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1 Introduction

It is widely believed that the study of quantum aspects of black holes sheds light on a
consistent theory of quantum gravity. Recently, there has been a significant breakthrough
toward resolving the black hole information paradox [1, 2], where double holography and
island play an essential role. See [3–36] for some recent works. Double holography is closely
related to brane world theory [37–39] and AdS/BCFT [40–46]. Recently, a novel doubly
holographic model called wedge holography has been proposed [47]. Generalizing wedge
holography to codim-m defects, [48] proposes the so-called cone holography. Remarkably,
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there is a massless gravitational mode on the brane in wedge/cone holography, which is
quite different from the brane world theory and AdS/BCFT. Besides, the effective theory
on the brane is ghost-free higher derivative gravity and behaves like Einstein gravity in
many aspects [49]. See also [50–58] for some recent works on wedge/cone holography and
AdS/BCFT.

Previous studies of the island and double holography mainly focus on codimension-one
(codim-1) branes.1 In this paper, we investigate the island on codimension-two (codim-2)
branes in AdS/dCFT [64, 65]. The codim-2 brane is different from the codim-1 brane
in many aspects. First, as a minimal surface, the codim-2 brane is always perpendicular
to the AdS boundary, while this is not the case for codim-1 brane. Second, the codim-2
brane is closely related to conical singularity, which has critical applications in holographic
entanglement entropy [66] and holographic Rényi entropy [67]. Third, the tension of codim-2
brane has to be a constant in Einstein gravity, while the tension of codim-1 brane can be
a function. To allow more general tension and matter fields on codim-2 brane, one can
consider Gauss-Bonnet gravity [68]. Fourth, there is no well-defined thin-brane limit in
Einstein gravity for codimensions higher than two [68]. Thus we focus on codim-2 branes
in this paper and leave the study of higher codimensional branes in future work.

Since codim-2 branes are very different from codim-1 branes, it is interesting to explore
the island mechanism to see if there are new features on codim-2 branes. Recent work finds
that the localization of massless gravity is impossible for codim-2 branes with at least one
non-compact extra dimension [69]. This seems to rule out the possibility of studying the
black hole information paradox and island on codim-2 branes. One of the motivations of
this paper is to show this is not the case. In fact, similar to the codim-1 brane,2 we find
that there is no massless gravity on the codim-2 brane. Instead, the gravity is massive and
can indeed be located on the codim-2 brane.

Let us summarize our main results below. In this paper, we investigate the mass
spectrum of gravitons and island on the codim-2 brane in AdS/dCFT. We find that the
mass spectrum is positive and there is no massless mode, which is similar to the case of
AdS/BCFT. Interestingly, the mass spectrum becomes continuous in the large tension
limit, which is different from AdS/BCFT. Furthermore, we prove that the first massive
gravitational mode is located on the codim-2 brane; the larger the tension, the better the
localization. It is similar to the case of AdS/BCFT and builds a solid physical foundation for
studying the island on codim-2 branes. Finally, we carefully investigate eternal hyperbolic
black holes and AdS black holes on the codim-2 brane and find that the Page curves of these
black holes can be recovered due to the island ending on the codim-2 brane. Remarkably,
the extremal surface passing the horizon cannot be defined after some finite time in the
no-island phase. However, since this unusual situation happens only after Page time, it
does not affect the time evolution of entanglement entropy.

The paper is organized as follows. In section 2, we review AdS/dCFT and double
holography with codim-2 defects. Section 3 discusses the mass spectrum of gravitons on

1See [59–63] for some discussions of codimension-two branes in the framework of the brane world theory.
2This paper focuses on the Karch-Randall brane, where the induced geometry on the brane is an

AdS space.
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Figure 1. Geometry of AdS/dCFT. N is the AdSd+1 space in the bulk, M = ∂N is the AdS
boundary, E (purple line) is the codim-2 brane in the bulk, D = ∂E (blue point) is the codim-2
defect on the AdS boundary. AdS/dCFT conjectures that the gravity coupled with a brane E in the
bulk N is dual to the CFT coupled with a defect D on the AdS boundary M .

the codim-2 brane and verifies that the massive gravity can be located on the brane. In
section 4, we study a toy model in AdS4/dCFT3 and find that the Page curve of the eternal
black hole can be recovered due to the island ending on the codim-2 brane. Compared with
the cases in higher dimensions, this toy model can obtain more analytical results. In this
toy model, we clearly show why the extremal surface passing through the horizon cannot be
defined after some finite time in the no-island phase and why this does not affect the Page
curve. In section 5, we generalize the discussions to AdS/dCFT in higher dimensions and
find that the qualitative behavior of the Page curve is the same as that of the toy model.
Finally, we conclude with some open problems in section 6.

2 Review of AdS/dCFT

In this section, we give a brief review of AdS/dCFT with codim-2 defects. See figure 1 for
the geometry, where N is the AdSd+1 space in the bulk, M = ∂N is the AdS boundary,
E (purple line) is the codim-2 brane in the bulk and D = ∂E (blue point) is the codim-2
defect on the AdS boundary. AdS/dCFT conjectures that the gravity coupled with a brane
E in bulk N is dual to the CFT coupled with a defect D on the AdS boundary M . In the
framework of brane world or double holography, our world with dynamical gravity (black
hole) is defined on the brane E, and the CFT without gravity (bath) lives on the AdS
boundary M .

The action of AdS/dCFT is given by

I = 1
16πGN

∫
N
dXd+1

√
|G|(R− 2Λ)− TE

∫
E
dyd−1

√
|h|, (2.1)
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where GN is Newton’s constant, R is the Ricci scalar, −2Λ = d(d− 1) is the cosmological
constant (we have set AdS radius L = 1), TE is the tension of codim-2 brane E, XA =
(x1, x2, yi) and yi are coordinates in bulk N and on the brane E, respectively. Similarly,
GAB and hij are metrics on N and E, respectively. Taking variations of the action (2.1),
we get equations of motion (EOM)

RAB −
R− 2Λ

2 GAB = −8πGNTE
√
|h|√
|G|

hiAh
j
Bhij δ

(2)(x1, x2), (2.2)

where hiA = ∂yi/∂xA is the projection operator and (x1, x2) denote the directions normal
to the brane E.

Let us take the tensionless brane as an example to illustrate the geometry of AdS/dCFT.
The bulk AdS metric is given by

ds2 = dr2 + sinh2(r)dθ2 + cosh2(r)dz
2 − dt2 +

∑d−3
a=1 dy

2
a

z2 , (2.3)

where we have set the AdS radius L = 1, r denotes the proper distance to the brane, r = 0
and r =∞ denotes the locations of brane E and the AdS boundary M , respectively. The
codim-2 defect D is located at z = 0. There is no conical singularity on the defect D for
the tensionless brane. This is natural since the tensionless brane has no back-reaction to
the AdS space. Let us explain more on this point. The bulk spacetime should be smooth in
order to satisfy Einstein equations. This means that there is no conical singularity near
the brane E located at r = 0. From (2.3) with r ∼ 0, we determine the period of θ to be
2π. On the other hand, the induced metric on the AdS boundary r → ∞ is conformally
equivalent to

ds2
M ∼ z2dθ2 + dz2 − dt2 +

d−3∑
a=1

dy2
a. (2.4)

Clearly, the induced metric has no conical singularity for θ with period 2π.
Let us go on to discuss the brane with non-zero tension. The corresponding metric is

given by [48]

ds2 = dr2 + f(r)dθ2 + g(r)dz
2 − dt2 +

∑d−3
a=1 dy

2
a

z2 , (2.5)

where f(r) and g(r) obey EOMs (2.18), (2.19) and the boundary conditions (BCs)

lim
r→0

f(r) = r2

q2 , lim
r→0

g(r) is finite, (2.6)

lim
r→∞

f(r) = lim
r→∞

g(r)→∞. (2.7)

Here q ≥ 1 is a positive constant. In general, (2.5) is no longer an AdS space due to the
back-reaction of the brane. And this leads to a conical singularity generally. Near the brane
E, we have

lim
r→0

ds2 = dr2 + r2

q2dθ
2 + . . . (2.8)
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Regularity at r = 0 fixes the angle period to be

θ ' θ + 2πq. (2.9)

From (2.5)(2.7), we notice that the induced metric on the AdS boundary is still conformally
equivalent to (2.4). As a result, there is a conical singularity on the defect D with the angle
period (2.9) unless q = 1. Recall that the brane tension is given by

8πGNTE = 2π(1− 1
q

). (2.10)

Thus a brane with non-zero tension causes a conical singularity on the defect.
Solving Einstein equations together with BCs (2.6), (2.7), we obtain for d = 4

f (r) =
(
1− 2r̄2

h

)2 sinh2 (2r)(
4r̄2
h − 2

)
cosh (2r) + 2

, (2.11)

g(r) = 1
2
((

2r̄2
h − 1

)
cosh(2r) + 1

)
, (2.12)

where r̄h is a constant will be defined below. As for general d, there is no analytical solutions
to f(r) and g(r) for the brane with non-zero tension. Performing the radial coordinate
transformation

dr = dr̄√
F (r̄)

, (2.13)

we get an analytical bulk metric in general dimensions

ds2 = dr̄2

F (r̄) + F (r̄)dθ2 + r̄2dz
2 − dt2 +

∑d−3
a=1 dy

2
a

z2 , (2.14)

where
F (r̄) = r̄2 − 1− r̄d−2

h

(
r̄2
h − 1

)
r̄d−2 , (2.15)

with
r̄h = 1 +

√
d2q2 − 2dq2 + 1

dq
. (2.16)

Note that the brane E is located at r̄ = r̄h.
Comparing (2.5) with (2.14), we read off

f(r) = F (r̄), g(r) = r̄2, (2.17)

which together with (2.15) yields

f(r) = g(r)− 1− r̄d−2
h (r̄2

h − 1)
g(r)(d−2)/2 . (2.18)

The θθ component of Einstein equations gives

− 4g(r)
(
d+ g′′(r)− 2

)
− (d− 4)g′(r)2 + 4dg(r)2 = 0. (2.19)

Now we obtain the EOMs for f(r) and g(r).
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To end this section, let us make some comments. First, the codim-2 defect D is related
to the conical singularity, which is different from the codim-1 defect, such as the interface
and boundary. Second, AdS/dCFT with a codim-2 defect is closely related to holographic
Rényi entropy. Third, the bulk spacetime (2.5), (2.14) take the form C2 ×AdSd−1, where
C2 denotes a two-dimensional cone. The AdSd−1 subspace of (2.5), (2.14) can be replaced
by general negatively curved Einstein manifolds such as hyperbolic black holes and AdS
black holes [48]. For example, the bulk metric (2.5) can be generalized to

ds2 = dr2 + f(r)dθ2 + g(r)ds2
BH, (2.20)

or equivalently

ds2 = dr̄2

F (r̄) + F (r̄)dθ2 + r̄2ds2
BH, (2.21)

with

ds2
BH =


1
z2

(
dz2

1−z2 −
(
1− z2) dt2 + dH2

d−3

)
, hyperbolic black hole,

1
z2

(
dz2

1−zd−2 −
(
1− zd−2

)
dt2 +

∑d−3
a=1 dy

2
a

)
, AdS black hole,

(2.22)

where f(r), g(r) obeys EOMs (2.18), (2.19), F (r̄) is given by (2.15), dH2
d−3 denotes the line

element on a (d− 3)-dimensional hyperbolic plane with unit curvature and the black hole
horizon is at z = 1. Fourth, (2.20), (2.21) are the typical metrics we used in the study of
Page curve, where the black hole is located on the codim-2 brane and the bath is on the
AdS boundary.

