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1 Introduction

One of the major achievements of CERN’s Large Hadron Collider (LHC) programme is the
remarkable accuracy being achieved across a broad range of measurements. To maximally
exploit the potential of the data, it is essential for theoretical predictions to match that
high accuracy, notably as concerns the tools that can fully simulate the final state of hadron
collisions, i.e. general purpose Monte Carlo (GPMC) event generators. These tools play
a crucial role both in the interpretation of measurements and in the extraction of those
measurements from the raw experimental data.

Two major components of GPMCs are under control in perturbative Quantum Chro-
modynamics (QCD): the hard scattering process, and the parton shower, which simulates
radiation from the hard scattering scale down to the hadronic scale. Over the past two
decades major advances have been made in improving the accuracy of the hard scattering
description [2] and its matching to parton showers, both for next-to-leading order (NLO)
calculations [3–5] and, more recently, for (N)NNLO computations [6–11]. Alternatively,
multi-leg matrix elements can be merged with parton shower simulations up to NLO ac-
curacy [12–25].

Improvement of the accuracy of the hard scattering process is not the only requirement
for precision LHC phenomenology. In particular parton showers are crucial for a correct
physical description of many of the features of events that are essential in experimental
measurements, such as the pattern of energy sharing between particles, or the transverse
momentum distribution of colour-singlet objects such as a Drell-Yan (DY) pair or a Higgs
boson and correlations with final-state energy flow. Since parton showers span disparate
momentum scales, one natural way of viewing their theoretical role is that they should
account for perturbative contributions that are enhanced by logarithms of the ratios of
those disparate scales.

All dipole-shower algorithms [26–31] available in the commonly-used general purpose
Monte Carlo event generators [26, 32–36] reach leading-logarithmic (LL) accuracy, i.e. they
are correct in the limit where emissions are strongly ordered both in energy and an-
gle.1 The focus of this paper is to design a next-to-leading logarithmic (NLL) accurate
shower for hadron-hadron collisions, which represents a key milestone in the PanScales
programme [42–46] of developing parton showers with controlled logarithmic accuracy. To
achieve this, we use the guiding principles introduced in refs. [42, 43] to assess the loga-
rithmic accuracy of a shower. From the PanScales perspective, a shower can be said to be
NLL if it satisfies two types of condition:

• Fixed-order: upon characterisation of the phase space of an emissions in terms of
its transverse momentum, kt, and rapidity η, the shower must reproduce the exact

1Another class of shower is represented by the angular-ordered showers, as used in the Herwig7 pro-
gram [33, 34]. They are based on the coherent branching formalism [37], that reproduces full-colour NLL
accuracy for double logarithmic global observables [38, 39]. Note that angular ordering is known [40] to
lead to an incomplete treatment of the soft single (NLL) logarithms that affect non-global observables [41],
though the numerical impact is modest in many circumstances.
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matrix element in the limit where every pair of emissions is well separated in at least
one of the phase space variables, e.g. kt or η are strongly ordered across emissions.

• All-orders: the shower must reproduce analytic resummation results for a broad
range of observables, including global event shapes, subjet multiplicity and non-global
observables.

These principles were used in ref. [43] to design the basic structure for several NLL-
accurate dipole final-state parton showers, including tests across a wide range of observ-
ables. Full NLL accuracy for these showers (including full-colour (FC) at LL) was subse-
quently achieved with the addition of soft-collinear subleading colour corrections [44], and
of spin correlations [45, 46].

Several other groups have also been investigating the logarithmic accuracy of showers.
Refs. [47, 48] showed that a careful treatment of the kinematic map is necessary in angular-
ordered showers, for both final and initial state radiation. Ref. [49] introduced a shower
algorithm shown analytically to reproduce the NLL results for the e+e− thrust distribu-
tion and the subjet multiplicity (with soft-collinear subleading colour effects in ref. [50]).
Ref. [51] showed that the so-called Λ-ordered (effectively time-ordered) Deductor shower
reproduces the NLL thrust distribution in e+e− collisions [51].

Almost all of the above work has focused on the accuracy of final-state showers. In
this work, we show how to extend and adapt the PanScales showers to include initial-
state radiation, concentrating on the case of colour-singlet production, i.e. qq̄ → Z0 and
gg → H at hadron colliders. Aside from the many hadronic observables that have already
been tested in the final state, a particularly important observable in hadron-hadron col-
lisions is the transverse momentum of the colour singlet system, whose resummation is
well established [52, 53]. The approaches that we develop build on observations both from
the PanScales work and from earlier parton-shower work that specifically considered the
question of colour-singlet transverse momentum recoil in a shower [29–31, 54].

This paper is organised as follows. In section 2 we provide the basic building blocks for
designing a dipole shower in hadronic collisions and give an explicit example of a transverse-
momentum ordered shower based on the standard colour dipole approach, which we dub
“Dipole-kt”. In section 3 we review the general methodology for performing a fixed-order
study of a dipole shower in the limit of interest for NLL accuracy. We show that Dipole-kt,
variants of which are currently available in all the major Monte Carlo event generators, fails
to reproduce the correct soft radiation pattern already at the two emissions level. Building
on this knowledge, in section 4 we introduce two families of PanScales showers for hadronic
collisions, one with a local and another with global recoil schemes. The choice of the order-
ing variable and the recoil scheme are crucial to satisfy the fixed-order shower requirement.
In section 5, we adapt the subleading-colour prescriptions of ref. [44] to address initial-state
radiation, and show a number of associated matrix-element tests. The inclusion of spin
correlations following refs. [45, 46] is explained in section 6. We conclude in section 7. The
appendices contain details on the splitting functions we use (appendix A), the kinematic
mappings (appendix B), the analytic expectations for our colour tests (appendix C) and
the derivation of the spin branching amplitudes (appendix D). The validation of our ap-
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proach at all-orders across many observables and a presentation of the associated all-order
testing methodology are to be found in a separate publication [1].

2 Basics of hadron-collision dipole showers

In this section we will highlight common features of dipole showers and formulate a generic
standard dipole shower, which will be used as a convenient reference for a LL-accurate
shower throughout this work and our companion article [1]. We will concentrate on colour-
singlet production in proton-proton collisions, specifically qq̄ → Z and gg → H, with a
hadron-hadron centre-of-mass energy

√
s and a colour-singlet Born four-momentum Qµ.

2.1 Generic formulation of a hadron-collider shower

Standard dipole showers and the PanScales hadron-collider showers that we develop later
in section 4 have a number of characteristics in common. These include the final and
initial-state splitting probabilities, as well as the generic structure of recoil for emission of
a parton from a dipole. In this work, all partons are considered to be massless and we will
often refer to the colour singlet as the “hard system”.

First, we consider a final-state parent parton ı̃ that radiates a collinear emission k. The
post-branching momentum of the parent is denoted by i. The phase-space of the emission
k is parameterised by its transverse momentum k⊥, its longitudinal momentum fraction
z (relative to the pre-branching parent) and its azimuthal angle ϕ. In the collinear limit
(θik � 1), the differential branching probability then reads

p̃i

pk ' zp̃i

pi ' (1− z)p̃i

→ dPFS
ı̃→ik = αs(k2

⊥)
2π

dk2
⊥

k2
⊥

dz
z

dϕ
2πN

sym
ik [zPı̃→ik(z)] ,

(2.1)

with αs the strong coupling and N sym
ik a symmetry factor that is equal to 1/2 for g →

gg splittings, and 1 otherwise. We use symbols with a tilde to indicate pre-branching
partons and their momenta, and symbols without any decoration to indicate post-branching
partons. The DGLAP splitting functions Pı̃→ik are provided in appendix A. A well-known
feature of eq. (2.1) is its singular behaviour in the soft (z → 0) collinear limit for flavour-
conserving emissions (i.e. Pg→gg and Pq→qg), and in the hard (z ∼ 1) collinear limit for
every type of emission. The soft and collinear singularities compensate the smallness of
αs in the corresponding regions of phase space, resulting in the large logarithms that the
shower resums.

In hadronic collisions, final-state radiation is to be supplemented with emissions from
the incoming partons. Over three decades ago, it was realised that a backwards evolution
from the hard scale Q2 down to the hadronic scale (O(1)GeV) provides an efficient way of
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simulating such initial-state radiation [55]. Defining z as the longitudinal momentum frac-
tion carried by the emission relative to the post-branching incoming parton, the differential
collinear branching probability is given by

pi ' 1
1−z

p̃i

pk ' z
1−z

p̃i

p̃i

→ dPIS
i→ı̃k = αs(k2

⊥)
2π

dk2
⊥

k2
⊥

dz
z

dϕ

2π zPi→ı̃k(z)xifi(xi, k
2
⊥)

x̃ifı̃(x̃i, k2
⊥) .

(2.2)

The main difference with respect to eq. (2.1) is the additional presence of a ratio of parton
distribution functions (PDFs) fi(xi, k2

⊥), denoting the density per unit momentum fraction
of partons of flavour i, carrying a momentum fraction xi inside a proton, at a factorisation
scale k⊥. Its inclusion follows directly from the DGLAP evolution equation with evolution
variable k2

⊥, and accounts for the change in the hadronic momentum fraction from x̃i to
xi ≡ x̃i/(1− z).

The branching probabilities given by eqs. (2.1) and (2.2) describe 1 → 2 collinear
branchings. In this paper we will work with dipole showers in which the fundamental
building block is instead a 2 → 3 branching kernel [56]. In the limit where the number
of colours (Nc) is large, dipole showers make it straightforward to reproduce the matrix
element for an arbitrary number of emissions in the soft wide-angle limit, and to achieve
the associated resummation of non-global logarithms. In dipole showers, the particle that
branches, ı̃, is associated with a colour-connected spectator ̃, such that the branching is
ı̃̃ → ijk, where i and j are the post-branching counterparts of ı̃ and ̃ respectively, and
k is the radiated parton. Each of the dipole legs can be either an initial (I) or a final (F)
state particle. As such, four types of dipoles exist: II, IF, FI and FF. By symmetrising
eqs. (2.1) and (2.2) we obtain a generic dipole differential splitting probability2

dPı̃̃→ijk = αs(µ2
r)

2π

(
1 + αs(µ2

r)K
2π

)
dv2

v2 dη̄dϕ
2π×

× xifi(xi, µ2
f)

x̃ifı̃(x̃i, µ2
f)
xjfj(xj , µ2

f)
x̃jf̃(x̃j , µ2

f)
[
g(η̄)ziP IS/FS

ik (zi) + g(−η̄)zjP IS/FS
jk (zj)

]
.

(2.3)

We will consider two standard approaches to generating the kinematics associated with
the branching: so-called “dipole” showers and “antenna” showers. In the former, the two
terms in square brackets are associated with distinct kinematic maps. In the latter one
uses a common kinematic map for both terms.3 The phase-space has been transformed to

2This specific form of the branching probability is not unique. Non-singular terms may be added, and
the assignment of the soft singularity to different dipole ends (achieved by g(η̄)) may be accomplished in
various ways.

3Eq. (2.3) suggests a natural way of assigning branching to one end or other of the dipole. In antenna
showers, while this division does not affect the kinematics of the branching, it can affect the subsequent
choice of splitting channel and associated spin correlations, e.g. concerning the choice of g → gg v. g → qq̄,
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two specific shower variables: an evolution scale v and a pseudo-rapidity-like variable η̄.4
The exact relation between (v, η̄) and (z, k⊥) is shower-dependent, and we thus postpone
its discussion. However, in this work the following relation is always satisfied

dk2
⊥

k2
⊥

dz
z

= dv2

v2 ×

 dη̄ (final state),
(1− z) dη̄ (initial state),

(2.4)

such that we can use the compact notation

P IS
ik (z) = (1− z)Pi→ı̃k(z), PFS

ik (z) = Pı̃→ik(z) , (2.5)

for initial-state (IS) and final-state (FS) splittings, respectively. As in eq. (2.2), a PDF
ratio for each of the dipole legs enters as a multiplicative factor. For final-state branchings
the x and x̃ values are either identically equal, or very close to each other, so the ratio
tends to one. There is limited freedom in choosing the factorisation and renormalisation
scales, µf and µr. For a hard-collinear initial-state branching, µf should be commensurate
with the emission transverse momentum. As concerns the evaluation of the coupling,
the requirement of achieving NLL accuracy brings several constraints, notably for soft-
collinear emissions: the running of the coupling should be performed at two loops or
higher, and with µr chosen to coincide with the emission transverse momentum, the soft-
collinear gluon emission probability must include an αsK/(2π) correction term with K =
(67/18 − π2/6)CA − 5nf/9. As usual we have CA = 3, TR = 1/2 and we will work with
nf = 5 light flavours. Finally, the function g(η̄) partitions the soft singularity among the
two contributions of the dipole, avoiding any double counting. This function, which we will
specify below, needs to satisfy three main requisites: (i) 0 ≤ g(η̄) ≤ 1, (ii) g(η̄)+g(−η̄) = 1
and (iii) g(η̄) = 0 (1) for very negative (positive) η̄.

Every time an emission is generated according to eq. (2.3), momentum conservation has
to be restored through a choice of a suitable recoil scheme. We will explore two classes of
shower, one where the kinematic map conserves momentum locally within the dipole that is
branching and another that performs an overall global momentum-conservation procedure.
Both share the feature that the emission’s momentum pk may be Sudakov-decomposed in
terms of the parent dipole momenta (p̃i, p̃j) and a transverse component:

pµk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (2.6)

Within a given shower, the ak, bk and |k⊥| magnitudes are fixed by the value of the
shower ordering variable (which may, for example, directly set the value of |k⊥|), by a

which in the context, say, of a gq dipole might occur only at one end. In the implementations of antenna
showers used here and in our companion work [1], the division is slightly different in a region where one of
the zi or zj is not soft and additionally g(η̄) differs substantially from 0 or 1. This region affects logarithmic
accuracy only for terms that are beyond NLL, and will be re-examined in future work when considering
higher logarithmic accuracy.

4Note that we use the notation η̄, k⊥ to denote shower variables, whereas η and kt are reserved to denote
the physical pseudorapidity and transverse momentum measured with respect to the incoming hadron
beams.
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longitudinal variable (i.e. η̄ in eq. (2.3)) and by requiring eq. (2.6) to be on the mass shell,
|k⊥|2 = 2akbk p̃i · p̃j ≡ akbks̃ij , where s̃ij is the dipole mass. The direction of the transverse
component is given by

kµ⊥ = |k⊥|(n̂µ1 sinϕ+ n̂µ2 cosϕ), (2.7)

where n̂2
1,2 = −1, n̂1 · n̂2 = 0 and n̂1,2 · p̃i,j = 0.

Local recoil schemes. The momentum map is generically given by

p̄µi = aip̃
µ
i + bip̃

µ
j ± fk

µ
⊥ (2.8a)

p̄µj = aj p̃
µ
i + bj p̃

µ
j ± (1− f)kµ⊥ (2.8b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (2.8c)

where for each of i and j we use a plus (minus) sign for the transverse component if
that particle is in the initial (final) state. The coefficients (ai,j , bi,j) can be determined
as a function of ak and bk by imposing longitudinal momentum conservation plus on-shell
conditions.

The function f in eq. (2.8) determines how transverse recoil is shared between the two
parent legs of the dipole. In the case of dipole showers, one assigns a dedicated “emitter”
and “spectator” parton, corresponding to setting f = 1(0) if pi(j) is the emitter. The g(η̄)
function in eq. (2.3) determines the relative weight for one end or other of the dipole to be
the emitter. Following ref. [43] we take

g(η̄) = gdip.(η̄) ≡


0 if η < −1
15
16

(
η̄5

5 −
2η̄3

3 + η̄ + 8
15

)
if − 1 < η̄ < 1

1 if η̄ > 1.
(2.9)

Conversely, antenna showers do not identify a dedicated emitter and spectator (i.e. f 6=
1, 0 in general). Instead, they use a smooth function for f , so as to assign an η̄-dependent
fraction of the transverse momentum to each of the dipole legs. We choose to make the
function for f coincide with the g(η̄) that we use in eq. (2.3), and set both of them as
follows:

f(η̄) = g(η̄) = gant.(η̄) ≡ eη̄

eη̄ + e−η̄
= e2η̄

e2η̄ + 1 . (2.10)

For the splitting of a final-final dipole, the above equations are sufficient and we write the
ultimate post-branching momenta as pi,j,k = p̄i,j,k. When one or other of the pre-branching
momenta is in the initial state, the resulting p̄ will no longer be aligned with the beam
axis. Therefore, one needs a Lorentz transformation, Λµν , to realign it after the splitting.
This transformation consists of a boost and a rotation, but is an under-constrained system,
whose precise form we will discuss later on. It is applied to all particles in the event:

pµa = Λµν p̄ν,a ∀a ∈ i, j, k , pµa = Λµν p̃ν,a ∀a /∈ i, j, k . (2.11)
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Global recoil schemes. We explore also global recoil schemes in which the transverse-
momentum imbalance is shared among a subset of the particles in the event. The global
kinematic map for the particles in the dipole reads

p̄µi = aip̃
µ
i , (2.12a)

p̄µj = bj p̃
µ
j , (2.12b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ . (2.12c)

The details of which event particles’ momenta are subsequently modified to achieve overall
momentum conservation are shower specific.

