropped, so at
linear order the equation is solved by taking

p0 ' p1p2 −
p−1

(
p2 − 1

2QR
)

p1 + 1
4Q

2
R

. (7.20)

Substituting the expressions for the p’s, this condition can be written as the constraint

[3QR + 4 (2 a− c)]
[
3Q2

R − 8c (J1 + J2)
]

' Q3
R + 16 (3c− 2a) J1J2 + 64a (a− c)(QR + a)(J1 − J2)2

Q2
R − 2a(J1 + J2)

.
(7.21)

The entropy is then given by

S = 2π
√
X ' 2π

√
p1 −

p−1

p1 + 1
4Q

2
R

' π
√

3Q2
R − 8a (J1 + J2)− 16 a (a− c) (J1 − J2)2

Q2
R − 2 a (J1 + J2)

,

(7.22)

where in the second step we have used (7.20). Again we find perfect agreement with the
expressions found by first varying the non-supersymmetric on-shell action and subsequently
taking the BPS limit, cf. subsection 5.2.

8 Discussion

In this paper, we have studied the four-derivative corrections to the thermodynamics of
asymptotically AdS black hole solutions to five-dimensional minimal gauged supergravity.
We have computed the on-shell action at linear order in the corrections. Then, after re-
stricting to supersymmetric configurations using the approach of [13], we have showed that
the action can be expressed in terms of the supersymmetric chemical potentials ω1, ω2 and
matches the prediction from the Cardy-like limit of the dual superconformal index on the
second sheet, reported in (1.2). The corrections to the (non-supersymmetric) thermody-
namics, including the corrected entropy and conserved charges, have been derived using
the identification of the on-shell action with the logarithm of the grand-canonical partition
function and taking its variations with respect to the potentials. We also gave the expres-
sion for the microcanonical BPS entropy, that is the supersymmetric and extremal entropy
as a function of the charges, at linear order in the corrections. When J1 = J2, it takes
the same functional form as at the two derivative level, with the corrections being entirely
incorporated in the anomaly coefficients of the dual superconformal field theory. However
for J1 6= J2 the correction involves a new term depending on the charges.
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We provided a very direct derivation of the BPS entropy in the general case by evaluat-
ing the Legendre transform of the supersymmetric on-shell action. Finally, in the J1 = J2
case we have confirmed our result for the BPS entropy by computing the corrected near-
horizon geometry of the BPS black hole of [10] and evaluating Wald’s formula.

It is interesting to discuss how our effective field theory can arise from top-down con-
structions accounting for different stringy and/or quantum effects. In particular, one can
focus on the Chern-Simons terms, which directly capture the central charges a, c of the
dual field theory. The higher-dimensional origin of the εµνρσλRµναβRρσαβAλ term for type
IIB compactifications on Sasaki-Einstein manifolds was studied e.g. in [71–73]. Even when
the coefficient λ1 ∼ (a − c) of this term vanishes exactly — as for type IIB on S5 —
there are still corrections to εµνρσλFµνFρσAλ controlled by λ2, the other parameter in our
effective action. These arise from quantum effects in the Kaluza-Klein towers. In the case
of type IIB on S5, they yield a shift N2 → N2 − 1 in the expression for a = c [74].

A different type of corrections, arising from α′3 eight-derivative terms in type IIB on
S5, has been analyzed in [6]. These do not generate the terms in our effective action. They
encode corrections in the ’t Hooft coupling and thus cannot contribute to the holographic
description of the SCFT index, which is independent of continuous parameters. In fact,
the authors of [6] evaluated these corrections on the black hole solution of [11], finding that
they yield a vanishing contribution to the on-shell action when supersymmetry is imposed.

It will be interesting to extend our study to the case where vector multiplets of five-
dimensional supergravity are included, so as to incorporate multiple electric charges in the
discussion.

It would also be intriguing to study how the four-derivative corrections affect the near-
BPS thermodynamics that has recently been studied, from different viewpoints, in [75–77].
In particular, one could extend the Schwarzian theory of [75] and determine the contribu-
tions of our λ1, λ2 terms to the gap found there.