3 Massive gravity on codim-2 brane

In this section, we analyze the gravitons’ mass spectrum on the codim-2 brane in AdS/dCFT.
Similar to the case of AdS/BCFT, we find that the mass spectrum is positive, and there is
no massless gravity on the brane. In the large tension limit, the first massive gravitational
mode is almost massless and is well-located on the codim-2 brane. Thus there are solid
physical foundations for studying the black hole evolution and island on codim-2 branes.

3.1 Mass spectrum

We take the following ansatz of the perturbation metric

ds2 = dr2 + f(r)dθ2 + g(r)
(
h

(0)
ij (y) + ε H(r)h(1)

ij (y)
)
dyidyj , (3.1)

where h(0)
ij is the AdS metric on the brane located at r = 0 and ε denotes the order of

perturbation. We are interested in the gravitational modes, thus we focus on the transverse
and traceless gauge

Dih
(1)
ij = 0, h(0)ijh

(1)
ij = 0, (3.2)

– 6 –
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where Di is the covariant derivative with respect to h(0)
ij . Substituting (3.1), (3.2) into

Einstein equations and separating variables, we obtain(
DiD

i + 2−m2
)
h

(1)
ij (y) = 0, (3.3)

2H ′′(r) +H ′(r)
((d− 1)g′(r)

g(r) + f ′(r)
f(r)

)
+ 2m2

g(r)H(r) = 0, (3.4)

where m denotes the mass of gravitons on the brane, which will be determined later. We
impose the natural boundary condition on the codim-2 brane

H(0) is finite, (3.5)

and the standard Dirichlet boundary condition (DBC) on the AdS boundary

DBC : H(∞) = 0. (3.6)

Clearly, (3.3) shows that there are massive gravitons on the brane. They have a natural
physical origin, which is just the Kaluza-Klein modes. From EOM (3.4) and BCs (3.5), (3.6),
one can determine the mass spectrum.

We normalize H(r) by the orthogonal condition∫ ∞
0

drf(r)
1
2 g(r)

d−3
2 Hm(r)Hm′(r) =

∫ ∞
r̄h

dr̄r̄d−3Hm(r̄)Hm′(r̄) = δm,m′ , (3.7)

where m,m′ denote the masses of gravitons. The normalizable condition (3.7) is necessary
for the localization of gravity on the brane since it implies that the wave function H(r) falls
off quickly enough when it goes far from the brane, i.e., r →∞.

3.1.1 Tensionless case

Let us first study the tensionless case with f(r) = sinh2(r) and g(r) = cosh2(r). In this
case, the EOM (3.4) becomes

H ′′(r) + tanh(r)
(
d+ csch2(r)

)
H ′(r) +m2H(r)sech2(r) = 0, (3.8)

which can be solved as [48]

H(r) = c1 2F1
(
a1, a2; 1; tanh2(r)

)
+ c2G

2,0
2,2

(
tanh2(r)| a1 + d

2 , a2 + d
2

0, 0

)
, (3.9)

where 2F1 is the hypergeometric function, G2,0
2,2 is the Meijer G function, c1 and c2 are

integral constants and ai are given by

a1 = 1
4

(
2− d−

√
(d− 2)2 + 4m2

)
, (3.10)

a2 = 1
4

(
2− d+

√
(d− 2)2 + 4m2

)
. (3.11)

Near the brane E (r = 0), (3.9) behaves as

H(r) ∼ c2 ln r +O
(
r0
)
. (3.12)
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From the natural BC (3.5) on brane E, we get

c2 = 0. (3.13)

Imposing DBC (3.6) on AdS boundary, we get

H(∞) = c1 2F1 (a1, a2; 1; 1)

=
c1Γ

(
d
2

)
Γ
(
d+2

4 −
1
4
√

(d− 2)2 + 4m2
)

Γ
(
d+2

4 + 1
4
√

(d− 2)2 + 4m2
) = 0. (3.14)

From the above equation, we obtain the mass spectrum of gravitons

m2 = 2k(2k + d− 2), for zero brane tension, (3.15)

where k = 1, 2, . . . are positive integers. Note that the massless mode m2 = 0 is not a
solution to (3.14). Thus the massless mode is ruled out by DBC (3.6) on the AdS boundary.
It should be mentioned that the massless mode with H(r) = c1 is a solution to the Neumann
boundary condition (NBC)

NBC : H ′(∞) = 0. (3.16)

However, this solution is non-normalizable∫ ∞
0

dr sinh(r) coshd−3(r)H2
0 (r) =

∫ ∞
0

dr sinh(r) coshd−3(r)c2
1 →∞. (3.17)

Thus there is no way to have a massless mode located on the brane in AdS/dCFT, which is
similar to AdS/BCFT.

3.1.2 Large tension limit

Let us go on to study the large tension limit q →∞ (2.10). For simplicity, we focus on the
case d = 4, where the analytic solutions to f(r) and g(r) are known. See (2.11), (2.12). We
comment on the case of general dimensions at the end of this subsection.

Substituting (2.11), (2.12) into (3.4) with d = 4, we get EOM

2H ′′(r)
((

2r̄2
h−1

)
cosh(2r)+1

)
+4csch(2r)H ′(r)

((
2r̄2

h−1
)
cosh(4r)+cosh(2r)

)
+4m2H(r) = 0.

(3.18)
From (2.16), we have r̄2

h = 1/2 for d = 4 and q →∞. Then (3.18) becomes

H ′′(r) + 2 coth(2r)H ′(r) + 2m2H(r) = 0, (3.19)

in the large tension limit q →∞. Solving the above equation, we get

H(r) = c1Pλ (cosh(2r)) + c2Qλ (cosh(2r)) , (3.20)

where Pλ, Qλ denote the Legendre function with

λ = 1
2
√

1− 2m2 − 1
2 . (3.21)
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Imposing the natural BC (3.5) on the brane E (r = 0), we derive c2 = 0. Then H(r) becomes

H(r) = c1Pλ (cosh(2r)) . (3.22)

Remarkably, (3.22) automatically obeys the DBC (3.6) on AdS boundary for any positive
m2. This means that the mass spectrum is continuous in the large tension limit

m2 > 0, is continuous for large tension with q →∞, (3.23)

which is quite different from the case of AdS/BCFT with a codim-1 brane. Note that
the massless mode with H(r) = c1 does not satisfy the DBC (3.6) on the AdS boundary.
Note also that, although the massless mode with H(r) = c1 obeys NBC (3.16), it is
non-normalizable ∫ ∞

0
f(r)

1
2 g(r)

d−3
2 H0(r)2dr =

∫ ∞
r̄h

c2
1r̄
d−3dr̄ →∞, (3.24)

and thus is not allowed. Thus, the lightest mass approaches zero but cannot be zero in the
large tension limit.

In the above discussions, we focus on d = 4. Let us comment on the case in general
dimensions. Although the exact expressions of f(r) and g(r) are unknown for d 6= 4, in the
large tension limit q →∞, we have

f(r) = g′(r)→ 0, g(r)→ d− 2
d

,
f ′(r)
f(r) → 2

√
d coth

(√
d r
)
. (3.25)

Substituting the above limits into (3.4), we get a well-defined equation

H ′′(r) +
√
d coth(

√
d r)H ′(r) + dm2

d− 2H(r) = 0. (3.26)

Solving (3.26) together with BCs (3.5), (3.6), we obtain

H(r) = c1P
1
2

(√
1− 4m2

d−2−1
) (cosh

(√
dr
))
, (3.27)

with the same mass spectrum (3.23) as the case of d = 4.
To summarize, the mass spectrum on the codim-2 brane is continuous and positive in

the large tension limit in general dimensions. The massless mode is forbidden by either the
DBC (3.6) or the normalizable condition (3.7).

3.1.3 General tension

Let us go on to discuss the mass spectrum for general tensions. Since it is difficult to find
analytical solutions, we focus on numeral calculations in this subsection. We first work in
the coordinate r̄ (2.13), where the exact bulk metric (2.14) is known in general dimensions.
In coordinate r̄, the EOM (3.4) becomes

H ′′ (r̄) +
(
d− 1
r̄

+ F ′ (r̄)
F (r̄)

)
H ′ (r̄) + m2

r̄2F (r̄)H (r̄) = 0, (3.28)
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q 1 2 3 4 5 6 7 8 9 10
m2 for d = 4 8 4.44 3.40 2.89 2.58 2.37 2.22 2.10 2.00 1.92
m2 for d = 5 10 5.94 4.68 4.03 3.63 3.36 3.15 2.99 2.87 2.76

Table 1. Mass spectrum for general tension labeled by q.

n 1 2 3 4 5 6 7 8 9 10
m2
n for q = 1 8 24 48 80 120 168 224 288 360 440

m2
n for q = 5 2.58 7.56 15.05 25.04 37.53 52.53 70.02 90.01 112.50 137.48

m2
n for q = 10 1.92 5.47 10.83 17.99 26.94 37.67 50.20 64.52 80.63 98.53

Table 2. Mass spectrum of general gravitational modes labeled by n for d = 4.

where F (r̄) is given by (2.15), r̄ ≥ r̄h and r̄ = r̄h denotes the location of the brane. We
impose the natural BC on the brane, which means that H(r̄h) is finite,

H(r̄) = 1 +
∑
i=1

ai(r̄ − r̄h)i, (3.29)

where ai are some constants to be determined. Substituting (3.29) into (3.28), we solve

a1 = −m2

r̄h
(
dr̄2
h − d+ 2

) , (3.30)

a2 = m2 (4dr̄2
h − 2d+m2 + 4

)
4r̄2
h

(
d
(
r̄2
h − 1

)
+ 2

) 2 , (3.31)

. . .

where r̄h (2.16) depends on the brane tension (2.10) which can be labelled by q. For any
given m2, now we can numerically solve (3.28) with the BC

H(ε) = 1 + a1ε+ a2ε
2, H ′(ε) = a1 + 2a2ε, (3.32)

where ε is a cut-off near the brane. Unless we choose the mass suitably, in general, the
numerical solution does not obey the DBC on the AdS boundary

H(r̄c) = 0, (3.33)

where r̄c is an UV cut-off. Naturally, we can use the shooting method to determine the
mass spectrum: we adjust the input m2 so that the solution derived from (3.28) and (3.32)
satisfies the DBC (3.33).

