
J
H
E
P
1
1
(
2
0
2
1
)
2
2
1

Published for SISSA by Springer

Received: August 23, 2021
Revised: October 19, 2021

Accepted: November 15, 2021
Published: November 29, 2021

Standard Model EFTs via on-shell methods

Manuel Accettulli Huber and Stefano De Angelis
Centre for Research in String Theory, School of Physics and Astronomy,
Queen Mary University of London,
Mile End Road, London E1 4NS, U.K.

E-mail: m.accettullihuber@qmul.ac.uk, s.deangelis@qmul.ac.uk

Abstract: We present the Standard Model Effective Field Theories (SMEFT) from purely
on-shell arguments. Starting from few basics assumptions such as Poincaré invariance and
locality, we classify all the renormalisable and non-renormalisable interactions at lowest
order in the couplings. From these building blocks, we review how locality and unitarity
enforce Lie algebra structures to appear in the S-matrix elements together with relations
among couplings (and hypercharges). Furthermore, we give a fully on-shell algorithm to
compute any higher-point tree-level amplitude (or form factor) in generic EFTs, bypassing
BCFW-like recursion relations which are known to be problematic when non-renormalisable
interactions are involved. Finally, using known amplitudes techniques we compute the
mixing matrix of SMEFT marginal interactions up to mass dimension 8, to linear order in
the effective interactions.

Keywords: Scattering Amplitudes, Effective Field Theories, Beyond Standard Model,
Renormalization Group

ArXiv ePrint: 2108.03669

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)221

mailto:m.accettullihuber@qmul.ac.uk
mailto:s.deangelis@qmul.ac.uk
https://arxiv.org/abs/2108.03669
https://doi.org/10.1007/JHEP11(2021)221


J
H
E
P
1
1
(
2
0
2
1
)
2
2
1

Contents

1 Introduction 2

2 The Standard Model from on-shell techniques 4
2.1 Four-point amplitudes from factorisation 5
2.2 Lie algebras from tree-level unitarity 6

2.2.1 Jacobi identities from factorisation 6
2.2.2 Lie algebras from factorisation 6
2.2.3 Charge conservation and Yukawa coupling 7

2.3 Hypercharge constraints from gauge anomalies 8

3 The on-shell classification of SMEFT operators 11
3.1 Kinematic structures from spinor helicity variables 11

3.1.1 Schouten identities 13
3.1.2 Momentum conservation 13

3.2 The classification of SMEFT interactions 14
3.2.1 The gauge group structures 15
3.2.2 Repeated fields and Young projectors 15

4 The UV anomalous mass dimension matrix at leading order 17
4.1 Review of the method 17
4.2 The Higgs production in association with a W boson 19

5 Bootstrapping the tree-level amplitudes 29
5.1 Higher-point amplitudes in the SM without recursion relations 29

5.1.1 Constructing an ansatz 29
5.1.2 The case of external vector bosons 34
5.1.3 Solution of the ansatz 35

6 Conclusions 37

A Conventions and notations 39
A.1 Spinor Helicity Formalism 39
A.2 The Standard Model gauge group 40

B 3-point amplitudes in the Standard Model 41

C One-loop scalar integrals 42

D Infrared collinear anomalous dimensions in the Standard Model 42

E Finite field arithmetic 44

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
1

1 Introduction

The Standard Model Effective Field Theories (SMEFT) are a systematic and model in-
dependent framework to characterise both experimental deviation from predictions of the
Standard Model (SM) and possible extensions beyond it (for a review, see [1] and references
therein). Indeed, up to now, LHC measurements of cross-sections are compatible with SM
theoretical predictions. Nonetheless the SM is expected to be an incomplete description
of Nature: many theoretical puzzles are still unsolved, including but not limited to the
hierarchy problem, the magnitude of the quartic λ coupling of the Higgs, the origin of CP
violation in the quark sector, or the unnatural pattern of the Yukawa couplings. More
recently, also an experimental deviation from SM predictions has been measured in the
gµ − 2 experiment [2–4].

Then, how should we look for new physics beyond the SM? When considering exten-
sions of the SM, additional heavy modes with mass Λ can be integrated out at energie
scales E � Λ. This leaves us, in the usual Lagrangian formalism, with some effective
interactions which can be organised in terms of their mass dimension as

LSMEFT = LSM +
∑
i,j

c
(j)
i

Λj−4 O
(j)
i . (1.1)

The first example are the dimension-5 Weinberg operators [5] which generate lightMajorana-
like neutrino masses:

LSMEFT = LSM + Cmn
ΛL

(
εikεjlL

i
mL

j
nH

kH l + εikεjlL̄miL̄n jH̄kH̄l

)
, (1.2)

where m,n = 1, 2, 3 are flavour indices and i, j are SU(2) indices, and ΛL is the natural
cut-off of the effective theory. More precisely ΛL is the cut-off scale for effective inter-
actions which violate lepton and barion number, as opposed to the scale Λ associated to
lepton/barion number preserving interactions. Experimental constraints on the neutrino
masses put the lower bound on the cut-off scale at ΛL/Cmn & 1015 GeV, which are scales
currently impracticable for the observation of new physics. In fact, the leading contribu-
tions to the SMEFT come from dimension-6 operators [6–12], but there are interesting
processes for which the dominant contribution comes from even higher-dimensional oper-
ators. Some examples include the light-by-light scattering [13], the light production via
gluon fusion [14] and the neutral bosons production [15] and even, in some scenarios, the
gµ−2 [16] and Higgs production in association with a W boson [17], which receive the first
contribution from dimension-8 operators. Dimension-8 operators can play a relevant role
even when appearing as subleading contributions [18], and recently studies of their impact
on SMEFT have been performed [19–23].

In general, the classification of marginal operators in the Standard Model is a com-
plicated task. The counting of non-redundant operators can be performed via the Hilbert
series method, as shown in [24–26], however an explicit construction of the SMEFT op-
erators is rather involved. Traditional techniques require to take care separately of many
source of redundancy, e.g. Bianchi identities and IBP identities of operators with derivative
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insertions, field redefinitions and Fierz identities. More recently, a more direct way of con-
structing this basis has been proposed, which relies on the classification of the independent
effective interactions directly from their S-matrix elements [27–34], and has been used to
classify all the SMEFT operators up to mass dimension 9 [35, 36].

Following this line of reasoning, in this paper we will present a fully on-shell construc-
tion not only of the effective interactions but of the SM itself, avoiding any mention of
the Lagrangian formalism other than for comparison purposes. In the recent years, on-
shell methods have proven to be the most powerful techniques in a variety of settings,
such as collider physics [37, 38], the study of the ultraviolet (UV) behaviour of N = 8
supergravity [39, 40], the study of the inspiral phase of binary systems of celestial ob-
jects [41–48], the perturbative exploration of supersymmetric gauge theories [49–51] and
also the perturbative study of off-shell quantities such as form factors [52–61]. Besides the
classification of effective field theory (EFT) interactions themselves, S-matrix properties,
such as unitarity, causality and analyticity, have been used to constrain Wilson coefficients
associated to EFTs [16, 62–64], including the SMEFT [65–67]. Moreover, on-shell tech-
niques also provide powerful strategies to study the UV mixing in (non-supersymmetric)
EFTs, as first pointed out in [68] using techniques developed for the study of the anomalous
dimension of operators in N = 4 super-Yang-Mills [69–72] (for a review, see [73] and refer-
ences therein) from scattering amplitudes and form factors [74–86] and recently applied to
the SMEFT [87–90]. Furthermore, on-shell techniques also provided a good understand-
ing of the mysterious pattern of zeros in the one-loop anomalous dimension matrix of the
SMEFT [91–93].

The first systematic and complete computation of the one-loop anomalous dimension
matrix for dimension-six operators in the SMEFT has been carried out in [94–96]. So
far, the study of the anomalous dimension of SMEFT interactions has been completed
only partially in the literature for operators up to dimension 8 [97–103]. In this paper,
we present the general on-shell set-up which will allow us to fully compute the one-loop
anomalous dimension matrix for all the operators in the SMEFT up to mass dimension 8.
As a proof of concept, we reproduce know results for the mixing matrix of operators of
dimension 5, 6 and 7 and we present for the first time the mixing matrix of dimension 8
operators for the SMEFT considering a single flavour family Nf = 1. In the present work,
we compute the anomalous dimension matrix to linear order in the Wilson coefficients, i.e.
we ignore the mixing between dimension-6 and dimension-8 operators, which are however
partially known in the literature [103].

The present paper is organised as follows. In section 2 we describe the complete
construction of the SM from on-shell principles, beginning with the classification of all
the possible three-point amplitudes. From there we review how locality and unitarity
constraints on the four-point tree-level amplitudes enforce the Lie algebra structure of
the SM along with non-trivial relations among the couplings and charge conservation,
whereas the same conditions at one-loop impose relations among the hypercharges usually
found from anomaly cancellation requirements. In section 3 we discuss the classification of
the possible independent SMEFT interactions for fixed mass dimension. In particular we
present an original take on the problem of finding the independent kinematic structures,
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which are then combined with colour singlets in order to obtain all the possible effective
interactions, which are in one-to-one correspondence with the marginal operators. Next,
in section 4, we review the computation of the one-loop anomalous dimension matrix from
on-shell data through unitarity. We make use of the presented techniques to reproduce
known results for dimension 5, 6, and 7 operators as well as to compute for the first
time the mixing of dimension 8 operators at linear order in the Wilson coefficients and
leading (quadratic) order in the renormalisable couplings. These general results are made
available in the supplementary material: the file AllMinimalAmplitudes.wl contains the
basis of operators of dimension 5,6,7 and 8 build using the algorithm presented in section 3
with an arbitrary number of flavours, while the files dimension6.wl, dimension7.wl and
dimension8.wl contains the mixing matrices for all the operators at dimension 6,7 and 8
respectively in the SMEFT with Nf = 1. On the other hand here we present the explicit
mixing coefficients for dimension 6 and 8 operators relevant for Higgs production with a
W boson. Finally, in section 5, we present a completely on-shell algorithm which allows to
compute tree-level amplitudes (and form factors) in a generic EFT, which will prove crucial
in extending our results beyond leading order. This algorithm is based on factorisation
properties of the tree-level amplitudes, and allows to bypass the use of recursion relations
which can be problematic when non-renormalisable interactions are involved. Furthermore,
the computed amplitudes are manifestly local, which is particularly well suited for example
when computing loop-level results through generalised unitarity.

2 The Standard Model from on-shell techniques

In this section we are going to present a perturbative on-shell construction of the Standard
Model, through the consistency of its S-matrix elements, under the following assumptions:

• The scattering amplitudes are invariant under Poincaré transformations but trans-
form under some representation of the Little Group specified by their particle con-
tent. In four dimensions, under Little Group transformations each massless state
transforms with a phase ei hiφ where hi is the helicity of the ith-state. These assump-
tions make the Spinor Helicity variables, briefly reviewed in appendix A.1, the most
suited for the description of scattering amplitudes.

• In natural units, the mass dimension of an n-point scattering amplitude, at any loop
order L,1 is [

A(L)
n

]
= 4− n . (2.1)

• Locality: the non-analytic terms of the scattering amplitudes correspond to interme-
diate particles going on-shell. In particular, simple poles correspond to single-particle
exchanges with the intermediate particle going on-shell.

• Unitarity: the discontinuities of the amplitudes are given by a proper sum of products
of lower-point (and lower-loop) amplitudes. In particular, the residues on the simple

1In the following, when the number of loops is not specified as superscript, we mean tree-level.
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poles are given by

− i Res
s1...m

An(ph1
1 . . . phnn ) =f

∑
sI,hI

Am+1(ph1
1 . . . phmm , phII )An−m+1(phII →p

hm+1
m+1 . . . p

hn
n ) ,

(2.2)
where f = (−1)∆s with ∆s the respective signature of the fermion ordering between
the l.h.s. and the r.h.s. , sI and hI are the type and the helicity of the intermediate
state propagating.2

Gauge invariance is not assumed a priori. Indeed, it has been proven that the Lie
algebra structures are required by consistent factorisation of the four-point tree-level am-
plitude [104]. We will briefly review and extend this considerations to the Standard Model
in section 2.1. Moreover, since we work purely on-shell (in four dimensions) with spinor
helicity variable, there is no need for polarisation tensors or Ward identities.

All the three-point scattering amplitudes in the Standard Model can be fixed by sym-
metry, helicity weight and mass dimension considerations (up to a constant) [104]. In
particular, the kinematic part of any massless three-point amplitude can be written as

A(1h1 , 2h2 , 3h3) =


i g 〈1 2〉h1+h2−h3〈2 3〉h2+h3−h1〈3 1〉h3+h1−h2

∑
i hi = −1

i g [1 2]h1+h2−h3 [2 3]h2+h3−h1 [3 1]h3+h1−h2
∑
i hi = 1

, (2.3)

where the mass dimension of the coupling constant is zero [g] = 0, because we are assum-
ing only renormalisable interactions for the moment. A list of all the tree-level three-point
amplitudes in the Standard Model, with the proper colour and flavour structures, are pre-
sented in appendix B. We will show that this is enough to fully describe, at the perturbative
level, the Standard Model in terms of its S-matrix elements.

2.1 Four-point amplitudes from factorisation

All the 4-point amplitudes in the Standard Model, but A(H̄ i, H̄j , Hk, H l), can be com-
pletely fixed by factorisation. This will be proven in 5.1.1 but we assume it for the moment.
Consistency between different factorisation channels at tree-level for four-point amplitudes
then constrains many of the structures in the three-point amplitude. These constraints fix
the (gauge-invariant) structures appearing and impose relations between couplings.

The constraints imposed by factorisation are completely equivalent to those found
when we construct a consistent gauge-invariant Lagrangian describing a unitary QFT of
self-interacting vector bosons [105] and their minimal coupling to fermions and scalars,
i.e. the Lie algebra structures and the universality of Yang-Mills coupling (see, for exam-
ple, [106]). Moreover, we generalise this argument and find that factorisation also imposes
relations between the hypercharges associate to the minimal coupling of matter with (non-
self-interacting) U(1)-vectors, which are equivalent from a Lagrangian perspective to the
requirement that the Yukawa interactions are U(1)Y invariant, i.e. scattering amplitudes
are non zero only for hypercharge-conserving processes.