We use the rest of the present section to discuss two subtle open issues of the analysis.
In order to obtain our effective action we have used the standard Weyl multiplet for-

mulation of N = 2 off-shell supergravity. Working with this formulation has the limitation
that only two out of three four-derivative supersymmetric invariants are explicitly known in
components. Nevertheless, we have given an argument indicating that our two-parameter
effective action is in fact the most general one compatible with supersymmetry. This is
based on imposing the vanishing of the Gibbs free energy G = I/β for the BPS black hole
of [10], which gives enough conditions to conclude that the third invariant would not give
contributions of a new form. One way to test this conclusion would have been to use the
alternative dilaton Weyl multiplet formulation of supergravity [78, 79] (see also [80]), as
recently done in [5]. Indeed in this formulation the three supersymmetric invariants were
given in components in [44]. There are however a number of technical issues why we have
decided not to do so in this paper. The first and more important is that the off-shell
four-derivative invariants in [44] were obtained for the ungauged theory, g = 0. Then, it is
reasonable to expect there are O(αg2) corrections missing, which as we have seen play a
key rôle in the story. In spite of this issue, what one can check is whether the combination
of four-derivative terms (which does not depend on g) that one obtains in the dilaton Weyl
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multiplet is the same as in (3.7). This question was answered in [5] in the affirmative and
we have also made an independent check of their findings. A second issue is that, when the
auxiliary fields are integrated out, one does not arrive directly to the minimal supergravity
theory. This remains coupled to an additional vector multiplet, and a further truncation is
needed. While the corrected values of the fields in the additional vector multiplet are not
needed, we do not see an immediate way to argue that the truncation is still consistent at
O(α), although the results of [5] would indicate that this is the case.27

Another issue that should be clarified regards the BPS limit of the corrected charges.
The BPS limit we have taken in section 5 is the same as the one discussed in [59], while
it differs from the one that reaches the BPS point along a supersymmetric trajectory in
parameter space. As discussed in [13], the different limiting procedures lead to different
expressions for the BPS on-shell action and chemical potentials ω1, ω2. However, the two
limits should lead to the same BPS values of the charges and the entropy. While this can
be verified at the two-derivative level, we have not been able to prove so for the corrected
charges. Perhaps revisiting the entropy function formalism [64, 65] in the present context
will shed light on this question. We leave the clarification of this point to future work.
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A Dictionary with superconformal anomalies

In this appendix, we derive the dictionary between the dimensionless gravitational quan-
tities g3G and αg2 and the dual superconformal anomaly coefficients. We stress that this
dictionary is universal, namely it is valid for any holographic N = 1 SCFT; the details
of the SCFT only affect the explicit expression of the anomaly coefficients in terms of the
field theory data.
N = 1 SCFT’s have a superconformal anomaly controlled by coefficients a, c. This

shows up in the trace of the energy-momentum tensor Tij and in the divergence of the
R-current J i as [81, 82]

Ti
i = − a

16π2 Ê + c
16π2 Ĉ

2 − c
6π2 F̂

2 , (A.1)

∇iJ i = c− a
24π2

1
2 ε

ijklR̂ijabR̂kl
ab + 5a− 3c

27π2
1
2 ε

ijklF̂ijF̂kl , (A.2)

where Ĉ2 and Ê = R̂ijklR̂
ijkl − 4R̂ijR̂ij + R̂2 denote the Weyl2 and Euler invariants of the

four-dimensional background geometry, respectively, while F̂ij is the field strength of the
background U(1) gauge field that canonically couples to the R-current.

27It should however be noted that the Ricci scalar squared invariant was actually treated in the standard
Weyl formalism there.
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Comparing with the general expression for the anomaly of a U(1) current with cubic
and linear coefficients denoted by TrR3 and TrR, respectively,

∇iJ i = − TrR
384π2

1
2 ε

ijklR̂ijabR̂kl
ab + TrR3

48π2
1
2 ε

ijkl F̂ijF̂kl , (A.3)

one finds the relations

a = 3
32(3 TrR3 − TrR) , c = 1

32(9 TrR3 − 5 TrR) . (A.4)

In the large-N expansion, these anomaly coefficients are related to the dimensionless
gravitational quantities g3G and αg2. Let us determine the precise dictionary in our setup.
We proceed as in [46] and use results of [83] (see also [3, 4]).

