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1 Introduction

Searching for a consistent theory of quantum gravity is always one of the fascinating topics
over the decades. Black holes provide us a platform where both gravity and quantum
theory become significant. This property plays an important role in the unification of
general relativity and quantum mechanics in a single framework. In this context, black
hole entropy proves to be an efficient tool for testing any strong candidate for quantum
gravity. Bekenstein and Hawking et al. [1–3] first proposed that black holes can have a
thermodynamical analogy and hence radiate thermal radiation quantum mechanically like
a black body. They behave like thermal bodies with definite entropy called the Bekenstein-
Hawking entropy. This entropy is universal and proportional to the area of the horizon
of the black hole under consideration. However, it does not depend upon the matter
content and their couplings with the black hole background. Moreover, this entropy relation
is valid for macroscopically large black holes (AH ≥ l2p, where lp is plank length) and
limited up to the classical regime with two derivative terms. But, considering the higher
derivative terms in a general theory of gravity and quantum effects, this entropy demands
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corrections. Several attempts have been made to correct the area law, adding namely
quantum corrections [4–15] and higher derivative corrections [16–19]. In this work, we
are predominantly interested in quantum corrections to Bekenstein-Hawking entropy of a
black hole. The quantum corrected Bekenstein-Hawking entropy of black holes with large
charges can be expressed as,

SBH = AH
4GN

+ C ln AH
GN

+ constant +O(A−1
H ), (1.1)

where AH is the horizon area of the black hole and GN is Newton’s constant. In eq. (1.1),
the first term represents the classical Bekenstein-Hawking entropy, C ln AH

GN
is the logarith-

mic correction term and O(A−1
H ) give power-law corrections.

In this work, our primary focus is on the determination of the logarithmic correction
term to Bekenstein-Hawking entropy (1.1) for a particular class of black holes. This term
is proportional to logarithmic of the area of the black hole with proportionality constant
C. Logarithmic corrections are leading order quantum corrections, which arise from the
loops of massless fields and their coupling to the black hole background [4–15]. These
corrections are universal and appear in any gravitational theory. They can be evaluated
by computing the quantum determinant over fluctuating massless fields present in the
black hole background. Moreover, these corrections depend only on the knowledge of
infrared physics (low energy data) and do not require the details of ultraviolet completion
of the theory.

Logarithmic corrections to the black hole entropy provide non-trivial information about
the microstates of the black holes. Hence computations of these corrections to the entropy
of black holes in various supergravity theories have become a rich arena to explore in both
microscopic and macroscopic sectors. References [20, 21] present an excellent compara-
tive study of macroscopic and microscopic entropy corrections of various black holes in
different supergravity theories. By successfully comparing the logarithmic corrections to
the entropy of a black hole between both sectors (microscopic and macroscopic), one can
test a consistent theory of quantum gravity. Our work mainly deals with the macroscopic
(infrared) part for the determination of the logarithmic corrections.

Supergravity theories being the low energy limit of superstring theory, provide a gen-
eral background to study logarithmic corrections to the Bekenstein-Hawking entropy of
a black hole. The logarithmic corrections to the entropy of various extremal and non-
extremal black holes in different supersymmetric and non-supersymmetric theories have
been computed using the Euclidean gravity approach [4–15]. However, in this progress,
cases of extremal black holes are tremendously explored compared to the non-extremal
ones. Higher dimensional non-extremal black hole solutions studied in [22–25] are found to
be very interesting. In [25], the entropy function for non-extremal black hole was studied.
Again, the logarithmic corrections to the entropy of various black holes in non-extremal
regime were studied in various literature [11–13, 26–29]. The present paper is greatly mo-
tivated by the works of Sen [11] and Larsen [12, 13]. In [11] and [12], the authors have
determined the logarithmic corrections to the entropy of non-extremal Kerr-Newman fam-
ily1 of black holes in non-supersymmetric and N ≥ 2 supergravity theories. The results for

1Kerr-Newman family includes Kerr-Newman, Kerr, Reissner-Nordström and Schwarzschild black holes.
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logarithmic corrections to the entropy of non-extremal black holes in various supergravity
theories may provide directions for studying radiations and other thermal properties of
black holes in non-extremal regimes.

As already well known, a non-extremal black hole posses a finite temperature called
Hawking temperature. These black holes are not stable and radiate thermal radiation like
a black body. As a result, they loose energy continuously. Extremal black holes are a
limiting case of non-extremal ones, defined with zero temperature and cease to hawking
radiate. Non-extremal black holes are neither restricted by any sort of constraint applied
over to their inner and outer horizons nor possess any specific geometry having AdS2 factor.
So, unlike the extremal case, one can not use quantum entropy function formalism [30–
32] to determine the logarithmic corrections for the non-extremal black holes. In the
current work, we will follow the approach of Sen [11]2 for the determination of logarithmic
corrections of black holes in non-extremal limit. A similar approach is used in [26–29] for
the determination of quantum corrections to black hole entropy. Later, Larsen et al. also
utilized the approach of [11] in [12, 13] for the determination of logarithmic corrections to
the non-extremal black holes in different supergravity theories.

The aforementioned developments about the determination of logarithmic corrections
to non-extremal black holes in various N ≥ 2 supergravity theories and N = 0 non-
supersymmetric theory motivate us to give a closer look at black holes in N = 1 super-
gravity. It will be interesting to compute the logarithmic corrections to the entropy of
non-extremal Kerr-Newman family of black holes in this theory. This will provide another
example to study the logarithmic correction to Bekenstein-Hawking entropy in this series
of supergravity theories in non-extremal limit, and is also important in search of testing a
consistent theory of quantum gravity. The attractor mechanism of black holes in N = 1
supergravity was studied by Ferrara et al. [33], where black holes were presented in the
context of N = 1 supergravity theory. We perform the logarithmic correction analysis
utilizing the heat kernel technique in “non-minimal” N = 1 Einstein-Maxwell supergravity
theory (EMSGT) in four dimensions. In “non-minimal” N = 1, d = 4 EMSGT, the vector
multiplet is non-minimally coupled with pure N = 1 supergravity multiplet. This theory
is well studied by Ferrara et al. and the corresponding supergauged action is constructed
in [34]. The Kerr-Newman family of black holes are the solutions of Einstein-Maxwell sys-
tem, and its configuration can be described by N = 1 supergravity theory coupled with a
vector multiplet.

In our earlier work [35], we have determined the logarithmic corrections of Kerr-
Newman family of extremal black holes in “non-minimal” N = 1, d = 4 EMSGT using
quantum entropy function formalism [30–32]. Apart from this, the determination of loga-
rithmic corrections in different classes of N = 1, d = 4 EMSGTs (namely N = 1 theory
as truncation of N = 2 theory and “minimally coupled” N = 1 theory) has been carried
out in [14, 36]. All these above works are mainly focused on determining the entropy cor-
rections of extremal black holes. The work [14] by Karan et al. also presents logarithmic
correction results for the Kerr-Newman family of black holes in the non-extremal regime,

2We have reviewed the approach of determination of logarithmic corrections of non-extremal black holes
from [11] and explicitly presented in section 4.
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in a particular class of N = 1 theory obtained from multiplet decomposition of N = 2
theory. This N = 1 theory obtained from truncation is an approximated theory, whose
multiplet decomposition is done following some set assumptions.3 On the contrary, in the
current work we have considered a more general “non-minimal” N = 1, d = 4 EMSGT. It
is different from the N = 1 theory obtained from “truncation” of N = 2 theory in the sense
that it does not follow any sort of those assumptions considered while multiplet decompo-
sitions. We have determined the logarithmic corrections to the entropy of Kerr-Newman,
Kerr, Reissner-Nordström and Schwarzschild black holes in the non-extremal regime in this
“non-minimal” N = 1, d = 4 EMSGT. It will be interesting to observe how the entropy of
black holes changes from extremal [35] to non-extremal limit within the same theory. This
will also be helpful to develop the microstate picture of the black hole in the non-extremal
regime to this theory.

The logarithmic corrections to the entropy of black holes are computed using the heat
kernel analysis of one-loop effective action of a theory [4–15]. General Seeley-DeWitt expan-
sion approach [37] within heat kernel is the most sophisticated approach4 for the analysis
of one-loop effective action due to its non-dependency in background geometry as well as
supersymmetry. This general Seeley-DeWitt expansion approach has been followed in most
of the earlier works [4, 5, 14, 15, 35, 38] for the computation of logarithmic corrections to
black hole entropy. Despite being a straightforward approach, the computations of Seeley-
DeWitt coefficients from one-loop fluctuated action by the general approach [37] is very
much tedious and tiresome for the theories having a complicated form of quadratic fluctu-
ated action. We experienced these issues particularly while dealing with the computation
of Seeley-DeWitt coefficients for minimal N = 2, d = 4 [5], matter coupled N ≥ 1 [14],
“non-minimal” N = 1, d = 4 EMSGTs [35] and generalized Einstein-Maxwell theory [15].
To tackle such extensive and complicated calculations, here we have adopted the field re-
definition Seeley-DeWitt expansion approach to determine the corresponding coefficients
in this article. This field redefinition approach of Seeley-DeWitt expansion was put forward
by Larsen et al. in [12, 13]. It is a customized form of general Seeley-DeWitt expansion [37].
This customization is based on introducing a redefined field into the quadratic fluctuated
action in order to simplify the complicated one-loop action. Rest of the steps to deter-
mine the Seeley-DeWitt coefficients remain the same as that of the general approach [37].
Although this approach provides a short and simplified computation, it has its own limi-
tations. One has to know exactly about the type of field redefinition to be introduced in a
theory as it depends upon the choice of fields present in theory. Only that field redefinition
is considered for which the fluctuated action takes a simplified form. Hence it causes a
loss of generality and also makes it impossible to keep track of individual original field
contributions throughout the computations.