2We adopt the following convention: we indicate with An(ph1
1 . . . phn

n ) an n-point scattering amplitude
with all the momenta outgoing and with An(ph1

1 . . . phm
m → p

hm+1
m+1 . . . phn

n ) an n-point amplitude with m

incoming and n−m outgoing states.
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2.2 Lie algebras from tree-level unitarity

2.2.1 Jacobi identities from factorisation

In this subsection we review the observations in [104]. We consider the three-gluon ampli-
tudes3

A(GA−, GB−, GC+) = g3 f
ABC 〈1 2〉3
〈2 3〉〈3 1〉 , A(GA−, GB+, GC+) = −g3 f

BCA [2 3]3
[1 2][3 1] , (2.4)

where fABC = f [ABC],4 to satisfy Bose-Einstein symmetry of the three-point amplitude
and we try to bootstrap the four-gluon amplitude from factorisation. The most generic
(slightly redundant) ansatz for the four-point amplitude which is compatible with locality
and unitarity is

A(GA−, GB−, GC+, GD+)
〈1 2〉2[3 4]2 = fABEfCDE

s12

(
c1
s13

+ c2
s14

)
+ fACEfBDE

s13

(
c3
s12

+ c4
s14

)

+ fADEfBCE

s14

(
c5
s12

+ c6
s13

)
.

(2.5)

The coefficients ci can be fixed from factorisation using (2.2) which in the 4-point case
reduces to5

− iRes
sij=0

A4 = A3 · A3 . (2.6)

Imposing this constraint for all the three distinct channels, we find
fABEfCDE(c1 − c2) + fACEfBDEc3 − fADEfBCEc5 = −g2

3 f
ABEfCDE

fABEfCDEc1 + fACEfBDE(c3 − c4)− fADEfBCEc6 = −g2
3 f

ACEfBDE

fABEfCDEc2 − fACEfBDEc4 + fADEfBCE(c5 − c6) = −g2
3 f

ADEfBCE .

(2.7)

This linear system in general has no solutions, unless we impose the following quadratic
relations among the constants fABC :

fABEfCDE + fBCEfADE + fCAEfBDE = 0 , (2.8)

which can be recognised as the Jacobi identities for the structure constants of a Lie algebra.

2.2.2 Lie algebras from factorisation

We can apply the same reasoning to scalars and fermions coupled to the non-abelian spin-1
particles and find that also their minimal coupling is tightly constrained by locality and
unitarity [107]. We consider as an example the four-point amplitude A(GA−, GB+, ūa, ub).

3The relative minus sign between the so called MHV and MHV amplitudes is fixed by requiring parity
invariance of the theory (at the perturbative level).

4In principle, this assumption could be lifted and would follow from factorisation as well, but for sim-
plicity we keep it.

5We remind the reader that when fermions are present in the amplitudes, the r.h.s. of (2.6) might get a
minus sign contribution from fermion reordering and a further factor of −i when crossing a fermion from
initial to final state. This subtlety will be relevant in the computations of the following sections.
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The three-point minimal coupling is fixed by little group and in principle can take the
general form

A(GA−, ūa, ub) = i g3,m τ
Aa
b

〈1 2〉2
〈2 3〉 , A(GA+, ūa, ub) = i g3,m τ

Aa
b

[1 3]2
[2 3] , (2.9)

where, for the moment, τAab is some generic matrix encoding the interaction properties
of the fermions ua (ūa) and the vector bosons, and we factored out an overall numerical
coefficient. The most general ansatz for the four-point is then

A(GA−, GB+, ūa, ub)
〈1 3〉2[2 3][2 4] = fABCτC ab

s12

(
c1
s13

+ c2
s14

)
+ τAB ab

s13

(
c3
s12

+ c4
s14

)

+ τBAab
s14

(
c5
s12

+ c6
s13

) (2.10)

where τAB ab = τAac τ
B c
b . Again taking the residues and matching with the factorisation

channels as in equation (2.6), we find:
fABCτC ab (c1 − c2) + τAB ab c3 − τBAab c5 = i g3 g3,m f

ABCτC ab

fABCτC ab c1 + τAB ab (c3 − c4)− τBAab c6 = g 2
3,mτ

AB a
b

fABCτC ab c2 − τAB ab c4 + τBAab (c5 − c6) = g 2
3,mτ

BAa
b .

(2.11)

This linear system has solutions if and only if

g3,m = g3 , (2.12)

τAB ab − τBAab = i fABCτC ab , (2.13)

i.e. iff the coupling constant of the interaction is universal and the matrices τAab are
representations of the elements of a Lie algebra, with fABC the structure constants.

2.2.3 Charge conservation and Yukawa coupling

Last we generalise the procedure of the previous sections to the minimal coupling of the
abelian vectors with scalars and fermions interacting via Yukawa coupling. Unitarity and
locality will then imply that the hypercharge associated to the minimal coupling of the
matter states to the abelian vector is conserved. The relevant three-point amplitudes are

A(B−, ē, e) = i g1Ye
〈1 2〉2
〈2 3〉 , (2.14)

A(B−, L̄i, Lj) = i g1YLδ
j
i

〈1 2〉2
〈2 3〉 , (2.15)

A(B−, H̄ i, Hj) = i g1YHδ
j
i

〈1 2〉〈3 1〉
〈2 3〉 , (2.16)

A(Li, e, H̄j) = i Ȳ(3)δij [1 2] , (2.17)
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where Yi is the hypercharge associated to the i-th state, and Y(3) is the Yukawa coupling
matrix for the electron family, with Ȳ(3) =

(
Y(3)

)†
. The most generic ansatz consistent

with locality and unitarity is

A(B−, Li, e, H̄j)
〈1 2〉〈1 3〉[2 3]2 = δij

(
c1

s12s13
+ c2
s12s14

+ c3
s13s14

)
, (2.18)

and probing the three different factorisation channels we find the system:
c1 − c2 = −g1Ȳ(3)YL

c1 − c3 = +g1Ȳ(3)Ye ,

c2 − c3 = +g1Ȳ(3)YH

(2.19)

which has solutions if and only if we impose the hypercharge conserving condition:

YL = YH − Ye . (2.20)

Analogously, one can also find the charge conservation conditions for the processes involving
quarks, instead of leptons:

YQ = YH − Yd , (2.21)
YQ = −YH − Yu . (2.22)

2.3 Hypercharge constraints from gauge anomalies

On top of the relations we found so far, it would be nice to be able to further relate Ye
and Yu as is done by the anomaly cancellation condition YL + 3YQ = 0. Indeed, it has
long been known that in gauge theories with chiral fermions anomalies arise from fermion
loops [108, 109]. These gauge anomalies impose consistency conditions on the theory, which
in the case of the SM translate into relations among the hypercharges of the fermions.
Interestingly, as first noticed in [110, 111], the same cancellation conditions are required
from a purely on-shell point of view by a clash of unitarity and locality in some one-loop
amplitudes. In this section we apply this method to recover the SM anomaly cancellation
conditions.

The core of the idea is that one-loop amplitudes can be computed and entirely fixed
using generalised unitarity methods [112–125], up to rational terms which have no branch
points. Such amplitudes by construction are unitary, however locality is not guaranteed
(spurious poles can appear in the final result) and needs to be restored by appropriately
fixing the rational terms to which the unitarity methods are blind. These rational terms
might in turn introduce new corrections to the factorisation of the four-point amplitude,
which is inconsistent with the fact that the three-point amplitudes are tree-level exact and
fixed by helicity and mass dimension. When this happens additional properties of the
theory need to be required for these terms to vanish. In particular, in this section we will
show that for the Standard model this leads to well known anomaly constraints on the
fermion hypercharges.
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We will specifically consider a fermion loop coupled to four external gauge bosons
in the MHV configuration. The full one-loop amplitudes in the Standard Model can be
schematically written as

A1−loop = A1−loop
vec +A1−loop

ferm +A1−loop
scal , (2.23)

where the three contributions correspond respectively to vector bosons, fermions or scalars
running in the internal loop, the specific type of these particles depending on the external
states. We want to focus here on the fermion loop contributions, which are infrared finite
and are the only part contributing to the chiral anomaly.The kinematic information of these
amplitudes is entirely captured by the coefficients of figure 1 with cyclic rotations providing
the other orderings. For later convenience we define the following kinematic combinations,
which turn out to be ubiquitous in the one-loop amplitudes

Keven := 〈2 4〉2[1 3]2
s12s14

∑
i,j

(cfi,j + cfi,j)Ii(j) , Kodd := 〈2 4〉2[1 3]2
s12s14

∑
i,j

(cfi,j − c
f
i,j)Ii(j) , (2.24)

with i = 2, 3, 4 and j = s12, s14, and I2, I3 and I4 being the bubble, triangle and box inte-
grals given in appendix C. Notice that in the chosen helicity configuration in the one-loop
amplitude there are no discontinuities in the s13 channel, because all the tree-amplitudes
entering the fermion loop contribution in the generalised unitarity calculation vanish in
this channel.

Then we consider as a first example the one-loop amplitude with two W s and two Bs
as external states, and consequently Q/Q̄ and L/L̄ as the only possible fermions running
through the loop. We find

A1−loop
ferm (W I

+, B−,W
J
+, B−)

∣∣∣
cut

= g2
1g

2
2(Y 2

L + 3Y 2
Q) δIJ Keven . (2.25)

The presence of only Keven was to be expected due to the interplay of the colour part
with the kinematics. The SU(3) colour part is trivial being absent in the case of the L/L
circulating in the loop and contributing a numeric factor δaa = 3 for the Q/Q loop. The
SU(2) part on the other hand contributes with a factor of TrσIσJ = 1

2δ
IJ in both the s12

and s14 channels, which then leads to an additive combination of the kinematic parts into
Keven. Studying the behaviour of Keven in the small-s13 limit one finds that

Keven
s13→0−−−−→ 〈2 4〉2[1 3]2

s12s14

(
−s

2
12
s2

13
− s12
s13

+O(s0
13)
)
, (2.26)

thus, in order to restore locality, this amplitude requires a rational term whose kinematic
part is of the form

Reven = −〈2 4〉2[1 3]2
s2

13
, (2.27)

which cancels both the spurious poles of (2.26) and does not produces any modification
to the residues in the s12 and s14 channels. Adding together the cut-constructible and
rational piece one gets the complete fermion loop contribution

A1−loop
ferm (W I

+, B−,W
J
+, B−) = g2

1g
2
2(Y 2

L + 3Y 2
Q) δIJ (Keven +Reven) . (2.28)
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1+ 2−

3+4−

cf4 = −s
4
12s

2
14

2 s4
13

+ 1
2

− 1
2

1+ 2−

3+4−

cf4 = −s
2
12s

4
14

2 s4
13

− 1
2

+ 1
2

2−
3+

4−
1+

cf3,(12) = s4
12s14
2 s4

13

+ 1
2

− 1
2

2−
3+

4−
1+

cf3,(12) = s2
12s

3
14

2 s4
13

− 1
2

+ 1
2

2− 3+

4−1+ + 1
2−

1
2

cf2,(12) = s14(2s2
14 + 11s2

12 + 7s12s14)
6s3

13

2− 3+

4−1+ − 1
2 + 1

2

cf2,(12) = s14(2s2
14 − s2

12 − 5s12s14)
6s3

13

Figure 1. Kinematic coefficients from generalised unitarity [125], here a kinematic contribution of
the type 〈2 4〉2[1 3]2

s12s14
has been factored out.

On the other hand, considering three external W and a single B, one ends up with

A1−loop
ferm (W I

+,W
J
−,W

K
+ , B−)

∣∣∣
cut

= i

2 g1g
3
2(YL + 3YQ) εIJK Kodd , (2.29)

where once again the SU(2) colour structure, which is TrσIσJσK = i
4ε
IJK in the s12

channel and TrσIσKσJ = − i
4ε
IJK in the s14 channel, is responsible for the relative sign

among the kinematic structures and the combination into Kodd.
Now Kodd in the small-s13 limit goes as

Kodd
s13→0−−−−→ 〈2 4〉2[1 3]2

s12s14

(
−s12
s13

+O(s0
13)
)
, (2.30)

requiring a compensating rational term of the form

Rodd = 〈2 4〉2[1 3]2 s12 − s14
2s12s13s14

, (2.31)

which would lead to a complete fermion loop contribution of

A1−loop
ferm (W I

+,W
J
−,W

K
+ , B−) = i

2 g1g
3
2(YL + 3YQ) εIJK (Kodd +Rodd) . (2.32)
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However, Rodd introduces (unphysical) corrections to the residues in the s12 and s14 chan-
nels, because the one-loop four-point amplitude cannot have any factorisation channel and
thus it cannot appear in the one loop amplitude.6 In order to get an answer which satisfies
both unitarity and locality we must then enforce the coefficient of the amplitude to vanish,
which means imposing

YL + 3YQ = 0 . (2.33)

In a similar fashion, when looking at the one-loop interaction of three gluons with a single
B we get the condition

2YQ = Yu + Yd , (2.34)

which is necessary for the fermion-loop contribution to recombine in the physically mean-
ingful form

A1−loop
ferm (GA+, GB−, GC+, B−)

∣∣∣
τABC

= −2g1g
3
3(Yu + Yd) (Keven +Reven) . (2.35)

Finally, in order to obtain the additional textbook constraint on the hypercharges(
2Y 3

L − Y 3
e

)
+ 3

(
2Y 3

Q − Y 3
u − Y 3

d

)
= 0 , (2.36)

we need to look at four-point amplitudes involving a fermion loop with three external B
and a boson which can couple universally to all the fermions, in other words a graviton
g. Similarly, considering the fermionic contribution to the one-loop interaction of three
gravitons with a single B will lead to the anomaly cancellation condition

(2YL − Ye) + 3 (2YQ − Yu − Yd) = 0 . (2.37)

3 The on-shell classification of SMEFT operators

In this section we are going to extend the on-shell methods to the classification of effective
interactions [27, 31, 34] in the SMEFT [28–30, 32], corresponding in the Lagrangian for-
malism to insertions of marginal operators [126–129]. First we are going to classify all the
independent kinematic structures in a generic theory in four dimensions introducing a new
algorithm in terms of graphs and then we will consider the specific case of the Standard
Model, combining these with the colour structures.7

3.1 Kinematic structures from spinor helicity variables

Each effective interaction will be identified by its minimal amplitude, i.e. the amplitude at
leading order which does not vanish in free theory (if we switch off all the other interactions).
This has to be a contact term, i.e. there are no intermediate modes propagating.

6Three-point amplitudes are exact at tree-level and fixed by helicity and mass dimensions consideration.
This make the poles of four-point amplitudes tree-level exact, i.e. there are no loop corrections to the
residues of these poles.