The Weyl anomaly can be read off from the logarithmically divergent term in the
on-shell action [84]. It is sufficient to switch off the gauge field and only consider the
gravitational part of the bulk action, which in general may take the form

e−1L = 1
16πGeff

(
R+ 12g2

eff + α1R
2 + α2RµνR

µν + α3RµνρσR
µνρσ

)
, (A.5)

where, importantly, Geff and geff may also contain terms of order α. It is easy to check
that the radius ` of the AdS5 solution is given by

` = 1
geff

[
1− g2

eff
3 (10α1 + 2α2 + α3)

]
. (A.6)

This equality, as well as the following ones, is meant to hold at linear order in the α

corrections. Identifying the logarithmically divergent piece of the action evaluated on a
general solution with the conformal anomaly of the dual SCFT, one obtains the corrected
holographic formulae for the anomaly coefficients,

a = π`3

8Geff

[
1− 4

`2
(10α1 + 2α2 + α3)

]
,

c = π`3

8Geff

[
1− 4

`2
(10α1 + 2α2 − α3)

]
.

(A.7)

In the main text, we focus on the supersymmetric action (3.7), where the only purely
gravitational four-derivative term is the Gauss-Bonnet one. This fixes

α1 = αλ1 , α2 = −4αλ1 , α3 = αλ1 , (A.8)

while from the Ricci scalar and cosmological constant term we read

Geff = G
(
1− 4λ2αg

2
)
,

geff = g
(
1− 5λ1αg

2
)
.

(A.9)

Plugging these values in the above expressions, we obtain the AdS radius

` = 1
g

(
1 + 4λ1αg

2
)
, (A.10)
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and the anomaly coefficients

a = π

8Gg3

(
1 + 4λ2αg

2
)
,

c = π

8Gg3

(
1 + 4(2λ1 + λ2)αg2

)
.

(A.11)

Note that at leading order this matches the familiar two-derivative result a = c = π
8Gg3 .

Inverting (A.4), we can also give the holographic expression of the R-symmetry anomaly
coefficients:

TrR3 = 16
9 (5a− 3c) = 4π

9Gg3

(
1− 4(3λ1 − λ2)αg2

)
,

TrR = 16(a− c) = −16παλ1
Gg

.

(A.12)

We can check the dictionary above by matching the non-invariance of the bulk ac-
tion (3.7) under a U(1)R gauge transformation with the R-current anomaly [85]. One can
see that the boundary value Ai, i = 0, . . . , 3, of the bulk gauge field is to be identified with
the background gauge field Âi coupling canonically to the R-current of the dual SCFT
as Ai = 2√

3 g Âi. Making the gauge transformation δAi = 2√
3g ∂iλ, the bulk action (3.7)

transforms as

δλS = 1
24πg3G

∫
∂M

d4x ê λ

(
− c̃3

9 ε̂ ijklF̂ijF̂kl −
αλ1g

2

2 ε̂ ijklR̂ijabR̂kl
ab

)
, (A.13)

where the hat symbol denotes that the quantities are evaluated at the boundary.
Through the identification eiS = Zgrav = ZCFT, this should match the anomalous vari-

ation of the field theory partition function Z under the background gauge transformation
δλÂi = ∂iλ ,

δλ logZCFT = −i
∫
∂M

d4x ê λ∇iJ i

= −i
∫
∂M

d4x ê λ

(5a− 3c
27π2

1
2 ε

ijklF̂ijF̂kl + c− a
24π2

1
2 ε

ijklR̂ijabR̂kl
ab
)
.

(A.14)

Imposing the holographic matching condition δS = −i δ logZCFT and recalling the value
of c̃3 given in (3.8), we obtain the following O(α) dictionary between the coefficients:

5a− 3c = πc̃3
4Gg3 = π

4Gg3

(
1− 4(3λ1 − λ2)αg2

)
, a− c = −παλ1

Gg
, (A.15)

which perfectly agrees with the dictionary found by considering the Weyl anomaly. This
can be seen as a consistency check for the supersymmetry of our action (3.7).