Recall that we distinguish k⊥, a transverse momentum used in the mapping and defined
relative to the parent dipole, and kt, a transverse momentum defined with respect to the
beam directions. In general, the two do not coincide. Furthermore, across both local and
global recoil prescriptions, the boosts and rotations that we perform to realign initial-state
particles and achieve global momentum conservation may alter the transverse momentum
(kt) of the emission relative to the beam directions.

To sum up this section, designing a dipole shower for hadronic collisions involves: (i)
the definition of a branching kernel, see eq. (2.3), (ii) a choice of ordering variable v, (iii) a
prescription on how to partition the dipole, i.e. the definition of η̄ in eqs. (2.3) and (2.9),
and (iv) a recoil scheme, see eqs. (2.8), (2.12). The choices made for each of the four
ingredients affect the logarithmic accuracy of the shower, as was shown in refs. [42] for
final-state showers.

2.2 A standard transverse-momentum-ordered dipole shower

To provide a reference for our discussions of logarithmic accuracy, it is useful to introduce
two concrete realisations of “standard” dipole showers for hadronic collisions, which we
generically call “Dipole-kt”. All modern dipole showers are based on the pioneering ideas
set out in refs. [56, 57]. The specific shower that we use takes the ordering variable and
kinematic maps of the Dire-v1 shower [30] and partitions the two halves of the dipole ac-
cording to eq. (2.3), with the midpoint between the two halves, η̄ ≡ η̄dip = 0, corresponding
to zero rapidity in the dipole centre of mass frame. The resulting shower shares substantial
similarities with the showers available in all major Monte Carlo event generators, such as
Pythia [31, 58],5 Sherpa [28] and Herwig [29]. It is also expected to give similar logarithmic
structure to the Vincia shower [61, 62], even though the latter is antenna rather than dipole
based.

All details of the shower are given in appendix B.1 and here we limit ourselves to
outlining its main physical features. Its ordering variable v is transverse-momentum-like.

5Additional issues related to colour coherence have recently been raised regarding the standard Pythia
shower [31, 59, 60] in the context of deep-inelastic scattering and vector-boson fusion, in its default option
with global recoil for the space-like (initial-state) shower. While we do not explore this question here, it
would deserve further study so as to understand whether it has implications for logarithmic accuracy more
generally, especially as colour coherence issues can in some cases induce problems for leading logarithmic
terms.
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It is convenient to relate the longitudinal shower variable η̄dip used in eq. (2.3) to a collinear
momentum fraction z carried by the emission pk, defined relative to the pre-branching
momentum, p̃i, in the final-state case and the post-branching momentum, pi, in the initial-
state case. The relation reads

η̄ ≡ η̄dip =


1
2 ln z2 s̃ij

v2 (final state),
1
2 ln z2s̃ij

(1−z)2v2 (initial state).
(2.13)

This makes it manifest that eq. (2.9) partitions the dipole in its rest frame, a property
common to all widely-used dipole showers, and whose adverse consequences are expanded
upon below.

The kinematic maps depend on the dipole type. In case both dipole constituents are
in the final state (FF), we use a local recoil scheme, following the kinematic map given by
eq. (2.8) with f = 1. This choice implies that all the other particles in the event, including
the colour singlet, are not modified.

For an initial-initial (II) dipole, we use a global recoil scheme followed by a Lorentz
transformation. The recoil scheme is as given by eq. (2.12) with bj = 1, i.e. the spectator
momentum is preserved. All other final-state particles (excluding pk), are then boosted to
achieve momentum conservation. Due to this boost, the transverse momentum of the colour
singlet is modified. Several choices are possible as concerns the longitudinal component of
the boost. A common prescription, which we adopt for our Dipole-kt shower, is to preserve
the longitudinal momentum fraction of the spectator parton, following the same logic as
the use of bj = 1 in eq. (2.12). Other options are, for example: (i) preserving the rapidity
of the colour singlet, or (ii) preserving the longitudinal momentum of the colour singlet.
We believe the specific choice is immaterial in terms of logarithmic accuracy, at least up to
and including NLL, because the difference between them vanishes in the limit where the
branching transverse momentum is small.

In the initial-final (IF) case two main options have been used in the literature. The
simplest choice is a fully local map like eq. (2.8) with f = 0, i.e. transverse recoil is
always assigned to the final-state dipole end. Taking pp → Z as an example, this has
the consequence that after emission of a first gluon, no further transverse recoil is taken
by the Z-boson. It was appreciated some time ago [29, 54] that this is unphysical (for
example it is not expected to reproduce the structure of the Parisi-Petronzio Drell-Yan
pt resummation [52]). Still, such an option is available (or even default) in various public
showers, and it is useful to include such an option in our studies. We refer to it as “Dipole-
kt (local)”.

Additionally, various authors have explored the possibility of a global map for IF
dipoles [29, 30]. We therefore include such a shower in our studies here, named “Dipole-
kt (global)”. It is identical to the local variant with the exception of the IF kinematic
map, which is given by

p̄µi = aip̃
µ
i + bip̃

µ
j + kµ⊥

p̄µj = bj p̃
µ
j

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ . (2.14)
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Note that this global map differs from the generic one given by eq. (2.12) since the initial-
state leg acquires a k⊥ component. Momentum conservation is then achieved by performing
a boost and a rotation on the entire event. The longitudinal degree of freedom of the boost
is constrained by imposing that the momentum of the other incoming parton that does
not participate in the splitting is unchanged. This Lorentz transformation is provided in
appendix B.1. Lastly, the FI mapping follows a local recoil scheme as in eq. (2.8) with
f = 1.

3 Methodology for fixed-order tests

Eq. (2.3) provides the correct singular limit for a single emission. Within the context
of our NLL shower requirements, however, we require a shower to be able to reproduce
the squared matrix element for producing multiple emissions whenever each emission is
well-separated from all others in a Lund diagram [63]. Specifically, for a separation by
some increasing distance d (e.g. the sum of the rapidity and of the ln kt separations), we
expect deviations from the true matrix element to vanish as a power of e−|d|. One of the
crucial characteristics of the full matrix elements is that when there is a large separation
in rapidity between multiple soft-collinear emissions, all emitted from the Born partons,
the squared matrix element and phase space for n emissions can be written as a product
of n independent emission factors, schematically

dPBorn+n = dPBorn ×
1
n!

n∏
j=1

2Cαs
π

dktj
ktj

dφj
2π dηj . (3.1)

Most showers effectively implement that structure of the matrix elements, generating mo-
menta one at a time. As was observed in ref. [42], such a procedure only reproduces the
matrix element of eq. (3.1) if each emission leaves all prior emissions’ kinematics unchanged.
To understand this requirement, consider the following sequence of steps. Firstly, emission
1 is generated with a certain momentum k̃1 using a matrix element corresponding to that
k̃1. Then as a second step particle 2 is emitted, taking significant recoil from particle 1 such
that the new momentum for particle 1, k1, differs substantially from k̃1. The result will be
a configuration where the first emission has momentum k1, but generated with a matrix
element corresponding to k̃1, i.e. that does not match the final kinematics. When this phe-
nomenon occurs over a logarithmically enhanced region, it results in a failure to reproduce
certain classes of NLL terms. This type of analysis leads to the PanScales condition that
in order for a shower to correctly reproduce the matrix element, a given emission that is
well separated (e.g. in rapidity) from other prior emissions should not alter the kinematics
of those prior emissions. It is mainly this condition that we will be testing here and in
section 4.

To verify this PanScales condition, it is useful to represent emission phase space on the
Lund plane, i.e. in terms of the rapidity η and transverse momentum kt of the emission, as
shown in figure 1. Recall that η and kt (as used in figure 1) are always defined with respect
to the beam directions, while η̄ and k⊥ as used in eq. (2.3) and in the various kinematic
maps are defined with respect to the dipole that is branching. Here, for illustration, we
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Contour 2nd emission with given ln v2

Phase-space contour of second emission

IF
FI FI

IF
q q

g

Figure 1. Illustration of the hadron-collider primary Lund plane, where the rapidity and
transverse-momentum coordinates are defined with respect to the hadron beam directions. The
left-hand plot shows the contour for the first emission from a Dipole-kt shower for a fixed value v1
of the ordering variable (local and global are identical here). The red point indicates the specific
value of η1 that is used in subsequent plots when adding a second emission. The right-hand plot
additionally shows the contour for such a second emission at a fixed value of v2 < v1 . The contour
is colour-coded to roughly represent the partitioning of the two dipoles into IF and FI regions,
as illustrated also below the plot. Note that the momentum of the second emission is shown as
projected onto the primary Lund plane, to avoid having to represent the 3-dimensional secondary
Lund plane. See text for further details.

choose the Dipole-kt shower of section 2.2, which evolves following horizontal contours in
the bulk of the Lund plane. We consider the process qq̄ → Z, where Q is the Z-boson mass,
yZ = 0 is its rapidity and the proton-proton centre-of-mass energy is denoted by

√
s. The

dashed black line illustrates the phase space boundary corresponding to the radiated parton
having energy

√
s, while the grey one delineates an inner Lund plane where the maximum

energy of the radiated parton is Q (the grey and black boundaries would coincide in the
e+e− case). Had we chosen yZ 6= 0, this would have led to a relative shift of the two planes.
The phase space in between the two Lund planes corresponds to region where the PDF
factors in eq. (2.2) can play a significant role in the branching probabilities.6

For our tests, we generate a first gluon emission from the (II) qq̄ dipole at a fixed
value of the evolution variable ln v1. Scanning over η1 yields the dotted red contour shown
in figure 1 left. Given an emitted momentum fraction z (relative to the post-branching

6When
√
s� Q, there can be additional logarithmic enhancements associated with so-called “small-x”

terms αns lnm s/Q2 for both t-channel gluon [64, 65] (BFKL) and quark [66] exchange. The inclusion of
such terms in the context of a parton shower is a theoretically interesting question that has been explored
by the CASCADE [67, 68] and HEJ [69–71] groups, but we do not consider these terms in our work here.
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incoming momentum), the transverse momentum of the emission is given by

|kt,1| =
v1√
1− z

+O
(
v2

1/
√
sij
)
. (3.2)

When the emission is soft z � 1, this means that the emitted transverse momentum
coincides with v, while in the hard collinear regions the emitted transverse momentum
curve bends upwards.

Going forwards, to keep the discussion relatively simple, we constrain the kinematics of
the first emission, by fixing its rapidity to be in the soft-collinear region (here, η1 = −10),
as illustrated by the red dot. Note that we have also carried out tests with large-angle soft
and hard-collinear choices for η1, and we will highlight any relevant issues as they occur.

Next (figure 1 right), we consider a second gluon being emitted from either of the q̄g or
qg dipoles at a commensurate scale, i.e. ln v2 = ln v1 − δ ln v, with δ ln v a number of order
1. For a fixed value of the shower evolution variable ln v2, we show the emission contour,
scanning over η2. We choose a specific value of ϕ2 such that the second emission is in the
same plane as the first emission, and that it points in the same direction when far away
in rapidity, though the issues that we will see below are relevant for essentially all values
of ϕ2. The 2nd-emission contour in figure 1 follows the shape of the 1st-emission contour
except at rapidities close to the first emission, where the upwards bending reflects the fact
that it takes momentum from that 1st emission. The fact that elsewhere the 2nd emission
contours runs parallel to the first, at a distance of order δ ln v, ensures that the shower
properly fills the double-logarithmic phase space. The contour is colour-coded to reflect
the specific part (IF or FI) of the given dipole from which the 2nd emission is dominantly
emitted, reflecting the use of the g(η̄dip) function in eq. (2.3) to partition the dipole and
the specific definition of η̄dip in eq. (2.13) for the Dipole-kt showers.

Next we turn to figure 2, concentrating first on the left-hand plot, which is for the
variant of Dipole-kt with dipole-local recoil in IF dipoles. The upper panel is a zoomed-in
version of figure 1 (right), but now showing contours for two different values of ln v2. The
colour coding has changed and the intensity of the colour reflects the emission probability.
The vanishing of the parton distribution function at large x causes the contours to fade in
the hard collinear regions (the specific details of the PDF are not critical here).

The middle panel shows the logarithmic change in the first emission’s momentum,
which we write as ln kt,1/k̃t,1. Recall our discussion at the beginning of this subsection where
we emphasised that when the second emission is well separated in rapidity from the first
(i.e. everywhere except the grey-shaded region), the first emission momentum should not
change, otherwise we break the independent-emission picture of eq. (3.1). This condition
is clearly violated in figure 2 (left). The reason is that ~̃kt,1 becomes ~kt,1 = ~̃kt,1 − ~kt,2 after
the branching, as can be deduced from the kinematic map in eq. (2.8). This is worse than
the analogous situation for final-state showers discussed in ref. [42], because the transverse-
momentum recoil is always taken from the previous emission, rather than just half of the
time.

In the case of initial-state branching, an alternative way of visualising the issue is given
in the bottom panel, which shows the logarithmic deviation of the Z-boson transverse
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Figure 2. Double-emission contours for Dipole-kt (local) (left) and Dipole-kt (global) (right). The
phase-space contours are shown as a function of ln kt/Q and η. A red dot indicates the kinematics of
the first emission which has η1 ≈ −10 and ln v1/Q = −20 (in the plot labels, values of vi are always
expressed in units of Q). For illustrative purposes, the contour of the first emission is shown with a
red dotted line, whereas that of the second emission at ln v2/Q = −20.5 (ln v2/Q = −22) is drawn
as a blue (green) solid line. The colour shading of the lines indicates the branching probability.
In the middle panels we show the logarithm of the ratio between the transverse momentum of the
first emission before (kt,1) and after the second emission took place (k′t,1), which is expected to be
zero (dashed line) except when the two emissions are close in rapidity (shaded vertical band). The
bottom panels show the ratio of the observed to the expected Z transverse momentum (where again,
the expectation is valid when the two emissions are well separated in rapidity, i.e. well outside the
grey vertical band).

momentum from the expectation ~pZt = −~̃kt,1 − ~kt,2. There is no location in rapidity
where kt,1 or the Z transverse momentum agrees with the physical expectation (which,
again, is fundamental to obtaining NLL accuracy). Note that the NLL impact at α2

sL
2

(L = lnmZ/p
Z
t , Q ≡ mZ) is zero, owing to azimuthal averaging, as was found for the

vector pt sum in the final-state case, table 1 of ref. [42]. That same analysis identified a
non-vanishing discrepancy from order α3

sL
3 onwards. A further point to note is that in

the Dipole-kt (local) shower, the Z transverse momentum is always given by the transverse
momentum of the first emission at the moment of its creation. This means that the
mechanism for obtaining low Z transverse momenta identified long ago by Parisi and
Petronzio [52], i.e. the vector cancellation between the momenta of subsequent emissions,
is missing with local IF recoil. We will further explore the consequences of this in our
companion paper [1].7

The right-hand plot shows analogous results for the Dipole-kt shower in its variant
where IF dipoles use global recoil. The main difference is that the unphysical shift in

7For gluon-fusion Higgs production, which involves two II dipoles, there can be independent emission
from each of the II dipoles, and so the vector cancellation can still occur.
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ln kt,1 and in ln pZt is restricted to the rapidity region

1
2

(
η1 + ln kt,1

Q

)
< η2 <

1
2

(
η1 − ln kt,1

Q

)
, (3.3)

reflecting the fact that, inside this region, dipole-local recoil is used, while outside the
region event-wide recoil is used (which implies that the transverse recoil is mainly assigned
to the Z boson). Note that the rapidity extent, eq. (3.3), ∼ lnQ/kt,1, of the region in
which transverse recoil is incorrectly assigned is the same as for the pure final-state dipole
showers discussed in ref. [42]. This suggests that the deviations from NLL accuracy will be
the same as for those final-state showers. Concerning the vector cancellation of recoil for
the Z transverse momentum, this can now occur in at least some of the phase space.

Overall, we have shown that the generic transverse-momentum ordered dipole showers
of section 2.2 do not pass the fixed-order requirements needed to achieve NLL accuracy.
In the next section, we propose a new family of showers that solve the observed issues.

4 The PanScales showers

As we have seen, the issues discussed in section 3 are qualitatively the same as those
identified in final-state dipole showers in ref. [42]. As such it is natural to explore solutions
similar to the PanScales e+e− showers of ref. [43]. There are, however certain important
differences in initial-state showers. One concerns the choice of the conserved quantity
during the shower: in the e+e− context it was essential to preserve the partonic centre of
mass momentum; in contrast, an initial-state emission must induce a transverse recoil in
the hard-system momentum in order to be consistent with momentum conservation (and,
for multiple initial-state emissions, with Parisi-Petronzio resummation for the hard-system
transverse momentum [52]). Another difference relates to the fact that with incoming
beams an emission can be significantly more energetic than any of the pre-existing partons
in the event. We will address these issues below, as they arise.