7The approach presented in this section has been formulated by one of the authors and coded in
Mathematica [130]. The code and an example notebook are available at the link
https://github.com/StefanoDeAngelis/SMEFT-operators.
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As a first step in the classification procedure, we fix the mass-dimension [O] of the
marginal operators for which we want to find a complete basis. From the minimal ampli-
tudes we strip off the coupling of the effective interaction, which is related to the dimension
of the corresponding marginal operator by

[gO] = 4− [O] . (3.1)

What we are looking for are the kinematic structures which have mass dimension

[O]− n ≥ 0 , (3.2)

where n is the number of external legs in the corresponding minimal amplitude. Equa-
tion (3.2) provides a constraint on n which can be further refined by taking into account
which types of particles are found in the amplitudes. In fact, in order to get helicity weights
right, each vector in the minimal amplitude will contribute at least with two spinor variables
and each fermion at least with one. This leads to the stronger constraint8

[O]− n ≥ 2× 1
2 × ng + 1

2 × nf =⇒ 2ng + 3
2nf + ns ≤ [O] , (3.3)

where ng, nf and ns are respectively the number of vectors, fermions and scalars and
clearly n = ng + nf + ns. Next, we need to take into account the constraints coming
from the condition that our kinematic structures must be SL(2,C) invariant. This re-
quires to further distinguish between helicities of the different particles, and to find all
the (ng− , ng+ , nf− , nf+ , ns),9 compatible with the constraint (3.3). Once ng, nf and ns
are fixed, we take into account that every state can contribute to the kinematic structures
with powers of its momentum, which correspond to derivates in the operator language.
The total number of momenta n∂ is fixed by saturating the mass dimension constraint to

n∂ = [O]− 2ng −
3
2nf − ns . (3.4)

A simple way of finding all the possible structures is to identify them with an oriented
multigraph, where each vertex is associated to a particle, and the edges correspond to
angle (red) or square (blue) SL(2,C) invariants. The orientation of the edges then keeps
track of the ordering of particles in the brackets and thus provides potential minus signs.

The valence of each vertex is given by two natural numbers vi = (via, vis) such that
vis − via = 2hi is the helicity of the ith particle (see, for example, figure 2). Finally, for
reasons which will become clear in the next section, we consider a circular embedding for
our graphs, in other words we take all the nodes to be ordered points on a circle. This
method has proven to be a computationally efficient way of finding a basis of independent
structures up to Schouten and momentum conservation identities. Notice that the former
act separately on angle and square invariants, while the latter mixes the two structures.
In the following sections we are going to show how to deal with these identities in terms of
above mentioned multigraphs.

8This condition is not only necessary but also sufficient for having local interactions.
9The superscript of the subscript specify the helicity of the particles: ng = ng− +ng+ and nf = nf− +nf+ .
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4
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3
5

1
2

3

4

Figure 2. The graph associate to the kinematic structures 〈1 2〉2〈1 4〉〈3 2〉[2 3][1 3]2[3 1] and
〈1 3〉〈1 4〉〈2 5〉[2 3][3 4] respectively.

4

1 2

3

=

4

1 2

3

+

4

1 2

3

Figure 3. Schouten identities are equivalent to untying crossings for both the two graphs in the
multigraph: 〈1 3〉〈2 4〉 = 〈1 4〉〈2 3〉+ 〈1 2〉〈3 4〉.

3.1.1 Schouten identities

Schouten identities for angle and square brackets read

〈1 2〉〈3 4〉+ 〈2 3〉〈1 4〉+ 〈3 1〉〈2 4〉 = 0 ,
[1 2][3 4] + [2 3][1 4] + [3 1][2 4] = 0 .

(3.5)

Thinking of the kinematic structures in terms of graphs, specifically using the already
mentioned circular embedding, one way of implementing (3.5) is by untying crossing edges
as shown in figure 3. In a generic graph, this can be applied recursively until, after a finite
number of steps, we end up with graphs which do not have any crossing. It is then clear
that a basis of kinematic structures which are independent under Schouten identities can
be obtained by building a basis of planar graphs only.

3.1.2 Momentum conservation

In general, we consider an n-point amplitude with n∂ > 0. Each momentum in the am-
plitude can be assigned to any of the n particles, which increases the valence of the cor-
responding vertex by (1, 1). The number of momenta associated to each vertex is then
min{via, vis}.

We can take into account most of the relations coming from momentum conservation
just by excluding the momentum of the nth-particle from the previous assignment. Then
the nth-vertex will have valence ( |hn|+hn2 , |hn|−hn2 ).
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There are however n,10 additional relations coming from momentum conservation
which do not explicitly involve the momentum of the nth-particle:

0 =


n−1∑
j=1
〈i j〉[j n] hn > 0

n−1∑
j=1
〈n j〉[j i] hn < 0

(3.6)

which are a consequence of the Dirac equation pnαα̇ λ̃α̇n = 0 = λαn pnαα̇, and

n−2∑
i=1

n−1∑
j=i+1

sij = 0 , (3.7)

Some observations are in order:

• The Schouten identities do not change the valences of vertices in the multigraph, so
they do not change the number of momenta associated to each vertex.

• Since we want a basis of planar graphs, we solve all but one of the (3.6) for one
of the momenta which maximises the number of planar multigraphs, the natural
choice being either p1 or pn−1 (a different choice would give an over-counting of the
independent structures). The considered identities are then taken into account by
simply discarding all the structures involving 〈i n − 1〉[n − 1n] or 〈nn − 1〉[n − 1 i]
according to the helicity of the nth-particle (or equivalently 〈i 1〉[1n]

/
〈n 1〉[1 i]).

• Among (3.6), there is one relation which does not involve neither pn nor pn−1. This
is taken into account by discarding those structures where 〈n−1 1〉[1n]

/
〈n 1〉[1n−1]

appears (or 〈1n− 1〉[n− 1n]
/
〈nn− 1〉[n− 1 1]).

• Finally, the constraint (3.7) forces us to discard the terms proportional to s1n−1.

This algorithm classifies efficiently all the SL(2,C)-invariant structures which are polyno-
mial in the spinor variables with fixed mass dimension and helicity configuration, associated
to each (ng− , ng+ , nf− , nf+ , ns). It also provides a very simple way of writing the depen-
dent structures as linear combinations of the independent ones. We also notice that this
algorithm an be applied also beyond gauge theories. Furthermore, the generalisation of
this algorithm to massive spinors is possible and it will be discussed in future works.

3.2 The classification of SMEFT interactions

The classification of the helicity structures is completely theory-independent and is indeed
not limited to gauge theories, but can be applied to effective field theories of gravity, with
(massive and spinning) matter as well. Information about the Standard Model enters only
in the SU(3)×SU(2)×U(1) (invariant) structures associated to the chosen set of particles.

10One of which can be written as a linear combination of the other n− 1.
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3.2.1 The gauge group structures
The classification of the invariant structures of the gauge groups can be worked out using
standard group theory techniques. In particular

• U(1): to each (ng− , ng+ , nf− , nf+ , ns) structure we associate all the possible combi-
nations of Standard Model states for which the total hypercharge is zero.

• SU(2): we notice that the algorithm presented in the previous section can be gener-
alised to the case of SU(2) invariants with a single graph associated to the invariants.
Each oriented edge from the nth to the mth vertices correspond to an εinim tensors
and the valence of each vertex vi is fixed by the representation of the ith-particle,
labelled by its dimension vi + 1. The indices associate to the same vertex must be
taken as completely symmetric. In the case of the SU(2) group there is no analo-
gous of momentum conservation, so the independent structures can be taken to be
in one-to-one correspondence with planar graphs.

• SU(3): the SU(N) invariants have been studied a lot both in the mathematics and
in the physics literature (see, for example, [131–133]), so we will not go into fur-
ther details here. In our algorithm we adopt the standard Littlewood-Richardson
rule [134, 135] as suggested in [35, 36].

Once the kinematic structures associated to (ng− , ng+ , nf− , nf+ , ns) have been gener-
ated and a compatible set of gauge singlets was found, we combine all the invariants in
order to find a basis of independent structures enclosing information about both the kine-
matics and the colour. If no identical fields are present, these structures coincide with the
minimal amplitudes, else one needs to impose Bose-Einstein and Dirac-Fermi statistics as
explained in the next section.

3.2.2 Repeated fields and Young projectors
There are cases for which the minimal amplitude involves identical states, for example
for [gO] = −2 we could have minimal amplitudes with (G+, G+, G+) or (Q,Q, u, d). The
treatment of this subtlety has been systematically taken into account in [35, 136]. Starting
from their classification, we take a slightly different approach, since we deal with minimal
amplitudes and not with operators. We distinguish between identical bosons and fermions
at the level of the minimal amplitude and impose Bose-Einstein statistic to the former and
Dirac-Fermi statistic for the latter. In practise, we consider all the previously classified
independent structures and we act on them with a proper Young projector over the labels
of the identical states:

• in the case of n identical bosons we act on the structures with the symmetriser
projector

Y 1...
n

= 1
n!

n!∑
i=1

pi , (3.8)

where pi are all the permutations of the n labels associated to the identical bosons.
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• in the case of n identical fermions we act on the structures with the total anti-
symmetriser projector

Y 1 ···n = 1
n!

n!∑
i=1

si pi , (3.9)

where si is the signature of the permutations pi.

Once, we apply the Young projectors to the independent minimal amplitudes, we will end
up with a sum over terms which will not necessarily belong to the basis of independent
structures chosen. In order to find the minimal amplitudes, we need to re-write these
symmetrised amplitudes in terms of elements of our structure basis and check if they are
linearly independent from each other (which in general will not be the case, some structures
will even be automatically zero after projection).

A further subtlety arise in the case of the Standard Model, due to the flavour of
fermions: to each particle we can associate a further SU(Nf ) index, where Nf is the
number of flavours. The independent minimal amplitudes can then be classified in terms of
inequivalent irreducible representations of SU(Nf ), which are in one-to-one correspondence
with the irreducible representations of the symmetric group Sn, where n is the number of
identical fermions in the same family. For example, for dimension 6 operators we can
consider the barion number violating effective interactions with (Q,Q,Q,L) (n = 3). Then
we have a basis of four independent structures:

εa1a2a3εi1i4εi2i3 〈1 2〉〈3 4〉 , (3.10)
εa1a2a3εi1i2εi3i4〈1 2〉〈3 4〉 , (3.11)
εa1a2a3εi1i4εi2i3〈1 4〉〈2 3〉 , (3.12)
εa1a2a3εi1i2εi3i4〈1 4〉〈2 3〉 . (3.13)

There are three inequivalent representations of S3, corresponding to the Young diagrams
, and . Then we can act on the independent structure with the projectors associ-

ated to the standard Young tableaux 1 2 3 , 1 2
3

, 1
2
3
.11 There is a unique linearly independent

structure associated to each irreducible representation:

C{3},{1}m1m2m3,m4 Y 1
2
3

◦ εa1a2a3εi1i4εi2i3 〈1 2〉〈3 4〉 , (3.14)

C{2,1},{1}m1m2m3,m4 Y 1 2
3
◦ εa1a2a3εi1i4εi2i3 〈1 2〉〈3 4〉 , (3.15)

C{1,1,1},{1}m1m2m3,m4 Y 1 2 3 ◦ εa1a2a3εi1i4εi2i3 〈1 2〉〈3 4〉 , (3.16)

where Cπ,{1}m1m2m3,m4 is a Wilson coefficient tensor associated to each effective minimal am-
plitude, with π being the integer partition corresponding to the Young diagram for the Q

11The fourth standard tableau 1 3
2

would not give an independent minimal amplitude, because it could
be obtained from the second one by relabelling: Y 1 3

2
= (2 3) ◦ Y 1 2

3
◦ (2 3), where (2 3) is the permutation

of the labels 2 and 3.
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fields. Notice that Dirac-Fermi statistics forces the Wilson coefficient tensor to have the
“opposite” symmetry properties with respect to the Young tableau associated to the pro-
jector: e.g. C{3},{1}m1m2m3,m4 = C

{3},{1}
(m1m2m3),m4

, C{2,1},{1}m1m2m3,m4 = C
{2,1},{1}
[m1m2]m3,m4

, C{2,1},{1}[m1m2m3],m4
= 0

and C{1,1,1},{1}m1m2m3,m4 = C
{1,1,1},{1}
([m1m2m3],m4

. The number of independent operators for this specific
case is12 (Nf+2) (Nf+1)Nf

6 , (Nf+1)Nf (Nf−1)
3 and Nf (Nf−1) (Nf−2)

6 for each tensor respectively.

4 The UV anomalous mass dimension matrix at leading order

In the previous two sections we argued that any four-point amplitude in the Standard
Model can be fully determined from its factorisation channels (more details on this will
be given in the following section), and we gave a general algorithm to find all the SMEFT
interactions. These are all the ingredients needed to compute the UV mixing matrix for the
SMEFT interactions γUV

d→d,13 where d is the mass dimension of the corresponding effective
operators for d = 5, 6, 7, 8. In this section we restrict to the case of Nf = 1 and we
leave the treatment of full flavour dependence for future work. The results for γUV

d→d are
provided in the supplementary material, whereas at the end of this section we provide as
an example the mixing coefficients of the dimension 6 and 8 operators relevant for Higgs
plus W production.

4.1 Review of the method

Sticking to the notation introduced in section 2, we write the effective amplitudes as
Fn,d,i(pa1,h1

1 , . . . , pan,hnn ), where d is the dimension of the operator and i labels the min-
imal interactions (for example, in the case of Nf = 1 and d = 6, i = 1, . . . , 84), in order to
distinguish it from renormalisable amplitudes A. The central formula for our computations
has been presented in [68] and gives the action of the dilatation operator D = ∂

∂ logµ on the
amplitude in terms of its discontinuity:14

e−iπD F∗ = S ⊗F∗ , (4.1)

where S is the full S-matrix and on the r.h.s. the product has to be interpreted as a
matrix product weighted over a proper Lorentz phase space integral which, via the Optical
Theorem, correspond to the discontinuity of the effective amplitude.

The dilatation operator is linked to the UV mixing matrix γUV
i→j by the Callan-Symanzik

equation [137–139]:

DFi =
(
γUV
j→i − γIR

i δij + +β(g2
k)

∂

∂g2
k

δij

)
Fj , (4.2)

where β(g2
k) is the beta-function for the coupling gk and γIR

i is the IR contribution to the
anomalous dimension of the amplitude Fi which depends only on its external states.

12The counting can be performed using the Hook Content Formula.
13In principle, we could consider γUV

d1→d2 , with d1 6= d2, which involves amplitudes which are non-linear
in the effective couplings. In this work we are not considering such contributions, but it is worth stressing
that conceptually their treatment is very much the same.