B Corrected entropy, electric charge and angular momentum for a = b

We give here the expressions for the corrected non-supersymmetric entropy, electric charge
and angular momentum that we determined from the thermodynamics starting from the on-
shell action with equal rotational parameters, given in (4.23). The energy can be deduced
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from the quantum statistical relation. Here we set g = 1 to make the expressions a little
simpler.

For the entropy we find:

S =
π2 [r4

+ + a4 + a2 (q + 2r2
+
)]

2Gr+ (1− a2)2 (1 + 4λ2α) + λ1α∆S , (B.1)

with

∆S=FS

{
a4 (a2+q

)6 (
a2+2q

)
+a4 (a2+q

)4 (2a6 − 5a2q+3a4q − 3q2) r2
+

+ a2 (a2+q
)3 [−7a8+a10 − 38a2q2 − 4q3 − 2a4q(37+8q)− 2a6(14+13q)

]
r4

+

− a2 (a2+q
)2 [14a10+13q3+a2q2(104+5q)+3a8(32+7q)+16a6(7+13q)+a4q(211+108q)

]
r6

+

− a2 (a2+q
) [

108a10+7a12+q3(23+2q)+5a2q2(31+4q)+4a8(77+38q)+6a4q(55+53q)

+a6 (210+593q+34q2)] r8
+ − a2 [40a12+2(11− 4q)q3+2a10(140+9q)+a2q2(155+48q)

+a8(476+451q)+a4q(347− 2(−260+q)q)+a6(224+q(920+153q))
]
r10

+ − a2 [84a10

+a8(322− 15q)+(14− 23q)q2+14a6(27+20q)+a4(140+(409− 55q)q)

+a2q(110+(65− 17q)q)
]
r12

+ +
[
−56a10+3q3+6a4(−2+3q)(4+7q)+4a8(−21+25q)

+a6(−112+73q)+a2q(−13+q(28+3q))
]
r14

+ +
[
70a8+3q2+44a4(1+4q)+a6(196+135q)

+a2 (−7+45q+48q2)] r16
+ +

[
168a6+3q(3+q)+a2(42+75q)+a4(232+78q)

]
r18

+

+
[
140a4+9(1+q)+a2(105+17q)

]
r20

+ +2
(
9+28a2) r22

+ +9r24
+
}
,

(B.2)

where

FS = − 2π2

Gr3
+ (1− a2)2 (a2 + r2

+
) 2D

, (B.3)

and

D = a2
(
a2 + q

)3 (
a2 + 2q

)
+ a2

(
a2 + q

)2 (
5a2 + a4 + 6q

)
r2

+

+
(
a2 + q

) [
3a6 + 8a2q − q2 + a4(10 + q)

]
r4

+

−
[
−10a4 − 2a6 + 2a8 + a2(−8 + q)q + q2

]
r6

+

−
[
2a4 + 8a6 + (−1 + q)q + a2(−5 + 4q)

]
r8

+ −
(
−1 + 3a2 + 12a4 + 2q

)
r10

+

−
(
1 + 8a2

)
r12

+ − 2r14
+ .

(B.4)

The electric charge is given by:

Q =
√

3πq
4G (1− a2)2 (1 + 4λ2α) + λ1α∆Q , (B.5)
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with
∆Q= FQ

{
a4q8+2a2 (a2 − 2r2

+
) (

1+r2
+
) 3 (a2+r2

+
) 7 (a2+r2

+ − 2r4
+
)

+ a2q7 (9a4 + 2a2r2
++r4

+
)

+ q4 (a2+r2
+
) 2 [3r10

+ +5a8 (21+14r2
++r4

+
)
− a4r4

+
(
87+193r2

++3r4
+
)

+a2r6
+
(
−22− 3r2

++10r4
+
)
− a6r2

+
(
40+213r2

++24r4
+
)]

+q6 [−3r8
++a6r2

+
(
19− 22r2

+
)

−a2r6
+
(
9+2r2

+
)
+a8 (35+4r2

+
)
−6a4 (r4

++2r6
+
)]

+q2 (a2+r2
+
) 4 [a8 (1+r2

+
)(

49+31r2
++2r4

+
)