4.1 Aspects common to all showers

The PanScales showers need a reference momentum Qµ, which defines a centre-of-mass
frame. We set it equal to the four-momentum (px, py, pz, E) of the hard system prior to
showering,

Qµ = mX(0, 0, sinh yX , cosh yX) , (4.1)

where X is a colour-singlet hard system (for example a Z or a Higgs boson), yX is the hard-
system rapidity, and m2

X ≡ Q2 = (p̃a + p̃b)2, where (p̃a, p̃b) are the initial four-momenta
of the incoming partons. We will make the choice to keep Qµ fixed during the shower
evolution, even as the momentum of the hard system evolves, for example by acquiring a
transverse momentum recoil.8 As in the final-state PanScales showers, we will consider a
family of ordering variables parametrised by a variable 0 ≤ βps < 1. Our ordering variable

8The choice of Qµ for processes where the hard system contains coloured particles, like Z+jet production,
will be addressed in future work, as will the extension to the deep-inelastic and vector-boson-fusion processes.
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will be labelled v. We will design our kinematic map such that, in a frame where Qµ is
at rest, for a soft-collinear emission at an angle θ and with a transverse momentum k⊥
relative to the emitter, we will have

v ' k⊥(θ/2)βps . (4.2)

Using an auxiliary longitudinal variable η̄Q, and a transverse momentum scale for emissions
κ⊥, this will be achieved by adopting the following definitions

κ⊥ ≡ ρveβps|η̄Q| , (4.3)

with

ρ =
(
s̃is̃j
s̃ijQ2

)βps/2

, s̃i = 2p̃i·Q , s̃j = 2p̃j ·Q , s̃ij = 2p̃i·p̃j . (4.4)

Setting βps = 0 corresponds to a transverse-momentum ordered shower. The choice βps = 1
would result in a time-ordered shower, but as we shall explain below for the showers that
we consider, that choice is not consistent with NLL accuracy.

Aside from the parametric form of the evolution variable v, the main novelty of the
PanScales showers is the definition of an alternative pseudorapidity-like variable η̄Q that
enters the dipole partitioning function g(η̄Q) in eq. (2.9). It represents the rapidity of the
emission pk with respect to the parent dipole, in the frame where the reference vector Qµ
is at rest, i.e.

η̄Q = 1
2 ln pk · p̃j

pk · p̃i
− 1

2 ln s̃j
s̃i
. (4.5)

That is, η̄Q=0 corresponds to a direction equidistant to p̃i and p̃j in the rest frame of Qµ.
This is an important difference when compared to the standard dipole showers which, as
explained in the previous section, split the dipole in the dipole rest frame (see eq. (2.13)).

When formulating the kinematic maps, we find it useful to define intermediate variables

αk ≡
√

s̃j
s̃ij s̃i

κ⊥e
η̄Q , βk ≡

√
s̃i
s̃ij s̃j

κ⊥e
−η̄Q . (4.6)

The specific relation between αk, βk, and the ak, bk as used in Sudakov decomposition for
the emitted momentum eq. (2.6) will depend on the shower. One common property for all
our showers is that for emissions that are soft and collinear, ak = αk and bk = βk (from
which one can verify that eq. (4.2) is reproduced). A further common property is that for
final-state branchings, the z values used in the splitting functions, eq. (2.3), are given by

zi = αk, zj = βk, (final state), (4.7)

while for initial-state branchings they are

zi = αk
1 + αk

, zj = βk
1 + βk

, (initial state). (4.8)

Note that for initial-state branchings, αk and βk can grow larger than 1. Uniform generation
of the η̄Q variable ensures logarithmic sampling of both small z and small 1− z.

In what follows, we present two recoil schemes and show their fixed-order behaviour.
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4.2 PanGlobal

The hadron-collider PanGlobal shower is an antenna shower. For the splitting probability,
eq. (2.3), it uses g(η̄Q) = gant.(η̄Q) (cf. eq. (2.10)). Its kinematic map can be viewed as
follows:

1. Apply the “global” dipole map of eq. (2.12) with ak = αk and bk = βk as defined in
eq. (4.6).

2. The preceding step breaks momentum conservation for the event as a whole. First
the component that is transverse to the beams is restored by applying a boost to the
hard system such that the hard system rapidity remains unchanged and that the sum
of the transverse momenta (with respect to the beams) of the boosted hard system
and all final-state particles adds up to zero.

3. To restore conservation of the components of momentum that are longitudinal with
respect to the beams, evaluate the sum of the light-cone (p+ = E + pz and p− =
E − pz) momenta of all final-state particles including the boosted hard system. Set
the momentum of the incoming parton on side a to be p+/2 and that on side b to be
p−/2.

Note that step 3 affects the momenta of the incoming partons regardless of whether the
dipole is II, IF, FI or FF. In cases where one end of the dipole is in the initial state, it
causes the incoming momentum to differ from that of the global map in eq. (2.12). Detailed
equations for all steps are given in appendix B.2.

As compared to the e+e− PanGlobal shower [43] there are both points in common and
differences. The use of the global map, eq. (2.12), is for example very similar. However the
way in which we restore momentum conservation after that map is different: in particular
the e+e− shower balances the momentum across all final-state particles, while the hadron-
collider shower defined above leaves all final-state particles untouched (unless they belong
to the hard system) and relies on adjusting the incoming particle momenta to conserve
energy.9

4.2.1 Tests for βps = 0 and 1/2

In figure 3, we perform the same fixed-order analysis as in figure 2 for the PanGlobal shower
using βps = 0 (left) and βps = 1/2 (right). Let us first consider the situation where the
second emission is far in rapidity from the first. Step 1 of the PanGlobal recoil scheme leaves
an overall momentum imbalance in the direction transverse to the (IF) dipole. It can be
shown that a unit vector transverse to any IF dipole (n̂1,2 in eq. (2.7)) has a unit component

9We also explored options in which all final-state particles get boosted. However, such options are
delicate. Specifically, a transverse boost that modifies the hard-system transverse momentum by an amount
of order kt also modifies any energetic but collinear initial-state emissions by a comparable amount. This
introduces long-distance correlations between soft-collinear and hard-collinear initial-state emissions, in
violation of the PanScales conditions outlined in section 3. Such problems have also been commented upon
in the context of the Deductor work, which introduces a specific Lorentz transformation to work around
the issue [54].
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Figure 3. Same as figure 2, but for PanGlobal with βps = 0 (left) and βps = 0.5 (right).

transverse to the beam. As a result, step 2 assigns the shower transverse momentum to
the hard system, i.e. the Z boson, as is physically correct, thus reproducing the pattern
needed for NLL accuracy. When the 2nd emission is close in rapidity to the first, it is
arguably less physically correct to take the transverse recoil from the Z boson. However,
the assignment of transverse recoil only has a significant impact when k⊥,2 ∼ k⊥,1, and
the region of commensurate rapidity and commensurate transverse momentum only affects
terms at NNLL accuracy, the correct treatment of which would in any case require the
inclusion of the full double-soft matrix element.10 A similar discussion can be extended to
subsequent emissions. Our conclusion, therefore, is that the PanGlobal showers with β = 0
and β = 1/2 satisfy the fixed-order NLL accuracy requirement.

4.2.2 Discussion of βps = 1 case (time ordering)

We close our discussion of the PanGlobal shower with an explanation of why that shower
requires βps < 1 and an illustration of the issues that arise with βps = 1. The choice
of βps = 1 is of interest because, physically, it corresponds roughly to a time ordering.
This can be relevant, for example, in a heavy-ion context where one may wish to relate
individual steps of the shower with the time-dependent evolution of a quark-gluon plasma.
That βps = 1 corresponds roughly to time-ordering can be seen as follows. Firstly, consider
a soft large-angle emission with transverse momentum k⊥ with respect to the parent dipole.
The uncertainty principle tells us that the formation time is roughly 1/k⊥. Next, observe
that a soft-collinear emission, with energy E and transverse momentum k⊥ is equivalent to
a soft emission that has been boosted along the parent dipole direction. The boost factor
is roughly E/k⊥ and so the formation time acquires a Lorentz dilation by that same factor,

10Note that kt,1 is also affected by recoil that is longitudinal with respect to the dipole when emission 2
is collinear to 1. This is not the case for pZt .
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Figure 4. Same as figure 2, but for PanGlobal with βps = 1 and η1 = −5.

giving a net formation time of order t ∼ E/k2
⊥ ∼ 1/(k⊥θ), where θ is the emission angle.

Inspecting eq. (4.2), one sees that with βps = 1, t ∼ 1/v.
Figure 4 repeats the analysis of figure 3 for PanGlobal with the “time-ordered” βps = 1

choice. Contrary to the βps = 0 and βps = 1/2 cases, we see that the second emission
modifies the transverse momentum of the first when that second emission is in the same
hemisphere and at more forward rapidities than the first. One way of understanding why
βps = 1 might cause problems is to observe that, for v2 ' v1, the second emission is created
close to the kinematic boundary of its parent dipole (recall that kinematic boundaries have
slope ±1 in the soft-collinear region of the Lund plane). Close to that kinematic boundary,
it is almost inevitable that the parent dipole momenta will be substantially modified.

To obtain a more analytic understanding of our observations, let us consider a sequence
of two soft-collinear emissions with commensurate ln v values, working with a general value
of βps. We start with an a−b initial state, where particle a’s momentum, pa, has a negative
z component. Since both emissions will be soft and collinear, the momenta of a and b

will not be affected by those emissions and we need not worry about distinctions between
their pre- and post-branching momenta (i.e. we will never write tildes over pa and pb). We
place a first soft-collinear emission at negative physical rapidity, which, given a’s negative
z momentum, is obtained by choosing a large positive η̄Q,1,

p̃µ1 = a1p
µ
a + b1p

µ
b + kµ⊥,1 , (4.9)

where, using eqs. (4.3)–(4.6), a1 = α1, b1 = β1, and sab = sa = sb = Q2, we have

a1 = v1
Q

e(βps+1)η̄Q,1 , b1 = v1
Q

e(βps−1)η̄Q,1 , (η̄Q,1 > 0) . (4.10)

Note that we have written the momentum of gluon 1 as p̃µ1 , i.e. with a tilde, in anticipation
of a second soft-collinear emission to come.
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For that second emission, we first consider the case where it comes from the a− 1 IF
dipole, with v2 only moderately smaller than v1, but a large positive value of η̄Q,2. The
latter choice causes emission 2 to be substantially more forward than emission 1 (i.e. at a
more negative physical rapidity). The global map, eq. (2.12), with i = a, j = 1 and k = 2
for this IF dipole, results in a change in the momentum of particle 1,

pµ1 = (1− b2)p̃µ1 , b2 = sa
s1aQ

(
sas1
s1aQ2

)βps−1
2
v2 e(βps−1)η̄Q,2 , (η̄Q,2 > 0) . (4.11)

Using
sa = Q2, s1 = (a1 + b1)Q2, s1a = b1Q

2 . (4.12)

Exploiting our assumption of a large value of η̄Q,1 so that b1 � a1, we have

b2 = 1
b1

(
a1
b1

)βps−1
2 v2

Q
e(βps−1)η̄Q,2 = v2

v1
e(βps−1)η̄Q,2 . (4.13)

We observe that for βps = 1, b2 is just given by v2/v1, independently of η̄Q,2, i.e.

pµ1 =
(

1− v2
v1

)
p̃µ1 , (βps = 1) , (4.14)

no matter how far in rapidity emission 2 is from emission 1. Note that this scaling of the
momentum gluon 1 changes its transverse momentum as measured with relative to the
beam. This is a long-distance side effect of emission 2 on the momentum of emission 1,
which prevents the shower from being NLL accurate.11 The change in transverse momenta
of the first emission after the second splitting (eq. (4.14)) is precisely what is observed in
the ratio plot of figure 4. One can carry out a similar analysis for an emission from the
b−2 dipole, and the findings are consistent with figure 4. The main further point that one
observes is that if emission 1 is at large angles, then it is affected by a second soft-collinear
emission regardless of which hemisphere that second emission is in.

To conclude, we have shown that using βps = 1 for our ordering variable, we introduce a
longitudinal rescaling of the first-emitted parton after emitting a second one. This rescaling
alters the transverse momentum of the first-emitted parton in the event frame, even when
the two emissions are well separated in rapidity. Therefore, the PanGlobal shower with
βps = 1 does not satisfy our fixed-order logarithmic accuracy requirement. It is reasonable
to suppose that this behaviour of βps = 1 showers can be cured by assigning the recoil only
to the side of the dipole that is emitting.12 This would require another form of the boost.
We will leave further modifications and tests of the βps = 1 showers for future work.

It is useful to be aware that βps = 1 ordering differs from virtuality ordering in the
sense of ref. [72]. Working in a frame where the fixed reference vector Qµ is at rest, for
a soft-collinear emission k with energy Ek and angle θ from a parent with energy Ei, we

11Ref. [51] commented that a standard final-state dipole-local map with so-called Λ ordering, i.e. effectively
time ordering, results in NLL violations for the thrust observable. We believe that the issue observed there
is effectively identical to that discussed here.

12The maps of the showers proposed in refs. [54] and [49] indeed satisfy this requirement, though only
the former has explored time (“Λ”) ordering.
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have vβps=1 ' Ekθ
2/2, independently of Ei, cf. eq. (4.2). Virtuality, as defined in ref. [72]

for Vincia, specifically the m2
D variable, corresponds to 2EiEkθ2 in the soft-collinear limit,

which does depend on Ei. Since one should consider a broad range of (soft and hard)
parent energies Ei, ordering in vβps=1 is not the same as virtuality ordering. On the other
hand, the ordering vβps=1 is similar to what is referred to as virtuality-based ordering in
Deductor [73, 74], where, in our notation, the ordering variable is Λ2 ∼ 2pi.pk

2p̃i.Q
Q2 ' Ekθ2Q/2

(for Qµ at rest), i.e. independent of Ei. Note that our conclusions about logarithmic
accuracy still do not apply to Deductor. Their recoil treatment differs from ours, and it is
our understanding that this is crucial to their observation of NLL accuracy for thrust [51].

4.3 PanLocal dipole and antenna

Here we consider two closely related variants of local shower, one of the dipole type, the
other of antenna type, both intended to be used with an ordering choice 0 < βps < 1. The
two non-trivial choices that we need to make in order to obtain showers that have NLL
accuracy concern the kinematic map and the generation variables in the hard-collinear
initial-state region. Let us start with the former:

1. For all dipole types (FF, II, etc.), we apply a dipole-local map eq. (2.8). The relation
that we use to obtain ak and bk from αk and βk depends on the type of dipole and
will be discussed below. When the dipole involves one or more initial-state particles,
and at least one of them is assigned transverse recoil from the map, the local map
results in the new incoming particle acquiring a transverse momentum.

2. When an initial-state particle acquires transverse momentum, we perform a Lorentz
transformation (boost and a rotation) to all event particles, outgoing and incoming,
so as to realign the initial-state parton with the original beam axes. The Lorentz
transformation is constrained by the following requirements: after its application,
both incoming particles should be aligned along the original beam axes, and the
rapidity of the hard system, as defined with respect to the proton beams, should
coincide with the pre-splitting hard-system rapidity.

The functional form of the transformation, together with the mapping coefficients, are
provided in appendix B.3. The choice to boost all particles in the case of initial-state
splittings differs from that of the Dipole-kt algorithm (recall that for II dipoles, it boosts
all final-state particles except for the new emission).

Our choice of Lorentz transformation leads to an important subtlety for hard-collinear
initial-state branchings, notably as concerns the relation between the generated transverse
momentum, k⊥, and the final emission transverse momentum with respect to the beam,
kt.13 Let us consider such a branching, concentrating just on the part of the dipole close

13The argument that follows is based on a physical picture of the angles involved in the branching.
Some readers may instead prefer to consider a Lorentz-invariant definition of the transverse momentum
with respect to reference directions a and b, k2

ti = 2(pa·pk)(pb·pk)
pa·pb

, and to use the explicit kinematic map in
eq. (2.8) to derive the result that is shown below in eq. (4.16).
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the initial-state emitter ı̃, which emits a particle k and produces a new incoming particle
i. Representing the angles as follows

p̄i

p̄k

pı̃

θı̃k

θik

θı̃i

(4.15)

we note that the generated transverse momentum, defined with respect to the ı̃ direction, is
given by k⊥ ' Ekθı̃k, where Ek is the energy of k. To determine the transverse momentum,
kt, of the emission with respect to the beam, note that in the limit where the ordering
variable is small, the boost component of the Lorentz transformation is also small, and it
essentially preserves the angles between all particles. As a result, we can write kt ' Ekθik.
Keeping in mind that Eiθı̃i = Ekθı̃k (by conservation of transverse momentum), θik =
θı̃k − θı̃i, Ek = akEı̃ and Ei = (1 + ak)Eı̃ (with ak as in the kinematic map, eq. (2.8)), one
has the following relation between the generated transverse momentum k⊥ and the final
transverse momentum with respect to the beam, kt:

kt = k⊥
1 + ak

. (4.16)

The critical feature to note is that kt becomes much smaller than k⊥ when ak � 1.
Physically this is a consequence of the fact that, in that limit, Ek ' Ei and so the angles
θı̃i and θı̃k almost coincide, resulting in a small value of the difference between them, θik,
which is the angle relevant for calculation the transverse momentum with respect to the
beam.