14This formula has been first presented in [68] for F being a form factor, but it trivially holds for (effective)
amplitudes as well, by setting qµ = 0 in the form factor.
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Combining (4.1) and (4.2), expanding to leading order in the coupling and at linear
order in the effective interactions, we find15

γUV
j→i Fj(ph1

1 . . . phnn ) =− 1
π

n∑
l=1
l<m

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1l1 p

hl2
l2
→ phll p

hm
m )−

3∑
k=1

g2
k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]

· Fi(. . . p
hl1
l1

. . . p
hl2
l2

. . . )

+ Fi(ph1
1 . . . phnn ) ·

n∑
l=1

γ
(l)
coll

16π2 , (4.3)

where ∫ dΩ2
4π =

∫ 2π

0

dφ
2π

∫ π
2

0
dθ 2 cos θ sin θ (4.4)

is the Lorentz phase space integral, the sum over {l1, l2} is over the species and the he-
licity configurations of the internal particles, γ(l)

coll is the IR collinear anomalous dimension
associated to the lth-particle and the term with Tk,l1 · Tk,l2 takes care of the subtraction
of the (divergent) IR cusp anomalous dimension (the label k runs over the three factors of
the gauge group U(1)× SU(2)× SU(3)). In particular, the latter is non-zero if the in- and
out-states of the four-point amplitude are the same and, if this is the case, it is a proper
contraction of the Lie algebra generators (or the product of the hypercharges in the case
of U(1)) associated to the outgoing (or equivalently incoming) particles. For example, if
the four-point amplitude is A4(Q̄l1 Ql2 → Q̄lQm), then

3∑
k=1

g2
k Tk,l · Tk,m =

(
−1

6

)
· 1

6 g
2
1 + g2

2 σ
I im
j σI jil + g2

3 τ
A am
b τA b

al
. (4.5)

The helicity variables associated to the internal momenta, on the cut configuration, can be
written in terms of the Lorentz phase space angles θ and φ and the external momenta pl
and pm, as first shown in [74]:(

λl1
λl2

)
=
(

cos θ − sin θ eiφ
sin θ e−iφ cos θ

)(
λl
λm

)
, (4.6)

together with the complex conjugate rotation for the spinors λ̃l1 and λ̃l2 . The collinear
anomalous dimensions for the particles in the Standard Model can be obtained by studying
the anomalous dimension of UV protected operators, such as the stress-tensor as empha-
sised in [68]:

〈ph1
1 ph2

2 |T
µν |0〉 ·

2∑
l=1

γ
(l)
coll

16π2 = 1
π

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1l1 p

hl2
l2
→ ph1

1 ph2
2 )

−
3∑

k=1

g2
k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
· 〈phl1l1 p

hl2
l2
|Tµν |0〉 ,

(4.7)

A list of the collinear anomalous dimensions computed from the stress-tensor form factor
can be found in appendix D.

15In order not to clutter up the notation with factors of 2 and π, we will provide the result in the supple-
mentary material in terms of the matrix γUV

ij ≡ 16π2γUV
j→i, where we factored out the usual loop factor 1

16π2 .
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# Hilbert series Minimal amplitude
1 H̄3H3 Y 1 2 3 ◦ δ

i4
j1
δi5j2δ

i6
j3

2
2D2H̄2H2 Y 1 2 ◦ Y 3 4 ◦ 〈1 3〉[1 3]δi3j1δ

i4
j2

3 Y 1 2 ◦ 〈1 2〉[1 2]δi3j1δ
i4
j2

4
2DQ̄QH̄H

〈1 3〉[2 3]δi2j1δ
i4
j3
δa2
b1

5 〈1 3〉[2 3]δi2j3δ
i4
j1
δa2
b1

6 B−B−H̄H 〈1 2〉2δi4j3
7 B+B+H̄H [1 2]2δi4j3
8 W−W−H̄H 〈1 2〉2δI1I2δi4j3

9 W+W+H̄H [1 2]2δI1I2δi4j3

10 G−G−H̄H 〈1 2〉2δA1A2δi4j3

11 G+G+H̄H [1 2]2δA1A2δi4j3

12 B−W−H̄H 〈1 2〉2σI2i4
j3

13 B+W+H̄H [1 2]2σI2i4
j3

Table 1. The table shows the thirteen dimension-6 operators and their multiplicity as a result
of the Hilbert series method. To each independent operator we associate and enumerate a set of
independent minimal amplitudes.

4.2 The Higgs production in association with a W boson

As an illustrative application of the techniques discussed so far, we consider a subset of
dimension-six and dimension-eight operators relevant for the Higgs production in associa-
tion with a W boson via proton scattering, i.e. the operators contributing to the scattering
p p → hW as considered in [17], with a technical difference due to the fact that in the
mixing problem considered in this work we look at Nf = 1. In this section, we will com-
pute the mixing among dimension-six and dimension-eight effective interactions separately.
First, we present the relevant minimal amplitudes found using the algorithm presented in
section 3, which are in one-to-one correspondence with the independent operators consid-
ered in [17]. Then, using the techniques just reviewed we compute the two UV mixing
matrices, comparing the mixing matrix for dimension-six operators with known results in
the literature [87, 88, 94–96, 140]. The full mixing matrix for all the operators in the
SMEFT up to dimension 8 can be found in the supplementary material.

There are thirteen dimension-six operators (five of which are self-hermitian) contribut-
ing to the scattering p p → hW and such counting can be performed using Hilbert series
method. In table 1 and table 2 we show the content of the various operators and their multi-
plicities as shown in reference [26] and the corresponding independent minimal amplitudes,
respectively for the dimension-six and the dimension-eight effective interactions.

The running of the Wilson coefficients

ċi = 16π2µ
∂

∂µ
ci , (4.8)
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J
H
E
P
1
1
(
2
0
2
1
)
2
2
1

# Hilbert series Minimal amplitude # Hilbert series Minimal amplitude
1 H̄4H4 Y 1 2 3 4 ◦ δ

i4
j1
δi5j2δ

i6
j3
δi8j4 34

2D2B−W−H̄H
〈1 2〉3[1 2]σI2i4

j3

2 B2
−H̄

2H2 Y 3 4 ◦ 〈1 2〉2δi5j4δ
i6
j3

35 〈1 2〉2〈2 3〉[2 3]σI2i4
j3

3 B2
+H̄

2H2 Y 3 4 ◦ [1 2]2δi5j4δ
i6
j3

36
2D2B+W+H̄H

[1 2]3〈1 2〉σI2i4
j3

4 B−W−H̄
2H2 Y 3 4 ◦ Y 5 6 ◦ 〈1 2〉2δi6j4σ

I2i5
j3

37 [1 2]2〈2 3〉[2 3]σI2i4
j3

5 B+W+H̄
2H2 Y 3 4 ◦ Y 5 6 ◦ [1 2]2δi6j4σ

I2i5
j3

38 D2B−W+H̄H 〈1 3〉2[2 3]2σI2i4
j3

6
2W 2

−H̄
2H2 Y 3 4 ◦ 〈1 2〉2δI1I2δi5j4δ

i6
j3

39 D2W−B+H̄H 〈1 3〉2[2 3]2σI1i4
j3

7 Y 1 2 ◦ 〈1 2〉2σI2i5i6σI1
j3j4

40
2D2W−H̄

2H2 Y 2 3 ◦ Y 4 5 ◦ 〈1 2〉〈1 4〉[2 4]εi4i5σI1
j2j3

8
2W 2

+H̄
2H2 Y 3 4 ◦ [1 2]2δI1I2δi5j4δ

i6
j3

41 Y 2 3 ◦ Y 4 5 ◦ 〈1 2〉〈1 3〉[2 3]δi5j3σ
I1i4

j2

9 Y 1 2 ◦ [1 2]2σI2i5i6σI1
j3j4

42
2D2W+H̄

2H2 Y 2 3 ◦ Y 4 5 ◦ [1 2][1 4]〈2 4〉εi4i5σI1
j2j3

10 G2
−H̄

2H2 Y 3 4 ◦ 〈1 2〉2δA1A2δi5j4δ
i6
j3

43 Y 2 3 ◦ Y 4 5 ◦ [1 2][1 3]〈2 3〉δi5j3σ
I1i4

j2

11 G2
+H̄

2H2 Y 3 4 ◦ [1 2]2δA1A2δi5j4δ
i6
j3

44
3D4H̄2H2

Y 1 2 ◦ 〈1 2〉2[1 2]2δi3j1δ
i4
j2

12 B−W
2
−H̄H 〈1 2〉〈2 3〉〈1 3〉εI2I3X6σX6i5

j4
45 Y 1 2 ◦ Y 3 4 ◦ 〈1 3〉2[1 3]2δi3j1δ

i4
j2

13 B+W
2
+H̄H [1 2][2 3][1 3]εI2I3X6σX6i5

j4
46 Y 1 2 ◦ Y 3 4 ◦ 〈1 2〉〈1 3〉[1 2][1 3]δi3j1δ

i4
j2

14 W 3
−H̄H 〈1 2〉〈2 3〉〈1 3〉εI1I2I3δi5j4 47

4DQ̄QH̄2H2

Y 3 4 ◦ Y 5 6 ◦ 〈1 3〉[2 3]εj3j4δi5j1δ
a2
b1

15 W 3
+H̄H [1 2][2 3][1 3]εI1I2I3δi5j4 48 Y 3 4 ◦ Y 5 6 ◦ 〈1 3〉[2 3]δi2j3δ

i5
j1
δi6j4δ

a2
b1

16 G3
−H̄H 〈1 2〉〈2 3〉〈1 3〉fA1A2A3δi5j4 49 Y 3 4 ◦ Y 5 6 ◦ 〈1 5〉[2 5]δi2j3δ

i5
j4
δi6j1δ

a2
b1

17 G3
+H̄H [1 2][2 3][1 3]fA1A2A3δi5j4 50 Y 3 4 ◦ Y 5 6 ◦ 〈1 3〉[2 3]δi2j1δ

i5
j4
δi6j3δ

a2
b1

18
2D2H̄3H3 Y 1 2 3 ◦ Y 4 5 6 ◦ 〈1 2〉[1 2]δi4j1δ

i5
j2
δi6j3 51

6DW−Q̄QH̄H

〈1 2〉2[2 3]δi5j4δ
a3
b2
σI1i3

j2

19 Y 1 2 3 ◦ Y 4 5 6 ◦ 〈1 4〉[1 4]δi4j1δ
i5
j2
δi6j3 52 〈1 2〉〈1 4〉[3 4]δi5j4δ

a3
b2
σI1i3

j2

20 D2B−B+H̄H 〈1 3〉2[2 3]2δi4j3 53 〈1 2〉2[2 3]δi3j4δ
a3
b2
σI1i5

j2

21
2D2W−W+H̄H

〈1 3〉2[2 3]2δI1I2δi4j3 54 〈1 2〉〈1 4〉[3 4]δi3j4δ
a3
b2
σI1i5

j2

22 〈1 3〉2[2 3]2εI1I2X6σX6i4
j3

55 〈1 2〉2[2 3]δi3j2δ
a3
b2
σI1i5

j4

23 D2G−G+H̄H 〈1 3〉2[2 3]2δA1A2δi4j3 56 〈1 2〉〈1 4〉[3 4]δi3j2δ
a3
b2
σI1i5

j4

24 D2B−H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ 〈1 2〉〈1 4〉[2 4]δi4j3δ

i5
j2

57

6DW+Q̄QH̄H

[1 3]2〈2 3〉δi5j4δ
a3
b2
σI1i3

j2

25 D2B+H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ [1 2][1 4]〈2 4〉δi4j3δ

i5
j2

58 [1 3][1 4]〈2 4〉δi5j4δ
a3
b2
σI1i3

j2

26 D2B2
−H̄H 〈1 2〉3[1 2]δi4j3 59 [1 3]2〈2 3〉δi3j4δ

a3
b2
σI1i5

j2

27 D2B2
+H̄H [1 2]3〈1 2〉δi4j3 60 [1 3][1 4]〈2 4〉δi3j4δ

a3
b2
σI1i5

j2

28
2D2W 2

−H̄H
〈1 2〉3[1 2]δI1I2δi4j3 61 [1 3]2〈2 3〉δi3j2δ

a3
b2
σI1i5

j4

29 Y 1 2 ◦ 〈1 2〉2〈2 3〉[2 3]εI1I2X6σX6i4
j3

62 [1 3][1 4]〈2 4〉δi3j2δ
a3
b2
σI1i5

j4

30
2D2W 2

+H̄H
[1 2]3〈1 2〉δI1I2δi4j3 63

4D3Q̄QH̄H

〈1 3〉〈2 3〉[2 3]2δi2j3δ
i4
j1
δa2
b1

31 Y 1 2 ◦ [1 2]2〈2 3〉[2 3]εI1I2X6σX6i4
j3

64 〈1 2〉〈1 3〉[1 2][2 3]δi2j3δ
i4
j1
δa2
b1

32 D2G2
−H̄H 〈1 2〉3[1 2]δA1A2δi4j3 65 〈1 3〉〈2 3〉[2 3]2δi2j1δ

i4
j3
δa2
b1

33 D2G2
+H̄H [1 2]3〈1 2〉δA1A2δi4j3 66 〈1 2〉〈1 3〉[1 2][2 3]δi2j1δ

i4
j3
δa2
b1

Table 2. The table shows all the dimension-8 operators, their multiplicity and a set of independent
minimal amplitudes.
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H
E
P
1
1
(
2
0
2
1
)
2
2
1

of the thirteen dimension-six operators is

ċ
(6)
1 = c

(6)
1

(
6g2

1Y
2

H + 9g2
2

2 + 108λ
)

+ 6c(6)
1 γH

coll ,

ċ
(6)
2 = c

(6)
5
(
8g2

1YHYQ − 6g2
2 + 48Y1Ȳ1 + 24Y2Ȳ2

)
+ c

(6)
2

(
−8g2

1Y
2

H

3 + 8g2
2 + 24λ

)
+ c

(6)
3

(
2g2

1Y
2

H + 17g2
2

2 − 12λ
)

+ c
(6)
4
(
16g2

1YHYQ + 24Y1Ȳ1 − 24Y2Ȳ2
)

+ 4c(6)
2 γH

coll + . . . ,

ċ
(6)
3 = c

(6)
3

(
26g2

1Y
2

H + 33g2
2

2 + 12λ
)

+ c
(6)
4
(
32g2

1YHYQ + 48Y1Ȳ1 − 48Y2Ȳ2
)