Without loss of generality, we choose ε = 0.0001 and r̄c = 1000. By applying the
shooting method, we derive the mass spectrum for different brane tension labeled by q.
See table 1 for the mass of the first mode, which decreases with the brane tension. See
also table 2 and table 3 for the mass spectrum of the first ten modes, where the mass also
decreases with the tension.

Let us go on to discuss the numerical calculation in coordinate r, which provides a
double-check of our results. Note that the above numerical calculation in coordinate r̄ does
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n 1 2 3 4 5 6 7 8 9 10
m2
n for q = 1 10 28 54 88 130 180 238 304 378 460

m2
n for q = 5 3.63 10.16 19.66 32.10 47.47 65.77 87.01 111.17 138.26 168.28

m2
n for q = 10 2.76 7.56 14.60 23.83 35.24 48.83 64.60 82.53 102.65 124.94

Table 3. Mass spectrum of general gravitational modes labeled by n for d = 5.

not work well in the large tension limit q →∞. That is because ai (3.30), (3.31) becomes
infinite in the large tension limit with r̄2

h → (d− 2)/d. It behaves better in the coordinate
r (2.13), where the expansion coefficients of H(r) near the brane are finite in the large
tension limit. Solving EOMs (2.18), (2.19), (3.4) near the brane r = 0, we get

f (r) = r2

q2 +O
(
r4
)
, (3.34)

g (r) = r̄2
h + b1r

2 + b2r
4 +O

(
r6
)
, (3.35)

H (r) = 1 + c1r
2 + c2r

4 +O
(
r6
)
, (3.36)

where

b1 = 1+ 1
2d
(
r̄2
h−1

)
, b2 = 1

48

(
−(d−6)d2r̄2

h−
(d−4)(d−2)2

r̄2
h

+2d
(
d2−7d+10

))
,

c1 =−m
2

4r̄2
h

, c2 = m2 (2(d+3)dr̄2
h−2d2+3m2+8

)
192r̄4

h

. (3.37)

Interestingly, bi, ci are finite in the large tension limit with r̄2
h → (d− 2)/d.

Following the above approach, we can solve numerically f(r), g(r), H(r) and then
determine the mass spectrum by using the shooting method. We recover exactly the results
shown in table 1, table 2 and table 3. This is a double check of our results. Note that one
should take larger and larger cut-off rc near the AdS boundary as q increases in order to
preserve the numerical precision.

In summary, in this subsection, we investigate the mass spectrum of gravitons on the
codim-2 brane. We find that the mass spectrum is always positive, and the massless mode
is forbidden by either the DBC or the normalizable condition. Furthermore, we precisely
work out the mass spectrum in the small and large tension limits. Remarkably, the mass
spectrum becomes continuous in the large tension limit, which is different from the case of
the codim-1 brane. For general brane tension, we analyze the mass spectrum numerically
and find that the larger the tension is, the smaller the mass is. In the large tension limit,
the lightest mass approaches zero but cannot be zero. This is similar to the case of the
codim-1 brane.

3.2 Localized gravity

By analyzing the “wave function” and the effective potential, we show that the first massive
gravitational mode is located on the brane. The larger the brane tension is, the better the
localization is.
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Figure 2. Wave function H2(r) of the first massive gravitational mode for tensions with q = 1, 5, 10
and spacetime dimension d = 4. The first massive mode is located on the brane in the sense that
the wave function peaks on the brane only and decays when it goes far from the brane. The larger
the brane tension is, the well the localization is.

Figure 3. Wave function H2(r) of the first massive gravitational mode for tensions with q = 1, 5, 10
and spacetime dimension d = 5. The first massive mode is located on the brane in the sense that
the wave function peaks on the brane only and decays when it goes far from the brane. The larger
the brane tension is, the well the localization is.

3.2.1 Wave function

For simplicity, we work with the coordinate r, where r is the proper distance to the brane.
By “ localization”, we means that the wave function H(r) defined in the perturbative
metric (3.1) peaks on the brane only and decays when it goes far from the brane.

By applying the numerical methods of section 3.1.3, we can solve H(r) for various brane
tensions and spacetime dimensions. We normalize H(r) by the orthogonal condition (3.7).
For the tensionless case, the above normalization fixes H(r) (3.9), (3.13) to be

H(r) =
√

4k + d− 2 2F1
(
a1, a2; 1; tanh2(r)

)
, (3.38)

where a1, a2 are given by (3.10), (3.11) and the positive integer k labels the mass spec-
trum (3.15). For general brane tension, one can fix H(r) by numeral calculations.

From figure 2 and figure 3, we see that the first massive gravitational mode is located
on the brane in the sense that the wave function peaks on the brane only and decays when
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Figure 4. Wave function H2(r) of the second massive gravitational mode for tensions with
q = 1, 5, 10 and spacetime dimension d = 4. The left figure is for q = 1 and the right figure is for
q = 1, 5, 10. The wave function of second massive modes oscillate and do not decay monotonically
when it goes far from the brane. Thus it is not well-located on the brane.

Figure 5. Wave function H2(r) of the second massive gravitational mode for tensions with
q = 1, 5, 10 and spacetime dimension d = 5. The left figure is for q = 1 and the right figure is for
q = 1, 5, 10. The wave function of second massive modes oscillate and do not decay monotonically
when it goes far from the brane. Thus it is not well-located on the brane.

it goes far from the brane. The larger the brane tension is, the better the localization is.
That is reasonable since heavier branes have stronger gravitational force on the fluctuation
modes on the brane. On the other hand, the other massive modes oscillate and do not
decay monotonically when it goes far from the brane. See figure 4 and figure 5 for the wave
function of the second massive modes. Thus only the first massive gravitational mode is
well-located on the brane. With a located graviton on the brane, one can study the black
hole evolution and island on the codim-2 branes.

3.2.2 Effective potential

Let us go on to study the effective potential energy for gravitational fluctuations. We find
that the effective potential takes the minimum value on the location of the brane. As a
result, the gravitational fluctuations tend to be located on the brane, which is consistent
with the discussions of wave functions in the above subsection. However, we do not find
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Figure 6. Wave function Ψ2(r) of the first massive gravitational mode for tensions with q = 1, 5, 10
and spacetime dimension d = 4 (left) and d = 5 (right). The first massive mode is located on the
brane in the sense that the wave function peaks on the brane only and decays when it goes far from
the brane. The larger the brane tension is, the well the localization is.

delta-function potential in the codim-2 brane, which is different from the “volcanic potential”
of the codim-1 brane.

Redefining
g(r) = exp(2A(r)), f(r) = exp(2B(r)), (3.39)

the EOM of H(r) (3.4) becomes

H ′′(r) +H ′(r)
(
(d− 1)A′(r) +B′(r)

)
+m2e−2A(r)H(r) = 0. (3.40)

Following [69], we define the wave function

Ψ (r) = exp
(
d− 1

2 A(r)
)
H(r), (3.41)

and rewrite EOM (3.40) into a Schrodinger-like equation(
−�̃ + V

)
Ψ = m2Ψ, V = exp

(1− d
2 A (r)

)
�̃ exp

(
d− 1

2 A(r)
)
, (3.42)

where �̃ is the Laplacian operator with respect to the metric g̃c = e−2Adiag(1, e2B), which
is conformally equivalent to the conical metric gc = diag(1, e2B).

Note that the shape of functions Ψ(r) and H(r) are very similar, thus we can take
either Ψ(r) and H(r) as the “wave function” [69]. See figure 6 for wave functions Ψ2(r),
whose shapes are similar to those of H2(r).

Now let us discuss the effective potential V , which is given by (3.42)

V = 1
4(d− 1)e2A(r)

(
2A′′(r) + 2A′(r)B′(r) + (d− 1)A′(r)2

)
= (d− 1)

(
(d− 5)f(r)g′(r)2 + 2g(r) (f ′(r)g′(r) + 2f(r)g′′(r))

)
16f(r)g(r) . (3.43)

Note that for the conical metric gc = diag(1, e2B) = diag(1, f(r)) or the (3.1) with (3.39), it
is f ′′(r) instead of g′′(r) that contributes to the delta-function potential [68]

d2

dr2

√
f (r) = −

(
1− 1

q

)
δ(r). (3.44)

– 14 –



J
H
E
P
1
1
(
2
0
2
2
)
0
0
8

Figure 7. The the effective potential for d = 4 (left) and d = 5 (right). The effective potential
increases with r and takes the minimal value on the brane r = 0. Besides, the larger the tension (q)
is, the smaller the effective potential is. This implies that the gravity tends to be located on the
brane. And the larger the tension is, the well the localization is.

Since the effective potential includes no f ′′(r), it includes no the delta-function potential,
which is quite different from the case of codim-1 brane. Note also that, for codim-1 brane in
AdS/BCFT, g′′(r) indeed yields a delta-function potential proportional to sinh(ρ)δ(r + ρ),
where EOW brane is located at r = −ρ with −ρ ≤ r ≤ ∞. While for codim-2 brane in
AdS/dCFT, we have 0 ≤ r ≤ ∞ (ρ = 0 effectively). As a result, the potential delta function
limρ→0 sinh(ρ)δ(r + ρ) = 0 disappears.

From (2.11, (2.12), (3.39), (3.43)), we get the effective potential for d = 4

V =
3
(
1− 2r̄2

h

) (
(5 cosh(4r) + 11)r̄2

h + 2 sinh2(r)(3− 5 cosh(2r))
)

16
(
sinh2(r)− cosh(2r)r̄2

h

) . (3.45)

As for the case of d > 4, we have to do numerical calculations. See figure 7 for examples. It
is shown that the effective potential increases with r and takes the minimal value on the
brane r = 0. Besides, the larger the tension (q) is, the smaller the effective potential is.
This implies that the gravity tends to be located on the brane. And the larger the tension
is, the better the localization is.

To summarize, by studying the wave function and the effective potential, we find that
the first massive gravitational mode is well located on the codim-2 brane. Finally, we want
to mention that the massive gravitational modes are normalizable (3.7), which also supports
the localization of gravitations on the brane.