A degree of freedom that we have in the kinematic map is the relation between the
generation v and η̄ (or equivalently αk and βk in eqs. (4.6)) and the variables ak and
bk of the kinematic map. At first sight, the simplest choice would appear to be to use
ak = αk and bk = βk, as we did for the PanGlobal shower. Considering the ordering
parameter βps = 0.5, we obtain the contours shown in figure 5 (left). Observe that in
the soft-collinear region, i.e. the inner Lund triangle, the (red-dotted) contour for the first
emission slopes upwards as one moves out from central rapidities, as expected for βps = 0.5.
However, beyond the edge of the inner-Lund triangle, where ak = αk becomes much larger
than 1, the behaviour changes and the first emission contours bends down, a consequence
of the 1 + ak denominator in eq. (4.16). Next, we fix the first emission to be hard and
at negative rapidities (red dot) and examine a second emission at v2 slightly smaller than
v1, shown by the blue contour. When the second emission, k2, satisfies η1 . η2 . 0, it is
emitted from the FI dipole that stretches between emission 1 and the right-going beam,
and so takes its transverse recoil from emission 1. When kt2 & kt1, this induces a significant
recoil on particle 1, as is visible from the middle panel of that figure. How problematic
is this? Strictly it only matters when the first emission has αk1 � 1, because only then
is there a substantial region part of the inner Lund plane (i.e. soft and collinear region)
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Figure 5. As in figure 2, showing non-default PanLocal variants with (left) the choice bk = βk
(corresponding to γ = 0 in eq. (4.17)) and (right) the choice γ = 1.

with kt2 & kt1. In practice the region αk1 � 1 is suppressed by the PDF ratio in eq. (2.2).
From a logarithmic point of view it is relevant only to small-x resummations, which are
beyond what we aim to control. Still, one might argue it would not be within the spirit
of our overall approach to have a long-distance correlation between hard and soft-collinear
emissions.

To address this concern, we consider a generalisation of the relation between the coef-
ficients in the kinematic map and the ordering and auxiliary variables. Specifically, if the
emitter is an initial-state particle, we maintain ak = αk, but replace the bk = βk relation
with

bk = βk(1 + αk)2γ , (4.17)

where γ is a parameter to be chosen. This has a substantial effect when αk � 1, and in
that region one finds

ln kt =
(
γ − 1

1 + βps

)
lnαk +

( 1
1 + βps

)
ln v +O (1) . (4.18)

If we are to prevent the contour from decreasing in kt outside the inner Lund plane, then
we need

γ ≥ 1
1 + βps

. (4.19)

This requirement ensures that a soft-collinear emission does not affect a prior hard-collinear,
even when that hard collinear one has large αk.

A second consideration concerns the effect of a hard-collinear emission on a prior soft-
collinear emission. Let us examine what happens if we take γ = 1. Such a choice has the
effect of cancelling the denominator in eq. (4.16) so that kt coincides with κ⊥ in eq. (4.3).
As can be seen in figure 5 (right), it gives a straight contour for the first emission. Next,
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we fix the first emission to be soft and collinear (as represented with the red dot) and
examine how its momentum is modified by a second emission, as a function of the rapidity
of that second emission, η2. We see from the middle panel of the figure that, sufficiently far
into the left hard-collinear region, the transverse momentum of the first emission receives
a large modification.14 The origin of this problem requires an examination of the detailed
kinematic map, as given in appendix B.3. Concentrating on the left-hand part of the plot,
with η2 < η1 < 0, consider the bj coefficient in eq. (B.56c) for an IF dipole with the
initial-state parton as the emitter (f = 1),

bj = 1− bk
1 + ak

. (4.20)

The essential point to understand is that the large-αk enhancement of bk that we introduce
with γ = 1 in eq. (4.17) can cause bk to become commensurate with ak, which results in a
substantial modification of bj . Considering the limit ak = αk � 1, this occurs when bk/ak,
given by

bk
ak
∼ α

2γ− 2
1+βps

k z
2

1+βps
−1

1

(
v2
v1

) 2
1+βps

, valid for αk � 1 , z1 � 1 , (4.21)

becomes of order 1. Since we started with a first soft-collinear emission, z1 � 1, and since
v2 < v1, by construction, the ratio in eq. (4.21) is guaranteed to be smaller than one if

γ ≤ 1
1 + βps

. (4.22)

In particular, this shows that if we are to avoid non-trivial cross-talk between hard-collinear
and soft-collinear emissions, γ = 1 is not suitable for any βps > 0. Taken together,
eqs. (4.19) and (4.22) tell us that there is only one value of γ in eq. (4.17) that enables us
to avoid such cross-talk, specifically

γ = 1
1 + βps

. (4.23)

Figure 6 shows the contour plots as obtained with this choice. There can still be non-
trivial side effects of the second emission on the first one, but only in the region where
both emissions are hard and collinear (left), or close in rapidity (right). In particular, the
problems seen in figure 5 are absent with the choice for γ in eq. (4.23). We make this the
default choice for our PanLocal dipole shower.

The antenna variant of PanLocal is broadly similar in construction. The guiding princi-
ple is that for any dipole end that can be involved in a hard-collinear initial-state branching,
the mapping coefficient for the light-cone component associated with the effective “specta-
tor” end should have an enhancement as in eqs. (4.17) and (4.23). The details are given in
appendix B.3.2. The contour plots, which we omit for brevity, are very similar to figure 6.

To close this section, we note that βps = 1 for the PanLocal showers suffers from
the same problem as βps = 1 PanGlobal showers, i.e. a substantial effect of spectator

14With sufficiently large
√
s/Q such an effect would be visible also in the right-hand collinear region.
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Figure 6. PanLocal contours for two first-emission configurations similar to those of figure 5, but
with our default choice of the parameter γ = 1/(1 + βps).

longitudinal recoil when two emissions are in the same hemisphere, v2 is commensurate
with v1 and |η2| > |η1|. Additionally, PanLocal showers have issues of incorrect transverse
recoil for βps = 0, as in the final state case, cf. figure 7. In particular for η1 < 0, the
transverse momentum recoil from an emission from the g1q dipole is taken by the gluon
when η1 < η2 < 0 even if η2 − η1 � 1. Requiring βPS > 0 solves this problem: emissions
with commensurate kt values are ordered so that smaller-angle emissions are generated
later. Then, the use of g(η̄Q) to partition the dipole ensures that when the smaller-angle
emission is in the primary Lund plane, the recoil is taken from the initial-state particle and
so, after the boost, effectively from the hard system.

5 Subleading colour at LL accuracy and beyond

Dipole showers naturally achieve the large-Nc limit of QCD. It is common practice for
dipole showers to adopt a modification of the large-Nc limit in which one uses a CF colour
factor for a quark or anti-quark end of a dipole and a CA/2 colour factor for an end that
corresponds to a gluon (we refer to this as the colour-factor-from-emitter scheme, CFFE). It
has long been known [75] that such a choice is inconsistent with colour coherence. Ref. [42]
pointed out that, for quite a range of observables, this results in the wrong subleading-
Nc contributions at LL accuracy. Insofar as one views 1/N2

c as being comparable with
αs, subleading-Nc LL corrections are comparable to a leading-colour NLL terms and so
should, arguably, be addressed on a par with such leading-colour NLL terms.

In this section, we extend the two efficient colour schemes introduced [44] for the
final-state PanScales showers to the initial-state case. Section 5.1 summarises and extends
the so-called segment colour scheme, section 5.2 does the same for the nested-ordered-
double-soft (NODS) colour scheme, and section 5.3 shows the results of various fixed-order
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Figure 7. Same as figure 2, but for PanLocal, dipole (left) and antenna (right) with βps = 0.

validation tests. These schemes achieve full-colour accuracy not just for LL terms but also
for NLL terms in the case of global event-shape type observables [76], and for next-to-
double-logarithms (NDLs) for jet multiplicities. Related schemes, adequate for full-colour
LL accuracy have been explored also by other authors [50, 77].15

5.1 Adaption of segment scheme to initial-state splittings

The segment colour scheme divides each dipole into distinct segments in the underlying η̄
generation variable, with some segments having a CF = (N2

c − 1)/(2Nc) colour factor and
the others having a CA/2 = Nc/2 colour factor. The guiding principle for the assignment
is colour coherence. More concretely, consider the example of a qq̄ → Z event in which the
incoming q backwards evolves by emitting a final-state gluon g1, i.e. qI → qIg1. For this
first emission, the colour factor is unequivocally CF since it is emitted from a quark-like
leg. Next, a second gluon g2 is emitted. Let θi be the angle between gi and the beam
direction, and θ12 the angle between the two gluons. If θ12 � θ1 then the segment method
assigns a CA/2 colour factor, while if θ2 � θ1 or θ2 � θ1 a CF colour factor is assigned.
In the region where the angles are commensurate, the correct emission intensity cannot be

15There has also been extensive work towards the inclusion of subleading-colour effects through amplitude-
level evolution [78–82] and other schemes [83–85]. Note that amplitude evolution also has the potential
to induce coherence-violating effects [86, 87] (sometimes called super-leading logarithms), terms specific
to hadron colliders, whose all-order impact has recently started to be evaluated [88, 89]. The impact of
coherence-violating terms on logarithmic accuracy depends on the observable [90, 91], though the quanti-
tative understanding of this question remains to be elucidated. In this context, one may wish to keep in
mind observations concerning spurious super-leading logarithms generated by long-distance shower-recoil
effects [43], specifically terms αnsL2n−3 for the thrust. Their sum was found to vanish as αs → 0 for fixed
αsL, a behaviour that would be expected from NNLL terms or beyond. These questions clearly deserve fur-
ther study. For now, when we refer to the full-colour NLL accuracy of our shower, this is to be understood
as applying to terms of coherent origin.
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reproduced by simply using one of CF or CA/2 but the segment method still uses a discrete
choice between them, engineered so as to reproduce NDL accuracy for observables such as
the multiplicity (or equivalently the correct integrated rate of emission of g2 when it has
an energy or kt much lower than that of g1).

The segment colour scheme implements this reasoning throughout the shower evolu-
tion. A dipole can have any number of alternating CF and CA/2 colour segments. We
represent the segments with the notation

3̄[−∞, CA, η1, CF , η2, CA, . . . ,∞]3 , (5.1)

This indicates that for all gluon emission rapidities (as defined below) between −∞ and
η1, one uses a CA/2 colour factor,16 for emissions between η1 and η2, one uses a CF
colour factor, etc. Negative rapidity is always associated with the end of the dipole that
has outgoing anti-triplet colour. In our notation we always refer to the effective outgoing
colour-flow, so, for example, an initial-state quark is to be thought of as having outgoing
anti-triplet colour. We establish where an emission k is positioned in the sequence of
eq. (5.1) based on a specific approximate determination of its rapidity, which for PanScales
showers and a parent dipole ij reads

ηapprox ≡

 η̄Q − 1
2 ln

(
1−cos θij

2

)
, η̄Q > 0 ,

η̄Q + 1
2 ln

(
1−cos θij

2

)
, η̄Q < 0 .

(5.2)

In the soft and collinear limit, this variable coincides with the physical rapidity of the
emission with respect to the closer of i and j (in this section, all angles are evaluated in
the frame where Qµ is at rest). The sign of η̄Q (and ηapprox) is such that emission from the
triplet (anti-triplet) end of a dipole has positive (negative) η̄Q.

After an emission, one needs to update the set of segments on the dipoles involved in
the splitting. Returning to our earlier example of qI q̄I → Z, the initial-state qI is at the
3̄-end of the dipole, and the starting dipole segment structure is

qI [−∞, CF ,∞]q̄I . (5.3)

When we radiate a gluon from this qI q̄I dipole, we obtain two new dipoles qIgF and gF q̄I ,
each of which now has a CF and a CA region.

qI[−∞, CF , ηLgF , CA,∞]gF + gF[−∞, CA, ηRgF , CF ,∞]q̄I . (5.4)

For a gluon emission k, the new transition points are given by

ηLk = max(0, ηk) , ηRk = min(0, ηk) . (5.5)

To determine ηk, we evaluate the angle of the emission θk, with respect to the triplet (anti-
triplet) end of the dipole if ηapprox > 0 (< 0) and then take ηk = ±| ln tan θk/2|, where a
positive (negative) sign is used when ηapprox > 0 (< 0).

So far, the discussion has largely followed that of the final-state case in ref. [44]. We
now summarise the non-trivial extensions needed for the new radiation channels that open
up in hadron collisions:

16In the list of segments, it is labelled CA rather than CA/2 for ease of notation.
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• gI → qI q̄F : the backwards evolution of an initial-state quark qI to an initial-state
gluon gI and a final-state anti-quark q̄F results in the following configuration of
segments

qI [−∞, CF , . . . ]... → gI

[
−∞, CA, ηRq̄F , CF , . . .

]
...

+ q̄F

[
−∞, CF , ηLq̄F , CA,∞

]
gI

(5.6)

The case in which gI → q̄IqF is similar. Relative to the default large-Nc splitting
probability, no rejection factor needs to be applied because the splitting function
involves a TR colour factor (this is the same as for the treatment of a final state
g → qq̄ splitting).

• qI → gIqF : the backwards evolution of an initial-state gluon gI to an initial-state
quark qI and a final-state quark qF is slightly more subtle. Two dipoles exist before
the splitting: one with the CA colour factor on the 3-end, and another on the 3̄-end,
i.e.

gI[−∞, CA, . . . ]... + ...[. . . , CA,∞]gI . (5.7)

After the evolution to an initial-state quark, which becomes the new 3̄-end of a dipole,
both dipoles need to be updated to include a new CF segment, resulting in

gI[−∞, CA, . . . ]... → qI[−∞, CF ,−|ηqIqF |, CA, . . . ]...
...[. . . , CA,∞]gI → ...[. . . , CA, |ηqIqF |, CF ,∞]qF , (5.8)

where ηqIqF = − ln tan θqIqF /2. Instead, for the q̄I → gI q̄F case one has

gI[−∞, CA, . . . ]... → q̄F[−∞, CF ,−|ηq̄I q̄F |, CA, . . . ]...
...[. . . , CA,∞]gI → ...[. . . , CA, |ηq̄I q̄F |, CF ,∞]q̄I . (5.9)

Note that even though the emission is in a CA segment, relative to the default dipole
emission strength of CA/2 one must apply a rejection factor of (1−2CF /CA), because
the underlying splitting function is Pq→qg.

All other channels and the precise implementation of the algorithm are as discussed in
ref. [44].

5.2 NODS

Despite capturing the dominant subleading-colour correction for the integrated rate of soft
gluon emissions at NLL, as shown in ref. [44], the segment method fails in the limit where
two soft and energy-ordered emissions occur at commensurate angles. Thus, a second
method was explored in ref. [44], referred to as NODS. This method extends the segment
method so as to provide the correct full-colour branching probability to produce any num-
ber of energy-ordered commensurate-angle pairs, as long as each pair is well separated
in rapidity from all others (“NODS accuracy”). The method works by accepting a given
emission with a colour acceptance probability that is the ratio of the full-colour soft matrix
element, |M2|, to the leading-colour one, |M2

LC|.
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To illustrate the method, we again consider the case in which a gluon g2 is emitted
from a qq̄g1 system. The colour acceptance probability for emission of a softer gluon g2 is
given by

paccept ≡ |M |2

|MLC|2
= 1 +

(2CF − CA
CA

) (q̄q)
(q̄g1) + (g1q)

, (ab) ≡ pa · pb
(k · pa)(k · pb)

. (5.10)

This expression has full colour accuracy and one should recall that (2CF − CA)/CA =
−1/N2

c . The discussion of ref. [44] showed how to generalise this formula so that it delivers
the NODS accuracy for events with arbitrary numbers of gluons and quarks. If we remain
with a single q̄q pair and an arbitrary number of gluons that are well-separated in rapidity,
the correction factor relative to the large-Nc emission probability is given exactly by

paccept(q̄, 1, 2, . . . , n, q) = 1 +
(2CF − CA

CA

) (q̄q)
(q̄1) + (12) + · · ·+ (nq) , (5.11)

which holds for each dipole. One of the observations of ref. [44] was that for a given
individual large-Nc ij dipole, one can drop most of the terms in the denominator of
eq. (5.11) and instead use paccept([ā], i, j, [a]). In this context, [ā] and [a] are suitably chosen
“auxiliary” momenta, which can in practice be any of the momenta along the q̄, 1, . . . , q re-
spectively to the left and right of ij. The auxiliaries are shown in square brackets, because
if one or other of i and j is at the end of the dipole chain (with a resulting infinite extent
of the CF segment), there is no auxiliary momentum and the corresponding argument is
omitted in paccept.