+ c
(6)
5
(
16g2

1YHYQ + 24Y1Ȳ1 − 24Y2Ȳ2
)
− 40

3 c
(6)
2 g2

1Y
2

H + 4c(6)
3 γH

coll + . . . ,

ċ
(6)
4 = c

(6)
4

(
28g2

1Y
2

H

3 + 14g2
1Y

2
Q + 21g2

2
2 + 8g2

3 + 12Y1Ȳ1

)
+ c

(6)
4

(
2γH

coll + 2γQ
coll

)
+ c

(6)
5

(
2g2

1Y
2

H

3 + 4g2
1Y

2
Q + 11g2

2
6 − 4Y1Ȳ1 + 8Y2Ȳ2

)
+ c

(6)
3

(
g2

1YHYQ −
g2

2
12 + 2Y1Ȳ1 − Y2Ȳ2

)
+ c

(6)
2

(
−1

3g
2
1YHYQ + g2

2
12 − Y1Ȳ1

)
+ . . . ,

ċ
(6)
5 = c

(6)
5

(
8g2

1Y
2

H + 6g2
1Y

2
Q + 41g2

2
6 + 8g2

3 − 4Y1Ȳ1 + 8Y2Ȳ2

)
+ c

(6)
5

(
2γH

coll + 2γQ
coll

)
+ c

(6)
2

(
−g

2
2
6 + Y1Ȳ1 + Y2Ȳ2

)
+ c

(6)
3

(
g2

2
6 − Y1Ȳ1 − Y2Ȳ2

)
+ c

(6)
4 (12Y2Ȳ2 − 12Y1Ȳ1) + . . . ,

ċ
(6)
6 = c

(6)
6

(
10g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ 6c(6)
12 g1g2YH + c

(6)
6
(
2γH

coll + 2γB
coll
)

+ . . . ,

ċ
(6)
7 = c

(6)
7

(
10g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ 6c(6)
13 g1g2YH + c

(6)
7
(
2γH

coll + 2γB
coll
)

+ . . . ,

ċ
(6)
8 = c

(6)
8

(
2g2

1Y
2

H + 7g2
2

2 + 12λ
)

+ 2c(6)
12 g1g2YH + c

(6)
8
(
2γH

coll + 2γW
coll
)

+ . . . ,

ċ
(6)
9 = c

(6)
9

(
2g2

1Y
2

H + 7g2
2

2 + 12λ
)

+ 2c(6)
13 g1g2YH + c

(6)
9
(
2γH

coll + 2γW
coll
)

+ . . . ,

ċ
(6)
10 = c

(6)
10

(
2g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ c
(6)
10
(
2γH

coll + 2γG
coll
)

+ . . . ,

ċ
(6)
11 = c

(6)
11

(
2g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ c
(6)
11
(
2γH

coll + 2γG
coll
)

+ . . . ,

ċ
(6)
12 = c

(6)
12

(
6g2

1Y
2

H + g2
2
2 + 4λ

)
+ 4c(6)

6 g1g2YH + 4c(6)
8 g1g2YH

+ c
(6)
12
(
2γH

coll + γW
coll + γB

coll
)

+ . . . ,

ċ
(6)
13 = c

(6)
13

(
6g2

1Y
2

H + g2
2
2 + 4λ

)
+ 4c(6)

7 g1g2YH + 4c(6)
9 g1g2YH

+ c
(6)
13
(
2γH

coll + γW
coll + γB

coll
)

+ . . . ,

where the dots indicate that the operator mixes with other operators which we are not
considering, i.e. already at leading order in the couplings the sector we are looking at is not
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(
2
0
2
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)
2
2
1

closed. The last term in the RG evolution of each coefficient is needed to isolate the UV
contributions from the diagonal IR anomalous dimension. These results fully match with
previous calculations in the literature, after a proper change of basis, and we take this as
a cross-check for the on-shell methods techniques in this paper.

Then we present the result for the running of the Wilson coefficients of the dimension-
eight operators associated to the minimal amplitudes. Since most of the operators mix
with operators outside the sector we are investigating, we are going to omit the dots, as
well as the IR subtraction, i.e. we show ċ

′(8)
i = ċ

(8),UV
i − ċ(8),IR

i .

ċ
′(8)
1 =

(
6g2

2 + 8g2
1Y

2
H + 192λ

)
c

(8)
1 ,

ċ
′(8)
2 =

(
3g2

2 + 20g2
1Y

2
H + 48λ

)
c

(8)
2 + 8g1g2YHc

(8)
4 ,

ċ
′(8)
3 =

(
3g2

2 + 20g2
1Y

2
H + 48λ

)
c

(8)
3 + 8g1g2YHc

(8)
5 ,

ċ
′(8)
4 = 8g1g2YHc

(8)
2 +

(
13g2

2 + 12g2
1Y

2
H + 40λ

)
c

(8)
4 + 8g1g2YHc

(8)
6 + 2g1g2YHc

(8)
7 ,

ċ
′(8)
5 = 8g1g2YHc

(8)
3 +

(
13g2

2 + 12g2
1Y

2
H + 40λ

)
c

(8)
5 + 8g1g2YHc

(8)
8 + 2g1g2YHc

(8)
9 ,

ċ
′(8)
6 = 4g1g2YHc

(8)
4 +

(
7g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
6 +

(
4g2

2 − 4λ
)
c

(8)
7 ,

ċ
′(8)
7 =

(
31g2

2 + 4g2
1Y

2
H + 24λ

)
c

(8)
7 + 8g1g2YHc

(8)
4 ,

ċ
′(8)
8 = 4g1g2YHc

(8)
5 +

(
7g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
8 +

(
4g2

2 − 4λ
)
c

(8)
9 ,

ċ
′(8)
9 =

(
31g2

2 + 4g2
1Y

2
H + 24λ

)
c

(8)
9 + 8g1g2YHc

(8)
5 ,

ċ
′(8)
10 =

(
3g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
10 ,

ċ
′(8)
11 =

(
3g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
11 ,

ċ
′(8)
12 =

(
39g2

2
2 + 6g2

1Y
2

H + 4λ
)
c

(8)
12 + 4g1g2YHc

(8)
14 ,

ċ
′(8)
13 =

(
39g2

2
2 + 6g2

1Y
2

H + 4λ
)
c

(8)
13 + 4g1g2YHc

(8)
15 ,

ċ
′(8)
14 =

(
57g2

2
2 + 2g2

1Y
2

H + 12λ
)
c

(8)
14 + 3g1g2YHc

(8)
12 ,

ċ
′(8)
15 =

(
57g2

2
2 + 2g2

1Y
2

H + 12λ
)
c

(8)
15 + 3g1g2YHc

(8)
13 ,

ċ
′(8)
16 =

(
3g2

2
2 + 36g2

3 + 2g2
1Y

2
H + 12λ

)
c

(8)
16 ,

ċ
′(8)
17 =

(
3g2

2
2 + 36g2

3 + 2g2
1Y

2
H + 12λ

)
c

(8)
17 ,

ċ
′(8)
18 =

(
10g2

2 + 116g2
1Y

2
H

3 + 72λ
)
c

(8)
18 +

(
17g2

2
6 − 26g2

1Y
2

H − 4λ
)
c

(8)
19

+
(
−18g2

2 +108Y1Ȳ1+108Y2Ȳ2
)
c

(8)
47 +

(
18YHYQg

2
1 + 45g2

2
2 −108Y1Ȳ1−162Y2Ȳ2

)
c

(8)
48

+
(
−18YHYQg

2
1 −

9g2
2

2 + 54Y2Ȳ2

)
c

(8)
49 +

(
36YHYQg

2
1 + 54Y1Ȳ1 − 54Y2Ȳ2

)
c

(8)
50 ,

ċ
′(8)
20 = g2

1c
(8)
44 Y

2
H + 1

3g
2
1c

(8)
45 Y

2
H −

1
3g

2
1c

(8)
46 Y

2
H + 3g1g2c

(8)
38 YH + 3g1g2c

(8)
39 YH

+
(
9g2

2 + 20g2
1Y

2
H

)
c

(8)
20 − 4g2

1Y
2

Qc
(8)
63 − 8g2

1Y
2

Qc
(8)
65 ,
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1
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2
0
2
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)
2
2
1

ċ
′(8)
19 =

(
−34g2

2
3 − 8g2

1Y
2

H

3 + 16λ
)
c

(8)
18 +

(
145g2

2
6 + 2g2

1Y
2

H + 52λ
)
c

(8)
19

+
(
−27g2

2 + 162Y1Ȳ1 + 162Y2Ȳ2
)
c

(8)
47 +

(
−18YHYQg

2
1 + 45g2

2
2 − 162Y1Ȳ1 − 108Y2Ȳ2

)
c

(8)
48

+
(

18YHYQg
2
1 + 9g2

2
2 − 54Y2Ȳ2

)
c

(8)
49 +

(
−36YHYQg

2
1 − 54Y1Ȳ1 + 54Y2Ȳ2

)
c

(8)
50 ,

ċ
′(8)
21 = 1

4c
(8)
44 g

2
2 + 1

12c
(8)
45 g

2
2 −

1
12c

(8)
46 g

2
2 − c

(8)
63 g

2
2 − 2c(8)

65 g
2
2 + g1YHc

(8)
38 g2 + g1YHc

(8)
39 g2

+
(

77g2
2

3 + 12g2
1Y

2
H

)
c

(8)
21 ,

ċ
′(8)
22 =

(
25g2

2
3 + 12g2

1Y
2

H

)
c

(8)
22 − ig2

2c
(8)
63 ,

ċ
′(8)
23 = −2

3c
(8)
63 g

2
3 −

4
3c

(8)
65 g

2
3 +

(
9g2

2 + 22g2
3 + 12g2

1Y
2

H

)
c

(8)
23 ,

ċ
′(8)
24 =

(
25g2

2
2 + 38g2

1Y
2

H

3 + 12λ
)
c

(8)
24 ,

ċ
′(8)
25 =

(
25g2

2
2 + 38g2

1Y
2

H

3 + 12λ
)
c

(8)
25 ,

ċ
′(8)
26 =

(
3g2

2
2 + 10g2

1Y
2

H

3 + 12λ
)
c

(8)
26 + g1g2YHc

(8)
34 −

1
2g1g2YHc

(8)
35 ,

ċ
′(8)
27 =

(
3g2

2
2 + 10g2

1Y
2

H

3 + 12λ
)
c

(8)
27 + g1g2YHc

(8)
36 −

1
2g1g2YHc

(8)
37 ,

ċ
′(8)
28 = −25

6 ic
(8)
29 g

2
2 + 1

3g1YHc
(8)
34 g2 −

1
6g1YHc

(8)
35 g2 +

(
11g2

2
6 + 2g2

1Y
2

H + 12λ
)
c

(8)
28 ,

ċ
′(8)
29 = 20ic(8)

28 g
2
2 − 4ig1YHc

(8)
34 g2 + 2ig1YHc

(8)
35 g2 +

(
22g2

2
3 + 8g2

1Y
2

H

)
c

(8)
29 ,

ċ
′(8)
30 = −25

6 ic
(8)
31 g

2
2 −

1
3g1YHc

(8)
36 g2 + 1

6g1YHc
(8)
37 g2 +

(
11g2

2
6 + 2g2

1Y
2

H + 12λ
)
c

(8)
30 ,

ċ
′(8)
31 = 20ic(8)

30 g
2
2 + 4ig1YHc

(8)
36 g2 − 2ig1YHc

(8)
37 g2 +

(
22g2

2
3 + 8g2

1Y
2

H

)
c

(8)
31 ,

ċ
′(8)
32 =

(
3g2

2
2 + 2g2

1Y
2

H + 12λ
)
c

(8)
32 ,

ċ
′(8)
33 =

(
3g2

2
2 + 2g2

1Y
2

H + 12λ
)
c

(8)
33 ,

ċ
′(8)
34 = 2

3g1g2YHc
(8)
26 + 2

3g1g2YHc
(8)
28 + 5
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)
c

(8)
53 +

(
−4YHYQg

2
1 − g2

2 + 12Y2Ȳ2
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)
c

(8)
60

+
(
−16YHYQg

2
1 − 24Y1Ȳ1 + 24Y2Ȳ2
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)
c

(8)
63 +

(
8YHYQg

2
1 + 2g2

2 − 24Y2Ȳ2
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)
c

(8)
64

+
(
−16YHYQg

2
1 + 48Y2Ȳ2
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3 − 16Y2Ȳ2
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3 − 2Y2Ȳ2
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6 − Y1Ȳ1 − Y2Ȳ2
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3

)
c

(8)
61 +

(
20g2

2
3 + 4Y1Ȳ1 −
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3

)
c

(8)
45 +

(
Y1Ȳ1
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3 + 8Y2Ȳ2
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5 Bootstrapping the tree-level amplitudes

In order to push the computation of the mixing matrix beyond leading order, higher-
point tree-level amplitudes are needed. In the amplitudes literature, the computation of
higher-point tree-level amplitudes from on-shell data is usually performed through BFCW
recursion relations [116, 141, 142], or its generalisations [143–147]. The strategy of BCFW-
like recursion relations is the following:

• l momenta are shifted introducing a complex parameter z (l-line shift) in a way which
preserves momentum conservation and on-shell conditions.

• The original amplitude is computed as a contour integral in the complex z-plane:
An(0) = 1

2πi
∮
z=0

An(z)
z , using Cauchy theorem knowing that, under the assumption

of a good behaviour in the z → ∞ limit (i.e. An(z) → zγ with γ ≤ −1), the other
poles of the amplitude correspond to factorisation channels and can be computed
from (2.2).

These recursion relations are particularly well-suited for the computation of amplitudes
involving vectors and gravitons, for which the BCFW (2-line) shift gives rather compact
results summing over a small subset of the actual factorisation channels. The most general
criteria for the shifted amplitude to be well-behaved in the z →∞ limit are given in [148]:
all renormalisable theories are shown to be 5-line constructible and, in particular, theories
involving fermions and scalars charged under a U(1) are 3-line constructible, as in the
case of the Standard Model. Moreover, non-renormalisable amplitudes with no-derivative
operator insertions are on-shell constructible, but it is not generally true for operators with
derivatives. Finally, n-line shifts with n ≥ 3 give rather cumbersome results and in no case
locality is manifest in the final amplitude.

Since in our approach we should consider all kinds of operators, we have to find an
alternative approach to recursion relations, which is anyway completely on-shell. The
general strategy has been outlined in the section 2, and in the following section we are
going to argue that in our framework any effective field theory is fully on-shell constructible
from unitarity and locality. In particular, the singularity structure will be manifest in the
final result.

5.1 Higher-point amplitudes in the SM without recursion relations

The procedure can be roughly divided into two parts: the construction of an ansatz and a
matching procedure on the single-particle cuts to fix the free-parameters, which we perform
numerically over finite fields to speed up the computation.