4 Page curve on codim-2 brane in AdS4/dCFT3

In this section, we study the island and Page curve on codim-2 branes in AdS/dCFT.
To warm up, we first study the case of AdS4/dCFT3. Compared with AdS/dCFT in
higher dimensions, more analytical results can be obtained in this toy model. As expected,
the Page curve of eternal black holes can be recovered due to the island on the codim-2
brane. However, the extremal surface passing through the horizon cannot be defined after
some finite time, which is quite different from the case of codim-1 brane in AdS/BCFT.
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Fortunately, this unusual situation happens only after Page time. As a result, it does not
affect the Page curve. For simplicity, we focus on the tensionless brane below and comment
on the tensive case at the end of this section.

We take the following ansatz of the bulk metric

ds2 = dr2 + sinh2(r)dθ2 + cosh2(r)
dz2

1−z2 − (1− z2)dt2

z2 , (4.1)

where the codim-2 brane is located at r = 0 and the bath is at the AdS boundary r →∞.
There is a horizon located at z = 1 on both the codim-2 brane and the AdS boundary. Note
that the codim-2 brane in AdS4/dCFT3 is two dimensional. Similar to the case of codim-1
brane in AdS3/BCFT2, it is expected that the effective theory on the codim-2 brane in
AdS4/dCFT3 is JT gravity. How to derive JT gravity on the codim-2 brane is beyond the
purpose of this paper, and we leave this interesting problem to future works.

Following [7, 8], we focus on the eternal two-sided black hole, which is dual to the
thermofield double state of CFTs [70]

|TFD〉 = Z−1/2∑
α

e−Eα/(2T )e−iEα(tL+tR)|Eα〉L|Eα〉R, (4.2)

where L and R label the states (times) associated with the left and right boundaries. Couple
the eternal two-side black hole to bathes on each side. The system evolutes if we move
time tL and tR forward on both sides. Without the island, the entanglement entropy will
increase with time and exceed the double black hole entropy in the late times. However,
the fine-grained entanglement entropy cannot be larger than the coarse-grained black hole
entropy [3]. This leads to the information paradox for eternal black holes. Thanks to the
island outside the horizon, the entanglement entropy becomes a constant at Page time,
which is smaller than the double black hole entropy. In this way, the information paradox
of eternal black holes can be resolved.

Following the convention of [23], let us illustrate the geometry of AdS/dCFT and
its physical interpretation in the black hole information paradox in figure 8. Recall that
the geometry (2.20) of AdS/dCFT is axisymmetric, i.e., θ ' θ + 2πq. Without loss of
generality, we focus on the constant θ, then the geometry reduces to that of black string
in AdS/BCFT [23]. For simplicity, we show only one side of the black holes in the figure.
One can double the figure for the two-side black holes as in [23]. As shown in figure 8, the
black hole lives on codim-2 brane E at r = 0, and CFT bath lives on the AdS boundary M
at r → ∞. The island, island complement, radiation complement, and radiation regions
are denoted by the red, orange, yellow, and purple segments, respectively. The blue line
denotes the extremal surface in the island phase, and the green line is the extremal surface
in the no-island phase. The extremal surface in the no-island phase (green line) ends on
the horizon (dotted line) at the beginning t = 0 and passes through the horizon at t > 0.
Holographic entanglement entropy is dominated by the green extremal surface (no-island
phase) at early times and the blue extremal surface (island phase) at late times.

It should be mentioned that the Ryu-Takayanagi formula [66] still applies to AdS/dCFT.
Using the approach of Casini, Huerta, and Myers [64, 71] proves the Ryu-Takayanagi formula
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Figure 8. The geometry of AdS/dCFT with a constant θ and its physical interpretation in the
black hole information paradox. The left figure is for t = 0 and the right figure is for t > 0. The
black hole lives on codim-2 brane E at r = 0, and CFT bath lives on the AdS boundary M at
r →∞. The island, island complement, radiation complement, and radiation are denoted by the
red, orange, yellow, and purple segments, respectively. The blue line denotes the extremal surface in
the island phase, and the green line is the extremal surface in the no-island phase. The extremal
surface in the no-island phase (green line) ends on the horizon (dotted line) at the beginning t = 0
and passes through the horizon at t > 0. Holographic entanglement entropy is dominated by the
green extremal surface (no-island phase) at early times and the blue extremal surface (island phase)
at late times.

for the spherical entangling surface centered on the codim-n defect. See also [72]. This is
precisely the case we focus on in this paper. As for the entangling surfaces with general
shapes, one can use the method of Lewkowycz and Maldacena [73] to derive the Ryu-
Takayanagi formula. However, this is beyond the primary purpose of this paper, and
we leave it to future works. Finally, we want to mention that, as a minimal surface,
the Ryu-Takayanagi (RT) surface should be perpendicular to the codim-2 brane in the
island phase.

4.1 Island phase

Let us first study the island phase, where the RT surface ends on the brane. The embedding
function of extremal surfaces are given by

t = constant, z = z(r). (4.3)

Substituting (4.3) into (4.1), we get the area of RT surface

A = 2π
∫ rUV

sinh(r)

√
1 + cosh2(r)z′(r)2

z(r)2 − z(r)4 dr, (4.4)

where rUV is a UV cut-off. Note that (4.4) is the area of RT surface in the one-side black
hole. For the two-side black hole, we double the above result. We take this notation in the
following of this paper.
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Figure 9. RT surfaces in the polar coordinates (z, φ) at tR = tL = 0, where φ = 2 tan−1 (e−r)
and we have chosen zbdy = 0.92. The brane is at φ = π/2, the AdS boundary is at φ = 0 and the
horizon (red line) is at z = 1. The RT surface in the island phase is labelled by the blue line, which
is perpendicular to both the AdS boundary and the brane. The RT surface in the no-island phase is
labelled by the green line, which is perpendicular to both the AdS boundary and the horizon. The
orange line denotes the fake RT surface in the no-island phase, which does not contribute to the
entanglement entropy since it has larger area than the green line. Note that we are discussing the
AdS space instead of the flat space. Although it appears not to be, the green and orange lines are
perpendicular to the horizon (red line).

Taking variations of (4.4), we get the equation of motion (EOM)

z(r)z′(r)
((

1− 2z(r)2
)
z′(r) + z(r) tanh(r)

(
coth2(r) + 2

) (
z(r)2 − 1

))
+z(r)2

(
z(r)2 − 1

)
z′′(r)− z′(r)3(sinh(2r) + coth(r)) = 0. (4.5)

Interestingly, there is an exact solution to EOM (4.5)

z(r) = zbdy, (4.6)

where 0 ≤ zbdy ≤ 1 is the value of z on the AdS boundary r →∞. (4.6) is the solution in
the island phase, where the RT surface is perpendicular to both the AdS boundary r →∞
and the codim-2 brane r = 0. See blue line of figure 9. Note that we require 0 ≤ zbdy ≤ 1
so that both the island and the bath are outside the horizon z = 1. For simplicity, we
choose zbdy as a free parameter in this paper. Similar to the case of codim-1 brane, in
principle, zbdy can be fixed by considering suitable DGP terms for d > 3 (JT gravity for
d = 3) or matter fields on the codim-2 brane and then minimizing entanglement entropy.
See [13, 19] for examples. Substituting (4.6) into (4.4), we derive the area of RT surface in
the island phase

Aisland = 2π
∫ rUV

0
sinh(r)dr = 2π

(
cosh(rUV)− 1

)
. (4.7)

In the above discussion, we focus on a particular solution to (4.5), which is in the
island phase. Let us go on to discuss the solution in the no-island phase at tR = tL = 0.
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Figure 10. The extremal lines perpendicular to two boundaries S1 and S2 in a flat plane. (Left
figure) S1 and S2 are two non-parallel line segments, and there is no extremal line perpendicular
to both S1 and S2. (Right figure) S1 is a line segment and S2 is a circular arc. There is only one
extremal line (blue line) perpendicular to both S1 and S2. It is shown that the vertical condition
to the boundaries highly restricts the extremal lines. In particular, the allowed ending points of
extremal lines on the boundary S1 are limited, which is similar to the case of codim-2 branes in AdS.

Unfortunately, there is no exact expression for this kind of solution. Thus, we have to do
numerical calculations. As a minimal surface, the RT surface in no-island phase should
be perpendicular to both the AdS boundary r →∞ and the black hole horizon z = 1 at
tR = tL = 0. This is a highly non-trivial boundary condition, which significantly restricts
the regions of ending points of RT surfaces. Let us study some examples in a flat space
to get some feelings on this point. See figure 10, where we want to find the extremal line
perpendicular to two boundaries S1 and S2 in a flat plane. As shown in figure 10, the
allowed ending points of extremal lines on the boundary are limited. This is similar to the
case of codim-2 branes in an AdS space, which will be discussed below.

Solving EOM (4.5) perturbatively around the horizon z = 1, we get

z(r) = 1 + a1(r − r0) + a2(r − r0)2 +O(r − r0)3, (4.8)

where r0 is value of r on horizon and ai are given by

a1 = −4 sinh2 (r0) csch (4r0) , (4.9)

a2 = 1
6 (8 cosh (2r0)− 7) sech2 (2r0) . (4.10)

Note that we have selected the non-constant solution for z(r) above. One can check that the
solution (4.8), (4.9), (4.10) obey the vertical condition that the RT surface is perpendicular
to the horizon.

For any given 0 ≤ r0 ≤ rUV, we can numerically solve EOM (4.5) together with BC (4.8)
and then obtain zbdy = z(rUV) on the AdS boundary. It turns out that there is a lower
bound of zbdy, which agrees with the above discussions that the vertical BC highly restricts
the locations of ending points of extremal surfaces on the boundary. See figure 11 for more
details, where the minimal value of zbdy is approximately by 0.886

zbdy ≥ zc ≈ 0.886, (4.11)
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Figure 11. zbdy = z(rUV) as a function of r0, where r0 is the value of r on horizon. It is shown
that there is a lower bound of zbdy ≥ zc ≈ 0.886. The corresponding critical value of r0 is rc ≈ 0.496.
Besides, one zbdy corresponds to two r0 for zbdy ≥ zc. It turns out that the extremal surface with
larger r0 has smaller area.

at r0 ≈ 0.496. Besides, one zbdy corresponds to two r0 for zbdy > zc. It turns out that the
extremal surface with larger r0 has smaller area. Take zbdy = 0.92 with r0 ≈ 0.226 and
r0 ≈ 0.933 as an example, we have

Ano-island −Aisland ≈


0.214, for r0 ≈ 0.226,

−0.223, for r0 ≈ 0.933,
(4.12)

where Ano-island is the area of RT surface at the beginning tR= tL=0 in the no-island phase

Ano-island = 2π
∫ rUV

r0
sinh(r)

√
1 + cosh2(r)z′(r)2

z(r)2 − z(r)4 dr. (4.13)

Since the holographic entanglement entropy is related to the extremal surface with smaller
area, we always select the one with larger r0 in the followings of this paper. The extremal
surfaces associated to r0 ≈ 0.226 and r0 ≈ 0.933 are labelled by the orange line and the
green line of figure 9, respectively. It should be mentioned that the existence of a lower
bound (4.11) of zbdy is a new feature for codim-2 branes, and there is no such lower bound
for codim-1 branes.