The present work is greatly motivated by the success in the computation of Seeley-
DeWitt coefficients for minimal N = 2, d = 4 EMSGT through the field redefinition
Seeley-DeWitt expansion approach [12]. The results of [12] perfectly matched with the

3Kindly refer section 4.1 of [36] for the required assumptions used in this multiplet decomposition.
4Please see the references of [35] for other approaches of heat kernel.
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Seeley-DeWitt coefficients for the same theory obtained through the general approach
in [4, 5, 14]. So, the field redefinition approach of Seeley-DeWitt expansion [12] provided
us a platform to check the consistency of the results for Seeley-DeWitt coefficients for “non-
minimal” N = 1, d = 4 EMSGT. These coefficients have already been computed in our
earlier work [35], but following the general approach of Seeley-DeWitt expansion [37]. We
first reviewed the computation of the first three Seeley-DeWitt coefficients for the bosonic
gravity multiplet of N = 2, d = 4 EMSGT from [12] as it coincides with the bosonic part
of “non-minimal” N = 1, d = 4 EMSGT. For the fermionic sector, we introduced a new
field, which is defined with a particular form of field redefinition (3.29), and computed the
first three Seeley-DeWitt coefficients for this sector as well. The results are found to be in
perfect agreement with our earlier result [35].

The paper is organized as follows. Section 2 presents a general review on analysis of
effective action through heat kernel expansion. Here, we first expressed the relationship
between the one-loop effective action and Seeley-DeWitt coefficients. Then, we presented
the methodology of the field redefinition Seeley-DeWitt expansion approach [12] to compute
the Seeley-DeWitt coefficients. In section 3, we start with a discussion on the general
properties of “non-minimal” N = 1, d = 4 EMSGT under consideration. We presented
the equations of motion and identities for the action of the concerned theory in 3.1. Then,
we applied the field redefinition Seeley-DeWitt expansion approach [12] to “non-minimal”
N = 1, d = 4 EMSGT, and computed the first three Seeley-DeWitt coefficients for this
theory. The results are in accordance with those in our earlier work [35]. Section 4 begins
with a review of the approach of [11] for the determination of logarithmic corrections
to the entropy of non-extremal black holes using a particular Seeley-DeWitt coefficient
in arbitrary black hole background. We then applied this framework to Kerr-Newman
metric and computed the logarithmic corrections to the Bekenstein-Hawking entropy of
non-extremal Kerr-Newman, Kerr, Reissner-Nordström and Schwarzschild black holes in
“non-minimal” N = 1, d = 4 EMSGT. The results are presented in eqs. (4.40) to (4.43).
These results are new as well as unique and will provide a testing ground for any microscopic
approach to the same problem in the non-extremal limit. Finally, we conclude in section 5
with a discussion about all the results obtained. We have presented some details of the
calculations in appendix A.

2 Seeley-DeWitt expansion of heat kernel via field redefinition approach

In this section, we start with a general discussion of Seeley-DeWitt expansion of heat
kernel to analyze the one-loop effective action in a 4D field theory. The working procedure
evaluates the functional determinant of quadratic fluctuated action, which encapsulates all
the information about the one-loop effective action. Then, we present a brief review of the
field redefinition approach of computation of Seeley-DeWitt coefficients from [12].

2.1 Heat kernel analysis of effective action

Let’s consider the partition function Z in a four-dimensional compact, smooth Riemannian
manifold at finite temperature T . The manifold is associated with arbitrary fields ϕm.
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Then, the partition function is given by

Z =
∫

[Dϕm]exp(−S[ϕm]). (2.1)

[Dϕm] is a functional integral overall configuration of arbitrary fields ϕm and S is Eu-
clidean action. The integral (2.1) is evaluated using saddle point approximation around
the stationary saddle points, which satisfy the classical equations of motion of a theory. In
order to evaluate the one-loop correction to the partition function, we begin by following
field expansion around the background:

ϕm = ϕ̄m + ϕ̃m, (2.2)

where ϕ̃m is set of quantum fields fluctuated around the classical background field ϕ̄m.
These background fields ϕ̄m correspond to the stationary saddle points. Expanding the ac-
tion up to quadratic order by imposing the fluctuations (2.2), we get the following quadratic
fluctuated action:

S2 =
∫
d4x

√
ḡϕ̃mΛmnϕ̃n, (2.3)

Λ in eq. (2.3) is the kinetic operator acting over quantum fields. The form of Λ should be
Hermitian, Laplacian,5 minimal second order, pseudo-differential type as per the require-
ment of heat kernel analysis [5]. The one-loop effective action W is related to the kinetic
operator Λ as [13]

exp(−W ) =
∫

[Dϕ̃m] exp(−
∫
d4x

√
ḡϕ̃Λϕ̃) = det−χ/2Λ. (2.4)

χ is +1 for bosons and -1 for fermions. To study the spectrum of Λ, we introduce heat
kernel K(x, y; s), which is the solution of the standard heat equation. Here, x and y are
points on the manifold, whereas s is proper time coordinate, treated as the heat kernel
parameter. Setting x = y, we define a new quantity heat trace D(s),

D(s) =
∫
d4x

√
ḡK(x, x; s). (2.5)

Then, the one-loop effective action (W ) can be expressed in terms of heat trace D(s) as

W = −1
2

∫ ∞
ε

ds

s
χD(s), (2.6)

where

D(s) = tr (e−sΛ) =
∑
i

e−sλi =
∑′

i
λi 6=0

e−sλi +
∫
d4x

√
ḡKzm(x, x; 0), (2.7)

and λi are the eigenvalues of the kinetic operator Λ.
∑′ defines the summation over

non-zero values of λi. Kzm(x, x; 0) is zero mode contribution, associated with the modes
5For Fermionic fields in the theory, the operator is required to be put in Laplacian form following

eq. (3.32).
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having zero eigenvalues of kinetic operator in K(x, x; s). ε is the UV limit in eq. (2.6).6
The heat trace D(s) after small perturbative expansion in proper time is given as

D(s) =
∫
d4x

√
ḡ
∞∑
n=0

sn−2a2n(x). (2.8)

This expansion is called the Seeley-DeWitt expansion [37, 39–52]. Here a2n is called Seeley-
DeWitt coefficients. So, the problem of finding the quantum correction to the theory is
related to determining heat trace D(s), and this has to be done by evaluating the Seeley-
DeWitt coefficients a2n of the theory. In the next subsection, we will put light on the
computational method of these Seeley-DeWitt coefficients a2n.

2.2 Computation of Seeley-DeWitt coefficients by field redefinition Seeley-
DeWitt expansion approach

The most common and general approach for the computation of Seeley-DeWitt coefficients
was presented by Vassilevich [37]. Later, Larsen et al. [12, 13] customized the general
approach [37] by introducing a field redefinition into the quadratic fluctuated action of a
theory. By doing so, the further computations of Seeley-DeWitt coefficients for the theory
having complex form of action become short and simplified. Below we present a brief review
on computation of the Seeley-DeWitt coefficients through the field redefinition approach
of Seeley-DeWitt expansion, following the treatment of [12].

Let’s consider the quadratic fluctuated action (2.3) for any theory for which the form
of the kinetic operator (Λ) turns out to be complicated, making it difficult to follow the
general approach for the computation of Seeley-DeWitt coefficients. Then, the action (2.3)
is calibrated by introducing a suitable new field Φ̃, formulated from the set of original
fields ϕ̃ present in the theory (more clearly, please see (3.11) and (3.29)). The structure
of this redefined field can be guessed from the form of one-loop action of the theory. This
redefinition has to be done in such a way that it brings a simplified form of the kinetic
operator (Λ) from which the further computation of Seeley-DeWitt coefficients are easily
accomplished. However, in the above process, the basic structure of the new redefined form
of Λ still retains the same form as general Λ7 constructed without any field redefinition
and is given as

Λmn = ±{(DρDρ)Gmn + (NρDρ)mn + Pmn}, (2.9)

where +ve and −ve sign is to be considered for bosonic and fermionic quadratic fluctuated
action, respectively. G is the effective metric in field space, which is ḡµν for vector field,
ḡµνI4 for Rarita Schwinger field and I4 for Dirac field with I4 being the 4D identity matrix.
N and P are arbitrary matrices associated with the derivative and non-derivative part of
Λ in eq. (2.9). Dρ is an ordinary covariant derivative. Rest of the steps are exactly same
as the general approach prescribed in [37]. Eq. (2.9) is to be expressed in the form

Λmn = ±{(DρDρ)Imn + Emn}, (2.10)
6We have considered ε ∼ l2p ∼ GN ∼ 1

16π throughout the work.
7Kindly refer [5, 35] for an explicit review of the general approach of computation of Seeley-DeWitt

coefficients [37].
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where

Dρ = Dρ + ωρ, I = G, ωρ = 1
2Nρ, E = P − ωρωρ −Dρωρ. (2.11)

Dρ is the new effective covariant derivative, ωρ is the field connection. The field strength
Ωαβ associated with curvature Dρ as

Ωαβ ≡ [Dα,Dβ ]. (2.12)

The Seeley-DeWitt coefficients in terms of I, E , Ωαβ and other local background invariant
parameters are given by relation [37, 45, 46]:

χ(4π)2a0(x) =tr (I),

χ(4π)2a2(x) =1
6tr (6E +RI),

χ(4π)2a4(x) = 1
360tr

{
60RE + 180E2 + 30ΩµνΩµν

+ (5R2 − 2RµνRµν + 2RµνρσRµνρσ)I
}
,

(2.13)

where R, Rµν and Rµνρσ are the usual curvature tensor associated with background metric.
In expressions of Seeley-DeWitt coefficients (2.13), we have ignored the total derivative
terms because we are particularly interested in the manifold having no boundary.