5.1.1 Constructing an ansatz

A generic tree-level amplitude can be schematically written as

An(pa1,h1
1 , . . . , pan,hnn ) =

∑
i,j,k

C a1···an
i,j

Di
ci,j,kNi,j,k + Pa1···an , (5.1)
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where pai,hii represents a generic state with helicity hi and gauge-group index ai. The
tensors Ca1···an

i,j are the gauge-group invariant structure of the amplitude, whereas Dj and
Ni,j,k are kinematic denominators and numerators respectively, where the latter carry the
dependence on the helicity structure. The ci,j,k are rational coefficients associated to the
different helicity structures Ni,j,k. Finally, the Pa1···an are terms with polynomial depen-
dence in the kinematic variables, in other words contact terms, which vanish whenever we
probe any factorisation channel. We will show that in our framework the contact terms
are irrelevant and the tree-level amplitudes are fully determined by lower-point amplitudes
from factorisation.

First we motivate this assumption for renormalisable theories through a simple dimen-
sional analysis consideration: due to (2.1), for n > 4 we have [An] < 0. Moreover, all
the couplings in the SM are dimensionless, we are considering only massless states (there
are no dimension-full parameters in the amplitude), and by construction [Pa1···an ] ≥ 0.
These considerations imply necessarily that for renormalisable massless theories for n > 4
Pa1···an = 0 and every term in the amplitude must posses some kinematic denominators
Di. This means that the amplitudes can be fully determined from factorisation, through a
recursive procedure described below in this section.

This argument is somehow subtle for n = 4, because it is possible to build terms of
mass dimension zero which are ratios of spinor variables but vanish on any cut. An example
of such a structure for the all-plus four-gluon amplitudes is

[1 2]2[3 4]2
s2

12
= [1 3]2[2 4]2

s2
13

= [1 4]2[2 3]2
s2

14
, (5.2)

whose residue is zero on any of the three invariants s12, s13 and s14. These structures
do not introduce any correction to the factorisation channels of four-point amplitudes
(i.e. they are polynomial in the kinematic variables). We will systematically ignore such
contact terms at four points, except for the four-scalar contact term (corresponding in
the Lagrangian formalism to the λφ4 interaction). Indeed, such terms are usually com-
puted through d-dimensional generalised unitarity techniques as one-loop finite rational
terms [114, 117, 149–154], hence they must be vanishing at tree-level.16 In particular, in
the case of the four-scalar amplitude we will add to the factorisable part a contact term
whose kinematic dependence is trivial:

A4(H̄ i1H̄ i2H i3H i4) = −
(
g2

1 Y
2
H δ

i3
i1
δi4i2 + g2

2 σ
I i3

i1
σI i4i2

) s12 − s14
s13

− λ δi3i1δ
i4
i2

+ (3↔ 4) .

(5.3)
We stress that for n > 4 non-singular terms such as (5.2) cannot appear: this can be

easily seen focusing on real kinematics and by dimensional analysis considerations, which
tell us that there must be a singularity for renormalisable amplitudes with more than four
external particles.

This argument cannot be generalised to the case of scattering amplitudes with inser-
tions of effective interactions. For example, consider the six-scalar amplitude with an in-

16For example, we know that such terms can never be generated by any local Lagrangian interaction at
tree-level.
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sertion of a ∂2φ4 interaction, call it F6,6,∂2φ4 (using the notation introduced in section 4.1).
There is no equivalent argument to discard a φ6-like contact term contribution arising in
the calculation of this amplitude. On the other hand, any physical process which gets a
contribution from F6,6,∂2φ4 will also get one from F6,6,φ6 which is the contact interaction
due to the operator φ6 itself. Physically, the two contact term contributions cannot be dis-
entangled, because they provide the same description for the interaction between scalars.
As a consequence, if we are already considering an effective field theory with both ∂2φ4

and φ6 interactions in our operator basis, neglecting the φ6-like contact term in F6,6,∂2φ4

can be compensated by appropriately shifting the Wilson coefficient of the φ6 operator.
This argument can be generalised to more generic theories, like the SMEFT in our case.

What we wanted to convey is that, as long as we consider a complete basis of operators
up to a given dimension, contact terms can only contribute shifting the Wilson coefficients
of a different operator. Then we choose our basis of EFT interactions such that it does
not generate polynomial terms when computing higher-multiplicity amplitudes and thus
we can effectively neglect them in the computations, so Pa1···an = 0.

We present now the algorithm to compute higher-point tree-level amplitudes from
factorisation.

1. We begin by enumerating all the possible singularity structures of the amplitude
consistent with locality, which are provided by all the possible ways the amplitude
can consistently factorise into trivalent graphs.17 We enumerate all the possible
tree graphs with trivalent and quadrivalent internal vertices, and then a selection
criterion is applied to discard channels which are not compatible with Standard Model
interactions.

2. To each trivalent graph a unique kinematic denominator Di is associated, this is the
product of the propagators corresponding to internal edges in the graphs, i.e. it is a
product of the Mandelstam invariants characterising the channels.

3. Unitarity also fixes the colour structures associated to each graph {Ca1···an
i,j }j=1,...,s.

In particular, different colour structures correspond to different particles propagating
in the internal lines. Once the internal particles are determined, the colour structures
are obtained from the product of the colour structures in the three-point amplitudes.

4. Finally the kinematic numerators are generated with the algorithm presented in sec-
tion 3.1.18 The {Ni,j,k}k=1,...,h are h independent spinor structures in our basis,
and a set of these numerators is associated to each of the colour structure Ca1···an

i,j

17When talking about trivalent graphs or three-point amplitudes in this section we always mean the
building blocks of our theory, which strictly speaking includes not only the three-point amplitudes but also
the four-point scalar interaction −λ(H̄H)2/4 (with the corresponding quadrivalent vertices in the graphs)
and, if we are considering amplitudes with effective operator insertions, also any of the relevant effective
interaction classified in section 3.

18The full algorithm presented in this section can be applied to the case of form factors as well. If this
was the case we were interested in, we should consider at this point a simplified version of the algorithm
presented in section 3.1, in which we ignore momentum conservation.
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corresponding to the denominator Di. The latter fixes the mass dimension of the nu-
merators through [Ni,j,k] = [An] + [Di] whereas the helicity weights are given by the
external particles. Each of the Ni,j,k is multiplied by arbitrary (rational) coefficients
ci,j,k which will be fixed by the matching procedure over the different factorisation
channels described in detail in section 5.1.3. Notice that the basis of numerators does
obviously not depend on the colour structures, but only on the mass dimension of the
denominator structure: i.e. Ni1,j1,k = Ni2,j2,k if [Di1 ] = [Di2 ] for any colour structure
labelled by j1 and j2. This fact has been exploited heavily to speed up the numerical
evaluation of the ansatz when solving for the coefficients {ci,j,k.

5. Some of the coefficients can be fixed before the matching procedure by demanding
that the ansatz is not redundant. In particular, the simplifying observation is that
the various coefficients cannot combine in such a way that the sum over the related
structures is proportional to any of the Mandelstam invariants appearing in the de-
nominators.

6. Finally we solve for the {ci,j,k} by matching over the different factorisation channels
as described in 5.1.3.

We consider, as an example, the five-point amplitude A5(Qa1,i1 , ua2 , H̄ i3 , H i4 , H i5).
There are 21 trivalent graphs compatible with this process, and some of them are shown
in figure 4. Most of the graphs do not involve the scalar quadrivalent interaction, except
the last one, we then have [Di] = 4 for i = 1, . . . , 20 and [D21] = 2 with:

{Di}i=1,...,21 = {s12s35, s14s35, s24s35, s12s34, s15s34, s25s34, s13s25, s14s25, s25s34, s13s24,

s15s24, s24s35, s15s24, s15s34, s14s25, s14s35, s13s24, s13s25, s12s34, s12s35, s12}
(5.4)

Next we build the kinematic numerators whose structure is fixed by the helicity of the
external particles along with the mass dimension of the amplitude and of the denomina-
tors as

[An] = [Ni,j,k]− [Dj ] ⇒ [Ni,j,k] = 4− n+ [Dj ] . (5.5)

In our example we have then

{Ni,j,k}k=1,...,6 = {s12[1 2], s13[1 2], s23[1 2], s24[1 2], s34[1 2], 〈3 4〉[1 4][2 3]} , (5.6)
{N21,j,k}k=1 = {[1 2]} , (5.7)

for i = 1, . . . , 20. Computing the amplitude then reduces to fixing the rational coefficients
ci,j,k. In fact, before proceeding with the system solution we can fine tune the ansatz in
order to remove combinations which would lead to cancellations in the denominators. In
particular, since there are two Mandelstam invariants for the first twenty denominators,
this would fix a priori two coefficients for each denominator and for each colour structures.
We consider, for example, the first two trivalent graphs, shown in figure 4. The general
algorithm to fix the coefficient is the following:
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Qa1,i1 H i5

H
i3ua2

H i4

u

Q

H/H

s12
H

W±/W∓

B±/B∓

s35
H

H

7→ C1,1
D1

,
C1,2
D1

H

Q

u/u

s14
u

B±/B∓

s35
H

H

7→ C2,1
D2

u

Q

H/H

s12
H

H

H
s45

7→ C21,1
D21

C1,1
D1

=
δa2
a1 ε

i1i4 δi5i3
s12 s35

,
C1,2
D1

=
δa2
a1 σ

I i1i4 σI i5i3
s12 s35

,
C2,1
D2

=
δa2
a1 ε

i1i4 δi5i3
s14 s35

,

C21,1
D21

=
δa2
a1 (εi1i4 δi5i3 + εi1i5 δi4i3 )

s12

Figure 4. The splitting of A5(Qa1,i1 , ua2 , H
i3
, Hi4 , Hi5) into trivalent graphs and the associated

colour factors and kinematic denominators. There are a total of 21 possible trivalent graphs asso-
ciated with this amplitude, we showed explicitly the first, the second and the last, as significant
examples. The second is a trivial instance of trivalent graphs and there is a unique choice compat-
ible with the Standard Model interactions of internal particle propagating. The same is not true
for the first factorisation channel, for which we can have both Bs and W s propagating, which give
us two different colour structures C1,1 and C2,1, respectively. The last channel is the only one for
this amplitude which involves an insertion of the quadrivalent Higgs interaction.

• We have a set of independent helicity structures with a specified mass dimension d,
i.e. {Ni,j,k}k=1,...,h1 , and we assume the existence of a set of structures with the same
helicity configuration and mass dimension d− 2, i.e. {Mi,j,l}l=1,...,h2 . If the latter do
not exist, this procedure can be skipped.

• For each Mandelstam invariant si1···in appearing in the denominator Di we fix some
coefficients d(p)

i,j,k through

h1∑
k=1

d
(p)
i,j,kNi,j,k = si1···inMi,j,l ∀ l . (5.8)

These conditions provide us with p = 1, . . . , [Di]
2 · h2 vectors d(p)

i,j,k.
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• Finally, we impose the orthogonality condition for the c’s with respect to the d’s

h1∑
k=1

ci,j,k d
(p)
i,j,k = 0 ∀ p , (5.9)

which fixes some of the ci,j,k, as anticipated.

In our specific example, for D1 we find c1,j,1 = 0 and c1,j,5 = −c1,j,2 − c1,j,3 with j = 1, 2
and for D2 we find c2,1,4 = −c2,1,1 and, again, c2,1,5 = −c2,1,2 − c2,1,3.

5.1.2 The case of external vector bosons

The procedure described so far works very well when we are dealing with amplitudes with
scalars and fermions as external particles. But when vector bosons are involved, or more
in general massless particles with |h| ≥ 1, an extension of the method is required. One
has to take into account that these particles provide further kinematic denominators which
are not due to intermediate particle exchanges. A simple example has already been shown
in section 2.2.1, where we considered the four-gluon amplitude. Indeed, the four-point
amplitude has mass-dimension zero, the helicity structure with the smallest mass dimension
is 〈1 2〉2[3 4]2 which has mass-dimension 4, and consequently a single 1

sij
(associated to a

trivalent graph) is not enough to get the mass-dimensions right.19 Typically, once a set of
denominators has been generated as described in the previous section, we need to add at
least one Mandelstam invariant to each denominator or possibly more in case of higher-
point amplitudes. This is done in iterated steps: we first add to every denominator a
single Mandelstam invariant sij in all the possible ways compatible with locality,20 then
we build the complete ansatz and try to solve it. If the number of invariants considered
for the denominators is insufficient we will find no solution for the c’s, so we add all the
possible terms with a further invariant in the denominator and try to solve again. At every
step clearly the number of possible denominators grows quite drastically, and so does the
number of possible numerators since higher and higher mass-dimensions become available.
The latter effect is however counteracted by discarding those numerators which cancel any
power of Mandelstam invariants from the denominator, which would indeed reproduce a
term of the ansatz already present from previous iterations. This part of the method proves
to be the bottleneck when it comes to computing higher-multiplicity amplitudes.

This procedure of adding Mandelstam invariants to the kinematic denominators is
clearly responsible for the “mixing” process between different factorisation channels which

19When we think of the problem in terms of a Feynman diagrammatic approach for |h| = 1, this additional
kinematic dependence is hidden in the polarisation vectors which in terms of spinor-helicity variables can
be written as

ε+
αα̇(p, ξ) =

√
2 ξαλ̃α̇〈ξ λ〉 , ε−αα̇(p, ξ) =

√
2 λαξ̃α̇

[λ̃ ξ̃]
, (5.10)

where pαα̇ = λαλ̃α̇ and ξ is an arbitrary reference spinor. In our approach, it is either a simple dimensional
analysis as for the four-gluon amplitude which forces us to add more denominators, or for higher-point
amplitudes it will be unitarity itself that does so.

20By this we mean exhausting the combinatorics of possible invariants without however adding those
already present in the denominator, which would of course lead to unphysical higher order poles.
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brought us to the identities between colour structures at the level of the four-point ampli-
tudes in section 2.

5.1.3 Solution of the ansatz

So far we have built an ansatz of the form (5.1), where each of the Ni,j,k has an associated
coefficient ci,j,k. In order to fix these coefficients we impose the validity of (2.2) in every
single kinematic channel, and we do so through repeated numerical evaluations:

− i Res
si1...im

An(ph1
1 . . . phnn )︸ ︷︷ ︸
ansatz

= f
∑
sI,hI

Am+1(phi1i1
. . . p

him
im

, phII )An−m+1(phII → p
him+1
im+1

. . . p
hin
in

)︸ ︷︷ ︸
lower point on-shell amplitudes

.