To have the no-island phase, we need Anon-island < Aisland at the beginning tR = tL = 0.
This leads to another lower bound of zbdy,

zbdy > z̄c ≈ 0.911, (4.14)

around r0 ≈ 0.847. To summarize, we take the following parameter space in this section

0.911 < zbdy < 1, 0.847 < r0 < rUV. (4.15)
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4.2 No-island phase

Let us go on to study the RT surface passing through the horizon in general times (tR =
tL ≥ 0), which is the so-called no-island phase. The area of this kind of RT surface increases
with time due to the dynamic nature of spacetime inside the horizon. Unlike the case of
codim-1 brane, the RT surface passing through the horizon cannot be defined after some
finite time in the case of codim-2 branes. Fortunately, this unusual situation does not affect
the Page curve, since it happens after Page time.

To study the RT surface passing through the horizon, it is convenient to use the infalling
Eddington-Finkelstein coordinates

v = t−
∫ z

0

1
1− z2dz = t− 1

2 log
∣∣∣∣1 + z

1− z

∣∣∣∣ . (4.16)

Then the metric (4.1) becomes

ds2 = dr2 + sinh2(r)dθ2 + cosh2(r)−(1− z2)dv2 − 2dvdz
z2 . (4.17)

We take following ansatz of the embedding function of extremal surfaces

r = r(z), v = v(z). (4.18)

Then the area of RT surface becomes

A = 2π
∫ zmax

zbdy
sinh(r(z))

√
r′(z)2 + cosh2(r(z))v′(z) ((z2 − 1) v′(z)− 2)

z2 dz, (4.19)

where zmax ≥ 1 is the turning point of the two-side black hole, which obeys the condition [74]

v(zmax) + 1
2 log zmax + 1

zmax − 1 = t(zmax) = 0, v′(zmax) = t′(zmax) = −∞. (4.20)

Taking variations of (4.19), we get two independent equations

r′′(z) = r′(z)
((
z2 − 1

)
v′(z)2 − 2v′(z)− 2

)
z

+cosh(2r(z)) coth(r(z))v′(z)
((
z2 − 1

)
v′(z)− 2

)
z2

+1
2r
′(z)2(3 cosh(2r(z))− 1)csch(r(z))sech(r(z)), (4.21)

and
v′′ (z) = v′ (z)

((
z2 − 1

)
v′(z)2 − 3v′(z)− 2

)
z

. (4.22)

Interestingly, v(z) decouples with r(z) in (4.22). Solving (4.22) with BC (4.20), we obtain

v(z) = 1
2 log

∣∣∣∣∣∣∣∣
√

z2
max−z2

z2
max−1 + 1√

z2
max−z2

z2
max−1 − 1

∣∣∣∣∣∣∣∣−
1
2 log

∣∣∣∣1 + z

1− z

∣∣∣∣ , (4.23)
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which is smooth on the horizon z = 1. From (4.16) and (4.23), we get

t(z) = 1
2 log

∣∣∣∣∣∣∣∣
√

z2
max−z2

z2
max−1 + 1√

z2
max−z2

z2
max−1 − 1

∣∣∣∣∣∣∣∣ . (4.24)

The time on the AdS boundary is defined by

tR = tL = t(zbdy) = 1
2 log


√

z2
max−z2

bdy
z2

max−1 + 1√
z2

max−z2
bdy

z2
max−1 − 1

 , (4.25)

which yields
zmax =

√
cosh2 (tR)− z2

bdy sinh2 (tR). (4.26)

Note that we have zmax = 1 at the beginning tR = tL = 0. This case has been discussed at
the end of section 4.1.

Substituting (4.23) into (4.19), (4.21) and transforming r(z) into z(r), we derive the
area functional

Ano-island = 2π
∫ rUV

r0
sinh(r)

√
1 + z2

max cosh2(r)z′(r)2

z(r)2 (z2
max − z(r)2) dr, (4.27)

and EOM of z(r)

z(r)z′(r)
((
z2

max − 2z(r)2
)
z′(r) + z(r) tanh(r)

(
coth2(r) + 2

) (
z(r)2 − z2

max

))
+z(r)2

(
z(r)2 − z2

max

)
z′′(r)− z2

maxz
′(r)3(sinh(2r) + coth(r)) = 0, (4.28)

which agrees with results of no-island phase (4.4), (4.5) at the beginning tR = tL = 0, or
equivalently, zmax = 1. This can be regarded as a check of our calculations. Note that r0
of (4.27) is the value of r at the turning point z = zmax. One can check that (4.28) can also
be derived by taking variations of the area functional (4.27). This is also a double check of
our results.

Now the complicated time-dependent problem (4.19) has been transformed into a simple
time-independent problem (4.27), which has already been solved in section 4.1. To see this
clearly, we make a further transformation

z(r) = zmaxZ(r). (4.29)

Then the area functional (4.27) become

Ano-island = 2π
∫ rUV

r0
sinh(r)

√
1 + cosh2(r)Z ′(r)2

Z(r)2 (1− Z(r)2) dr, (4.30)

which takes exactly the same form as (4.4) of section 4.1. Recall from (4.11) that there is a
lower bound of the boundary value of Z

Zbdy = Z(rUV ) ≥ zc ≈ 0.886. (4.31)
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Figure 12. The maximum time tm in the no-island phase increases with zbdy. There is an upper
bound of tm for any given zbdy obeying zc ≈ 0.886 ≤ zbdy < 1. Only in the case zbdy = 1, tm can
be infinity.

Combining (4.31) with (4.29), we derive a lower bound of the boundary value of z at time
tR (4.25)

zbdy = zmaxZbdy ≥ 0.886zmax, (4.32)

which yields
zmax ≤

zbdy
zc

= zbdy
0.886 ≤

1
0.886 ≈ 1.128. (4.33)

Above we have used zbdy ≤ 1 in the second inequality so that the island and bath both lie
outside the horizon. From (4.25), (4.26), we notice that the upper bound of zmax ≤ zbdy/zc
leads to an upper bound of the maximum time in the no-island phase

tm = max (tR = tL) = 1
2 log

zbdy

√
1−z2

c

z2
bdy−z2

c
+ 1

zbdy

√
1−z2

c

z2
bdy−z2

c
− 1

 , (4.34)

for any given zbdy obeying zc ≈ 0.886 ≤ zbdy < 1. Only in the case zbdy = 1, the maximum
time tm can become infinity. See figure 12. This is quite different from the case of codim-1
brane in AdS/BCFT. Now we finish the proof of the statement that the extremal surface
passing through the horizon cannot be defined after some finite time tm.

From (4.25), (4.29), (4.30) and the numerical results of z(r) of section 4.1, we can work
out the time evolution of the area of RT surfaces in the no-island phase. See blue line of
figure 13, which increases with time and stops at a finite time tm. Here ∆A = A(tR)−A(0)
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Figure 13. Page curve on codim-2 brane in AdS4/dCFT3. Here we define ∆A = A(tR) − A(0),
choose zbdy = 0.95 and use t to label the boundary time tR = tL for simplicity. The blue line denotes
the area of extremal surface in the no-island phase, which increases with time and is not well-defined
after tm ≈ 1.038. The yellow line denotes the area of extremal surface in the island phase, which is
constant and is always well-defined. The holographic entanglement entropy is dominated by the
extremal surface with the smaller area. Thus the entanglement entropy first increases with time
(blue line) and then becomes a constant (yellow line). In this way, the Page curve of eternal black
hole is recovered. Note that the Page time tP ≈ 0.844 is smaller than tm ≈ 1.038. Thus the unusual
situation happens at tm does not affect the Page curve.

is defined by the difference between the area at time tR and that at the beginning. Without
loss of generality, we choose zbdy = 0.95 which corresponds to the maximum time tm ≈ 1.038,
after which the extremal surface passing through the horizon is not well-defined. The yellow
line of figure 13 denotes the area of RT surface in the island phase, which is a constant
and is well-defined all the time. At the early times, the blue line has smaller area and thus
dominates the entanglement entropy. After the Page time tP ≈ 0.844, the yellow line has
smaller area and entanglement entropy becomes a constant. The Page curve is given by the
blue line for t ≤ tP and the yellow line for t > tP . Note that tm ≈ 1.038 is larger than the
Page time tP ≈ 0.844, thus the unusual situation happens at tm does not affect the Page
curve. It is reminiscent of the principle of cosmic supervision: although there is singularity
inside the horizon, the observer outside does not see any non-physical situation. Note that
there is no singularity in our case. It should be mentioned that the finiteness of tm also
appears in Gauss Bonnet gravity for a range of couplings obeying the causal constraint
for codim-1 brane [32]. Unlike the present case, there is a zeroth-order phase transition of
entanglement entropy for codim-1 branes in Gauss Bonnet gravity [32].

4.3 Tensive brane

In the above section, we focus on the tensionless brane. Let us go on to study the brane with
non-zero tension. We find that the larger the tension is, the larger the maximum time of the
no-island phase is, and the larger the Page time is. In the large tension limit, the Page time
approaches the maximum time of the no-island phase from below. Since the calculations
are similar to the case of tensionless branes, we only show the main results below.
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We take the following bulk metric

ds2 = dr̄2

r̄2 − 1− r̄h(r̄2
h
−1)
r̄

+
(
r̄2 − 1− r̄h

(
r̄2
h − 1

)
r̄

)
dθ2 + r̄2

dz2

1−z2 −
(
1− z2) dt2
z2 , (4.35)

where the codim-2 brane is located at r̄ = r̄h, the AdS boundary is at r̄ → ∞ and r̄h is
a constant

r̄h = 1 +
√

1 + 3q2

3q , q ≥ 1, (4.36)

which is related to the tension (2.10) of the brane. Following the approach of section 4.1
and section 4.2, we obtain the following results for tensive branes with q > 1.