We summarize the field redefinition Seeley-DeWitt expansion approach [12] men-
tioned above for the computation of Seeley-DeWitt coefficients of a theory in the following
algorithm.

1. Fluctuate the fields around the classical background (2.2) and obtain the quadratic
fluctuated action (2.3).

2. Gauge fix the quadratic fluctuated action (2.3) by adding the proper gauge fixing term
in action obtained in step 1. Thus, we have a gauge fixed quadratic fluctuated action.

3. Express the gauge fixed quadratic fluctuated action obtained in step 2 by inserting a
proper redefined field, so that the new redefined quadratic fluctuated action takes a
simplified form than obtained in step 2.

4. Identify the redefined kinetic differential operator Λ (which is associated with sim-
plified action obtained in step 3) in the form (2.9). Also, find associated ghost fields
arose due to gauge fixing in step 2. The ghost sector has to be considered separately.

5. Identify the form of G, Nρ and P from the calibrated Λ having no ghost.

6. This form of Λ obtained in step 4 is made to fit in the prescription of eq. (2.10).
From where identify the expression of I, E and ωρ using eq. (2.11). The expression
of Ωαβ can be obtained from eq. (2.12).

7. Now, compute the traces of I, E, E2 and ΩαβΩαβ , also make use of equations of
motion and other identities in this trace calculations for necessary simplifications.

– 8 –
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8. Use the trace results obtained in step 7 to compute the first three Seeley-DeWitt
coefficients utilizing eq. (2.13).

9. Now similarly compute the Seeley-DeWitt coefficients associated with the ghost sector
following above-mentioned steps 4-8. Most often, for the ghost action, the form of Λ
turns out to be in simplified form. Hence one need not introduce any redefined field
for ghosts and can follow the general approach [37] to compute the corresponding
coefficients.

10. Finally, add both the Seeley-DeWitt coefficients, obtained in step 8 and step 9 to
find the total Seeley-DeWitt coefficients for the theory.

Kindly note these Seeley-DeWitt coefficients are defined with local background invariants,
i.e., the curvatures tensors associated with the background metric. In the next section, we
would discuss about the “non-minimal” N = 1 EMSGT in four dimensions. Subsequently,
we determine Seeley-DeWitt coefficients a0, a2 and a4 for this theory following the above
steps (1–10).

3 Seeley-DeWitt coefficients in “non-minimal” N = 1, d = 4 EMSGT

We apply the methodology outlined in section 2 for computation of Seeley-DeWitt coeffi-
cients to “non-minimal” N = 1, d = 4 EMSGT and compute the first three Seeley-DeWitt
coefficients. As already discussed in section 2, we prefer to carry out this exercise via the
field redefinition approach of Seeley-DeWitt expansion [12]. We shall consider the bosonic
and fermionic fields of this theory separately. We review the bosonic sector, described by
eq. (3.2), following [12]. We then compute the coefficients for the fermionic sector by intro-
ducing a proper redefined field. Finally, we determine the total Seeley-DeWitt coefficients
for the theory by adding the contributions from both sectors —bosonic and fermionic. In
the later section, we use the third Seeley-DeWitt coefficient to determine the logarithmic
corrections to the entropy of non-extremal black holes in this theory.

3.1 “Non-minimal” N = 1, d = 4 EMSGT

The “non-minimal” N = 1 EMSGT in four dimensions is characterized with field contents:
spin 2 graviton (gµν), spin 1 gauge field (Aµ) with corresponding superpartners spin 3/2
gravitino (ψµ) and spin 1/2 gaugino field (λ).8 The action corresponding to this theory is
constructed by Ferrara et al. [34] by coupling pure N = 1 supergravity multiplet (gµν , ψµ)
with vector multiplet (Aµ, λ). Here the gaugino field of vector multiplet interacts non-
minimally with the gravitino field of supergravity multiplet, and only the gauge field is
minimally coupled to gravity in the supergauged action of this theory. Our motive is to
determine the logarithmic corrections to the entropy of black holes by heat kernel analysis
in this “non-minimal” N = 1, d = 4 EMSGT. Below we present the classical equations of
motion and concerned identities for this theory.

8For more details on “non-minimal” N = 1, d = 4 EMSGT, please refer [35].
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We begin with the action for “non-minimal” N = 1, d = 4 EMSGT [34],

S =
∫
d4x
√
gLEM +

∫
d4x
√
gLf , (3.1)

where
LEM = R− FµνFµν , (3.2)

and
Lf = −1

2 ψ̄µγ
[µρν]Dρψν −

1
2 λ̄γ

ρDρλ+ 1
2
√

2
ψ̄µFαβγ

αγβγµλ. (3.3)

R, Fµν = ∂[µAν] and γ are Ricci scalar curvature, gauge field strength and Majorana
gamma spinor matrices, respectively in eq. (3.1). γ[µρν] is antisymmetric product of gamma
matrices. LEM and Lf denote bosonic and fermionic lagrangian of “non-minimal” N = 1,
d = 4 EMSGT, respectively. To have a locally supersymmetric action, one needs to include
the four-fermion interaction terms in the action part of (3.3) [34]. However, the heat
kernel analysis is to be done on the quadratic fluctuated action for the determination of
logarithmic corrections to the entropy of black holes. The one-loop contributions from
four-fermion interaction terms vanish because of the vanishing of background fermions in
the Einstein-Maxwell system. So, neglecting the four-fermion interaction terms in (3.3) will
not affect the form of quadratic fluctuated action of “non-minimal” N = 1, d = 4 EMSGT.

An arbitrary solution (ḡµν , Āµ) satisfying the classical equations of motion of Einstein-
Maxwell theory is embedded in four dimensional N = 1 supersymmetric theory. This
geometry satisfies

Rµν = 2F̄µρF̄ν
ρ − 1

2 ḡµνF̄
ρσF̄ρσ, (3.4)

DµF̄µν = 0, D[µF̄νρ] = 0, Rµ[νθφ] = 0. (3.5)

Field strength F̄µν in eq. (3.4) is associated with background gauge field Āµ. The trace
of Einstein equation for the theory gives R = 0, representing a classical solution. These
constraints become very helpful in expressing the coefficients in terms of local invariants.

3.2 Seeley-DeWitt coefficients for bosonic sector

Here we are particularly focused on the computation of the first three Seeley-DeWitt coef-
ficients for the bosonic sector of “non-minimal” N = 1, d = 4 EMSGT. The bosonic sector
of this theory includes only two kinds of fields: gµν and Aµ. The corresponding Seeley-
DeWitt coefficients were computed in various works by the general approach [4, 5, 15] and
by field redefinition approach [12]. In this subsection, we briefly review this computation
of the coefficients following field redefinition approach. Kindly note that we consider a dif-
ferent scaling of field strength tensor Fµν than that of [12]. The final results of this section,
although already known, provide a consistency check on the results obtained in [4, 5] and
help us to set our conventions for the rest of the paper.

We begin by constructing the quadratic fluctuated action from (3.2) by imposing the
following fluctuations on the fields present in theory:

gµν = ḡµν +
√

2hµν , Aµ = Āµ + 1
2aµ, (3.6)
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where hµν and aµ are the corresponding fluctuations in the background fields ḡµν and Āµ
respectively. We gauge-fix the quadratic fluctuated action by adding the following gauge
fixing term [4]

−
∫
d4x

√
ḡ

{(
Dµhµρ −

1
2Dρh

)(
Dνhν

ρ − 1
2D

ρh

)
+ 1

2(Dµaµ)(Dνaν)
}
, (3.7)

where we have denoted h = hµµ = tr (hµν). We thus obtain the gauge-fixed quadratic
fluctuated action excluding the ghost part [4],

S2 = 1
2

∫
d4x

√
ḡ
{
− hµν∆hµν + aµ(DρDρ)µνaν − aµRµνaν

− 1
2 F̄µνF̄

µν(h2 − 2hρσhρσ
)
− 4F̄µνF̄ρσhµρhνσ − 8F̄µρF̄ν

ρ
hµσh

νσ

+ 4F̄µρF̄ν
ρ
hhµν −

√
2F̄µνhfµν + 4

√
2F̄µνhνρfµρ

}
,

(3.8)

where

∆hµν =−�hµν −Rµτhτ ν −Rντhµτ − 2Rµρντhρτ + 1
2 ḡµν ḡ

ρσ�hρσ

+R hµν + (ḡµνRρσ +Rµν ḡ
ρσ)hρσ −

1
2Rḡµν ḡ

ρσhρσ,
(3.9)

fµν ≡ D[µaν], � ≡ DρDρ in eqs. (3.8) and (3.9). Now setting R = 0 and using equations
of motion (3.4), the bosonic quadratic fluctuated action (3.8) takes the form

S2 = 1
2

∫
d4x

√
ḡ
{
hµν�hµν −

1
2h�h+ aα�aα − aαRαβaβ

+ 2hµνRµανβhαβ − 2hµνRρνhµρ − hαβF̄ ρσF̄ρσhαβ + 1
2 F̄

ρσF̄ρσh
2

− 4hµνF̄µαF̄ νβhαβ −
√

2hF̄µνfµν + 4
√

2hµνF̄ νρfµρ
}
.