(5.11)
The lower point amplitudes in the r.h.s. of (5.11) is known, because our algorithm is recur-
sive. On the l.h.s. we take the residue on the ansatz, which selects a subset of the denom-
inator structures.Next we decompose, through the algorithms described in section 3.2.1,
the colour structures on both sides of (5.11) in a suitable basis {C a1···an

l }:

C a1···an
i,j =

∑
l

bi,j,l C
a1···an
l . (5.12)

Next, we impose the matching of the coefficients of the colour structures in this basis on
both sides of the equality (5.11) so we end up with a set of equations of the type

− i
∑
i′,j,k

bi′,j,l

D̃i′
ci′,j,kNi′,j,k = Kl . (5.13)

Here i′ runs over the trivalent graph structures for which the specified Mandelstam invariant
si1...im appears, the D̃i′ are the Di′ stripped of a factor si1...im and the ci,j,k are the rational
coefficients to be fixed. The Kl are kinematic coefficients defined by the product of lower
point amplitudes as

f
∑
sI,hI

Am+1(phi1i1
. . . p

him
im

, phII )An−m+1(phII → p
him+1
im+1

. . . p
hin
in

) :=
∑
l

C a1···an
l Kl (5.14)

where the colour structures C a1···an
l are elements of the chosen colour basis. The Kl are

known analytic functions of the spinor invariants and Mandelstam invariants, and they
also contain the dependence on the couplings gk, Y(f) and λ. Each equation (5.13) now
only contains kinematic invariants, the ci,j,k for which we want to solve and products of
couplings. Thus we repeatedly evaluate the kinematics numerically and so obtain a linear
system in the ci′,j,k which upon solution yields a subset of the ci′,j,k as functions of the
couplings and possibly other c’s. Since numerical evaluations are performed on very special
kinematic points where intermediate states go on-shell, some of the coefficients ci′,j,k might
in principle drop out of the system. These coefficients are identified by an a priori numerical,
which then allows to only solve the system in the actually relevant variables.

Repeating this procedure in every kinematic channel might still not completely fix
the ansatz, since some of the ci,j,k might be spurious in the sense that using momentum
conservation and Schouten identities appropriately they actually drop out altogether from
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the final result. In particular this happens when we consider amplitudes with external
vectors. At the very end of the calculation, we take advantage of the arbitrary nature of
these coefficients to set them, for example, either to a value which makes the final result
more compact or to zero.

In order to get exact solutions and avoid possible issues tied to precision loss in floating
point arithmetic, we make use of finite fields arithmetic21 which is made possible by the
fact that at tree-level the kinematic dependence of the amplitudes in the spinor variables
is rational. More specifically for each subamplitude we generate a set of momentum-
twistors [157, 158] with components on Zp, where twistors associated to different sub-
amplitudes but to the same internal momentum are by construction taken to be on the
same plane.22 From these components then we compute the kinematic invariants and from
there the products of the tree-amplitudes, all of which naturally live on the field Zp. This
approach in general greatly speeds up the calculations, having as single minor drawback
the fact that to obtain the solution to the linear system on Q once it has been computed
on Zp would generally require repeated sampling for different values of the prime p (see
appendix E). However, since the coefficients involved in our calculations are typically very
small compared to the prime p we consider, the use of a single field is usually enough,
further strengthened by checking the solutions a posteriori on rational kinematic points.
The system solution itself is done through row reduction: the matrix A to be reduced is
obtained from numerically evaluating (5.13) t+ 1 times, with t being the number of ci′,j,k
appearing in the latter linear equation,23 and can be schematically written as

∑S
s=1 a0,sms = 0∑S
s=1 a1,sms = 0

...∑S
s=1 at+1,sms = 0

7→


a0,0 · · · a0,S
...

...
at+1,0 · · · at+1,S


︸ ︷︷ ︸

A


m0
...
mS


︸ ︷︷ ︸

V

= 0 , (5.15)

where the ai,j are numeric constants (from the numerical evaluations of the kinematic
parts) and the ms are the unknowns ci,j,k or monomials in the couplings g, Y and λ and
the imaginary unit i. The explicit mention of the imaginary unit is due to the fact that
these need to be treated with some care when using finite fields. Imaginary units are
almost ubiquitous in our construction and we decided to treat them as symbolic objects
on the same footing as the coupling constants. Square roots would in principle require
a similar treatment, but these are easily removed by choosing appropriate normalisations
of the colour factors, and thus are never present in our calculation. Getting back to the

21The use of finite fields in high-energy physics has been introduced in [155] in the context of IBP
reductions, and further pioneered in [156] where a much wider range of applications was explored. A brief
overview of the topic can be found in appendix E.

22In twistor space, two intersecting lines define a null momentum, and a closed contour with n edges
defines n conserved null momenta. When generating kinematics for the two subamplitudes Am+1 and
An−m+1 in (5.14), pI is defined by the same intersecting lines for both of them.

23Generating and solving a system with an additional redundant equation ensures that when a determined
solution is found this is kinematics-independent and thus a true solution. Impossible systems might still
admit determined kinematic-dependent solutions which are clearly unacceptable.
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system solution, upon row-reducing the numeric matrix A on finite fields one gets to a
matrix B in row echelon form, which of course still satisfies V ′ ≡ B V = 0, with V the
vector of constants ci,j,k and couplings. The relation V ′ = 0 can then be trivially solved
for the couplings ci,j,k corresponding to the leading (the first non-vanishing) entries in each
row of B. These relations provide the solution to the system.

It is worth stressing that, differently from either a Feynman diagrammatic approach or
a BCFW-like calculation where consistency tests need to be performed a posteriori, through
factorisation every step of the calculation is in itself a consistency check on the code. The
systems of equations we obtain in the end always have a (possibly vanishing) solution,
unless there is some physical obstruction. This is indeed the case when vector bosons
are present among the external states (or more in general massless particles with helicity
|h| ≥ 1) and not enough invariants have been considered in the denominator construction,
see section 5.1.2. An impossible solution is symptomatic of unitarity breaking telling us
that the ansatz was not general enough.

Thanks to many small, but at times significant, expedients24 the construction of the
numeric system is rather fast despite our use of Mathematica rather than dedicated low-
level language implementations, for example in C, which are usually better suited for
the task. As a consequence, the main bottleneck of the system-solving procedure is the
system solution itself. As an aside, we note that our ansatz construction is of course
independent of the ansatz solution method. More specifically, if the reader was interested
in getting analytic expressions for tree-level amplitudes and already had at her/his disposal
a routine for numerically evaluating the amplitude itself, say Berends-Giele [159] recursion
for example, then the ansatz solution could be clearly done in one go solving a single large
system in all the ci,j,k. Despite being viable, we consider our approach far more appealing,
not only conceptually because of the use of just on-shell quantities but also practically:
solving the ansatz on the different factorisation channels leads to many small systems
whose solution is faster than a single large one and furthermore lends itself to effective
parallelisation.

6 Conclusions

In this paper we have computed for the first time the one-loop UV mixing matrix γUV
8→8

in the SMEFT at leading order in the SM couplings. Such a calculation requires two
main ingredients: the tree-level four-point amplitudes in the SM and the identification of
a complete (but not redundant) basis of EFT interactions/operators.

Most of the time this approach builds on top of foundations made of a Lagrangian and
the associated quantum fields. We devoted the first part of this paper to reviewing a whole
range of results which allow to completely rid ourselves of such foundations, and build the
Standard Model S-matrix from a set of simple physical assumptions and on-shell quanti-

24These include, for example, recycling numeric data whenever possible, storing and reusing directly
the exact invariant products making up the numerators instead of the single invariants, and generating a
minimal parametrization of the kinematic points first, reducing thus the numerical kinematic generation to
evaluations of polynomials in one/two variables.
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ties. Once we established the SM particle content, little-group scaling and mass-dimension
considerations provide a set of fundamental Poincaré invariant “minimal” three-point am-
plitudes. These by themselves do not provide enough information for a consistent theory
to be defined: in fact, unitarity and locality enter the game when four-point amplitudes
are considered. Upon writing down the possible manifestly local structures, unitarity (in
the guise of factorisation) imposes constraints on the three-point amplitudes forcing the
appearance of Jacobi identities [104], Lie algebras [107], relations among the couplings and
charge conservation. This interplay between unitarity and locality further manifests itself
at one-loop where the cancellation of inconsistent rational terms imposes additional con-
straints on the hypercharges, which are obtained as anomaly cancellation conditions in a
Lagrangian setting (following the method of [110, 111]).

Then we discussed how little-group scaling and mass-dimension considerations can
provide a set of EFT amplitudes, which correspond to the marginal operator basis in a
Lagrangian construction of SMEFT. This on-shell analysis provides a crucially efficient
way of classifying all the possible interactions. In this paper, we proposed an original
take on the construction of the kinematic invariants which enter such minimal amplitudes,
making use of multigraphs which allow to effectively build a non-redundant basis accounting
for Schouten identities and momentum conservation. After briefly describing the main
ingredients in the construction of a set of appropriate colour singlets, which along with
the kinematic structures make up a basis of invariant structures, we described how Bose-
Einstein and Dirac-Fermi statistics are accounted for.

We then reviewed the on-shell methods to compute the one-loop mixing, which led us
to the main result of the paper [68], i.e. the mixing matrix of dimension 8 operators with
themselves at leading order in the SM couplings.

Extending our results to higher orders requires the knowledge of higher-multiplicity
amplitudes which enter when operators of different lengths mix. In the final part of the
paper we presented a completely on-shell algorithm for the construction of arbitrary mul-
tiplicity amplitudes (and non-minimal form factors). This algorithm has the advantage of
being applicable to any generic renormalisable and non-renormalisable theory, differently
to standard BCFW-like recursions which require the theory to be suitably well behaved for
large values of the shift parameter. Furthermore, again differing from the standard on-shell
recursions, our method also produces manifestly local results, which makes the computed
amplitude expressions very well suited for generalised unitarity applications. On the other
hand, being based on factorisation properties of the amplitudes, it also retains the desirable
feature of making use of lower-point amplitudes only. Our method is based on an ansatz
construction, where again locality, mass-dimension considerations and little-group scaling
are the main guidelines. To every term in the ansatz a rational coefficient is associated,
whose value is fixed by analysing all the possible factorisation channels. In other words,
the condition that the residue on a given channel has to be given by the product of lower-
point amplitudes is exploited in order to build a system, which is then solved by repeated
numerical evaluations over finite fields.
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A Conventions and notations

A.1 Spinor Helicity Formalism

Spinor helicity variables25 are the most suited object to describe scattering amplitudes.
In fact, these are Lorentz invariant functions of the momenta pµi , i.e. they depend on
the momenta through their product si1...in =

(
pµi1 + · · ·+ pµin

)2
. By multiplying with

gamma matrices, momenta can also be written as tensor transforming in the d-dimensional
representation of Spin(1, d− 1), pαα̇ = γµαα̇pµ ≡ λαI λ̃

I
α̇, where λαI and λ̃Iα̇ for the moment

are generic rectangular matrices. By definition the Little Group transformations are those
which leave the momentum invariant, then without any restriction we can consider the
indices I as transforming in the fundamental (spinor) representation of Spin(d − 2). In
d = 4 and for massless momenta pαα̇ has rank 1:

pαα̇ = λαλ̃α̇ , (A.1)

and the spinor helicity variables transform under S̃O(2) with a complex phase and helicity
weight ±1

2 :

λα → e−iφ/2λα , (A.2)
λ̃α̇ → eiφ/2λ̃α̇ . (A.3)

The Lorentz invariant structures that we can form with this variables take the form

〈i j〉 = −εαβλi αλj β = εαβλ
α
i λ

β
j , (A.4)

[i j] = εα̇β̇λi α̇λj β̇ = −εα̇β̇λ
α̇
i λ

β̇
j , (A.5)

sij = 〈i j〉[j i] . (A.6)

Notice that in the case of real momenta λ and λ̃ are related by complex conjugation:

(λα)∗ = ±λ̃α̇ , (A.7)
25The Mathematica implementation of the Spinor Helicity Formalism used in this paper has been coded

by one of the authors and a beta version is available at the link
https://github.com/accettullihuber/SpinorHelicity.
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U(1) SU(2) SU(3)

B± 0 1 1

W± 0 3 1

G± 0 1 8

Q̄ −1
6 2̄ 3̄

ū +2
3 1 3

d̄ −1
3 1 3

L̄ +1
2 2̄ 1

ē −1 1 1

Q +1
6 2 3

u −2
3 1 3̄

d +1
3 1 3̄

L −1
2 2 1

e +1 1 1

H̄ −1
2 2̄ 1

H +1
2 2 1

Table 3. The spectrum of the Standard Model and the transformation properties of all the fields.

where the sign corresponds to positive or negative energy respectively. However the very
definition of three-point amplitudes requires us to work with complex momenta (or alter-
natively move from a (1, 3) signature of space-time to (2, 2) [160]), so that λ and λ̃ become
independent. This allows to write non-vanishing structures as in (2.3) while having sij = 0
satisfied as well. Finally, when flipping the sign of the momentum p we adopt the symmetric
convention on the associated spinors

λ−pα = i λpα , λ̃−p α̇ = i λ̃p α̇ , (A.8)

this convention enters also when performing the crossing of fermions from in to out state,
leading to a factor 1

i for every crossed fermion.

A.2 The Standard Model gauge group

In table 3 we write explicitly the representations under which each particle in the infrared
spectrum of the Standard Model transforms, for the gauge group U(1)× SU(2)× SU(3).

Our convention on the colour factor are completely specified by the decomposition of
the contraction of two generators for both the SU(N) and SU(2) groups respectively:

τAac τ
B c
b = 1

2N δAB δab + i

2 f
ABC τC ab + 1

2 d
ABC τC ab , (A.9)
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where fABC are the structure constants and dABC is the traceless completely symmetry
d-tensor, and

σI ikσ
J k
j = 1

4 δ
IJ δij + i

2 ε
IJK σK i

j . (A.10)

For the SU(2) group we also need to specify how indices in the fundamental are raised and
lowered by the ε-tensor:

xi = εij x
j = εij ε

jk xk . (A.11)

B 3-point amplitudes in the Standard Model

In this section we present the complete set of non-vanishing three-point amplitudes in
the Standard Model. As already mentioned in section 2.1, consistent factorisation of the
four-point amplitudes imposes constraints which not only fix the colour structures but also
relate the couplings of the various three-point amplitudes among each other. Once these
constraints are taken into account a small set of the numerical coefficients in front of the
amplitudes is still arbitrary and up to convention.