1) island phase: The RT surface ending on the brane is still given by

t = constant, z = zbdy. (4.37)

And the corresponding area of RT surface is given by

Aisland = 2πq
∫ r̄UV

r̄h

√√√√√1 + r̄
(
r̄3
h − r̄h − r̄3 + r̄

)
z′ (r̄)2

z (r̄)2
(
z (r̄)2 − 1

) dr̄

= 2πq(r̄UV − r̄h), (4.38)

where r̄UV is a UV cut-off and the period of θ is 2πq.

2) no-island phase at tR = tL = 0: The area functional of RT surface in the no-island
phase at the beginning is given by

Ano-island = 2πq
∫ r̄UV

r̄0

√√√√√1 + r̄
(
r̄3
h − r̄h − r̄3 + r̄

)
z′ (r̄)2

z (r̄)2
(
z (r̄)2 − 1

) dr̄, (4.39)

where r̄0 ≥ r̄h is the value of r̄ on the horizon z = 1. Taking variations of (4.39), we
get EOM

z′′ (r̄) =
(
−r̄3

h + r̄h + 4r̄3 − 2r̄
)
z′ (r̄)3

2z (r̄)2
(
z (r̄)2 − 1

)
+
(
r̄3
h − r̄h − 4r̄3 + 2r̄

)
z′ (r̄)

r̄
(
−r̄3

h + r̄h + r̄3 − r̄
) +

(
2z (r̄)2 − 1

)
z′ (r̄)2

z (r̄)3 − z (r̄)
. (4.40)

Solving the above equation around horizon, we get

z(r̄) = 1 + c1(r̄ − r̄0) + c2(r̄ − r̄0)2 +O(r̄ − r̄0)2, (4.41)

where

c1 = 2
r̄3
h − r̄h − 4r̄3

0 + 2r̄0
, (4.42)

c2 = −28r̄3
0 r̄h

(
r̄2
h − 1

)
+ 2r̄2

h

(
r̄2
h − 1

) 2 + 44r̄6
0 − 36r̄4

0
3r̄0

(
−r̄3

h + r̄h + r̄3
0 − r̄0

) (
r̄3
h − r̄h − 4r̄3

0 + 2r̄0
) 2 . (4.43)
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Figure 14. zbdy as a function of r̄0 for q = 5 (left) and q = 10 (right) in no-island phase. The lower
bound of zbdy is given by zc ≈ 0.660 for q = 5 and zc ≈ 0.583 for q = 10, respectively. The larger
the tension q is, the smaller the lower bound zc is.

From EOM (4.40) and BC (4.41), we can solve z(r̄) numerically. Similar to the tensionless
case, there is a lower bound of zbdy on the AdS boundary. See figure 14 for example, where
we have

zbdy ≥ zc ≈


0.886, for q = 1,
0.660, for q = 5,
0.583, for q = 10,

(4.44)

where q labels the tension (2.10) and q = 1 corresponds to the tensionless case. It is found
that the larger the tension is, the smaller the lower bound of zbdy is.

3) no-island phase at tR = tL > 0: Consider the embedding functions of the RT
surface r̄ = r̄(z) and v = v(z). Similar to the tensionless case, the EOM of v = v(z) is decou-
pled with r(z) and is still given by (4.22) in the tensive case. Thus v(z) (4.23), t(z) (4.24)
and tR = tL (4.25) derived in section 4.1 also apply to the tensive case. Substituting v(z)
into the area functional of RT surface and transforming r̄(z) into z(r̄), we obtain

Ano-island = 2πq
∫ r̄UV

r̄0

√√√√√1 + z2
maxr̄

(
−r̄3

h + r̄h + r̄3 − r̄
)
z′ (r̄)2

z (r̄)2
(
z2

max − z (r̄)2
) dr̄, (4.45)

which agrees with (4.39) at tR = tL = 0 (zmax = 1). Changing z(r̄)→ zmaxz(r̄), the area
functional (4.45) at tR = tL > 0 becomes exactly the same as the area functional (4.39) at
tR = tL = 0, which is similar to the tensionless case. Following approach of section 4.2, we
obtain a upper bound of zmax

zmax ≤
zbdy
zc
≤ 1
zc
, (4.46)

and a upper bound of the time in the no-island phase

tm = max (tR = tL) = 1
2 log

zbdy

√
1−z2

c

z2
bdy−z2

c
+ 1

zbdy

√
1−z2

c

z2
bdy−z2

c
− 1

 . (4.47)
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Figure 15. Page curve on tensive codim-2 brane with q = 5 and zbdy = 0.95 in AdS4/dCFT3. The
blue line and yellow line denote the no-island phase and the island phase, respectively. The Page
curve is given by the blue line for t ≤ tP ≈ 1.754, and is given by the yellow line for t > tP . Since
the Page time tP ≈ 1.754 is smaller than the maximum time tm ≈ 1.914 in no-island phase, the
unusual situation happens at tm does not affect the Page curve.

Since zc (4.44) becomes smaller in the tensive case, the maximum time tm becomes larger
in the tensive case. Note that there is no bound of time in the island phase. As a result, the
entanglement entropy is always well-defined, and our models have no non-physical situation.

To end this section, we draw the Page curves on the codim-2 branes with non-zero
tensions. See figure 15 and figure 16. It is found that the larger the tension is, the larger
the Page time tP and the maximum time tm in the no-island phase is. In the large tension
limit, tP approaches tm from below. Similar to the tensionless case, since Page time tP is
smaller than the maximum time tm in no-island phase, the unusual situation happens at
tm does not affect the Page curve. Now we finish the discussions of Page curve of eternal
black holes on codim-2 branes with non-zero tensions in AdS4/dCFT3.

5 Page curve on codim-2 brane in AdSd+1/dCFTd

In this section, we study the island and Page curve on codim-2 branes in higher dimensional
AdSd+1/dCFTd. We consider both hyperbolic black holes and AdS black holes on the brane.
Unlike AdS4/dCFT3, it is difficult to obtain analytical results for d > 3, since the EOMs of
v(z) and r(z) are coupled in higher dimensions. Thus, we focus on numeral calculations
in this section. We find that the qualitative behavior of Page curve is the same as that of
AdS4/dCFT3. Readers not interested in numerical calculations can skip this section.

5.1 Hyperbolic black hole

We first study the case of a hyperbolic black hole on a tensionless brane. The corresponding
bulk metric is given by

ds2 = dr2 + sinh2(r)dθ2 + cosh2(r)
z2

(
−(1− z2)dt2 + dz2

1− z2 + dH2
d−3

)
, (5.1)
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Figure 16. Page curve tensive codim-2 brane with q = 10 and zbdy = 0.95 in AdS4/dCFT3. The
blue line and yellow line denote the no-island phase and the island phase, respectively. The Page
curve is given by the blue line for t ≤ tP ≈ 1.969, and is given by the yellow line for t > tP . Since
the Page time tP ≈ 1.969 is smaller than the maximum time tm ≈ 2.123 in no-island phase, the
unusual situation happens at tm does not affect the Page curve.

where dH2
d−3 is the hyperbolic spatial geometry with unit curvature, i.e.

dH2
d−3 = dχ2 + cosh2 χdH2

d−4. (5.2)

In the Eddington-Finkelstein coordinates, the bulk metric becomes

ds2 = dr2 + sinh2 (r) dθ2 + cosh2 (r)
z2

(
−
(
1− z2

)
dv2 − 2dvdz + dH2

d−3

)
. (5.3)

It is convenient to use the above metric to study the RT surface passing through the horizon
in the no-island phase.

5.1.1 Island phase

Let us first discuss the island phase, where the RT surface is perpendicular to both the
brane and the AdS boundary. This kind of RT surface is outside the horizon and does not
evolve over time. Substituting the embedding functions (4.3) into the metric (5.1), we get
the area of RT surface

A = 2πvolHd−3

∫ rUV

0

sinh (r) coshd−3 (r)
z (r)d−3

√√√√1 + cosh2 (r) z′ (r)2

z (r)2 − z (r)4 dr, (5.4)

where volHd−3 =
∫
dHd−3 is the volume of horizontal space. Taking variations of (5.4), we

get EOM

z′′(r) =
(
(d− 5)z(r)2 − d+ 4

)
z′(r)2

z(r) (1− z(r)2) − cosh2(r)csch(2r)((d− 1) cosh(2r)− d+ 3)z′(r)3

z(r)2 (1− z(r)2)

− csch(2r)(d cosh(2r)− d+ 2)z′(r)− 2(d− 3)z(r)
(
1− z(r)2

)
tanh(r)csch(2r).

(5.5)
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Except z(r) = 1, there is no exact solution to (5.5). Thus we have to solve (5.5) numerically.
To do so, we need to impose suitable BCs on the brane. We choose the Neumann boundary
condition (NBC), which means the RT surface is orthogonal to the brane, i.e, z′(0) = 0.
Solving EOM around the brane r = 0 with NBC z′(0) = 0, we get

z(r) = zbrane + 1
4(d− 3)zbrane

(
z2

brane − 1
)
r2 +O

(
r4
)
, (5.6)

where zbrane is the value of z on the brane, which is related to zbdy on the AdS boundary.
For any given zbrane, we can solve EOM (5.5) with BC (5.6) numerically, and then obtain
z(r) and zbdy = z(rUV). For a fixed zbdy, we can determine the input parameter zbrane by
the shooting method.

Let us go on to study the no-island phase at tR = tL = 0. In this case, the RT surface is
perpendicular to both the AdS boundary and the horizon. Solving (5.5) around the horizon,
we derive

z(r) = 1− 2 tanh (r0)
(d− 1) cosh (2r0)− d+ 3(r − r0) +O(r − r0)2, (5.7)

which agrees with (4.8) for d = 3. Recall that r0 is the value of r on horizon, which is
related to zbdy. Solving EOM (5.5) together with BC (5.7) on horizon, we can obtain the
RT surface in the no-island phase at tR = tL = 0. Similar to the 3d case, there is a lower
bound for zbdy

zbdy ≥ zc ≈


0.886, for d = 3,
0.897, for d = 4,
0.902, for d = 5,

(5.8)

which shows that zbdy increases with the dimensions. Similar to AdS4/dCFT3, the lower
bound of zbdy leads to an upper bound of zmax and the time tR = tL. We will show this
numerically in the following subsection.

5.1.2 No-island phase

Let us go on to discuss the no-island phase at tR = tL > 0. Substituting the embedding
functions r = r(z) and v = v(z) into the metric (5.3), we derive the area of RT surfaces

A= 2πvolHd−3

∫ zmax

zbdy

sinh(r(z))coshd−3(r(z))
zd−3

√
r′(z)2− cosh2(r(z))v′(z)((1−z2)v′(z)+2)

z2 dz.