+3r8
+
(
1+3r2

++8r4
+
)
− a4r4

+
(
70+273r2

++151r4
++2r6

+
)
− a6r2

+
(
29+125r2

++84r4
++6r6

+
)

+a2r6
+
(
11− 27r2

++54r4
++38r6

+
)]

+q5 (a2+r2
+
) [
−107a6r4

++a2r6
+
(
−32+3r2

+
)

−21a4r4
+
(
2+3r2

+
)
+a8 (77+26r2

+
)
− 3

(
r8

++r10
+
)]

+ q
(
1+r2

+
) (
a2+r2

+
) 6 [a6 (1+r2

+
) (

15+4r2
+
)
+3a2r4

+
(
−3− 9r2

++2r4
+
)

−a4r2
+
(
21+49r2

++22r4
+
)
+3
(
r6

++3r8
++8r10

+
)]

+q3 (a2 + r2
+
) 3 [a8 (91+100r2

++21r4
+
)

+a2r6
+
(
13− 15r2

++44r4
+
)
− a4r4

+
(
99+323r2

++68r4
+
)
− a6r2

+
(
53+221r2

++72r4
+
)

+3
(
r10

+ + r12
+
)]}

.
(B.6)

where
FQ = − π

√
3G(1− a2)2 r4

+
(
a2 + r2

+
)3D . (B.7)

The angular momentum reads:

J = aπ (1 + 4λ2α)
4 (1− a2)3Gr2

+

[(
a2 + q

)2
+
(
a4 + q + a2(2 + q)

)
r2

+ +
(
1 + 2a2

)
r4

+ + r6
+

]
+λ1α∆J ,

(B.8)
with

∆J= FJ

{
−2a2q8+q6

[
− 49a6+a4 (33+7a2) r2

++51a2 (1+a2) r4
++
(
9+7a2) r6

++3r8
+

]
+ q7 [4r4

++a4 (−15+r2
+
)
+a2r2

+
(
5+r2

+
)]
−
(
1+r2

+
) 2 (a2+r2

+
) 7 [a4 (1− 3r2

+
)

−2a2r2
+
(
4+19r2

++7r4
+
)
+r4

+
(
7+13r2

++18r4
+
)]

+q5[−2r8
+
(
−5+r2

+
)
+a4r4

+
(
233+281r2

+−4r4
+
)

+a2r6
+
(
93+47r2

+ − 2r4
+
)
+a8 (−91 + 21r2

++8r4
+
)
+a6r2

+
(
91+317r2

++38r4
+
)]

+ q4 [r10
+
(
−1+r2

+
)
+a2r8

+
(
71+103r2

+ − 66r4
+
)
+2a4r6

+
(
181+361r2

+ − 14r4
+
)

+a10 (−105+35r2
++34r4

+
)
+5a8r2

+
(
27+169r2

++60r4
+
)
+2a6r4

+
(
265+715r2

++152r4
+
)]

+ q
(
1+r2

+
) (
a2+r2

+
) 5 [a6 (−9+16r2

++9r4
+
)
− 2r6

+
(
3+17r2

++26r4
+
)

+2a4r2
+
(
29+140r2

++90r4
++7r6

+
)
− a2r4

+
(
19− 22r2

++57r4
++34r6

+
)]

+ q2 (a2+r2
+
) 3 [8a4r4

+
(
13+82r2

++58r4
+ − 2r6

+
)
+a8 (−35+21r2

++53r4
++9r6

+
)

−r8
+
(
1+25r2

++57r4
++21r6

+
)
−4a2r6

+
(
7+4r2

++46r4
++37r6

+
)
+4a6r2

+
(
40+215r2

++209r4
++46r6

+
)]

+ q3 (a2+r2
+
) 2 [−2r8

+
(
4+3r2

++23r4
+
)

+ a4r4
+
(
209+791r2

++231r4
+ − 39r6

+
)

+5a2r6
+
(
3+17r2

+ − 31r4
+ − 5r6

+
)
+a8 (−77+35r2

++59r4
++3r6

+
)

+a6r2
+
(
269+1119r2

++687r4
++53r6

+
)]}

,
(B.9)
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where
FJ = aπ

2G(1− a2)3(a2 + r2
+)2r4

+D
. (B.10)

C Equations of motion

In this appendix we derive the equations of motion from the higher-derivative action. We
start with a general discussion, that may also be useful in other contexts, for a higher-
derivative action constructed out of the metric and a gauge field, also allowing for Chern-
Simons terms. Then we specialize to the action (3.7) studied in the main text.