(3.10)

We need to calibrate the above action to a simplified form as depicted in section 2.2. We
introduce a particular redefined field of the form (3.11), so that the action (3.10) and
corresponding Laplacian differential operator Λ reduce to a comparatively simpler form.
The redefined field Φµν , obtained by a linear combination of the fields hµν and h, is,

Φµν = hµν −
1
4 ḡµνh, where tr (Φµν) = 0, (3.11)

Using this field redefinition (3.11), the bosonic quadratic fluctuated action takes the
form [12]

S2 = 1
2

∫
d4x

√
ḡϕ̃mΛmnϕ̃n, (3.12)

where the redefined form of Λmn is expressed as

ϕ̃mΛmnϕ̃n = Φµν�Φµν −
1
4h�h+ aα�aα − aαRαβaβ

+ 2ΦµνR
µανβΦαβ − 2ΦµνR

ρνΦµ
ρ − ΦµνF̄αβF̄αβΦµν

− 4ΦµνF̄
µαF̄ νβΦαβ − hRµνΦµν + 4

√
2Φµ

νF̄
νρfµρ.

(3.13)
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In order to have a uniform normalization factor of the kinetic term for all the fields in
eq. (3.13) , let’s define a new field Θ as

Θ = − i2h. (3.14)

We also introduce the following effective metric acting on Φµν fields:9

Gµν αβ = 1
2
(
ḡµαḡνβ + ḡµβ ḡνα − 1

2 ḡ
µν ḡαβ

)
. (3.15)

This effective metric in eq. (3.15) will help to contract the symmetric pair of indices for
the field Φµν . Using eqs. (3.13) to (3.15), one finds the new form of Λ as,

ϕ̃mΛmnϕ̃n =Gµν αβΦµν�Φαβ + Θ�Θ + ḡαβaα�aβ − aαRαβaβ
− 2ΦµνR

σνΦµ
σ − 2iΘRαβΦαβ + 2ΦµνR

µανβΦαβ

− ΦµνF̄αβF̄αβΦµν − 4ΦµνF̄
µαF̄ νβΦαβ + 4

√
2Φµ

νF̄
νρfµρ,

= Φµν

{
Gµν αβ�+ 2Rµανβ − 2Rβν ḡαµ − ḡαµḡβνF̄ ρσF̄ρσ − 4F̄µαF̄ νβ

}
Φαβ

+ Θ�Θ + aα
{
ḡαβ�−Rαβ

}
aβ − iΦµνR

µνΘ− iΘRαβΦαβ

+
√

2Φµν(DµF̄αν)aα +
√

2aµ(DαF̄µβ)Φαβ

+ 2
√

2Φµν

{
− ḡρµF̄αν + ḡαµF̄ ρν

}
Dρaα

+ 2
√

2aµ
{
ḡραF̄µβ − ḡµαF̄ ρβ

}
DρΦαβ . (3.16)

Kindly note that the form of Λ (3.16) fits into the necessary Laplacian form (2.9), which
is essential for the heat kernel analysis. One can extract the expression of P and Nρ using
eqs. (3.16) and (2.9), as follows

ϕ̃mP
mnϕ̃n = Φµν

{
2Rµανβ − 2Rνβ ḡµα − ḡµαḡνβF̄ ρσF̄ρσ − 4F̄µαF̄ νβ

}
Φαβ

− aαRαβaβ − iΦµνR
µνΘ− iΘRαβΦαβ (3.17)

+
√

2ΦµνD
µF̄ανaα +

√
2aµDαF̄µβΦαβ ,

ϕ̃m(Nρ)mnϕ̃n = 2
√

2Φµν(ḡµαF̄ρ
ν − ḡρµF̄αν)aα + 2

√
2aµ(ḡραF̄µβ − ḡµαF̄ρ

β)Φαβ (3.18)

The expression of ωρ using eq. (2.11) is given by,

ϕ̃m(ωρ)mnϕ̃n = 1
2 ϕ̃m(Nρ)mnϕ̃n

=
√

2Φµν(ḡµαF̄ρ
ν − ḡρµF̄αν)aα +

√
2aµ(ḡραF̄µβ − ḡµαF̄ρ

β)Φαβ .

(3.19)

Once P and ωρ are determined, the expressions of I and E are obtained using eqs. (3.17),
(3.19) and (2.11). The required expressions are,

ϕ̃mImnϕ̃n = ΦµνG
µν αβΦαβ + ΘΘ + aαḡ

αβaβ ,

ϕ̃mE
mnϕ̃n = 2ΦµνR

µανβΦαβ + 3
2aαḡ

αβF̄ ρσF̄ρσaβ − iΦµνR
µνΘ

− iΘRαβΦαβ +
√

2ΦµνD
µF̄ανaα +

√
2aµDαF̄µβΦαβ

(3.20)

9We have defined Gmn in eq. (2.9), which is associated with various fields of the bosonic sector as
ϕ̃mG

mnϕ̃n = ΦµνGµν αβΦαβ + aαG
αβaβ where Gµν αβ is defined in eq. (3.15), and Gαβ = ḡαβ .
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and simultaneously, the field strength Ωρσ can also be determined using eq. (2.12), which
is given as

ϕ̃m(Ωρσ)mnϕ̃n = ϕ̃m[Dρ, Dσ]mnϕ̃n + ϕ̃mD[ρωσ]
mnϕ̃n + ϕ̃m[ωρ, ωσ]mnϕ̃n

= Φµν

{
2ḡβνRµαρσ +

(
2ḡσαF̄ρ

ν
F̄µβ − 2ḡµαF̄ρ

ν
F̄σ

β − 2ḡρµF̄ ναF̄σ
β

− ḡρµḡσαRνβ −
1
2 ḡ

νβ ḡρ
µḡσ

αF̄ θφF̄θφ − (ρ↔ σ)
)}

Φαβ

+ aα
{
Rαβρσ +

(
ḡρ
βF̄αφF̄σφ + 2F̄ρσF̄ βα − 2F̄ρ

β
F̄σ

α + 2F̄ρ
α
F̄σ

β

+ ḡασF̄ρ
φ
F̄ βφ − (ρ↔ σ)

)}
aβ −

√
2Φµν

{
ḡαµDνF̄ρσ + ḡµ[σDρ]F̄

αν
}
aα

+
√

2aµ
{
ḡµαDβF̄ρσ + ḡα[σDρ]F̄

µβ
}

Φαβ . (3.21)

This form of E and Ωαβ , obtained in eqs. (3.20) and (3.21) from the field redefinition
approach of Seeley-DeWitt expansion [12] is simpler and shorter as compared to the E and
Ωαβ evaluated via the general approach of Seeley-Dewitt expansion in [5]. So, this in turn
also eases the computation of traces of E, E2 and ΩαβΩαβ , particularly E2 and ΩαβΩαβ

which takes a lot of time and effort in the general approach. We get the following traces:

tr (I) = 9 + 4 + 1 = 14,
tr (E) = 6F̄µνF̄µν ,
tr (E2) = 3RµνθφRµνθφ − 7RµνRµν + 9(F̄µνF̄µν)2 + 3RµνθφF̄µνF̄ θφ,

tr (ΩαβΩαβ) = −7RµνθφRµνθφ + 56RµνRµν − 18RµνθφF̄µνF̄ θφ − 54(F̄µνF̄µν)2.

(3.22)

So, the Seeley-DeWitt coefficients for the bosonic sector from the gauge fixed action of
“non-minimal” N = 1, d = 4 EMSGT can be obtained by using eqs. (3.22) and (2.13) and
are given as,

(4π)2aEM
0 (x) = 14,

(4π)2aEM
2 (x) = 6F̄µνF̄µν ,

(4π)2aEM
4 (x) = 1

180
(
179RµνθφRµνθφ + 196RµνRµν

)
.

(3.23)

The above results match perfectly with the Seeley-DeWitt coefficients in [4, 5] computed
through the general approach of Seeley-DeWitt expansion.

During the gauge fixing process of the Einstein-Maxwell action (3.2), there arise the
ghost fields. The action describing the ghost fields is:

Sghost,b = 1
2

∫
d4x

√
ḡ{2bµ(ḡµν�+Rµν)cν + 2b�c− 4bF̄ ρνDρcν}, (3.24)

where bµ and cµ are vector fields that are associated with diffeomorphism ghosts, b and c are
scalar ghost fields which are associated with graviphoton in eq. (3.24). The Seeley-DeWitt
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coefficients for this part can be computed following the general approach as the action is
already in a simplified form. We recapitulate the results from our earlier work [5],10

(4π)2aghost,b
0 (x) = −10,

(4π)2aghost,b
2 (x) = 0,

(4π)2aghost,b
4 (x) = 1

18
(
2RµνθφRµνθφ − 17RµνRµν

)
.