(5.9)
Taking variations of (5.9), we get EOM

v′′(z) = −v
′(z)

((
d
(
z2 − 1

)
− 3z2 + 2

) ((
z2 − 1

)
v′(z)− 3

)
v′(z) + 2(d− 2)

)
z

+(3− d)zr′(z)2sech2(r(z))
((
z2 − 1

)
v′(z)− 1

)
. (5.10)

r′′(z) = −r
′(z)

((
d
(
z2 − 1

)
− 3z2 + 2

) ((
z2 − 1

)
v′(z)− 2

)
v′(z) + 2

)
z

−(d− 3)z
(
z2 − 1

)
r′(z)3sech2(r(z)) + r′(z)2csch(2r(z))(d cosh(2r(z))− d+ 2)

+coth(r(z))v′(z)
((
z2 − 1

)
v′(z)− 2

)
((d− 1) cosh(2r(z))− d+ 3)

2z2 . (5.11)
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Unlike AdS4/dCFT3, v(z) and r(z) are coupled in the above equations, which makes the
calculations complicated.

We impose the following BCs on the turning point z = zmax and r = r0,

v(zmax) = −1
2 log zmax + 1

zmax − 1 , v′(zmax) = −∞, (5.12)

r(zmax) = r0, r′(zmax) = coth(r0)((d− 1) cosh(2r0)− (d− 3))
2zmax ((d− 3)z2

max − (d− 2)) ,

(5.13)

where the first line is just the BC (4.20) derived from t(zmax) = 0 and the symmetry of
turning point, and the second line can be obtained by solving EOM of r(z). Let us explain
more on how to derive (5.13). Since the area functional (5.9) does not depends on v(z)
exactly, we can derive a conserved quantity

E = ∂L

∂v′(z) = z1−d sinh(r(z))
((
z2 − 1

)
v′(z)− 1

)
coshd−1(r(z))√

r′(z)2 + cosh2(r(z))v′(z)((z2−1)v′(z)−2)
z2

, (5.14)

where A = 2πvolHd−3

∫ zmax
zbdy

Ldz. Substituting v′(zmax) = −∞ and r(zmax) = r0 into the
above equation, we derive

E = z1−d sinh (r (z))
((
z2 − 1

)
v′ (z)− 1

)
coshd−1 (r (z))√

r′ (z)2 + cosh2(r(z))v′(z)((z2−1)v′(z)−2)
z2

= −
√
z2

max − 1 sinh (r0) (zmaxsech (r0)) 2−d. (5.15)

From (5.11) and (5.15), we can obtain EOM of r(z) which is decoupled with v(z). Solving
this decoupled EOM around the turning point, we can derive (5.13). Note that (5.13) agrees
with (5.7) on horizon (zmax = 1). This can be regarded as a check of our results. It should
be mentioned that, from the decoupled EOM of r(z), we can derive an upper bound of zmax
in order to obey the condition zbdy ≤ 1, which is similar to the case of AdS4/dCFT3.

We are now ready to solve the RT surfaces in the no-island phase numerically. For
any given parameters zmax and r0, we can solve EOMs (5.11) and (5.10) numerically with
BCs (5.12) and (5.13), and then derive zbdy from r(zbdy) = rUV and the boundary time

tR = v(zbdy) + 1
2 log 1 + zbdy

1− zbdy
. (5.16)

For a fixed zbdy, we have to adjust the input parameters zmax and r0 suitably. It can
be achieved by applying the so-called shooting method. Note that we should take an
UV cut-off for the BC v′(zmax) = −∞ in numerical calculations. This problem can be
avoided if we consider the first-order differential equation (5.15) instead of the second-order
differential equation (5.10).

To end this section, let us draw the Page curves for hyperbolic black holes on codim-2
branes with zero tensions. See figure 17. Similar to the toy model in AdS4/dCFT3, the
Page time tP is smaller than the maximum time tm in the no-island phase. As a result, the
finite-time problem in the no-island phase does not affect the Page curve. Following the
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Figure 17. Page curve of hyperbolic black hole on codim-2 tensionless brane in AdS5/dCFT4
(left) and AdS6/dCFT5 (right) for selected zbdy = 0.95, 0.96, 0.97 (bottom to top). Here we define
∆A = A(tR)−A(0) and label tR = tL by t for simplicity. The blue line denotes the area of extremal
surface in the no-island phase. The yellow line denotes the area of extremal surface in the island
phase. The Page curve is given by the blue line for t ≤ tP and the yellow line for t > tP . Since we
have tP < tm, the unusual situation happens at tm does not affect Page curve.
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Figure 18. Page curve of hyperbolic black hole on codim-2 tensive brane in AdS5/dCFT4 (left)
and AdS6/dCFT5 (right) for selected q = 1, 5, 10 (bottom to top) and zbdy = 0.95. Here we define
∆A = A(tR)−A(0) and label tR = tL by t for simplicity. The blue line denotes the area of extremal
surface in the no-island phase. The yellow line denotes the area of extremal surface in the island
phase. The Page curve is given by the blue line for t ≤ tP and the yellow line for t > tP . Since we
have tP < tm, the unusual situation happens at tm does not affect Page curve.

same approach, we can derive Page curves on the codim-2 brane with non-zero tensions. For
simplicity, we do not repeat the calculations. See appendix A for some essential formulas,
and see figure 18 for the results.

5.2 AdS black hole

Now we go on to discuss the case of AdS black hole on a tensionless brane. The bulk metric
is given by (2.20) with f(r) = sinh2(r) and g(r) = cosh2(r). In the Eddington-Finkelstein
coordinates, it becomes

ds2 = dr2 + sinh2 (r) dθ2 + cosh2 (r)
z2

(
−
(
1− zd−2

)
dv2 − 2dvdz +

d−3∑
a=1

dy2
a

)
. (5.17)
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5.2.1 Island phase

We discuss the island phase first as before. Substituting the embedding functions (4.3) into
the metric (2.20) with f(r) = sinh2(r) and g(r) = cosh2(r), we get the area of RT surface

A = 2πvolRd−3

∫ rUV

0

sinh(r) coshd−3(r)
z(r)d−3

√
1 + cosh2(r)z′(r)2

z(r)2 − z(r)d dr, (5.18)

where volRd−3 =
∫
dd−3y is the volume of horizontal space. Taking variations of (5.18), we

get EOM

z′′ (r) = −(d− 6) z′ (r)2

2z (r) − d coth (2r) z′ (r) + (d− 2) csch (2r) z′ (r)

+z′ (r)2 (coth (r) ((d− 1) cosh (2r) + (3− d)) z′ (r) + (d− 2) z (r))
2z (r)2

(
z (r)d−2 − 1

)
+2 (d− 3) tanh (r) csch (2r)

(
z(r)d−1 − z(r)

)
. (5.19)

Solving EOM around the brane r = 0 with NBC z′(0) = 0, we get

z(r) = zbrane + 1
4(d− 3)zbrane

(
zd−2

brane − 1
)
r2 +O

(
r4
)
. (5.20)

For any given zbrane, we can solve EOM (5.19) with BC (5.20) numerically, and then obtain
z(r) and zbdy = z(rUV).

Let us go on to study the no-island phase at tR = tL = 0. In this case, the RT surface
is perpendicular to both the AdS boundary and the horizon. Solving (5.19) around the
horizon, we derive

z(r) = 1− (d− 2) tanh (r0)
(d− 1) cosh (2r0)− d+ 3(r − r0) +O(r − r0)2. (5.21)

Similar to previous cases, there is a lower bound for zbdy

zbdy ≥ zc ≈


0.897, for d = 4,
0.837, for d = 5,
0.757, for d = 6.

(5.22)

Different from hyperbolic black hole cases, the lower bound of zbdy (5.22) decreases with
the dimensions. As in the previous cases, the lower bound of zbdy also leads to an upper
bound of zmax and the time tR = tL.

5.2.2 No-island phase

Let us go on the discuss the no-island phase. Substituting the embedding functions r = r(z)
and v = v(z) into the metric (5.17), we derive the area of RT surfaces

A= 2πvolRd−3

∫ zmax

zbdy

sinh(r(z))coshd−3(r(z))
zd−3

√
r′(z)2− cosh2(r(z))v′(z)((1−zd−2)v′(z)+2)

z2 dz.

(5.23)
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Taking variations of (5.23), we get

v′′(z) = −
(d− 2)v′(z)

((
z2d−4 − 3zd−2 + 2

)
v′(z)2 +

(
6− 3zd−2

)
v′(z) + 4

)
2z

+(d− 3)zr′(z)2sech2(r(z))
((

1− zd−2
)
v′(z) + 1

)
, (5.24)

r′′(z) = −
r′(z)

(
(d− 2)

(
z2d−4 − 3zd−2 + 2

)
v′(z)2 − 2(d− 2)

(
zd−2 − 2

)
v′(z) + 4

)
2z

−(d− 3)z
(
zd−2 − 1

)
r′(z)3sech2(r(z)) + r′(z)2csch(2r(z))(d cosh(2r(z))− d+ 2)

+
coth(r(z))v′(z)

((
zd−2 − 1

)
v′(z)− 2

)
((d− 1) cosh(2r(z))− d+ 3)

2z2 . (5.25)

The above equations can be solved numerically with BCs

v(zmax) = −
∫ zmax

0

dz

1− zd−2 , v′(zmax) = −∞, (5.26)

r(zmax) = r0, r′(zmax) = coth(r0)((d− 1) cosh(2r0)− (d− 3))
(d− 2)zmax

(
zd−2

max − 2
) .

(5.27)

Note that we should take an UV cut-off for the BC v′(zmax) = −∞ in numerical calculations.
Note also that (5.27) can be derived in the same way as (5.13). For any given parameters zmax
and r0, we can numerically derive zbdy from r(zbdy) = rUV and obtain the boundary time

tR = v(zbdy) +
∫ zbdy

0

dz

1− zd−2 . (5.28)

For a fixed zbdy in our case, we should adjust the parameters zmax and r0 suitably by
applying the shooting method.

Let us draw the Page curves for AdS black holes on codim-2 tensionless branes. See
figure 19. Following the same approach, we can derive Page curves on the codim-2 brane
with non-zero tensions. See appendix B for some key formulas, and see figure 20 for the
results. Note that the d = 4 cases in figure 19 and figure 20 are exactly the same as the
d = 4 cases in figure 17 and figure 18, since they have the same bulk metrics.