Let us consider the following general action (where we set 16πG = 1 for simplicity),

S =
∫

d5x eL′ (Rµνρσ, Fµν) + SCS , (C.1)

where L′ (Rµνρσ, Fµν) denotes a Lagrangian constructed out of arbitrary contractions (via
the inverse metric gµν) of the Riemann tensor Rµνρσ and the field strength Fµν , while

SCS =
∫

d5x e

[
− c̃3

12
√

3
εµνρσλFµνFρσAλ −

λ1 α

2
√

3
εµνρσλRµναβRρσ

αβAλ

]
, (C.2)

are the Chern-Simons terms, which will be treated separately for convenience. Here the
choice of the coefficients c̃3, λ1 reflects the one in the main text. The variation of the
Lagrangian with respect to the inverse metric gµν and the gauge field Aµ is

δS =
∫

d5x e

[(
∂L′

∂gµν
− 1

2gµνL
′
)
δgµν + PµνρσδRµνρσ − 2∇µ

(
∂L′

∂Fµν

)
δAν

+∇µΞµ
]

+ δSCS ,

(C.3)

where Ξµ is a boundary term

Ξµ = 2 ∂L′

∂Fµν
δAν , (C.4)

and the tensor Pµνρσ is defined as

Pµνρσ = ∂L′

∂Rµνρσ
, (C.5)

assuming it inherits the following symmetries of the Riemann tensor

Pµνρσ = −Pνµρσ , Pµνρσ = −Pµνσρ , Pµνρσ = Pρσµν . (C.6)

Recalling the well-known variation of the Riemann tensor

δRµνρσ = 2∇[ρ δΓ
µ
σ]ν , (C.7)

δΓµσν = 1
2g

µκ (∇σδgκν +∇νδgκσ −∇κδgσν) , (C.8)

and performing integrations by parts, we obtain that∫
d5x eP µνρσ δRµνρσ =

∫
d5x e

[(
−PαβγµRαβγν − 2∇α∇βPβµνα

)
δgµν +∇νΘν

]
, (C.9)
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where the boundary term reads

Θν = 2Pµλνσ δΓµλσ − 2∇λP ρνλσδgρσ

= 2P ρλνσ∇λδgρσ − 2∇λP ρνλσδgρσ . (C.10)

Then,

δS =
∫

d5x e

[(
∂L′

∂gµν
− 1

2gµνL
′ − PαβγµRαβγν − 2∇α∇βPβµνα

)
δgµν − 2∇µ

(
∂L′

∂Fµν

)
δAν

+∇µ(Θµ + Ξµ)
]

+ δSCS , (C.11)

This first line can be expressed exclusively in terms of ∂L′
∂Fµν and Pµνρσ, once ∂L′

∂gµν is ex-
pressed in terms of the latter [86]. To this aim, let us write the Lie derivative of the
Lagrangian in two different ways. First, we can write it as

£ξL′ = ξα∂αL′ = ξα
(

∂L′

∂Rµνρσ
∇αRµνρσ + ∂L′

∂gµν
∇αgµν + ∂L′

∂Fµν
∇αFµν

)

= ξα
(
Pµνρσ∇αRµνρσ + ∂L′

∂Fµν
∇αFµν

)
.