(3.25)

The net Seeley-DeWitt coefficients for the bosonic sector of “non-minimal” N = 1, d = 4
EMSGT will be obtained by summing eqs. (3.25) and (3.23), which yields

(4π)2aB
0 (x) = 4,

(4π)2aB
2 (x) = 6F̄µνF̄µν ,

(4π)2aB
4 (x) = 1

180
(
199RµνθφRµνθφ + 26RµνRµν

)
.

(3.26)

3.3 Seeley-DeWitt coefficients for fermionic sector

Here, in this section, we shall compute the first three Seeley-Dewitt coefficients for the
fermionic sector of “non-minimal” N = 1, d = 4 EMSGT following the field redefinition
approach of Seeley-DeWitt expansion [12]. The fermion sector of this theory is defined
with gravitino field ψµ and gaugino field λ, coupled together in a non-minimal way via
field strength Fµν . The relevant Lagrangian is given in eq. (3.3).

We begin with the gauge fixed quadratic fluctuated action for the fermionic sector of
“non-minimal” N = 1, d = 4 EMSGT without ghost [34, 35], which is given by

S2 = − 1
2

∫
d4x

√
ḡϕ̃mO

mnϕ̃n, (3.27)

ϕ̃mO
mnϕ̃n = − i

2 ψ̄µγ
νγργµDρψν + iλ̄γρDρλ

− i

2
√

2
ψ̄µF̄αβγ

αγβγµλ+ i

2
√

2
λ̄γνγαγβF̄αβψν . (3.28)

In order to calibrate eq. (3.28) to a simplified form, we consider the following gravitino
field redefinition,

Ψµ = ψµ −
1
2γµγ

νψν , (3.29)

The redefined field, Ψµ, disentangles the computation of Seeley-DeWitt coefficients via the
general approach performed in [35]. The action (3.27) then takes the form,

= −1
2

∫
d4x

√
ḡϕ̃mO

′mnϕ̃n, (3.30)

where the operator O′mn in Dirac form and is given as

ϕ̃mO
′mnϕ̃n = iḡµνΨ̄µγ

ρDρΨν + iλ̄γρDρλ

− i

2
√

2
Ψ̄µF̄αβγ

αγβγµλ+ i

2
√

2
λ̄γνγαγβF̄αβΨν .

(3.31)

10For details of the computation, one can refer to this reference.
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The field redefinition mainly simplifies the kinetic part of gravitino field contribution from
eq. (3.28), which in turn reduces our further computation and trace calculation to a great
extent. The space-time under consideration is even-dimensional having Euclidean signa-
ture, which yields the gamma matrices to be Hermitian. So, the form of O′mn (3.31)
is Hermitian, Dirac type and in linear form. For the heat kernel analysis, the form of
eq. (3.31) is made Laplacian type, and then the functional determinant is computed fol-
lowing [9, 12, 53]:

Λmn =
(
O′
)mp(

O′
)
p
n†
. (3.32)

The form of differential operator Λmn obtained after operating eq. (3.32) is

ϕ̃mΛmnϕ̃n =− Ψ̄µ

{
I4ḡµνDρDρ + 1

2γ
ργσRµνρσ −

1
8γ

αγβγµγνγθγφF̄αβF̄θφ

}
Ψν

− λ̄
{
I4DρDρ −

1
8γ

τγαγβγθγφγτ F̄αβF̄θφ

}
λ

+ Ψ̄µ

{ 1
2
√

2
γργθγφγµ(DρF̄θφ)

}
λ− λ̄

{ 1
2
√

2
γργνγθγφ(DρF̄θφ)

}
Ψν

+ Ψ̄µ

{ 1
2
√

2
(γργθγφγµ + γθγφγµγρ)F̄θφ

}
Dρλ

− λ̄
{ 1

2
√

2
(γνγθγφγρ + γργνγθγφ)F̄θφ

}
DρΨν .

(3.33)

Following the similar steps as of the bosonic sector of this theory in 3.2, one can determine
the form of P and Nρ from Λ using eqs. (2.9) and (3.33) as

ϕ̃mP
mnϕ̃n = Ψ̄µ

{1
2γ

ργσRµνρσ −
1
8γ

αγβγµγνγθγφF̄αβF̄θφ

}
Ψν

− λ̄
{1

8γ
τγαγβγθγφγτ F̄αβF̄θφ

}
λ− Ψ̄µ

{ 1
2
√

2
γργθγφγµDρF̄θφ

}
λ

+ λ̄

{ 1
2
√

2
γργνγθγφDρF̄θφ

}
Ψν , (3.34)

ϕ̃m(Nρ)mnϕ̃n =− 1
2
√

2
Ψ̄µ

{
γργθγφγµ + γθγφγµγρ

}
F̄θφλ

+ 1
2
√

2
λ̄

{
γνγθγφγρ + γργνγθγφ

}
F̄θφΨν . (3.35)

The expression of ωρ can be determined from Nρ using eqs. (2.11) and (3.35), which on
further simplification using gamma matrices properties reduces to the form

ϕ̃m(ωρ)mnϕ̃n =− 1
2
√

2
Ψ̄µ

{
2γβγµF̄ ρβ + ḡρµγθγφF̄θφ

}
λ

+ 1
2
√

2
λ̄

{
2γνγθF̄θ

ρ + ḡρνγθγφF̄θφ

}
Ψν .

(3.36)
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The expression of I, E and Ωαβ will be given using eqs. (3.33), (2.11), (2.12), (3.34),
and (3.36) as,

ϕ̃mImnϕ̃n = Ψ̄µI4ḡµνΨν + λ̄I4λ, (3.37)

ϕ̃mE
mnϕ̃n = Ψ̄µ

{1
2γ

ργσRµνρσ −
1
8γ

αγβγµγνγθγφF̄αβF̄θφ −
1
2γ

νγθRµθ + 1
2γ

µγθRνθ

− 1
2I4ḡ

µνF̄ θφF̄θφ + 1
4γ

βγµγθγφF̄ νβF̄θφ −
1
4γ

αγβγνγθF̄µθF̄αβ

+ 1
8 ḡ

µνγαγβγθγφF̄αβF̄θφ

}
Ψν + λ̄

{1
2γ

θγφγαγβF̄θφF̄αβ

}
λ

− 1
2
√

2
Ψ̄µ

{
γργθγφγµDρF̄θφ − γθγφDµF̄θφ

}
λ

+ 1
2
√

2
λ̄

{
γργνγθγφDρF̄θφ − γθγφDνF̄θφ

}
Ψν , (3.38)

ϕ̃m(Ωαβ)mnϕ̃n = ϕ̃m[Dα, Dβ ]mnϕ̃n + ϕ̃m(D[αωβ])mnϕ̃n + ϕ̃m[ωα, ωβ ]mnϕ̃n

= Ψ̄µ

{
I4Rµναβ + 1

4 ḡ
µνRαβξκγ

ξγκ +
(
− 1

2γ
ργµγνγσF̄ραF̄βσ

+ 1
4 ḡβ

νγργµγηγκF̄ραF̄ηκ + 1
4 ḡα

µγθγφγνγρF̄θφF̄βρ

− 1
8 ḡα

µḡβ
νγθγφγηγκF̄θφF̄ηκ − (α↔ β)

)}
Ψν

+ λ̄

{1
4γ

θγφRαβθφ +
(
− 1

2γ
µγργηγµF̄αρF̄ηβ + 1

4γβγ
ργξγκF̄αρF̄ξκ

+ 1
4γ

θγφγηγαF̄θφF̄ηβ −
1
8 ḡαβγ

θγφγξγκF̄θφF̄ξκ − (α↔ β)
)}
λ

− 1
2
√

2
Ψ̄µ

{
2γργµDαF̄βρ + ḡβ

µγθγφDαF̄θφ − (α↔ β)
}
λ

+ 1
2
√

2
λ̄

{
2γνγθDαF̄θβ + ḡβ

νγθγφDαF̄θφ − (α↔ β)
}

Ψν . (3.39)

The expressions of E and Ωαβ in eqs. (3.38) and (3.39) are simpler than the form of the
same obtained in [35] computed following the general approach. This makes further trace
computations fast and straightforward. The traces are calculated as:

tr (I) = 16 + 4 = 20,

tr (E) = −8F̄µνF̄µν ,

tr (E2) = 10(F̄µνF̄µν)2 + 3RµνRµν + 2RµνθφRµνθφ − 2RαβθφF̄αβF̄ θφ,

tr (ΩαβΩαβ) = −13
2 R

µνθφRµνθφ + 12RαβθφF̄αβF̄ θφ − 6RµνRµν − 60(F̄µνF̄µν)2.

(3.40)

Using the trace results (3.40) in (2.13), the required Seeley-DeWitt coefficients for the
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fermionic sector of gauge-fixed “non-minimal” N = 1, d = 4 EMSGT are

(4π)2af0(x) = −10,

(4π)2af2(x) = 4F̄µνF̄µν ,

(4π)2af4(x) = − 1
144

(
41RµνθφRµνθφ + 64RµνRµν

)
.