One additional aspect of the full algorithm is the choice of what to do when there is
more than one q̄q pair. Ref. [44] uses a product of paccept factors, one for each CF segment
in the dipole (each finite extremity of a segment has an associated auxiliary momentum).17
Another aspect is that of how to update the auxiliary momenta after a dipole branching.
Suppose we have an ij dipole with a single CF segment, whose auxiliaries are ā and a.
When a gluon k is emitted from that CF segment, each of the two new dipoles, ik and
kj, will inherit part of that CF segment. Then the auxiliaries are updated so that the CF
segment of the ik dipole is assigned auxiliaries ā and j, while the CF segment of the kj
dipole is assigned auxiliaries i and a. We represent this as

i j

· · ·· · ·

ā a ......

−→

i jk

· · ·· · ·

ā a ...... j i

(5.12)

where the solid lines represent large-Nc dipoles and the dotted lines represent the relative
−1/N2

c correction to the leading-Nc emission probability. Those dotted lines are labelled
with the corresponding auxiliary momenta. If one or other of the ā and a auxiliaries is
absent from the parent dipole, it remains absent from the child dipoles.

17In practice, in NODS limit, i.e. where all pre-branching momenta are well separated in the rapidity
direction in the Lund diagram, only one of the paccept factors ever differs noticeably from 1.
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For backwards evolution of an initial-state parton, there are some additional configura-
tions to consider beyond those studied in ref. [44]. Backwards evolution of an initial-state
quark into an initial-state quark and a final-state gluon behaves precisely as in eq. (5.12).
Backwards evolution of an initial-state gluon into an initial-state quark and a final-state
quark can be accounted for with the following update

gI

1

2

· · · −→ qI

qF 1

qF

qI

· · · (5.13)

where the dipoles associated with the initial and final-state quarks each acquire a new CF
segment, whose (single) auxiliary is given by the final and initial-state quark respectively.
Finally we have the situation where an initial-state quark backwards evolves to give an
initial-state gluon and a final-state anti-quark ,

qI

1

... qI

· · · −→ gI

q̄F 1

· · ·

...q̄F qI

1

(5.14)

Here the existing CF segment of the qI1 dipole is inherited by the gI1 dipole, with an
additional auxiliary momentum q̄F , while the new gI q̄F dipole has a CF segment with
auxiliary 1.

5.3 Matrix-element tests

We perform two kinds of fixed-order tests of the colour schemes outlined above. Both
involve configurations with a fixed number of energy-ordered branchings, at least one of
which is an initial-state branching. In a first set of tests we fix the kinematics of a first
emission and examine the branching probability for a second emission differentially in its
rapidity and azimuth. In a second set of tests we consider several kinematic configurations
for one or two soft emissions and verify that the integral over the rapidity and azimuth
of an additional soft emission, at a fixed much smaller transverse momentum, reproduces
the analytic expectation, as required for NDL accuracy for the observables such as the
multiplicity. The analytic expectation coincides with the result that one would obtain
by assuming an exact angular-ordered pattern for emissions. We show results just for
the PanGlobal βps = 0 (transverse-momentum ordered) shower, keeping in mind that the
underlying implementation is common to all showers.

5.3.1 Differential tests

We fix the kinematics of a first emitted parton (which can be either a quark or a gluon) to
be soft and collinear using

ln v1
Q

= −10 , η̄Q,1 = 5 , ϕ1 = 0 , (5.15)
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which corresponds to z1 = 6.69 · 10−3, with a measured transverse momentum ln kt,1/Q =
−10 and rapidity η1 = 5. The second emission, a soft gluon, is emitted at ln v2/Q = −60,
and we examine the shower branching probability differentially as a function of its direction,
i.e. we sample over η̄Q,2 and ϕ2.

Specifically, we sample over the generation variables η̄Q and ϕ for emission 2. Then,
we compute the angular separation between the two emissions

∆R12 =
√

∆η2
12 + ∆ψ2

12 , (5.16)

where ∆η12 and ∆ψ12 are their difference in rapidity and azimuth. If ∆R12 > 1, the
second emission is considered to be primary, and we examine its distribution differentially
in the rapidity η and azimuth ψ defined with respect to the beam direction. Otherwise
it is secondary, i.e. emitted predominantly from the first emission, and we examine its
distribution differential in a rapidity η and an azimuthal angle ψ defined with respect to
emission 1. The relevant analytic expectations are provided in appendix C.

The results for the segment and NODS colour schemes are shown in the first two rows
of figures 8 and 9, for qq̄ → Z and gg → H production respectively (the bottom two
rows are discussed further below). We separate the cases in which the second emission
is either primary (left-hand panels of each plot) or secondary (right-hand panels). Let us
first focus on the ratio between the parton shower and the analytic LC result (obtained
using CA = 2CF = 3, upper panels of each plot). In most regions, the value of this ratio
for all cases is either 1, when the effective colour factor is CA/2, or 8/9 if the emission
occurs with an additional 2CF /CA relative weight. The other quantity that is displayed
is the deviation between the shower and the analytic result at full colour (lower panels of
each plot). The segment method fails to describe the colour pattern if the two emissions
have commensurate angles. The size of the deviation depends on the azimuthal angle
ψ. However, as we will see below, the deviation vanishes after integrating over angular
phase space. The NODS scheme reproduces the exact full-colour matrix element in all
double-emission configurations.

For completeness, in the bottom two rows, figures 8 and 9 also show results for the
colour-factor-from-emitter (CFFE) approach. This scheme is implemented in standard
dipole showers, and the colour factor that multiplies the splitting function is determined
according to whether the emitter (as determined by the shower) is a (anti-)quark or a
gluon. The results with the CFFE approach depend on how one decides which of the
two dipole ends is the emitter, and so we show CFFE with both the PanGlobal shower
(penultimate row) and the Dipole-kt shower (last row), with the latter corresponding to
the behaviour expected in standard dipole showers. Labelling the rapidity of the first
final-state emission as η1 (equal to 5), CFFE with the PanGlobal showers gives the wrong
answer on the primary plane (left-hand panels) when the second emission has 0 . η . η1
(except in the gIgI → HgF case). For a qq̄ initial state, i.e. figure 8 (left), CFFE with the
Dipole-kt shower gives wrong answers in the logarithmically extended region

− 2.5 = 1
2

(
η1 − ln Q

kt,1

)
< η <

1
2

(
η1 + ln Q

kt,1

)
= 7.5 , (5.17)
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Figure 8. Density for the emission of a soft gluon from a qI q̄I → ZgF (left) or gI q̄I → Zq̄F
(right) system in the rapidity-azimuth plane. From top to bottom, the rows show the segment,
NODS and CFFE methods with the PanGlobal shower, and the CFFE method with the Dipole-kt
shower. For each plot, the upper panels display the ratio between the parton shower differential
cross section and the leading colour result, dσPS/ dσLC. The LC parton-shower result is obtained
setting CA = 2CF = 3, i.e. an emission strength CA/2 = 3/2 for each dipole. The lower panels
show the deviation from the FC differential matrix element, given in appendix C, dσPS/ dσFC.
For each plot, the left-hand panels correspond to emissions from the incoming partons (in the sense
of a Cambridge/Aachen algorithm with jet radius R = 1 [92, 93]), whereas the right-hand panels
correspond to emissions from the first emitted parton (either gF or q̄F ).
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Figure 9. Same as figure 8 but for emission of a soft gluon from gIgI → HgF (left) and gIqI → HqF
(right) systems.

as expected from the analysis in refs. [42, 44]. Note that this is the same region where
recoil is misassigned for this configuration, cf. eq. (3.3). Where the initial state is q̄g or gq
(the right-hand columns, respectively, of figures 8 and 9), there are rapidity regions with
two dipoles simultaneously in play, each of which have different regions of incorrect colour,
resulting in a more complex overall structure.

5.3.2 Integrated tests

Next, we integrate the differential cross section over the emission angles for the soft gluon to
obtain the overall rate of emissions from the shower, IPS. We compare the result to the an-
alytic full-colour expectation, IFC. We perform these comparisons for configurations where
the first emission (whose direction is not integrated over) is either soft and collinear, hard
and collinear, or soft and large-angle with respect to the initial-state emitting system.18

18Explicitly, we set ln v1/Q = −10 and take η̄Q,1 = 5 (soft collinear), η̄Q,1 = 11.09861 (hard collinear),
and η̄Q,1 = 0 (soft, large angle). The corresponding z1, η1 values are quoted in figure 10.
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Figure 10. Normalised deviation of the integrated rate of a single soft emission (emission 2), as
produced by the parton shower IPS from the configurations in the left-hand column, relative to the
exact analytic results IFC quoted in appendix C. We show four configurations, two for the qq̄ → Z

event, and one for the gg → H event, and only consider initial-state splittings (the results for
final-state splittings may be found in ref. [44]). For each configuration, we show three kinematics
regimes for the first emission, as labelled at the top of the plot (and detailed at the bottom). For
each configuration and kinematic regime, we show results for both the segment and NODS colour
schemes. The colours of the lines indicate whether the result is consistent with zero.

The second emission is radiated at a fixed ln v2/Q = −60 and we impose a collinear regu-
lator that takes a different value depending on whether the emission is primary ηcut = 30
or secondary ηcut,s = 24.19 The integrated rate is computed for all possible branching
histories: starting with qq̄ → Z, (i) the backwards evolution of a quark into a gluon while
emitting a quark (q1g), (ii) the backwards evolution into a quark while emitting a gluon
(g1g); and starting with gg → H, (iii) the backwards evolution of a gluon into a gluon
while emitting a gluon (g1g), and (iv) the backwards evolution into a quark while emitting
a quark (q1g). The analytic expectations for IFC are derived in appendix C.

We show the comparison between IPS and IFC in figure 10 where the specific values for
the kinematics of the first emission, i.e. z1 and η1, are indicated on the plot. The NODS
colour scheme reproduces the FC analytic integral in all cases. The segment method fails
to describe the analytic result for the soft large-angle configuration except in the g → gg

case, where there are no CF segments. This failure was already observed for final-state
splittings in ref. [44] and it is due to the discrepancy between the physical η and ηapprox,

19The reason for having two different regulators is to avoid any type of artificial cancellations that could
lead to an apparent agreement between the shower and the analytics even if the implementation is not
correct.
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Figure 11. Similar to figure 10, but for soft emission from configurations with two prior initial-
state emissions (well separated in rapidity, at least one of which is hard).

given by eq. (5.2), in the large-angle regime. The disagreement vanishes in the case of
g → gg since in this case the leading and full-colour results are identical.

Our last colour test considers three emissions. We fix the first emission, which can be
either a quark or a gluon, at

ln v1
Q

= −15 , η̄Q,1 = 15 , ϕ1 = 0 . (5.18)

Then, the shower generates a second lower-ln v emission (quark or gluon) with ln v2/Q =
−25 and ϕ2 = π/3. To reduce the number of possibilities, we impose that this second emis-
sion is a primary one. We consider three kinematic configurations: (i) opposite hemisphere,
i.e. η̄Q,2 < 0, (ii) same hemisphere with 0 < η̄Q,2 < η̄Q,1, and (iii) same hemisphere with
0 < η̄Q,1 < η̄Q,2. At this stage, taking all the possible flavor combinations into account,
each of the previous kinematic configurations correspond to a total of 8, 4 and 8 cases,
respectively.

The third emission is then fixed to be a soft-collinear gluon with ln v3/Q = −45, and
arbitrary η̄Q,3, ϕ3.

This gluon may effectively be a primary emission or radiated off either the first or
second emission. As for the double-emission case, the third gluon contributes to the total
integrated rate if it satisfies η3 < ηcut(ηcut,s) depending on whether it is a primary or sec-
ondary emission. The analytic expectations are presented in appendix C. The difference
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between the shower and the analytic result is shown in figure 11. We find a perfect agree-
ment between the shower and the analytic calculation with either of the two colour schemes.
Notice that the segment method satisfies this test in all cases since we are imposing that
the first and second emissions are collinear. For the segment scheme, we would have en-
countered the same problem as in the double-emission case if either had been radiated at
a large angle.

We have thus thoroughly tested the extension of both colour schemes to initial-state
radiation, up to O

(
α3
s

)
, and shown that they behave as expected.

6 Spin correlations

The last ingredient that we incorporate into our showers is an algorithm to include spin
correlations. These are essential to correctly reproduce the azimuthal structure of strongly
angular-ordered collinear splittings, and so achieve full NLL accuracy according to the
matrix-element part of the PanScales conditions outlined on p. 1. In refs. [45, 46], spin
correlations were included in the PanScales e+e− showers using an approach based on the
Collins-Knowles algorithm [94–97]. While Collins [94] originally proposed an algorithm to
include spin correlations for final-state showers, Knowles [95–97] extended the procedure
to initial-state radiation and backwards evolution. In this work, we extend the PanScales
spin-correlation implementation to hadron-hadron collisions, and validate it, as in the
colour case, by comparison to analytic matrix elements up to O(α3

s). Relative to the
Collins-Knowles algorithm, the PanScales spin-correlation algorithm also accounts for the
(dominant) large-Nc part of the spin correlations in soft emissions [46].

6.1 Spin-correlation algorithm and extension to initial-state branching

The starting point is the procedure outlined in refs. [45], which successfully includes
spin correlations in any dipole or antenna shower. The fundamental building blocks are
the collinear branching amplitudes Mλı̃λiλk

i→ı̃k , which can be written in terms of helicity-
dependent splitting functions Fλı̃λiλki→ı̃k (z) and a spinor product Sτ (pi, pk), i.e.

Mλı̃λiλk
i→ı̃k = 1√

2
gs
pi·pk

Fλı̃λiλki→ı̃k (z)Sτ (pi, pk) . (6.1)

The spin indices of the particles i→ ı̃k are denoted λı̃,i,k = ±1. Note that in our convention,
for initial-state splittings, the order of spin indices in the superscript ofMλı̃λiλk

i→ı̃k differs from
that of particle indices in the subscript (similarly for F). This choice facilitates re-use of
code between our initial and final-state implementations of spin correlations. The label
τ = ±1 for the spinor product indicates the sign of the complex phase (following the
convention of ref. [98]), with

τ = λ̃i + λ̃k − λ̃ı̃ where λ̃ =

λ/2 for a quark,
λ for a gluon.

(6.2)

A derivation of the branching amplitudes for final-state collinear splittings, Mλı̃λiλk
ı̃→ik , was

presented in ref. [45]. In appendix D of this work we extend this derivation to include
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λı̃ λi λk qI → q̃IgF gI → q̃I q̄F gI → g̃IgF qI → g̃IqF

λ λ λ 1√
z(1−z)

0 − 1√
z(1−z) − 1

1−z

λ λ −λ
√

1−z
z

√
1− z −1−z√

z
0

λ −λ λ 0 0 0 0
λ −λ −λ 0 − z√

1−z − z3/2

1−z − z
1−z

Table 1. The helicity-dependent Altarelli-Parisi splitting amplitudes Fλı̃λiλk

i→ı̃k (z) that appear in
eq. (6.4), using the convention of eq. (2.2) where ı̃ evolves backwards to i while emitting k such
that pk = z/(1 − z)p̃i, pi = 1/(1 − z)p̃i. Aside from overall colour factors, the amplitudes satisfy
the relation (1− z)

∑
λi,λk

|Fλı̃λiλk

i→ı̃k (z)|2 = Pi→ı̃k(z), with the Pi→ı̃k(z) as given in eqs. (A.1).

initial-state collinear branchings. The resulting helicity-dependent splitting amplitudes
Fλı̃λiλki→ı̃k (z) for backwards initial-state splittings are summarised in table 1.20 The Collins-
Knowles algorithm then makes use of these branching amplitudes to construct a binary tree
following the shower history. This data structure facilitates the efficient computation of
spin-density matrices for new shower branchings, which are used to sample the azimuthal
distribution of that branching.21

The regime of validity of the Collins-Knowles algorithm is limited to collinear 1 → 2
branchings. An extension to correctly model the azimuthal distribution of soft large-angle
branchings at leading colour was presented in ref. [46] for final-state branchings. The
colour-stripped amplitude for the emission of a soft gluon from a colour dipole follows the
eikonal approximation, and, for example for an initial-initial dipole, reads

Mλk
ij→ı̃̃k(. . . , pi, pj , pk . . . ) = gs

(
pi · ε∗λk(pk)
pi · pk

−
pj · ε∗λk(pk)
pj · pk

)
M(. . . , p̃i, p̃j , . . . ) , (6.3)

with gs ≡
√

4παs and an implicit constraint δλı̃λiδλ̃λj . Note that helicity flips of the parent
dipole partons are suppressed in the soft limit, and we do not account for them here.