(C.12)

However, another possibility is

£ξL′ =
∂L′

∂Rµνρσ
£ξRµνρσ + ∂L′

∂gµν
£ξg

µν + ∂L′

∂Fµν
£ξFµν . (C.13)

After a bit of algebra, we can rewrite each of the terms appearing in this equation as
follows,

∂L′

∂Rµνρσ
£ξRµνρσ = ξαPµνρσ∇αRµνρσ + 4PµαβγRναβγ∇µξν , (C.14)

∂L′

∂gµν
£ξg

µν = −2 ∂L
′

∂gµν
∇(µξν) , (C.15)

∂L′

∂Fµν
£ξFµν = ξα

∂L′

∂Fµν
∇αFµν + 2 ∂L′

∂Fµρ
Fν

ρ∇µξν . (C.16)

Substituting in (C.13) and making use of (C.12), we get the following identity

∇(µξν)
(

2PµαβγRναβγ −
∂L′

∂gµν
+ ∂L′

∂Fµρ
Fν

ρ
)

+∇[µξν]
(

2PµαβγRναβγ + ∂L′

∂Fµρ
Fν

ρ
)

= 0 .
(C.17)

Since this equality must be true for an arbitrary vector ξµ, we conclude that the terms in
brackets must vanish, which leads to

∂L′

∂gµν
= 2P(µ

αβγRν)αβγ + ∂L′

∂F (µ|ρF|ν)
ρ , (C.18)

∂L′

∂F [µ|ρF|ν]
ρ = −2P[µ

αβγRν]αβγ . (C.19)
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Then, we can eliminate ∂L′
∂gµν in (C.11) by using (C.18), which yields

δS =
∫

d5x e

[(
−1

2gµνL
′ + PαβγµRαβγν − 2∇α∇βPβµνα + ∂L′

∂Fµρ
Fν

ρ
)
δgµν

− 2∇µ

(
∂L′

∂Fµν

)
δAν +∇µ(Θµ + Ξµ)

]
+ δSCS .

(C.20)

Now let us perform the variation of the Chern-Simons terms explicitly. They yield,

δSCS =
∫

d5x e

[(
− c̃3

4
√

3
εναβγδFαβFγδ −

λ1 α

2
√

3
εναβγδRαβρσRγδ

ρσ
)
δAν − 2∇α∇βΠβµναδg

µν

+∇µ (Θµ
CS + ΞµCS)

]
,

(C.21)
where the boundary terms are given by

Θµ
CS = 2Πµσρλ∇λδgρσ − 2∇λΠλσρµδgρσ , (C.22)

ΞµCS = c̃3

3
√

3
ενµρσλFρσAλδAν . (C.23)

and where we have defined

Πµνρσ = −λ1 α√
3
εµναβγRαβ

ρσAγ . (C.24)

Arranging all the terms together, we arrive to the final form for the variation of the action,

δS =
∫

d5x e

{[
−1

2gµνL
′ + PαβγµRαβγν − 2∇α∇β(Pβµνα + Πβµνα) + ∂L′

∂Fµρ
Fν

ρ
]
δgµν

[
−2∇µ

(
∂L′

∂Fµν

)
− c̃3

4
√

3
εναβγδFαβFγδ −

λ1 α

2
√

3
εναβγδRαβρσRγδ

ρσ

]
δAν +∇µvµ

}
,

(C.25)
where

vµ = Θµ + Θµ
CS + Ξµ + ΞµCS . (C.26)

Therefore, the equations of motion of the metric and gauge field are given by

−1
2gµνL

′ + Pαβγ(µ|Rαβγ|ν) − 2∇α∇β(Pβ(µν)α + Πβ(µν)α) + ∂L′

∂F (µ|ρF|ν)
ρ = 0 , (C.27)

2∇µ

(
∂L
∂Fµν

)
+ c̃3

4
√

3
εναβγδFαβFγδ + λ1 α

2
√

3
εναβγδRαβρσRγδ

ρσ = 0 . (C.28)

We now specialize to the action (3.7) that we study in the main text. The concrete
expressions for Pµνρσ and ∂L

∂Fµν
are the following,

Pµνρσ = c̃0gµ[ρgσ]ν + λ1 α

[
2Rµνρσ − 4

(
Rµ[ρgσ]ν −Rν[ρgσ]µ

)
+ 2gµ[ρgσ]νR

− 1
2FµνFρσ −

1
12gµ[ρgσ]νF

2 + 1
3
(
FµαF[ρ

αgσ]ν − FναF[ρ
αgσ]µ

) ]
,

∂L′

∂Fµν
=− c̃2

2 F
µν + λ1 α

(
−CµνρσFρσ + 1

2F
µρFρσF

νσ
)
.

(C.29)
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