(3.41)

Considering the fermion spin-statistics and Majorana degree of freedom, a factor of −1/2
is inserted manually in eq. (3.41). The results (3.41) are consistent with the results of the
same in our earlier work [35].

Now, we work out on determination of Seeley-DeWitt coefficients for the ghost part
in the fermionic sector of “non-minimal” N = 1, d = 4 EMSGT. The Lagrangian for this
ghost sector is given as

Lghost = ¯̃bγρDρc̃+ ¯̃eγρDρẽ. (3.42)

b̃, c̃ and ẽ are bosonic ghosts that are composed of three minimally coupled Majorana
fermions obeying spin 1/2 statistics. The computation of Seeley-DeWitt coefficients for this
case is very simple and upfront, which is given by (-3) times of Seeley-DeWitt coefficients
for free Majorana spin 1/2 field. The results are [35, 38]:

(4π)2aghost,f
0 (x) = 6,

(4π)2aghost,f
2 (x) = 0,

(4π)2aghost,f
4 (x) = − 1

240
(
7RµνθφRµνθφ + 8RµνRµν

)
.

(3.43)

Net fermionic Seeley-DeWitt coefficients can be obtained by summing eqs. (3.41) and (3.43)
for “non-minimal” N = 1, d = 4 EMSGT, which is given by

(4π)2aF
0 (x) = −4,

(4π)2aF
2 (x) = 4F̄µνF̄µν ,

(4π)2aF
4 (x) = − 1

360
(
113RµνθφRµνθφ + 172RµνRµν

)
.

(3.44)

3.4 Total Seeley-DeWitt coefficients

Once we have determined the bosonic and fermionic Seeley-DeWitt coefficients for “non-
minimal” N = 1, d = 4 EMSGT, the total Seeley-DeWitt coefficients are obtained after
adding both the sectors, (3.26) and (3.44). The results are

(4π)2aN=1
0 (x) = 0,

(4π)2aN=1
2 (x) = 10F̄µνF̄µν ,

(4π)2aN=1
4 (x) = 1

24
(
19RµνθφRµνθφ − 8RµνRµν

)
.

(3.45)
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The vanishing of a0 in (3.45) clearly shows the presence of an equal number of bosonic and
fermionic degrees of freedom in the “non-minimal” N = 1, d = 4 EMSGT. Note that a4
obtained in (3.45) only depends upon the background metric and thus preserves rotational
invariance under electric and magnetic duality. Among the Seeley-DeWitt coefficients
in (3.45), we are mainly focused on a4 because it determines the logarithmic divergence of
the black hole entropy in large charge limit. This a4 can also be represented in terms of
the square of Weyl tensor Wµνρσ and Gauss-Bonnet term (Euler density) E4 as

(4π)2a4(x) = cW µνρσWµνρσ − aE4, (3.46)

where c and a are constants, which depend upon the field content and couplings among
them in the theory . WµνρσWµνρσ and E4 is defined as

WµνρσWµνρσ = RµνρσRµνρσ − 2RµνRµν + 1
3R

2 (3.47)

and
E4 = RµνρσRµνρσ − 4RµνRµν +R2. (3.48)

Using eqs. (3.45) to (3.48), a4 may also be represented as11

(4π)2aN=1
4 (x) = 17

12W
µνρσWµνρσ −

5
8E4. (3.49)

This representation of a4 will be helpful in our computation of logarithmic corrections to
the entropy of non-extremal black holes in the next section.

4 Logarithmic corrections to non-extremal black holes in “non-minimal”
N = 1, d = 4 EMSGT

In this section, we first review the formalism from [11] and [15, 54]12 to compute the log-
arithmic corrections to the entropy of generic non-extremal black holes. We particularly
focus on Kerr-Newman family of black holes. Then, we determine the corresponding log-
arithmic corrections to these non-extremal black holes using the Seeley-DeWitt coefficient
a4 presented in (3.45).

4.1 General framework

Here, we present the general framework of Euclidean gravity approach for the determina-
tion of logarithmic corrections to the entropy of generic non-extremal black holes in four
dimensions following [11, 54].

We begin with grand canonical partition function Z(β, ~ω, ~µ),13 which is defined as
Euclidean path integral of the action of a theory (2.1). This integral is evaluated using
saddle point approximation, followed by expansion (2.2). The classical saddle points in

11We have set R = 0 in the definition of eqs. (3.47) and (3.48).
12Refs. [15, 54] presents a review of the formalism of [11].
13β, ~ω and ~µ are black hole potentials.
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eq. (2.2) describes the black holes that are in equilibrium with dilute gas of thermal non-
interacting particles (Hawking particle) in the theory. The first task is to separate the
contribution to the partition function associated with the thermal gas and extract the
partition function associated only with black holes. For this purpose, first, we will evaluate
the partition function associated with thermal gas.

We consider the same Euclidean spacetime where the time coordinate has periodicity
β, the spatial coordinates are fixed to length L, and the black hole is confined in a box of
length L. The kinetic operator acts over the thermal gas and yields the eigenvalues:

4π2n2

β2 + ~k2, (4.1)

n defines the momentum along compact time direction and ~k denotes the spatial momen-
tum. The density of states associated with this momentum in a large volume limit is
given by

dµ = V

(2π)3d
3k, (4.2)

V = L3 is the volume of the box. So, the one-loop quantum effective action (2.6) is thus
given by

W = −1
2

∫ ∞
ε

ds

s

∞∑
n=−∞

∫
dµ exp

(
− 4π2n2s

β2 − s~k2
)
. (4.3)

The above integrand is divergent for all values of n in limit s → 0. In order to solve the
above integration (4.3), we use the following identity:

∞∑
n=−∞

exp
(
− 4π2n2s

β2

)
= β√

4πs

∞∑
n=−∞

exp
(
− n2β2

4s

)
. (4.4)

Using eqs. (4.4) and (4.3), we get

W = −1
2

∫ ∞
ε

ds

s

β√
4πs

∞∑
n=−∞

∫
dµ exp

(
− n2β2

4s − s
~k2
)
. (4.5)

The integral (4.5) leads to the one-loop effective action for thermal gas [54]:

W = − V β

64π2ε2
− π2V

90β3 . (4.6)

The first term is ultraviolet divergent at ε→ 0. The contribution (4.6) belongs to the bulk
part, which is proportional to the volume of the box L3. Again, there will be boundary con-
tributions, which will give the subleading corrections to the one-loop effective action (4.6).
Now, we will consider this boundary effect and find the required one-loop partition func-
tion. It will involve the contributions which are lower in the power of L. The density of
states will be modified to

dµ = V

(2π)3d
3k +O(L2d2k), (4.7)

where the second term in (4.7) is the boundary contribution. By this modification (4.7) in
the density of states and dropping the divergent part, the one-loop effective action (4.5)
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will also be modified. The one-loop effective action, including the boundary part, thus will
be given as

W = − π
2V

90β3 +O
(
L2

β2

)
. (4.8)

In case of L � β (large volume limit), the dominant contribution will come from the
bulk part in (4.8). This one-loop effective action is associated with thermal gas that
is propagating in Euclidean flat spacetime. Extending this thermal gas to a black hole
background having potentials β, ~ω and ~µ, where β is the inverse temperature, ~ω is the
angular velocity and ~µ is the chemical potential of black hole having radius a. The thermal
gas is in equilibrium with the black hole. Then, the one-loop effective action for thermal
gas in large volume limit in this black hole background is thus given as

W = L3f(β, ~ω, ~µ) +O
(
L2

β2

)
, (4.9)

where f is a function that scales as follows:

f(λβ, λ~ω, λ~µ) = λ−3f(β, ~ω, ~µ). (4.10)

Here, we consider a black hole with solution (ḡµν , Āµ) having radius a and confined in a
box of volume V = L3 along with thermal gas. The contribution by the thermal gas to the
effective action is given by (4.9). In order to subtract off the contribution due to thermal
gas (4.9), and extract the contribution that only corresponds to black hole, we consider
another black hole having radius a′ and related to the previous black hole with solution
(ξ2ḡµν , ξĀµ), where ξ = a′/a. This black hole is also confined in an identical box having
a length L′ = L a′/a. The boundary conditions on the fields to the second black hole are
also related to the first one by scale transformation ξ. Then the one-loop effective action
due to thermal gas by this second box using eqs. (4.9) and (4.10) will be given as

W =
(
L
a′

a

)3
f

(
a′

a
β, ~ω,

a′

a
~µ

)
+O

(
L2

β2

)
= L3f(β, ~ω, ~µ) +O

(
L2

β2

)
. (4.11)

So, from eqs. (4.9) and (4.11), we infer that the thermal contributions due to both black
holes are same. If we subtract out the one-loop effective actions of both the black holes
confined in two different systems, then the contribution due to thermal gas along with
spurious boundary terms will be subtracted out. We will then only be left with the differ-
ence between the one-loop effective action associated only for black holes. Say ∆W is the
difference between the non-zero mode contribution to the one-loop effective actions due to
both the black holes, then from eq. (2.6) we have

∆W = −χ2

∫ ∞
ε

ds

s

∑′

i
λi,λ

′
i 6=0

(e−sλi − e−sλ
′
i), (4.12)

where λi and λ′i are the eigenvalues of kinetic operator associated with black holes having
radius a and a′ respectively and

∑′ defines the summation over non-zero values of λi, λ
′
i

in effective action (4.12). Both the eigenvalues of different systems are related as

λ′i = λi

(
a

a′

)2
. (4.13)

– 20 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
4

Using eqs. (4.13) and (4.12), we get

∆W = −χ2

{∫ ∞
ε

ds

s

∑′

i
λi 6=0

e−sλi −
∫ ∞
ε

ds

s

∑′

i
λi 6=0

e−sλi(a/a
′)2
}

= −χ2

∫ ε′

ε

ds

s

∑′

i
λi 6=0

e−sλi .