A(W I
−,W

J
−,W

K
+ ) = g2 ε

IJK 〈1 2〉3
〈2 3〉〈3 1〉 , A(W I

−,W
J
+,W

K
+ ) = −g2 ε

IJK [2 3]3
[1 2][3 1] ,

A(GA−, GB−, GC+) = g3 f
ABC 〈1 2〉3
〈2 3〉〈3 1〉 , A(GA−, GB+, GC+) = −g3 f

ABC [2 3]3
[1 2][3 1] ,

A(B−, ēm, en) = i g1 δnm
〈1 2〉2
〈2 3〉 , A(B+, ēm, en) = i g1 δnm

[1 3]2
[2 3] ,

A(B−, L̄im, Ljn) = −i g1
2 δmn δ

j
i

〈1 2〉2
〈2 3〉 , A(B+, L̄

i, Lj) = −i g1
2 δmn δ

j
i

[1 3]2
[2 3] ,

A(B−, ūam, ubn) = −i 2 g1
3 δnm δ

a
b

〈1 2〉2
〈2 3〉 , A(B+, ū

a
m, u

b
n) = −i 2 g1

3 δnm δ
a
b

[1 3]2
[2 3] ,

A(B−, d̄am, dbn) = i
g1
3 δnm δ

a
b

〈1 2〉2
〈2 3〉 , A(B+, d̄

a
m, d

b
n) = i

g1
3 δnm δ

a
b

[1 3]2
[2 3] ,

A(B−, Q̄a,im , Qb,jn ) = i
g1
6 δmn δ

j
i δ

b
a

〈1 2〉2
〈2 3〉 , A(B+, Q̄

a,i
m , Q

b,j
n ) = i

g1
6 δmn δ

j
i δ

b
a

[1 3]2
[2 3]

A(B−, H̄ i, Hj) = i
g1
2 δji
〈1 2〉〈3 1〉
〈2 3〉 , A(B+, H̄

i, Hj) = −i g1
2 δji

[1 2][3 1]
[2 3] ,

A(W I
−, L̄

i
m, L

j
n) = i g2 δmn σ

I j
i

〈1 2〉2
〈2 3〉 , A(W I

+, L̄
i
m, L

j
n) = i g2 δmn σ

I j
i

[1 3]2
[2 3] ,

A(W I
−, Q̄

a,i
m , Q

b,j
n ) = i g2 δmn σ

I j
i δ
b
a

〈1 2〉2
〈2 3〉 , A(W I

+, Q̄
a,i
m , Q

b,j
n ) = i g2 δmn σ

I j
i δ
b
a

[1 3]2
[2 3] ,

A(W I
−, H̄

i, Hj) = i g2 σ
I j
i

〈1 2〉〈3 1〉
〈2 3〉 , A(W I

+, H̄
i, Hj) = −i g2 σ

I j
i

[1 2][3 1]
[2 3] ,

A(GA−, ūam, ubn) = −i g3 δnm τ
Aa
b

〈1 2〉2
〈2 3〉 , A(GA+, ūam, ubn) = −i g3 δnm τ

Aa
b

[1 3]2
[2 3] ,

A(GA−, d̄am, dbn) = −i g3 δnm τ
Aa
b

〈1 2〉2
〈2 3〉 , A(GA+, d̄am, dbn) = −i g3 δnm δ

j
i τ

Aa
b

[1 3]2
[2 3] ,
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A(GA−, Q̄a,im , Qb,jn ) = i g3 δmn τ
Ab
a δ

j
i

〈1 2〉2
〈2 3〉 , A(GA+, Q̄a,im , Qb,jn ) = i g3 δmn δ

j
i τ

Ab
a

[1 3]2
[2 3] ,

A(Q̄a,im , ūbn, H̄j) = iY(1)
mn εijδ

b
a 〈1 2〉 , A(Qa,im , ubn, Hj) = −i Ȳ(1)

nm ε
ijδab [1 2] ,

A(Qa,im , dbn, H̄j) = iY(2)
nm δ

i
j δ

a
b [1 2] , A(Q̄a,im , d̄bn, Hj) = i Ȳ(2)

mn δ
j
i δ

b
a 〈1 2〉 ,

A(Lim, en, H̄j) = iY(3)
nm δ

i
j [1 2] , A(L̄im, ēn, Hj) = i Ȳ(3)

mn δ
j
i 〈1 2〉 .

C One-loop scalar integrals

The expression for the following scalar integrals have been taken from [113]. Defining

rΓ = Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε) (C.1)

one has for the bubble

I2(s12) =
∫

d4−2εl

(2π)4−2ε
1

l2 (l − p1 − p2)2 = i

(4π)2−ε
rΓ

ε(1− 2ε)(−s12)−ε , (C.2)

for the one-mass triangle

I3(s12) =
∫

d4−2εl

(2π)4−2ε
1

l2 (l − p1)2 (l − p1 − p2)2 = − i

(4π)2−ε
rΓ
ε2

(−s12)−1−ε , (C.3)

and finally the massless box

I4(s12, s14) =
∫

d4−2εl

(2π)4−2ε
1

l2 (l − p3)2 (l − p3 − p4)2(l + p2)2

= i

(4π)2−ε
rΓ

s12s14

[ 2
ε2
(
(−s12)−ε + (−s14)−ε

)
− log2

(−s12
−s14

)
− π2

]
.

(C.4)

D Infrared collinear anomalous dimensions in the Standard Model

In this section we are going to show an example of the computation of the collinear anoma-
lous dimension for the W bosons in the Standard Model and we will give the result for all
the particles in the spectrum of the theory.

We start by giving the stress-tensor form factor [107] following the normalisation pro-
cedure given in [68] for generic complex scalars, fermions and vectors respectively:26

〈φ̄AφB|Tαα̇ββ̇ |0〉 = 1
3δ

B
A

(
λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
1 − λ

α
1λ

β
2 λ̃

α̇
1 λ̃

β̇
2 − λ

α
1λ

β
2 λ̃

α̇
2 λ̃

β̇
1 − λ

α
2λ

β
1 λ̃

α̇
1 λ̃

β̇
2

− λα2λ
β
1 λ̃

α̇
2 λ̃

β̇
1 + λα2λ

β
2 λ̃

α̇
2 λ̃

β̇
2

)
〈ψ̄AψB|Tαα̇ββ̇ |0〉 = 1

2δ
B
A

(
λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
1 + λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
2 − λ

α
1λ

β
2 λ̃

α̇
2 λ̃

β̇
2 − λ

α
2λ

β
1 λ̃

α̇
2 λ̃

β̇
2

)
〈vI−v

J
+|Tαα̇ββ̇ |0〉 = −2 δI J λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 ,

(D.1)

26The different overall minus sign with respect to [68] comes from our different convention choice for
λα−k = iλαk and λ̃α̇−k = iλ̃α̇k , while the authors in [68] chose λα−k = λαk and λ̃α̇−k = −λ̃α̇k .
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where A, B, I, J are generic colour indices. Once we fix the minimal form factor for the
stress tensor, we can apply the formula (4.7):

〈W I
−W

J
+|Tµν |0〉 ·

2∑
l=1

γ
(l)
coll

16π2 = 1
π

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1l1 p

hl2
l2
→W I

−W
J
+)

−
3∑

k=1

g2
k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
· 〈phl1l1 p

hl2
l2
|Tµν |0〉 ,

(D.2)

where the sum over {l1, l2} runs over the pairs{
{W−,W+}, {W+,W−}, {Q̄,Q}, {Q, Q̄}, {L̄, L}, {L, L̄}, {H̄,H}, {H, H̄}

}
. (D.3)

Considering that γW−coll = γ
W+
coll := γWcoll, we can rewrite (D.2) as

γWcoll = 8π
∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1l1 p

hl2
l2
→W I

−W
J
+)−

3∑
k=1

g2
k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
·
〈phl1l1 p

hl2
l2
|Tµν |0〉

〈W I
−W

J
+|Tµν |0〉

,

(D.4)
We will list now the different contributions from the W bosons (which need the infrared
divergence subtraction), the quarks, the leptons and the Higgs doublet, respectively:

γWcoll = −g2
2

(11
3 × 2− Nf

3 × 3− Nf

3 −
1
6

)
, (D.5)

where the factor of ×2 in the first term is the Casimir of the adjoint representation of
SU(2), while the factor of ×3 in the second term comes from the sum on different colour
of the quarks. This is the usual result for the SU(2) beta function with Nf Weyl fermions
and 1 scalar, both transforming in the fundamental of the gauge group.

Finally, we give the explicit results for the other states in the Standard Model. We
start from the vector bosons

γBcoll = 2
3 g

2
1

[(
Y 2
Q × 2 + Y 2

u + Y 2
d

)
× 3 +

(
Y 2
L × 2 + Y 2

e

)
+ Y 2

H

]
, (D.6)

γGcoll = −g2
3

(11
3 × 3− Nf

3 × 2× 2
)
, (D.7)

where the first ×2 in the second term of γGcoll comes from the sum over SU(2) indices (or
equivalently over d and u) and the second ×2 factor comes from the fact that SU(3) is not
a chiral theory and the quarks behave as a doublet of Dirac fermions. Then we have the
collinear anomalous dimensions for the fermions(

γQcoll

)
mn

= −3
(
g2

1 Y
2
Q + 3

4 g
2
2 + 8

6 g
2
3

)
δmn + Y(1)

mp Ȳ(1)
pn + Y(2)

mp Ȳ(2)
pn , (D.8)

(γucoll)mn = −3
(
g2

1 Y
2
u + 8

6 g
2
3

)
δmn + 2 Ȳ(1)

np Y(1)
pm , (D.9)(

γdcoll

)
mn

= −3
(
g2

1 Y
2
d + 8

6 g
2
3

)
δmn + 2 Ȳ(2)

np Y(2)
pm , (D.10)(

γLcoll

)
mn

= −3
(
g2

1 Y
2
L + 3

4 g
2
2

)
δmn + Y(3)

mp Ȳ(3)
pn , (D.11)

(γecoll)mn = −3 g2
1 Y

2
e δmn + 2 Ȳ(3)

np Y(3)
pm , (D.12)
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and, finally, the Higgs

γHcoll = −4 g2
1 Y

2
H−4 g2

2×
3
4 +2 TrY(1) · Ȳ(1)×3+2 TrY(2) · Ȳ(2)×3+2 TrY(3) · Ȳ(3) , (D.13)

where 3
4 and 8

6 are the Casimir of the fundamental representation of SU(2) and SU(3),
respectively.

E Finite field arithmetic

In this section we briefly describe the main features of finite field kinematics. Our goal is
to give just a taste of the method, motivating its usefulness in our particular context, high-
lighting at the same time the caveats which come along the benefits. For a more in depth
mathematical primer we refer the interested reader to [161] and references therein, whereas
for a discussion of applications to modern theoretical physics problems to [156, 162].

Consider the integer numbers Z endowed with the standard addition and multiplication
and choose a natural number p ∈ N. We define a set of p equivalence classes through the
modulo operation mod, we say that a is equivalent to b or a equals b modulo p if

a = b mod p ⇐⇒ ∃n ∈ Z s.t. a− b = n · p . (E.1)

The set of natural numbers
Zp ≡ {0, 1, . . . , p− 1} (E.2)

can be chosen as the most intuitive representatives of these equivalence classes, and it is
easy to see that this set endowed with the standard addition (mod p) is a representation of
the cyclic group of order p, hence the use of the symbol Zp. It can be shown that if p is a
prime number then Zp endowed also with the usual multiplication (mod p) is a field, which
is finite by construction and we thus call it finite field. The modulo operation provides
clearly a simple map from Z to Zp, what is less obvious, but still holds true as long as p is a
prime, is that under some restriction there is also a unique and well defined map from the
rationals Q to Zp. This map is based on the possibility of defining a multiplicative inverse
a−1 for every a ∈ Zp such that a a−1 = a−1 a = 1 mod p.

Now that we have given an operative definition of finite fields we can focus on why and
how we use them. Performing some sort of analytic computation on a computer (especially
on a laptop) can often prove challenging in that the computational time required is too
large for a result to be successfully obtained. In similar situations it might be a good idea to
change the perspective on the problem and try to reformulate it using a numeric approach.
In our case this amounts to switching from trying to directly obtain the amplitude from
simplifying (2.2) analytically to building numeric systems to be solved as in 5.1.1. The
advantage of numerics is that in principle it is clearly much faster, since potentially large
intermediate expressions are replaced with numbers. This is certainly true when dealing for
example with floating-point arithmetic. On the other hand, the use of numeric expressions
requires carefully keeping track of possible precision loss and makes arbitrary precision
arithmetic at times more appealing, which is however slower. Here is where finite fields

– 44 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
1

enter the game, since we can map our problem from Q to Zp, which avoids the precision
loss of floating point numbers, and then perform the numeric computations on Zp, which
is extremely fast because we can choose p to be a machine-size prime and thus the whole
computation will only involve machine-size natural numbers. The obvious issue is that
once the problem at hand has been solved on Zp we need to map the solution back to Q,
through a map which cannot by any means be a bijection.

Despite the fact that the map Q → Zp is not injective, it is possible under certain
circumstances to “invert it”, or rather to make an educated guess of which element n

d ∈ Q
corresponds to a given b ∈ Zp. In particular it can be shown (see for example [163]) that
given b there is only one pair of n and d such that n2, d2 < p

2 . In other words, if the correct
values of n and d which we are looking for are small enough compared to the prime p which
we chose as the order of the field Zp, then we can uniquely obtain their value from b ∈ Zp.
The size of p however has an upper bound being the machine-size primes, since the whole
point of using finite fields is to deal with machine-size integers. Consequently, one cannot
simply choose an arbitrarily large prime so to be confident that the inverted map yields the
correct result. Instead, one uses the so called Chinese remainder theorem,27 which allows
to combine the outcome X of the same calculation on multiple fields Zp1 , . . . ,Zpn to obtain
the value of X modP where P = ∏

i pi. In other words, the Chinese remainder theorem
defines a ring isomorphism28

Zp1 × · · · × Zpn → ZP

(X mod p1, . . . , X mod pn) 7→ X modP
(E.3)

which allows us to access the value X modP on ZP where P is large, through computations
on fields with small values of pi. Applying then the “inverse” mapping to the value found
on ZP will very likely return the correct result. This procedure is iterated adding more
fields Zpn+1 until the inverse of b ∈ ZP converges to a definite n

d ∈ Q.
In our specific case it is usually enough to perform the calculation on a single field Zp:

since we are using finite fields to do numeric evaluations aimed at solving the system (5.15),
once a solution has been found we can simply test it through a single evaluation of (5.13)
on Q. As a final remark, we discuss one caveat of the method. Since everything relies on
the possibility of mapping Q to Zp, one can only apply the so far presented techniques in
the case the problem at hand is entirely described by rational functions. This is indeed
the scenario we are interested in: in fact, the tree-level scattering amplitudes present an
entirely rational dependence on the spinor invariants and thus on the spinor components.
Furthermore, one has to take special care of elements appearing in the calculations which
do belong to more extended number fields than Q, in particular for us this means square
roots and imaginary units. How these are dealt with is often a matter of the specific
problem, where our choices have been described in section 5.1.3.

27See for example [156].
28Since P is not a prime Zp is not a field but a ring.
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