6 Conclusions and discussions

In this paper, we investigate the mass spectrum of gravitons and the island on codim-2
branes in AdS/dCFT. We find that mass spectrum is positive and the massless mode
is forbidden by either the boundary or normalization conditions. We show that the first
massive gravitational mode is located on the codim-2 brane; the larger the tension, the
smaller the mass, the better the localization. It is similar to the case of codim-1 brane
and builds an excellent physical foundation for studying black hole evolution on codim-2
branes. By studying a toy model in AdS4/dCFT3, hyperbolic black holes and AdS black
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Figure 19. Page curve of AdS black hole on codim-2 tensionless brane in AdS5/dCFT4 (left)
and AdS6/dCFT5 (right) for selected zbdy = 0.95, 0.96, 0.97 (bottom to top). Here we define
∆A = A(tR)−A(0). The blue line denotes the area of extremal surface in the no-island phase. The
yellow line denotes the area of extremal surface in the island phase. The Page curve is given by the
blue line for t ≤ tP and the yellow line for t > tP . Since we have tP < tm, the unusual situation
happens at tm does not affect Page curve.
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Figure 20. Page curve of AdS black hole on codim-2 tensive brane in AdS5/dCFT4 (left) and
AdS6/dCFT5 (right) for selected q = 1, 5, 10 (bottom to top) and zbdy = 0.95. Here we define
∆A = A(tR)−A(0). The blue line denotes the area of extremal surface in the no-island phase. The
yellow line denotes the area of extremal surface in the island phase. The Page curve is given by the
blue line for t ≤ tP and the yellow line for t > tP . Since we have tP < tm, the unusual situation
happens at tm does not affect Page curve.

holes in higher dimensional AdS/dCFT, we find that the Page curve of eternal black holes
can be recovered due to the island ending on the codim-2 brane.The new feature is that
the extremal surface passing the horizon cannot be defined after some finite time in the
no-island phase. Fortunately, this unusual situation does not affect the Page curve since it
happens after Page time.

There are many significant problems to explore. First, it is expected that the effective
theory on the codim-2 brane in AdS4/dCFT3 is JT gravity. An interesting issue is how
to derive JT gravity and explore the corresponding island mechanism on the codim-2
brane. Second, this paper focuses on codim-2 branes in Einstein gravity. It is interesting
to generalize the discussions to higher codimensional branes in higher derivative gravity.
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Third, we focus on eternal black holes in this paper. Studying the Page curve of evolving
black holes on codim-n branes is also enjoyable. Fourth, AdS/dCFT can be regarded as
a particular limit of cone holography [48], where the would-be-AdS-boundary brane is
located at a finite place. Recall that there is a massless gravitational mode on the brane in
cone holography [48]. Studying the Page curve of massless gravity in cone holography is
interesting. Fifth, a physical explanation of the finite-time phenomenon in the no-island
phase is also enjoyable. We hope these problems can be addressed in the future.
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A Hyperbolic black hole on codim-2 tensive brane

In this appendix, we list the EOM and BC needed for the numeral calculations of the
Page curve of a hyperbolic black hole on the codim-2 brane with non-zero tensions. The
corresponding bulk metric takes the form

ds2 = dr̄2

F (r̄) + F (r̄) dθ2 + r̄2

z2

(
−
(
1− z2

)
dt2 + dz2

1− z2 + dH2
d−3

)
(A.1)

= dr̄2

F (r̄) + F (r̄) dθ2 + r̄2

z2

(
−
(
1− z2

)
dv2 − 2dvdz + dH2

d−3

)
, (A.2)

where F (r̄) is given by (2.15).

Island phase. The embedding function of RT surfaces are given by

t = constant, z = z(r̄). (A.3)

Substituting (A.3) into (A.1), we derive the area of RT surfaces

A = 2πqvolHd−3

∫ r̄UV

r̄h

dr̄
r̄d−3

z (r̄)d−3

√√√√ F (r̄) r̄2z′ (r̄)2

z (r̄)2 (1− z(r̄)2)
+ 1. (A.4)

Taking variations of (A.4), we get EOM

z′′(r̄) = −z
′(r̄) ((d− 1)F (r̄) + r̄F ′(r̄))

r̄F (r̄) + (d− 3)
(
z(r̄)2 − 2

)
z(r̄)3

r̄2F (r̄) (z(r̄)2 − 1) + (d− 4)z′(r̄)2

z(r̄) (z(r̄)2 − 1)

−z(r̄)
(
(d− 5)r̄2F (r̄)z′(r̄)2 − d+ 3

)
r̄2F (r̄) (z(r̄)2 − 1) + r̄z′(r̄)3 (2(d− 2)F (r̄) + r̄F ′(r̄))

2z(r̄)2 (z(r̄)2 − 1) . (A.5)

Solving EOM (A.5) around the brane r̄ = r̄h, we get the BC

z (r̄) = zbrane + (d− 3) zbrane
(
z2

brane − 1
)

r̄h
(
dr̄2
h − d+ 2

) (r̄ − r̄h) +O(r̄ − r̄h)2. (A.6)
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No-island phase. Substituting the embedding functions r̄ = r̄(z) and v = v(z) into the
metric (A.2), we derive the area of RT surfaces

A = 2πqvolHd−3

∫ zmax

zbdy
dz

r̄(z)d−3

zd−3

√
−F (r̄(z))r̄(z)2v′(z) ((1− z2)v′(z) + 2)

z2 + r̄′(z)2.

(A.7)
Taking variations of (A.7), we get EOM

v′′(z) = −v
′(z)

((
d
(
z2 − 1

)
− 3z2 + 2

) ((
z2 − 1

)
v′(z)− 3

)
v′(z) + 2(d− 2)

)
z

−(d− 3)zr̄′(z)2 ((z2 − 1
)
v′(z)− 1

)
r̄(z)2F (r̄(z)) , (A.8)

r̄′′(z) = − r̄
′(z)

((
d
(
z2 − 1

)
− 3z2 + 2

) ((
z2 − 1

)
v′(z)− 2

)
v′(z) + 2

)
z

+(d− 2)r̄(z)F (r̄(z))v′(z)
((
z2 − 1

)
v′(z)− 2

)
z2 + r̄(z)2v′(z)

((
z2 − 1

)
v′(z)− 2

)
F ′(r̄(z))

2z2

+ r̄′(z)2 (r̄(z)2F ′(r̄(z))− (d− 3)z
(
z2 − 1

)
r̄′(z)

)
r̄(z)2F (r̄(z)) + (d− 1)r̄′(z)2

r̄(z) . (A.9)

We can solve (A.8) and (A.9) numerically with the following BCs

v(zmax) = −1
2 log zmax + 1

zmax − 1 , v′(zmax) = −∞, (A.10)

r̄(zmax) = r̄0, r̄′(zmax) = r̄0(2(d− 2)F (r̄0) + r̄0F
′(r̄0))

2zmax((d− 3)z2
max − (d− 2)) . (A.11)

Note that we should take an UV cut-off for the BC v′(zmax) = −∞ in numerical calculations.

B AdS black hole on codim-2 tensive brane

In this appendix, we list the EOM and BC needed for the numeral calculations of the Page
curve of an AdS black hole on the codim-2 brane with non-zero tensions. The bulk metric
with an AdS black hole on the brane takes the form

ds2 = dr̄2

F (r̄) + F (r̄) dθ2 + r̄2

z2

(
−
(
1− zd−2

)
dt2 + dz2

1− zd−2 +
d−3∑
a=1

dy2
a

)
(B.1)

= dr̄2

F (r̄) + F (r̄) dθ2 + r̄2

z2

(
−
(
1− zd−2

)
dv2 − 2dvdz +

d−3∑
a=1

dy2
a

)
, (B.2)

where F (r̄) is given by (2.15).

Island phase. The embedding function of RT surfaces are the same as (A.3). Substitut-
ing (A.3) into (B.1), we derive the area of RT surfaces

A = 2πqvolRd−3

∫ r̄UV

r̄h

dr̄
r̄d−3

z(r̄)d−3

√
F (r̄)r̄2z′(r̄)2

z(r̄)2(1− z(r̄)d−2) + 1. (B.3)
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Taking variations of (B.3), we get EOM

z′′(r̄) = z′(r̄)2 (r̄z′(r̄) (2(d− 2)F (r̄) + r̄F ′(r̄)) + (d− 2)z(r̄))
2 (z(r̄)d − z(r̄)2) + (d− 3)z(r̄)d−1

r̄2F (r̄)

−(d− 1)z′(r̄)
r̄

− (d− 6)z′(r̄)2

2z(r̄) − (d− 3)z(r̄) + r̄2F ′(r̄)z′(r̄)
r̄2F (r̄) . (B.4)

Solving EOM (B.4) around the brane r̄ = r̄h, we get the BC

z (r̄h) = zbrane +
(d− 3) zbrane

(
zd−2

brane − 1
)

r̄h
(
dr̄2
h − d+ 2

) (r̄ − r̄h) +O (r̄ − r̄h)2 . (B.5)

No-island phase. Substituting the embedding functions r̄ = r̄(z) and v = v(z) into the
metric (B.2), we derive the area of RT surfaces

A = 2πqvolRd−3

∫ zmax

zbdy
dz

r̄(z)d−3

zd−3

√
−F (r̄(z))r̄(z)2v′(z) ((1− zd−2)v′(z) + 2)

z2 + r̄′(z)2.

(B.6)
Taking variations of (B.3), we get EOM

v′′(z) = −
(d− 2)v′(z)

((
z2d−4 − 3zd−2 + 2

)
v′(z)2 +

(
6− 3zd−2

)
v′(z) + 4

)
2z

+
(d− 3)zr̄′(z)2

((
1− zd−2

)
v′(z) + 1

)
r̄(z)2F (r̄(z)) , (B.7)

r̄′′(z) = −
r̄(z)v′(z)

((
1− zd−2

)
v′(z) + 2

)
(2(d− 2)F (r̄(z)) + r̄(z)F ′(r̄(z)))

2z2

−
r̄′(z)

(
(d− 2)

(
z2d−4 − 3zd−2 + 2

)
v′(z)2 − 2(d− 2)

(
zd−2 − 2

)
v′(z) + 4

)
2z

+
r̄′(z)2

(
r̄(z)2F ′(r̄(z))− (d− 3)

(
zd−1 − z

)
r̄′(z)

)
r̄(z)2F (r̄(z)) + (d− 1)r̄′(z)2

r̄(z) . (B.8)

We can solve (B.7) and (B.8) numerically with following BCs

v(zmax) = −
∫ zmax

0

dz

1− zd−2 , v′(zmax) = −∞, (B.9)

r̄(zmax) = r̄0, r̄′(zmax) = r̄0(2(d− 2)F (r̄0) + r̄0F
′(r̄0))

(d− 2)zmax(zd−2
max − 2)

. (B.10)

Note that we should take an UV cut-off for the BC v′(zmax) = −∞ in numerical calculations.
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