(4.14)

In eq. (4.14), we rescale s(a/a′)2 → s and the UV limit as ε′ = ε(a/a′)2. We also get rid
of infrared divergences in the above integrand by elimination of the infinity limit. In the
integration (4.14), the dominant contribution comes when s/a2 ranges between ε/a2 and
ε/a′2. Here a and a′ are large compared to UV cut-off

√
ε. So s/a2 remains small over

entire range. It fulfills the criteria for small perturbative expansion in proper time, so using
eqs. (2.8), (2.7) and (4.14), the non zero contribution to one-loop effective action:

∆W = −χ2

∫ ε′

ε

ds

s

∫
d4x

√
ḡ

( 1
s2a0 + 1

s
a2 + a4 + . . . .−Kzm(x, x; 0)

)
. (4.15)

The logarithmic correction term will arise from s independent term, i.e., a4 in the integrand
of eq. (4.15). So, the above integration (4.15) yield the one-loop effective action:

W ' −χ2

{∫
d4x

√
ḡa4 + . . .−M

}
ln a2, (4.16)

where
M =

∫
d4x

√
ḡKzm(x, x; 0). (4.17)

M is the number of zero modes associated with field fluctuations in eq. (4.17).
So we started with grand canonical partition function (2.1) where β, ~ω and ~µ are fixed

as well as scale linearly with the size of black hole. We evaluated the one-loop effective
action for arbitrary fluctuated fields propagating in black hole background. The partition
function and effective action are related as

lnZ(β, ~ω, ~µ) = −Scl −W, (4.18)

where Scl is the classical action. In order to compute the logarithmic corrections part to
the entropy of non-extremal black holes, we need to extend the ensemble to microcanonical
where mass (M), momentum (~P ), angular momentum ( ~J) and charge ( ~Q) are fixed. Each
microstate of the black hole is associated with relativistic energy (E) as

E = M +
~P 2

2M . (4.19)

The black hole entropy SBH is the number of states present in the microcanonical ensemble.
The microstate degeneracy (Ω) and entropy (SBH) is related as

Ω(M, ~P , ~J, ~Q) = eSBH(M,~J, ~Q). (4.20)
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Then the grand canonical partition function can be expressed as sum of all black hole
microstate, which is further related to black hole entropy as [55]

Z(β, ~ω, ~µ) =
∑

M ~P ~J ~Q

Ω(M, ~P , ~J, ~Q)

=
∑

M ~P ~J ~Q

eSBH(M,~J, ~Q)−βE−~ω. ~J−~µ. ~Q.
(4.21)

Using eqs. (4.18), (4.21), (4.19), the entropy of black hole is defined as

SBH(M, ~J, ~Q) = −Scl + βM + ~ω. ~J + ~µ. ~Q−W. (4.22)

The sum over ~P in eq. (4.22) has been done implicitly. Now, from eq. (4.22), the com-
putation of one-loop effective action turned into the determination of entropy of a black
hole. The first four terms in eq. (4.22) belong to Bekenstein-Hawking entropy [56]. From
eqs. (4.16) and (4.22), the logarithmic correction to the entropy of a generic non-extremal
black hole is given by [12, 13]

∆SBH = −W
= ∆Slocal + ∆Szm,

(4.23)

where
∆Slocal = χ

2

∫
d4x

√
ḡa4(x) lnAH , (4.24)

and

∆Szm = χ

2

{∑
r

(Yr − 1)M r
}

lnAH . (4.25)

AH is the horizon area of the black hole in eqs. (4.24) and (4.25), which is proportional to
a2. Szm (4.25) corresponds to zero mode contributions to the logarithmic corrections. Here
Y is the scaling dimension of different field fluctuations present in a theory andM is defined
in (4.17). Both parameters possess specific values for different types of fields present in
the theory. In (4.25), an additional contribution associated with Y arises due to the fact
that the zero modes (λi = 0) are not fully computed by effective action (4.16). To get fully
corrected zero mode contribution, the integration over fields is replaced by integration over
the zero mode deformation. The jacobian of changing these variables gives aYr per zero
mode. So for M zero modes, we get this additional factor aYrMr , including which we get
the corrected zero mode contribution in (4.25). The zero mode contributions (4.25) have
been computed in various literature [7–9, 11], which can be presented compactly as [12]

∆Szm = 1
2
{
− (3 +K) + 2NSUSY + 3δ

}
lnAH , (4.26)

where K is the number of rotational isometries, which is defined as 3 for non-rotating
black holes and 1 for rotating ones. NSUSY is the number of preserved supercharges in
the supersymmetric theory. The factor 3δ factor arises from finite IR volume integration
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in non-extremal black holes, so δ is set 1 for non-extremal black holes and 0 for extremal
black holes.

It is important to note that the structure of relation (4.23) is very similar while we
evaluate the same for extremal black holes [4–10, 14, 15, 35]. Here, the path integral
in (4.23) is evaluated over the whole spacetime of black hole background for non-extremal
black holes [11–13]. However, in case of extremal black holes, we perform the integration
over near horizon geometry using quantum entropy function formalism [30–32], which is
not applicable for non-extremal black holes.

4.2 Logarithmic corrections to non-extremal Kerr-Newman family of black
holes in “non-minimal” N = 1, d = 4 EMSGT

AnN = 1, d = 4 EMSGT can have black hole solutions, which include Kerr-Newman, Kerr,
Reissner-Nordström and Schwarzschild black holes. In this section, our aim is to compute
the logarithmic corrections to the entropy of above black holes in the non-extremal limit
following the approach discussed in section 4.1.

The Kerr-Newman metric defined with mass M , charge Q and angular momentum J

is given by

ds2 =− r2 + b2 cos2 ψ − 2Mr +Q2

r2 + b2 cos2 ψ
dt2 + r2 + b2 cos2 ψ

r2 + b2 − 2Mr +Q2dr
2

+
((r2 + b2 cos2 ψ)(r2 + b2) + (2Mr −Q2)b2 sin2 ψ

r2 + b2 cos2 ψ

)
sin2 ψdφ2

+ (r2 + b2 cos2 ψ)dψ2 + 2(Q2 − 2Mr)b
r2 + b2 cos2 ψ

sin2 ψdtdφ,

(4.27)

where

b = J/M and rH = M +
√
M2 −Q2 − b2. (4.28)

The event horizon radius rH in eq. (4.28) is associated with condition M2 R Q2 + b2,
where M2 = Q2 + b2 corresponds to extremal black hole solutions and M2 > Q2 + b2

corresponds to the non-extremal black hole solutions. In contrast, the black hole solutions
corresponding to M2 < Q2 + b2 is physically unacceptable because it does not possess an
event horizon and exhibit naked singularity. Here, we are interested in the non-extremal
solution associated with metric (4.27). The inverse temperature β scales as length scale for
the case of non-extremal black hole. However, in the case of extremal black holes, β →∞
leading to T → 0. The classical entropy is given as

Scl = AH
4GN

= 16π2(2M2 −Q2 + 2M
√
M2 − b2 −Q2), (4.29)

with

β = ∂SBH
∂M

= 32π2√
M2 − b2 −Q2

{
2M2 −Q2 + 2M

√
M2 − b2 −Q2

}
, (4.30)

ω = ∂SBH
∂J

= − 32π2b√
M2 − b2 −Q2 , (4.31)

µ = ∂SBH
∂Q

= − 32π2Q√
M2 − b2 −Q2

{
M +

√
M2 − b2 −Q2

}
. (4.32)
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We shall compute the local mode contribution to logarithmic corrections to the entropy
of the non-extremal Kerr-Newman family of black holes using eq. (4.24). For the Kerr-
Newmann metric (4.27), one finds [57, 58]:

RµνρσRµνρσ = 8
(r2 + b2 cos2 ψ)6

{
6M2(r6 − 15b2r4 cos2 ψ + 15b4r2 cos4 ψ − b6 cos6 ψ)

−12MQ2r(r4 − 10r2b2 cos2 ψ + 5b4 cos4 ψ)

+Q4(7r4 − 34r2b2 cos2 ψ + 7b4 cos4 ψ)
}
,

RµνRµν = 4Q4

(r2 + b2 cos2 ψ)4 ,

det(ḡµν) = ḡ = (r2 + b2 cos2 ψ)2 sin2 ψ . (4.33)

On Accounting t → −iτ (Wick rotation of time) where τ is periodic with β, we have
integration results for the square of Weyl tensor and Euler density as [11, 12]∫

d4x
√
ḡ WµνρσWµνρσ = 64π2 + πβQ4

b5r4
H(b2 + r2

H)

{
3b5rH + 2b3r3

H

+ 3(b2 − r2
H)(b2 + r2

H)2 tan−1
(
b

rH

)
+ 3br5

H

}
,∫

d4x
√
ḡE4 = 64π2.