Although formulated in terms of 1→ 2 kinematics, the Collins-Knowles algorithm can
still be modified to account for soft wide-angle emission, because the eikonal approximation
does not depend on the spin of the dipole legs i and k. The branching amplitudes of
eq. (6.1) have to be modified such that the i→ ı̃k branching acquires a dependence on the
kinematics of the ı̃’s dipole partner ̃. Eq. (6.3) can be rewritten as (see appendix D)

Mλk
ij→ı̃̃k(. . . , pi, pj , pk . . . ) =

√
2gs

S−λk(pi, pj)
S−λk(pi, pk)S−λk(pj , pk)

M(. . . , p̃i, p̃j , . . . ) . (6.4)

This implies that soft corrections can be included in the collinear branching amplitudes in
the case λı̃ = λi, leading to

Mλλλk
i→ı̃k =

√
2gs
√
zFλλλki→ı̃k (z) S−λk(pi, pj)

S−λk(pi, pk)S−λk(pj , pk)
, (6.5)

20These amplitudes coincide with the final-state ones in table 1 of ref. [45] after replacing z ↔ (1 − z),
including an overall factor of

√
z, exchanging λı̃ ↔ λi and, in the case of incoming gluons, accounting for

a further factor of −1.
21In the case of an antenna shower, we use g(η̄Q) to decide which dipole leg acts as the emitter.
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One initial, then one final
Primary splitting Secondary splitting

qI → q̃IgF A(z) = 2(1−z)
1+(1−z)2 gF → qF q̄F B(z) = −2z(1−z)

1−2z(1−z)

gI → g̃IgF A(z) = (1−z)2

(1−z(1−z))2 gF → gF gF B(z) = z2(1−z)2

(1−z(1−z))2

Two initial, same side
Primary splitting Secondary splitting

gI → q̃I q̄F A(z) = −2z(1−z)
1−2z(1−z) qI → g̃IqF B(z) = 2z

1+z2

gI → g̃IgF A(z) = z2(1−z)2

(1−z(1−z))2 gI → g̃IgF B(z) = z2

(1−z(1−z))2

Two initial, opposite side
qI → g̃IqF A(z) = B(z) = 2z

1+z2

gI → g̃IgF A(z) = B(z) = z2

(1−z(1−z))2

Table 2. The coefficients A(z) and B(z) in eq. (6.6) for all possible sequences that involve at
least one initial-state branching and non-zero spin correlations. The separate cases correspond with
a final-state secondary branching (top), a same-side initial-state secondary branching (middle),
and an opposite-side initial-state secondary branching (bottom). These results complement the
corresponding final-state ones given in table 2 of ref. [45]

and analogously for initial-final and final-final dipoles. Note that the identification of
a colour partner is only unambiguous in the large-Nc limit. Therefore, our results for
soft-spin correlations are only correct at LC.22 Collinear spin correlations are not affected
by this. The spinor products are evaluated numerically using the techniques explained
in appendix A of ref. [45], where special care is required in choosing a reference spinor
direction in the soft limit, as is detailed in appendix C of ref. [46]. The algorithm itself
remains unchanged when extended to the initial state, and details are given in section 2.2
of ref. [45].

6.2 Matrix-element tests

We validate our implementation of spin correlations at fixed order by comparing the shower
weight to analytic results as a function of the azimuthal angle ∆ψij between the planes
spanned by emissions i and j. At O(α2

s), the differential cross section can be written as

dσ

d∆ψij
∝ a0

(
1 + a2

a0
cos(2∆ψij)

)
= a0 (1 +A(zi)B(zj) cos(2∆ψij)) , (6.6)

where the two non-zero Fourier coefficients a0 and a2 depend on the type of branching, and
on the momentum fractions associated with the first (zi) and second (zj) splitting. The
ratio a2/a0 is equal to 0 in the absence of spin correlations. The analytic expressions for

22Ref. [46] investigated the size of subleading colour effects in the soft spin case for e+e− collisions and
they were never larger than a few percent.
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Figure 12. Size of the spin correlations a2/a0 at O(α2
s) for collinear splittings. The Feynman

diagrams indicate the sequence of splittings under consideration. We study the azimuthal difference
between the plane defined by the primary and secondary splittings with momentum fraction z1
and z2, respectively. The colour indicates the size of a2/a0 as predicted by the shower. Black
lines indicate constant values for this ratio, and are obtained using the analytic predictions of
table 2. The maximum deviation of the analytic prediction and the shower is given by D

[
a2
a0

]
≡

max
∣∣(a2
a0

)
PS −

(
a2
a0

)
ME

∣∣, with (a2
a0

)
PS the shower prediction and

(
a2
a0

)
ME the analytic prediction for

the matrix element.

Ai(zi) and Bj(zj) are given in table 2. As was the case for the colour tests, we only show
results for the PanGlobal shower with βps = 0, given that the implementation is largely
identical across all showers.

To begin with, we consider purely collinear branchings at O(α2
s), where a first initial-

state branching is followed by either (i) a final-state branching, (ii) another initial-state
branching of the same parton, or (iii) another initial-state branching on the opposite site.
The shower-to-analytics comparison of the a2/a0 ratio as a function of z1 and z2 across
a number of branching sequences is shown in figure 12. The coloured background shows
the shower result, while the black contour lines indicate the analytic expectation given
by table 2. The largest absolute magnitude of the deviation between the shower and the
analytic result, D[a2/a0], is indicated in the lower left corner of each panel.23 No cases
with intermediate quarks are shown, as they have vanishing spin correlations. The top row
shows cases where an initial-state gluon emission is followed by a final-state splitting of that
same gluon. The ratio a2/a0 is negative when the final-state gluon splits to a quark-anti-

23Small deviations are expected because the splittings angles that we use, while small, are not asymptot-
ically so.
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quark pair, and positive when it splits to a gluon-gluon pair. Spin correlations are maximal
when z1 → 0 and z2 = 0.5, i.e. the gluon is soft and the energy is shared equally between
the final-state partons. This can be deduced from table 2. The spin correlations for the
g → gg final-state splittings fall off more steeply as z2 → 0 or 1, and its absolute maximum
size is smaller (1/9) than the g → qq̄ splittings (1). We also observe that spin-correlations
as z1 → 1 decrease more rapidly for gluon backwards splittings than for quarks.

The two leftmost panels in the bottom row of figure 12 show the spin correlations
resulting from two subsequent initial-state branchings on the same side. Splitting configu-
rations with non-vanishing spin correlations occur in both Z and H production processes.
For brevity, we only show the cases where an intermediate gluon is produced, which then
backwards evolves into a quark. This time, spin correlations are maximal when z1 = 0.5,
z2 → 1, but vanish when z1 → 0, 1 and z2 → 0.24

Finally, the two rightmost panels in the bottom row of figure 12 show the spin cor-
relations in opposite-side initial-state branchings. These peak at z1, z2 → 1, i.e. the limit
where the emitted partons are soft, and vanish for either z1 → 0 or z2 → 0. The case
where both gluons backwards evolve into a quark is necessarily symmetric in the z1, z2
plane, whereas a backwards evolution into a gluon again leads to an enhanced reduction in
a2/a0 as z1 → 0. The case where both gluons backwards evolve into a gluon is not shown
in the figure. It behaves similarly to the case where both gluons backwards evolve into a
quark, but with a stronger drop off as z1, z2 → 0.

In figure 13 we repeat the same exercise as in figure 12, but with kinematic configu-
rations in which one or more branchings are soft. In this case, the analytic calculation is
obtained by crossing the relevant matrix elements in the soft limit, given in appendix A of
ref. [45]. On the two leftmost plots, we examine configurations at O(α2

s), where a soft-wide
angle gluon g1 with energy fraction z1 is emitted from the initial-state dipole qq̄. This gluon
then splits collinearly as g1 → gg (first plot) or g1 → qq̄ (second plot) with momentum
fraction zc. We scan over the rapidity y1 of gluon g1 relative to the qq̄ system between
−2 < y1 < 2, and over the energy fraction zc of the emitted parton (g or q). Spin correla-
tions are in this case independent of the rapidity of the soft gluon.25 The spin correlations
are again maximal in absolute size when the energy fraction of the gluon is shared equally
between the two final-state partons.

A more interesting pattern appears at O(α3
s) as displayed in the two rightmost panels

of figure 13. In this case we study the azimuthal correlations between the first and third
emission. The first gluon emission is now fixed at y1 = 1 with an energy fraction z1 = 10−4,
while we scan the rapidity of a second gluon emission between −2 < y2 < 2 with z2 = 10−8,
which then splits collinearly. The two soft gluons are emitted at different azimuthal angles,
∆ψ12 = 1. Because we fix ∆ψ12, the analytical form for the azimuthal correlations needs

24There are two additional cases not shown, namely where the initial-state gluon backwards evolves into a
new initial-state gluon and emits a final-state one, which carry the same sign and show the same behaviour,
except that the spin correlations drop off more sharply as z1 → 0, 1 and z2 → 0.

25A purely collinear Collins-Knowles algorithm would in general not correctly reproduce this pattern [46].
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Figure 13. Size of the spin correlations for sequences that involve both soft and collinear split-
tings, showing a2/a0 atO(α2

s) (two left-hand plots) and O(α3
s) (two right-hand plots). The Feynman

diagrams indicate the sequence of splittings under consideration for all cases. We consider the az-
imuthal difference between the plane defined by the primary soft splitting with momentum fraction
z1 (z2), and the plane defined by the second (third) splitting with momentum fraction zc. The
colour indicates the size of a2/a0 as predicted by the shower. Black lines indicate constant values
for this ratio, and are obtained by using crossing relations in the matrix elements calculated in
ref. [45] for final-state configurations.

to be extended relative to eq. (6.6), and now reads
dσ

d∆ψ13
∝ a0

(
1 + a2

a0
cos(2∆ψ13) + b2

a0
sin(2∆ψ13)

)
. (6.7)

We plot just the ratio a2/a0 and see that it is enhanced when the second gluon is emitted
with a larger rapidity difference with respect to the first gluon, and when its energy fraction
is shared equally between the children (zc = 0.5).

Finally, we also check the spin correlations at O(α3
s) for collinear splittings. We con-

sider two configurations: (i) one backwards splitting followed by two final-state emissions,
and (ii) two backwards splittings on opposite hemispheres followed by one final-state split-
ting. For case (i) we consider both qq̄ → Z and gg → H, whereas for case (ii) we only
consider gg → H, as qq̄ → Z features no spin correlations due to the intermediate quark
line. The azimuthal angle of the first emission is fixed to ψ1 = 0. For the second emission
we fix both the longitudinal momentum fraction z2 = 0.5 and the azimuthal angle ψ2 = π/6
(if emission 2 is secondary from 1, this is the angle between the 1−2 plane and the beam-1
plane; if it is primary, it is the angle between the beam-2 plane and the beam-1 plane).
Further, we fix the angles of these three collinear emissions with respect to the emitter at
∆1 = 10−4, ∆2 = 10−8, and ∆3 = 10−12. Finally, we integrate over the azimuthal angle
ψ3 to obtain the Fourier coefficients in eq. (6.7) and scan over z1 and z3.

In figure 14, we also show the resulting ratio a2/a0 as a function of z1 and z3.26
Overall, we find an excellent agreement between the shower and the analytic expectations.

26The z2-dependence of ∆ψ13 is given as an overall normalisation, which reads

(1− z2)2

(1− z2 + z2
2)2 (6.8)

for a final-state splitting of a gluon into a gluon-gluon pair, relevant for the splittings considered for
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Figure 14. Analogue of figure 12, but for the spin correlations a2/a0 at O(α3
s) for three collinear

splittings. The first splitting carries a longitudinal momentum fraction z1, the third one z3. We
fix the longitudinal momentum fraction of the second emission to z2 = 0.5, and its azimuthal angle
such that ∆ψ12 = π/6.

The shape and magnitude of the spin correlations are strongly dependent on ψ2, and for
reference, in figure 15 we show the spin correlations if we change ψ2 to π/2.

The tests that we have shown in this section provide solid validation of the correct-
ness of the spin-correlation implementation in the PanScales showers, also for initial-state
branching.

7 Conclusions

In this work we have introduced new dipole showers applicable to colour-singlet production
processes in hadronic collisions, extending earlier PanScales work on final-state showers [43].

The hadron-collider PanGlobal shower, section 4.2, shares the characteristic of the
final-state case that the dipole map assigns only longitudinal recoil to the dipole parent
particles. The detailed mechanism to ensure energy-momentum conservation differs, with

configuration (i) (upper row of figure 14), and

(1− z2)2z2
2

(1− z2 + z2
2)2 (6.9)

for the backwards splitting of an initial-state gluon into a final-state gluon and a new initial-state gluon, rel-
evant for configuration (ii) (lower row of figure 14). For z2 = 0.5, the overall normalisation of configurations
(i) and (ii) is 4/9 and 1/9, respectively.
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Figure 15. Same as figure 14 but with ∆ψ12 = π/2.

recoil transverse to the beam being assigned to an explicit “hard system” (in the cases
we have studied, the colour singlet) and energy and longitudinal momentum conservation
ensured by rescaling the incoming momenta. As in the final-state case this shower can be
used with transverse momentum ordering, βps = 0 in eq. (4.3), and more generally for any
0 ≤ βps < 1.

The hadron-collider PanLocal (dipole and antenna) family, section 4.2, as with the
final-state case, assigns all recoil dipole locally within the dipole. For initial-state branch-
ings this effectively results in a change in the direction of the incoming parton(s). The
incoming parton(s) are then realigned with the original axis through a Lorentz transforma-
tion of the whole event, under the constraint that the rapidity of the hard system should
remain unchanged relative to that before the branching. As in the final-state case, the
PanLocal hadron-collider showers are expected to be NLL accurate for 0 < βps < 1, and
the use of the hard-system momentum to provide a fixed reference frame is critical in order
to correctly identify when to assign transverse recoil to one or other end of the dipole.

To provide a point of comparison, we have also formulated a “standard” transverse-
momentum ordered dipole shower, Dipole-kt, section 2.2, which shares similarities with
existing widely used dipole showers.

We have carried out a number of “matrix-element” tests at fixed emission multiplic-
ity, related to the conditions needed to achieve NLL accuracy. The core set of tests for
the new showers has been to demonstrate that they satisfy the PanScales condition that
emission in one region of phase space should not modify earlier emissions in logarithmi-
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cally distant regions of phase space, an essential condition for accuracy beyond leading
logarithms. Subtleties that are new in the initial-state case concern potential interplay be-
tween hard-collinear and soft-collinear emissions, in particular because the momentum of
a post-branching initial-state particle can greatly exceed the pre-branching value. Exam-
ining this region led to specific choices for the kinematic maps and post-branching Lorentz
transformations in the new showers, which while not critical for NLL accuracy (at least
in a regime where ln s/m2

Z remains finite), do help avoid unmotivated interplay between
soft-collinear and hard-collinear branchings. Our tests also served to illustrate the way
in which the PanScales logarithmic accuracy conditions fail to be respected by standard
dipole shower schemes, as they do also for the βps = 1 choice (and βps = 0 for PanLocal)
for current PanScales showers.

In addition to designing new hadron-collider showers, we have also extended the final-
state schemes for subleading colour [44] as well as collinear and soft spin correlations [45, 46],
introducing the new elements needed for initial-state radiation. These developments have
been tested through comparisons to fixed-order matrix elements with up to three emissions.

Our companion work [1] will provide comparisons of the results of our showers to ana-
lytic all-order resummations, demonstrating that NLL accuracy has indeed been achieved
for a wide range of observables. Future work will examine applications to processes beyond
the colour-singlet hadro-production cases addressed here.
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A Spin-averaged splitting functions

The DGLAP splitting functions Pi→jk are given by

Pq→qg(z) = CF
1 + (1− z)2

z
, (A.1a)

Pg→gg(z) = 2CA
[

z

1− z + 1− z
z

+ z(1− z)
]
, (A.1b)

Pg→qq̄(z) = TR
[
z2 + (1− z)2

]
. (A.1c)
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For final-state splitting in eq. (2.3), we employ

PFS
q̃→qg(z) = Pq→qg(z) = CF

1 + (1− z)2

z
, (A.2a)

PFS
g̃→gg(z) = 1

2P
asym
g→gg(z) = CA

2
1 + (1− z)3

z
, (A.2b)

PFS
g̃→qq̄(z) = 1

2P
asym
g→qq̄(z) = TR(1− z)2. (A.2c)

The last two expressions include a factor of 1/2 to compensate for the double counting
due to the fact that a gluon belongs to two dipoles, with a further 1/2 symmetry factor
for identical particles in the final state in the case of Pg̃→gg. One of the factors of 1/2 is
implemented by taking an asymmetric subset of the z ↔ (1−z) symmetric terms. The use
of the asymmetric kernels in eqs. (A.2b) and (A.2c) is possible due to the symmetry in the
exchange of final-state particles. This symmetry does not hold anymore for an initial-state
branching. In that case we use

P IS
q→q̃g(z) = Pq→qg(z) = CF

1 + (1− z)2

z
, (A.3a)

P IS
q→g̃q(z) =

Pq→qg(1− z) = CF
1+z2

1−z if the gluon is the 3̄ end of the dipole,
0 if the gluon is the 3 end of the dipole,

(A.3b)

P IS
q̄→g̃q̄(z) =

0 if the gluon is the, 3̄ end of the dipole,
Pq̄→q̄g(1− z) = CF

1+z2

1−z if the gluon is the, 3 end of the dipole,
(A.3c)

P IS
g→g̃g(z) = 1

2Pg→gg(z) = CA

[
z

1− z + 1− z
z

+ z(1− z)
]
, (A.3d)

P IS
g→q̃q̄(z) = 1

2Pg→qq̄(z) = 1
2TR

[
(1− z)2 + z2

]
. (A.3e)

The choice in eqs. (A.3b) and (A.3c) to split only the 3̄ or the 3 end of the dipole is natural in
terms of how the shower organises colour flows. For possible future extension beyond NLL
accuracy (i.e. beyond LO splitting functions) one should keep in mind, however, that such
a choice may introduce effective NLO splitting terms with a spurious difference between
q → q′ +X and q → q̄′ +X. We leave the study of this question to future work.

B Shower mapping coefficients and scale choices

Here we provide the kinematic mappings associated with an ı̃̃→ ijk dipole splitting. We
denote by i and j the partons that descend from the parent dipole (and maintain their
flavour in the case of gluon emission), while k is the newly emitted parton, whose transverse
component, kµ⊥, will always be given by eq. (2.7).

All of our shower implementations will share the factorisation scale choice

lnµF = lnQ+ 1
1 + βps

ln v

Q
, (B.1)

where βps is taken to be zero for the Dipole-kt shower family. In this work and in our
companion paper [1], we restrict v < Q. The expression to be used for µr in the shower
branching probability, eq. (2.3), will be given separately for each shower.
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B.1 Dipole-kt

The kinematic maps that we use for the Dipole-kt shower follow from the Catani-Seymour
dipole subtraction formalism [57] and, unless otherwise specified, are as used in a number
of dipole showers [28–30, 99]. The mapping coefficients and boosts expressions for each of
the dipole types are as follows.

Initial-Initial: the dipole map is given by

pµi = aip̃
µ
i , (B.2a)

pµj = p̃µj , (B.2b)
pµk = akp̃

µ
i + bkp̃

µ
j − k

µ
⊥ , (B.2c)

and the coefficients read

ak = 1− ζ
xjab

, bk = κ2

1− ζ , ai = 1
xjab

, |k⊥|2 = 2akbkp̃i · p̃j , (B.3)

where ζ = 1− z with z as defined in eq. (2.13), and

ζ = 1
1 + κeη̄dip

, κ2 = v2

s̃ij
, xjab = ζ − κ2

1− ζ . (B.4)

The boost acts on all of the final-state particles except the newly created one (k), and
takes their pre-branching total momentum F̃µ = p̃µi + p̃µj to a new total momentum Fµ =
pµi + pµj − p

µ
k where F̃ 2 = F 2. The boost reads

Λµν(F, F̃ ) = gµν + 2FµF̃ ν

F̃ 2
− 2(F̃ + F )µ(F̃ + F )ν

(F̃ + F )2
. (B.5)

To facilitate more precise numerical evaluation, the boost can be reformulated to be linear
in terms of

Fµdiff = Fµ − F̃µ =
(

ζ

xjab
− 1

)
p̃µi −

κ2

1− ζ p̃
µ
j + kµ⊥, (B.6)

which can be evaluated accurately. We find

Λµν(F, F̃ ) = gµν − 4 Fµ

F 2F 2
sum

(
Fdiff·F F̃ ν + F 2 F νdiff

)
+ 2
F 2
sum

FµdiffF
ν
sum (B.7)

where Fµsum = F̃µ + Fµ.

Initial-Final (local-recoil variant): the map is given by

pµi = aip̃
µ
i , (B.8a)

pµj = aj p̃
µ
i + bj p̃

µ
j + kµ⊥, (B.8b)

pµk = akp̃
µ
i + bkp̃

µ
j − k

µ
⊥ , (B.8c)
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with

ak = 1− ζ − κ2

ζ
, bk = κ2

1− ζ , (B.9a)

ai = 1
ζ
, (B.9b)

aj = κ2

ζ
, bj = 1− bk , (B.9c)

and ζ, κ2 defined as in eq. (B.4).

Initial-Final (global-recoil variant): we have [100, 101]

p̄µi = aip̃
µ
i + bip̃

µ
j + kµ⊥ , (B.10a)

p̄µj = bj p̃
µ
j , (B.10b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.10c)

with

ak = 1− ζ
ζ − uj

, bk = uj
ζ

1− uj
ζ − uj

, (B.11a)

ai = 1− uj
ζ − uj

, bi = uj
ζ

1− ζ
ζ − uj

, (B.11b)

bj = 1− uj
ζ
, (B.11c)

where uj = κ2/(1 − ζ) and ζ, κ2 are defined as in eq. (B.4). As one may observe, this
map leaves the initial-state parton misaligned with the original beam direction. This is
resolved, while ensuring momentum conservation, by performing a boost and rotation on
the initial-state particle that partakes in the map and on all final-state particles, keeping
the other initial-state particle untouched. Denoting pµA ≡ p̃i (the initial-state parton of
the dipole), pµB the other initial-state parton, and pµa ≡ pi, the boost and rotation can be
written as

Bµν = gµν + pµBp
ν
a − pµapνB
pa·pB

+ pµAp
ν
B − p

µ
Bp

ν
A

pA·pB
+ pA·pa

(pA·pB)(pa·pB)p
µ
Bp

µ
B. (B.12)

To achieve a numerically stable version of eq. (B.12) we define

dAB = pA·pB, daB = pa·pB, daA = pa·pA , (B.13)

and decompose pµa as
pµa = daB

dAB
pµA + daA

dAB
pµB + pµt , (B.14)

where pµt is not the transverse momentum with respect to the dipole, but that with respect
to the beams. In this form, the boost reduces to the remarkably simple form

Bµν = gµν + 1
daB

(pµBp
ν
t − p

µ
t p

ν
B)− 1

2
p2
t

d2
aB

pµBp
ν
B . (B.15)

– 45 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
9

Final-Initial: the map is given by

pµi = aip̃
µ
i + bip̃

µ
j + kµ⊥ , (B.16a)

pµj = bj p̃
µ
j , (B.16b)

pµk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.16c)

and the coefficients read

ak = z , bk = (1− z)y , (B.17a)
ai = 1− z , bi = zy , (B.17b)

bj = 1
xija

, (B.17c)

with

z = κeη̄dip , κ2 = v2

s̃2
ij

, (B.18)

xija = κ2

z
, y = 1− xija

xija
. (B.19)

Final-Final: the map is given by

pµi = aip̃
µ
i + bip̃

µ
j + kµ⊥ , (B.20a)

pµj = bj p̃
µ
j , (B.20b)

pµk = akp̃
µ
i + bkp̃

µ
j − k

µ
⊥ , (B.20c)

where

ak = 1− z̃ , bk = yijkz̃ , (B.21a)
ai = z̃ , bi = yijk(1− z̃) , (B.21b)
bj = 1− yijk , (B.21c)

with z and κ2 as in eqs. (B.18) and

z̃ = κ2 − z(1− z)
κ2 − z

, yijk = κ2

z
. (B.22)

For all dipole kinds, the renormalisation scale in eq. (2.3) is taken to be

µr = v . (B.23)

B.2 PanGlobal

The kinematic map is given by eq. (2.12). The rescaling factors for the radiated particles
are linked to the shower variables via eq. (4.6) where we take

ak = αk , bk = βk . (B.24)
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As usual, the magnitude of the transverse momentum is obtained by imposing p2
k = 0. For

convenience, in the mapping that we use below, we make use of a Sudakov decomposition
of the momentum of the (pre-branching) hard system with the light-cone directions given
by p̃a and p̃b, i.e., the incoming partons,

p̃µH = aH p̃
µ
a + bH p̃

µ
b + H̃µ

t . (B.25)

with the coefficients given by

aH = p̃H ·p̃b
p̃a·p̃b

, bH = p̃H ·p̃a
p̃a·p̃b

, H̃µ
t = p̃µH − aH p̃

µ
a − bH p̃

µ
b . (B.26)

A common feature for all dipole types is that the hard system absorbs the part of
the recoil that is transverse to the beam. For a hard system composed of more than one
particle, this is to be achieved through a boost applied to all particles in the hard system.
The boost takes the form Λ(pH , p̃H), cf. eq. (B.5), with p̃µH the pre-branching momentum of
the hard system, and pµH the momentum that the hard system should have after absorbing
the transverse recoil.

Our renormalisation scale choice, common to all dipole kinds, is

µr = κ⊥ ≡ ρveβps|η̄Q| . (B.27)

Initial-Initial: the mapping (and rescaling) takes the form

pµk = akp̃
µ
a + bkp̃

µ
b + kµ⊥ , (B.28a)

pµa = rap̃
µ
a , (B.28b)

pµb = rbp̃
µ
b . (B.28c)

The momentum of the hard system after the rescaling plus boost can be computed (through
momentum conservation), as the momentum of the ‘rest of the event’, i.e.

pµH = rap̃
µ
a + rbp̃

µ
b − p

µ
k = (ra − ak − 1)p̃µa + (rb − bk − 1)p̃µb − k

µ
⊥ + p̃µH . (B.29)

To obtain the right-hand side we have used the map as well as momentum conservation for
the pre-branching event. The coefficients ra and rb are obtained by requiring that pH and
p̃H have the same rapidity and invariant mass. Using the Sudakov decomposition given by
eq. (B.25) we get

0 = (ra − 1− ak)(rb − 1− bk) + aH(rb − 1− bk) + bH(ra − 1− ak)−
2H̃t · k⊥ + k2

⊥
s̃ab

,

(B.30a)
aH
bH

= ra − 1− ak + aH
rb − 1− bk + bH

. (B.30b)

Solving this system of equations leads to

ra = 1 + ak + ωaH , ra = 1 + bk + ωbH , (B.31)

with

ω =

√
1 + 2H̃t · k⊥ + k2

⊥
aHbH s̃ab

− 1 . (B.32)
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Initial-Final: In this case we have

pµk = akp̃
µ
a + bkp̃

µ
j + kµ⊥ , (B.33a)

pµa = rap̃
µ
a , (B.33b)

pµj = (1− bk)p̃µj , (B.33c)
pµb = rbp̃

µ
b , (B.33d)

where a denotes the incoming leg participating in the splitting, b is the other incoming leg,
and j is the final-state colour partner of a. The rescaling factors ra and rb are determined
imposing that the mass and the rapidity of the hard system is preserved

pµH = rap̃
µ
a + rbp̃

µ
b − p

µ
k − p

µ
j −

∑
l 6=j

p̃µl = (ra − 1− ak)p̃µa + (rb − 1)p̃µb − k
µ
⊥ + p̃µH , (B.34)

where the sum runs over all final-state particles except the new emission. The virtuality
and rapidity constraints can then be written as

0 = (ra − 1− ak)(rb − 1) + (aH − cb)(rb − 1) + bH(ra − 1− ak)− (c+ bHcb), (B.35a)
aH
bH

= ra − 1− ak + aH − cb
rb − 1 + bH

, (B.35b)

with

cb = 2p̃b · k⊥
s̃ab

, c = 2H̃t · k⊥ + k2
⊥

s̃ab
. (B.36)

This system admits the following solution (with ω as in eq. (B.32))

ra = 1 + ak + ωaH + 2p̃b · k⊥
s̃ab

, rb = 1 + ωbH . (B.37)

Since we are considering an antenna shower here, there is no need to have a separate
treatment for an FI dipole.

Final-Final: we now have two final-state particles i and j that emit a parton k, for which
the mapping is

pµk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.38a)

pµi = (1− ak)p̃µi , (B.38b)
pµj = (1− bk)p̃µj , (B.38c)
pµa = rap̃

µ
a , (B.38d)

pµb = rbp̃
µ
b . (B.38e)

We therefore have

pµH = rap̃
µ
a + rbp̃

µ
b − p

µ
k − p

µ
j − p

µ
i −

∑
l 6=i,j,k;l

p̃µl = (ra − 1)p̃µa + (rb − 1)p̃µb − k
µ
⊥ + p̃µH . (B.39)
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The virtuality and rapidity constraints can then be written as

0 = (ra − 1)(rb − 1) + (aH − cb)(rb − 1) + (bH − ca)(ra − 1)− (aHca + bHcb + c),

(B.40a)
aH
bH

= ra − 1 + aH − cb
rb − 1 + bH − ca

, (B.40b)

with
ca,b = 2p̃a,b · k⊥

s̃ab
, c = 2H̃t · k⊥ + k2

⊥
s̃ab

(B.41)

which admit the following solution (again with ω as in eq. (B.32))

ra = 1 + ωaH + 2p̃b · k⊥
s̃ab

, rb = 1 + ωbH + 2p̃a · k⊥
s̃ab

. (B.42)

B.3 PanLocal

Here we discuss both the dipole and antenna variants of the PanLocal shower. We start
with the aspects that are common to both, in particular the boost and rotation that are to
be applied to the event after any splitting that assigns transverse momentum to an initial-
state particle, i.e. initial-initial and initial-final dipoles. As discussed in the main text, the
boost and rotation realign the incoming partons with the beam axes. This transformation
contains a longitudinal degree of freedom, which we exploit so as to conserve the rapidity
yH of the hard system H. We use p̃H for the pre-branching momentum of the hard system,
p̄H for the momentum after the emission occurred, and pH is the final value after the boost
has been performed. For colour-singlet production, we have p̄H = p̃H , but we maintain the
distinction in our notation to keep the discussion general (for example as concerns future
extension to situations with coloured particles that are part of the hard system).

The first step to obtain the precise form of the boost is to determine the new momenta
of the incoming partons, which we label with indices a and b. Using pa,b to refer to the
momenta after the boost and rotation, we can write

p̃a,b = x̃a,bPa,b , (B.43a)
pa,b = xa,bPa,b , (B.43b)

where Pa,b ≡ P̃a,b are the incoming hadron momenta. The hadron momenta must remain
unchanged after the combination of kinematic map, boost and rotation. Thus to determine
the boost we need to find the new values xa,b such that the rapidity of the hard system is
unchanged (as defined with respect to the incoming hadron momenta). Before the splitting,
we have

ỹH = 1
2 ln p̃H · Pb

p̃H · Pa
= 1

2 ln p̃H · p̃b
p̃H · p̃a

+ 1
2 ln x̃a

x̃b
, (B.44)

while after the emission

yH ≡
1
2 ln pH · Pb

pH · Pa
= 1

2 ln pH · pb
pH · pa

+ 1
2 ln xa

xb

= 1
2 ln p̄H · p̄b

p̄H · p̄a
+ 1

2 ln xa
xb
,

(B.45)
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where in the last step we used the Lorentz invariance of the dot product. Equating
eq. (B.44) and (B.45) we obtain

x̃a
xa

xb
x̃b

= p̃H · p̃b
p̄H · p̄b

p̄H · p̄a
p̃H · p̃a

. (B.46)

Since the Lorentz transformation will preserve the invariant mass of the final-state system,
we also have

2p̄a · p̄b = 2pa · pb = 2p̃a · p̃b
xaxb
x̃ax̃b

. (B.47)

Solving eqs. (B.46) and (B.47) for the new momentum fractions xa,b yields

xa = x̃a

√
p̄a · p̄b
p̃a · p̃b

p̃H · p̃b
p̄H · p̄b

p̄H · p̄a
p̃H · p̃a

, xb = x̃b

√
p̄a · p̄b
p̃a · p̃b

p̄H · p̄b
p̃H · p̃b

p̃H · p̃a
p̄H · p̄a

. (B.48)

We are now in a position to carry out the boost. It is useful to introduce a notation for
the total hadron-hadron four momentum before and after the boost as

P̄µ = p̄µa
xa

+ p̄µb
xb
, Pµ ≡ P̃µ = P̃µa + P̃µb . (B.49)

Then every particle in the event is boosted as

pµ = Λµν(P, P̄ )p̄ν (B.50)

with Λµν as defined in eq. (B.5). This boost ensures that the new incoming momenta are
back-to-back and have the correct energy, and we then perform a rotation so as to align
them with the z axis.27

In practice, one also has the possibility to perform the boost (and the final rotation)
only at the very end of the parton showering, provided that the values of the incoming
partons energy fractions x are stored at each step of the shower evolution. These values
are used to compute the beams’ momenta in the unboosted frame

P̄µa,b =
p̄µa,b
xa,b

. (B.51)

Since to define η̄ = η̄Q and ρ we use the scalar product with a reference vector Qµ, we
should apply the inverse rotation and the inverse boost to Qµ. For colour-singlet production
Qµ is chosen to be

Qµ = ey
m

S
P̄µa + e−y

m

S
P̄µb , (B.52)

where m and y are the mass and the rapidity of the colour singlet (in the original frame),
while S = (P̄a + P̄b)2 is the squared total centre of mass energy. Thus, in this case we
can simply evaluate eq. (B.52) after we have recomputed the beam momenta according to
eq. (B.51).

The renormalisation scale choice for the PanLocal showers is the same as for the
PanGlobal shower, i.e. eq. (B.27).

27For this last step, we assume that the hadrons collide in their centre-of-mass frame, i.e. that Pµ’s
3-momentum components are all zero.
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B.3.1 PanLocal dipole

Initial-Initial: the map is given by

p̄µi = aip̃
µ
i + bip̃

µ
j + kµ⊥ , (B.53a)

p̄µj = bj p̃
µ
j , (B.53b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.53c)

and the coefficients read

ak = αk , bk = βk(1 + αk)
2

1+βps , (B.54a)

ai = 1 + ak , bi = akbk
ai

, (B.54b)

bj = 1− bk
ai
. (B.54c)

Initial-Final: the map is given by

p̄µi = aip̃
µ
i + bip̃

µ
j + kµ⊥ , (B.55a)

p̄µj = bj p̃
µ
j , (B.55b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.55c)

with

ak = αk , bk = βk(1 + αk)
2

1+βps , (B.56a)

ai = 1 + ak , bi = akbk
ai

, (B.56b)

bj = 1 + bk
ai
. (B.56c)

Final-Initial: the map is given by

pµi = aip̃
µ
i + bip̃

µ
j − k

µ
⊥ , (B.57a)

pµj = bj p̃
µ
j , (B.57b)

pµk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.57c)

and the coefficients read

ak = αk , bk = βk , (B.58a)

ai = 1− ak , bi = akbk
ai

, (B.58b)

bj = 1 + bk
ai
. (B.58c)
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Final-Final: the map is given by

pµi = aip̃
µ
i + bip̃

µ
j − k

µ
⊥ , (B.59a)

pµj = bj p̃
µ
j , (B.59b)

pµk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.59c)

and the coefficients read

ak = αk , bk = βk , (B.60a)

ai = 1− ak , bi = akbk
ai

, (B.60b)

bj = 1− bk
ai
. (B.60c)

B.3.2 PanLocal antenna

Initial-Initial: the map is given by

p̄µi = aip̃
µ
i + bip̃

µ
j + fkµ⊥ , (B.61a)

p̄µj = aj p̃
µ
i + bj p̃

µ
j + (1− f)kµ⊥ , (B.61b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.61c)

and the coefficients read

ak = αk(1 + βk)
2

1+βps , bk = βk(1 + αk)
2

1+βps , (B.62a)

ai = (
√
λ1 +

√
λ2)2 + 4f2akbk

4(1 + bk)
, bi = (

√
λ1 −

√
λ2)2 + 4f2akbk

4(1 + ak)
, (B.62b)

aj = (
√
λ1 −

√
λ2)2 + 4(1− f)2akbk
4(1 + bk)

, bj = (
√
λ1 +

√
λ2)2 + 4(1− f)2akbk
4(1 + ak)

, (B.62c)

with λ1 = 1 + ak + bk and λ2 = λ1 + 4f(1− f)akbk.

Initial-Final: the map is given by

p̄µi = aip̃
µ
i + bip̃

µ
j + fkµ⊥ , (B.63a)

p̄µj = aj p̃
µ
i + bj p̃

µ
j − (1− f)kµ⊥ , (B.63b)

p̄µk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.63c)

with

ak = αk , bk = βk(1 + αk)
2

1+βps , (B.64a)

ai = (
√
λ1 +

√
λ2)2 − 4f2akbk

4(1− bk)
, bi = −(

√
λ1 −

√
λ2)2 + 4f2akbk

4(1 + ak)
, (B.64b)

aj = −(
√
λ1 −

√
λ2)2 + 4(1− f)2akbk
4(1− bk)

, bj = (
√
λ1 +

√
λ2)2 − 4(1− f)2akbk
4(1 + ak)

, (B.64c)

and λ1 = 1 + ak − bk and λ2 = λ1 − 4f(1 − f)akbk. Since we are considering an antenna
shower here, there is no need to have a separate treatment of a “final-initial” dipole.
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Final-Final: the map is given by

pµi = aip̃
µ
i + bip̃

µ
j − fk

µ
⊥ , (B.65a)

pµj = aj p̃
µ
i + bj p̃

µ
j − (1− f)kµ⊥ , (B.65b)

pµk = akp̃
µ
i + bkp̃

µ
j + kµ⊥ , (B.65c)

and the coefficients read

ak = αk , bk = βk , (B.66a)

ai = (
√
λ1 +

√
λ2)2 + 4f2akbk

4(1− bk)
, bi = (

√
λ1 −

√
λ2)2 + 4f2akbk

4(1− ak)
, (B.66b)

aj = (
√
λ1 −

√
λ2)2 + 4(1− f)2akbk
4(1− bk)

, bj = (
√
λ1 +

√
λ2)2 + 4(1− f)2akbk
4(1− ak)

, (B.66c)

with λ1 = 1− ak − bk and λ2 = λ1 + 4f(1− f)akbk.

C Analytics for sub-leading colour matrix element tests

Here, we provide all of the analytic ingredients needed to make the comparisons presented
in section 5. The differential cross section for the emission of one additional soft gluon with
momentum k and energy fraction z off an amplitude dσn can be written as

dσn+1 = dσn
dz
z

dΩ
2π

αs
2π
∑
i,j

Cij(k|ij), (C.1)

where dΩ = d cos θdφ is the element of solid angle for the emitted gluon, Cij the colour
factor, and the eikonal factor (k|ij) is given by

(k|ij) = 1− cos θij
(1− cos θki)(1− cos θkj)

. (C.2)

Starting from eq. (C.1) we now compute the differential matrix element and integrated
rate for two and three emissions.

C.1 qq̄ → Z

Let us begin with the qq̄ → Z case.

Two emissions. One of the two initial configurations is a qq̄g1 system from which we
emit a second soft gluon. The qq̄ → Zg1g2 amplitude is

|Mqq̄g1g2 |2

|Mqq̄g1 |2
= αs

2π

[
CA
2 (g2|g1q) + CA

2 (g2|g1q̄) + (CF −
CA
2 )(g2|qq̄)

]
, (C.3)

The integrated emission rate, that we denote IZg1
FC , is obtained after integrating over the

solid angle
∫

dΩ =
∫

d cos θ dφ, defined with respect to the direction of the emitting line
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i or j. The azimuthal integration results in the well known property of angular ordering,
i.e. ∫ dΩ

2π (k|ij) = 1
2

[∫ cos θcut,ik

cos θij

d cos θik
1− cos θik

+
∫ cos θcut,jk

cos θij

d cos θjk
1− cos θjk

]
(C.4)

= 1
2 [− ln (1− cos θcut,ik)− ln (1− cos θcut,jk) + 2 ln (1− cos θij)] ,

with θcut a collinear regulator that can be different for each of the terms. In what follows,
we use θcut (θcut,s) to denote the regulator for primary (secondary) emissions.

IZg1
FC ≡

∫ dΩ
2π
|Mqq̄g1g2 |2

|Mqq̄g1 |2

= αs
2π

{
CA
2 [ln (1− cos θ1q) + ln(1− cos θ1q̄)− ln(1− cos θqq̄)− ln(1− cos θcut,s)]

+ CF [ln(1− cos θqq̄)− ln(1− cos θcut)]
}
, (C.5)

Since the initial-state quarks are back-to-back we can replace cos θqq̄ = −1 and rewrite the
angles in terms of rapidities using

η = ±| ln tan θ/2| → 1− cos θ = 2
1 + e2η . (C.6)

We obtain

IZg1
FC = αs

2π

{
CA
2
[
ln(1 + e2ηcut,s)− ln(1 + e2∆η1q)− ln(1 + e2∆η1q̄)

]
+ CF

[
ln(1 + e2ηcut)

]}
.

(C.7)
To arrive at our final result, we first use that ηcut and ηcut,s correspond to small angles,
such that ln(1 + e2ηcut(,s)) ' 2ηcut(,s). Secondly, we write ∆η1q = η1 and ∆η1q̄ = −η1
(which holds as long as we do only one emission, and is not sensitive to the rapidity of the
colour-singlet system). Consequently,

ln(1 + e2∆η1q) + ln(1 + e2∆η1q̄) = 2η1 + 2 ln(1 + e−2η1) , (C.8a)
ln(1 + e2∆η1q)− ln(1 + e2∆η1q̄) = 2η1 . (C.8b)

Inserting this result into eq. (C.7), we obtain the final expression:

IZg1
FC = αs

2π
[
CA

(
ηcut,f − η1 − ln(1 + e−2η1)

)
+ 2CF ηcut

]
. (C.9)

Starting from a qq̄ → Z configuration, we may also backward-evolve the quark into an
initial-state gluon after emitting an anti-quark. We obtain

|Mgq̄q̄1g2 |2

|Mgq̄q̄1 |2
= αs

2π

[
CA
2 (g2|q̄g) + CA

2 (g2|q̄1g) + (CF −
CA
2 )(g2|q̄q̄1)

]
, (C.10)

and

IZq1FC = αs
2π

[
CF

(
ηcut + ηcut,f − ln

(
1 + e2∆ηq̄q̄1

))
+CA

2
(
ηcut + ln

(
1 + e2∆ηq̄q̄1

)
− ln

(
1 + e2∆ηgq̄1

))]
, (C.11a)

= αs
2π
[
CF

(
ηcut + ηcut,f − ln

(
1 + e−2η1

))
+ CA (ηcut − η1)

]
. (C.11b)
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Three emissions. Following the same steps as in the previous calculation, we can now
consider the emission of a third parton either from a Zg1g2, Zg1q2, Zq1g2 or a Zq1q2
system. For simplicity, we take the soft and collinear limit. The integrated emissions rates
are then given by

IZg1g2
FC = 2αs

π
[2CF ηcut + 2CAηcut,s] , (C.12a)

IZg1q2
FC = 2αs

π
[CF (ηcut − η2 + ηcut,s) + CA (ηcut + ηcut,s + η2)] , (C.12b)

IZq1g2
FC = 2αs

π
[CF (ηcut + η1 + ηcut,s) + CA (ηcut + ηcut,s − η1)] , (C.12c)

IZq1q2FC = 2αs
π

[CF (2ηcut + η1 − η2) + CA (2ηcut,s − η1 + η2)] . (C.12d)

C.2 gg → H

Two emissions. For the gg → H cases we first consider the backwards splitting of a
gluon into a gluon. Denoting the initial-state gluons with ga and gb we obtain

|Mgagbg1g2 |2

|Mgagbg1 |2
= αs

2π

[
CA
2 (g2|g1ga) + CA

2 (g2|g1gb) + CA
2 (g2|gagb)

]
, (C.13)

and

IHg1
FC = αs

2πCA
[
2ηcut + ηcut,s − η1 − ln

(
1 + e−2η1

)]
. (C.14)

The other possibility is a gluon backwards splitting to a quark, for which we obtain

|Mgqq1g2 |2

|Mgqq1 |2
= αs

2π

[
CA
2 (g2|gq) + CA

2 (g2|gq1) +
(
CF −

CA
2

)
(g2|qq1)

]
, (C.15)

and

IHq1FC = αs
2π
[
CF

(
ηcut + ηcut,s − 2η1 − ln

(
1 + e−2η1

))
+ CA (ηcut + η1)

]
. (C.16)

Three emissions. Finally, we consider three emissions starting from a gg → H process.
The integrated colour rates read

IHg1g2
FC = 2αs

π
[2CA (ηcut + ηcut,s)] , (C.17a)

IHg1q2
FC = 2αs

π
[CF (ηcut + η2 + ηcut,s) + CA (ηcut + ηcut,s − η2)] , (C.17b)

IHq1g2
FC = 2αs

π
[CF (ηcut − η1 + ηcut,s) + CA (ηcut + ηcut,s + η1)] , (C.17c)

IHq1q2FC = 2αs
π

[CF (2ηcut + 2ηcut,s − η1 + η2) + CA (η1 − η2)] . (C.17d)

D Deriving the branching amplitudes for spin correlations

Here we collect the branching amplitudes in terms for spinor products for initial-state
splittings. The final-state expressions can be found in appendix A of ref. [45]. We first
define the spinor product for two light-like momenta pa and pb

Sλ(pa, pb) = ūλ(pa)u−λ(pb) , (D.1)
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where λ = ±1 is the Dirac spinor helicity. This spinor product satisfies Sλ(pa, pb) =
−Sλ(pb, pa). The polarisation vector of a gluon with momentum p can be written in terms
of spinors by using a light-like reference vector r as

ε∗λ(p) = 1√
2

1
S−λ(r, p) ūλ(p)γµuλ(r), (D.2)

which obeys ε∗λ(p) = −ε−λ(p). To perform the necessary calculations, the Chisholm identity
is useful

/ε∗λ(p) =
√

2
S−λ(r, p) [uλ(r)ūλ(p) + u−λ(p)ū−λ(r)] . (D.3)

We consider a collinear initial-state splitting with pi → p̃i+pk, such that p̃i = (1−z)pi and
pk = zpi (i.e. we use the same convention as in eq. (2.2)). In this limit, any dependence
of the branching amplitudes on the gauge vector r vanishes. The result can be written in
terms of the single spinor product Sλ(pi, pk) by using the identities

Sλ(pi, p̃i) = −
√

z

1− zSλ(pi, pk), Sλ(pk, p̃i) = −
√

1
1− zSλ(pi, pk) , (D.4)

which are valid in the collinear limit. We now compute the relevant collinear branching
amplitudes, stripped from any overall factors as they are not relevant in the spin correlation
algorithm. The results are summarised in table 1 in section 6.1.

qI → q̃IgF . The branching amplitude is

Mλı̃ λi λk
qI(pi)→q̃I(p̃i)gF (pk) = ūλı̃(p̃i)/ε∗λkuλi(pi) (D.5)

=
√

2
S−λk(r, pk)

ūλı̃(p̃i)
[
uλk(r)ūλk(pk) + u−λk(pk)ū−λk(r)

]
uλi(pi).

Recall that the order of the spin indices in the superscript differs from the order of the
momenta in the subscript. The amplitude vanishes for λı̃ = −λi, so we set λ = λı̃ = λi.
We find

Mλλλ
qI(pi)→q̃I(p̃i)gF (pk) =

√
2√

z(1− z)
Sλ(pi, pk) , (D.6a)

Mλλ−λ
qI(pi)→q̃I(p̃i)gF (pk) =

√
2
√

1− z
z

S−λ(pi, pk). (D.6b)

gI → g̃IgF . The branching amplitude reads

Mλı̃λi,λk
gI(pi)→g̃I(p̃i)gF (pk) = + ε∗−λi(pi) · ε

∗
λk

(pk) pk · ε∗λı̃(p̃i)− ε
∗
−λi(pi) · ε

∗
λı̃(p̃i) p̃i · ε

∗
λk

(pk)

− ε∗λı̃(p̃i) · ε
∗
λk

(pk) pk · ε∗−λi(pi) . (D.7)

We take all gluons to have the same gauge vector r, in which case we find

ε∗λ(pa) · ε∗λ(pb) = 0 , (D.8a)
ε∗λ(pa) · ε∗−λ(pb) = 1 , (D.8b)

ε∗λ(pa) · pb = 1√
2
S−λ(pb, r)
S−λ(r, pa)

Sλ(pa, pb) . (D.8c)
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We find that the only non-zero amplitudes are

Mλλλ
gI(pi)→g̃I(p̃i)gF (pk) = −

√
2√

z(1− z)Sλ(pi, pk) , (D.9a)

Mλλ−λ
gI(pi)→g̃I(p̃i)gF (pk) = −

√
21− z√

z
S−λ(pi, pk) , (D.9b)

Mλ−λ−λ
gI(pi)→g̃I(p̃i)gF (pk) = −

√
2 z

3/2

1− zSλ(pi, pk) . (D.9c)

qI → g̃IqF . The branching amplitude is

Mλı̃λiλk
qI(pi)→g̃I(p̃i)qF (pk) = ūλk(pk)/ε∗λı̃uλi(pi) (D.10)

=
√

2
S−λı̃(r, p̃i)

ūλk(pk)
[
uλı̃(r)ūλı̃(p̃i) + u−λı̃(p̃i)ū−λı̃(r)

]
uλi(pi).

Note that the polarisation vector is complex conjugated, since the gluon is in the final state
in terms of the 1 → 2 splitting. The amplitude vanishes for λk = −λi. Setting to λı̃ = λ,
we find the non-vanishing contributions

Mλλλ
qI(pi)→g̃I(p̃i)qF (pk) = −

√
2

1− zSλ(pi, pk) , (D.11a)

Mλ−λ−λ
qI(pi)→g̃I(p̃i)qF (pk) = −

√
2 z

1− zSλ(pi, pk) . (D.11b)

gI → q̃I q̄F . The branching amplitude reads

Mλı̃λiλk
gI(pi)→q̃I(p̃i)q̄F (pk) = ūλı̃(p̃i)/ελiu−λk(pk) (D.12)

= −ūλı̃(p̃i)/ε∗−λiu−λk(pk)

= −
√

2
Sλi(r, pi)

ūλı̃(p̃i)
[
u−λi(r)ū−λi(pi) + uλi(pi)ūλi(r)

]
u−λk(pk).

Note the −λk, because the final state is an antiquark, and the absence of a complex
conjugate on the polarisation, because it is now truly in the initial state of the splitting.
The amplitude vanishes for λı̃ = λk. We set λ = λı̃ = −λk and find the following non-
vanishing amplitudes

Mλλ−λ
gI(pi)→q̃I(p̃i)q̄F (pk) =

√
2
√

1− zS−λ(pi, pk), (D.13a)

Mλ−λ−λ
gI(pi)→q̃I(p̃i)q̄F (pk) = −

√
2 z√

1− z
Sλ(pi, pk) . (D.13b)
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