(4.34)

From eq. (4.34), one can see that result for the integration of square of Weyl tensor depends
upon black hole parameters, i.e., the geometry of background, while the same for the Gauss-
Bonnet term is independent of black hole parameter and is a constant. Because of these
properties, we have split the term a4 in eq. (3.49) in two parts, where one is associated
with Weyl tensor and the other part is associated with Euler density.

Now, we will compute the local contribution to entropy of various non-extremal black
holes in “non-minimal” N = 1, d = 4 EMSGT. It is determined using a4 (3.49) along
with (4.24) and (4.34). We get the required logarithmic correction to the entropy in case
of Kerr-Newman black hole:

∆Slocal,KN =
{ 17

384π
βQ4

b5r4
H(b2 + r2

H)

(
3b5rH + 2b3r3

H

+ 3(b2 − r2
H)(b2 + r2

H)2 tan−1
(
b

rH

)
+ 3br5

H

)
+ 19

12

}
lnAH .

(4.35)

For Kerr black hole, setting the limit Q→ 0 in eq. (4.35), one finds the required logarithmic
correction to the Bekenstein-Hawking entropy:

∆Slocal,Kerr = 19
12 lnAH . (4.36)

For Reissner Nordström black hole, J → 0 gives b→ 0. Using b→ 0 limit in eq. (4.35), we
get the required logarithmic correction to the entropy of Reissner-Nordström black hole:

∆Slocal,RN =
(19

12 + 17
60πr5

H

βQ4
)

lnAH . (4.37)
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Furthermore, setting Q → 0 and b → 0 in eq. (4.35) gives the result for a Schwarzschild
black hole:

∆Slocal,Schw = 19
12 lnAH . (4.38)

We then proceed to determine the zero mode contribution using eq. (4.25). Assigning the
values of Y as 2 for metric, 1 for gauge field, 1/2 for Dirac field and 3/2 for gravitino
field for 4D field theory, the zero mode contribution due to gauge field and Dirac field
will vanish because of the factor (Y − 1) and (2Y − 1)14 for bosonic and fermionic fields
in eq. (4.25) respectively. So, we only have to consider about zero modes associated with
metric and gravitino fluctuations in “non-minimal” N = 1, d = 4 EMSGT. Again, the
black holes in N = 1, d = 4 EMSGT are non-BPS and do not preserve any supersymmetry
i.e. NSUSY = 0. One can determine the required zero mode contributions to the entropy of
Kerr-Newman, Kerr, Reissner-Nordström and Schwarzschild black holes in “non-minimal”
N = 1, d = 4 EMSGT using eq. (4.26), which is given by

∆Szm,KN = ∆Szm,Kerr = 1
2 {(−(3 + 1) + 3} lnAH = −1

2 lnAH ,

∆Szm,Schw = ∆Szm,RN = 1
2 {(−(3 + 3) + 3} lnAH = −3

2 lnAH .
(4.39)

So, the net logarithmic correction to the entropy of non-extremal black holes in “non-
minimal” N = 1 d = 4 EMSGT will be obtained using eqs. (4.23) and (4.35) to (4.39).
The logarithmic corrections to the entropy of non-extremal Kerr-Newman, Kerr, Reissner-
Nordström and Schwarzschild black holes in “non-minimal” N = 1, d = 4 EMSGT are
computed as:

∆SBH,KN =
{ 17

384π
βQ4

b5r4
H(b2 + r2

H)

(
3b5rH + 2b3r3

H

+ 3(b2 − r2
H)(b2 + r2

H)2 tan−1
( b

rH

)
+ 3br5

H

)
+ 13

12

}
lnAH , (4.40)

∆SBH,Kerr = 13
12 lnAH , (4.41)

∆SBH,RN =
( 1

12 + 17
60πr5

H

βQ4
)

lnAH , (4.42)

∆SBH,Schw = 1
12 lnAH . (4.43)

5 Concluding remarks

To summarize, the whole work is two-fold. First, we have computed the first three Seeley-
DeWitt coefficients (3.45) for “non-minimal” N = 1, d = 4 EMSGT following the field re-
definition approach of Seeley-DeWitt expansion [12]. We reproduced the results for bosonic
sector of the theory computed in [12]. We then evaluated the coefficients for fermionic sec-
tor of “non-minimal” N = 1, d = 4 EMSGT introducing a particular field redefinition. We

14The fermionic scaling dimensions scale two times because of its spin degeneracy.
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obtained the Seeley-DeWitt coefficients for the theory by adding both sectors. The results
were found to be in perfect agreement with our earlier work [35], where the computation is
performed via the general approach of Seeley-DeWitt expansion [37]. It checks the consis-
tency for results of these coefficients. In the second part, we use a particular Seeley-DeWitt
coefficient a4 to determine the logarithmic corrections to the Bekenstein-Hawking entropy
of non-extremal black holes in “non-minimal” N = 1, d = 4 EMSGT. In section 4.1, we
reviewed the formalism [11, 54] to compute the logarithmic corrections to the entropy of
any arbitrary four dimensional non-extremal black holes. We applied the formalism for
Kerr-Newman black hole background and evaluated the local contributions to logarithmic
corrections by integrating a4 coefficient over the whole geometry of black hole background.
The zero mode contributions to these corrections are determined separately by analyz-
ing the number of zero modes and scaling dimensions of the field fluctuations. An extra
factor of 3δ also appears in zero mode contributions (4.26) while considering the case for
non-extremal black holes. By adding the local and zero mode contributions one finds the
total logarithmic corrections to the entropy of non-extremal Kerr-Newman (4.40) black
holes. The results for Kerr (4.41), Reissner-Nordström (4.42) and Schwarzschild (4.43)
black holes are obtained by applying proper limits on the logarithmic correction of Kerr-
Newman black hole. The answers for Kerr-Newman and Reissner-Nordström black holes
are found to be dependent on black hole parameters, whereas the same is independent for
Kerr and Schwarzschild black holes. The Schwarzschild black holes do not have charge and
angular momentum. So one can expect that the logarithmic corrections to the entropy of
Schwarzschild black holes will be independent of black holes parameters and thus constant.
However, such a priori conclusion cannot be predicted for Kerr black holes, which possess
definite angular momentum, and therefore significant and worthy of attention. Again, if
we consider the extremal regime within the same theory, it is only Kerr-Newman black
hole whose logarithmic correction part depends on the black hole parameter, and others
are independent of it [35]. Our results are new and unique. These are not computed
anywhere else in any other known theory. These results put a strong constraint for any
other microscopic theory describing the entropy of these black holes. The results may pro-
vide directions in the investigation of a conformal field theory describing these black hole’s
entropies. One can also generalize this N = 1, d = 4 EMSGT by coupling nv number
of vector multiplets and nc number of chiral multiplets. As a result, there will be extra
contributions in the logarithmic corrections to black hole entropy due to the presence of
these extra matter couplings with the black hole background. References [14, 36] com-
pute the logarithmic corrections to the entropy of black holes in a four dimensional matter
coupled N = 1 EMSGT obtained by truncation of 4D N = 2 EMSGT. Even in a macro-
scopic regime, the other heat kernel methods can be utilized for reproducing these results
in “non-minimal” N = 1, d = 4 EMSGT. One can also observe that the results of non-
extremal Kerr-Newman, Kerr and Reissner-Nordström black holes are positive and greater
than that of its extremal counterpart in [35]. Such a thing is expected in non-extremal
limit because we are concerned with the entropy of black hole in whole geometry, unlike
the extremal case. A proper understanding of these results may provide other valuable
insights for studying the Kerr-Newman family of black holes in N = 1 EMSGT for future
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progress. Such work can also be extended by adding a superpotential to this N = 1 theory
and study these corrections for the Kerr-Newman family of black holes. Again it can also
be extended to Einstein-Maxwell dilaton theory embedded in N = 1 theory for studying
the logarithmic corrections to the entropy of dyonic black holes following the approach of
this paper.

Acknowledgments

We would like to acknowledge Ashoke Sen, Finn Larsen and Rajesh Kumar Gupta for
valuable discussions during the early stages of the research work. We also thank Sudip
Karan for reading the manuscript carefully and verifying some parts of the calculations.
We are also thankful to the unknown reviewer for valuable remarks, serving better clarity
to some parts of the manuscript.

A Trace calculations

Here, we will present the trace calculations of E, E2 and ΩαβΩαβ for both —bosonic and
fermionic sectors of “non-minimal” N = 1, d = 4 EMSGT. These trace results are useful in
the computation of a0, a2 and a4. In this computation, we will make use of the following
identities whenever required:

(DρF̄µν)(DρF̄µν) =RµνθφF̄
µνF̄ θφ −RµνRµν ,

(DµF̄ρ
ν)(DνF̄

ρµ) = 1
2(RµνθφF̄µνF̄ θφ −RµνRµν).

(A.1)

We first begin with bosonic sector of “non-minimal” N = 1, d = 4 EMSGT.

Bosonic sector: the expressions of E and Ωαβ for the bosonic sector of N = 1, d = 4
EMSGT are shown in eqs. (3.20) and (3.21) respectively. The required traces are:

• Trace of E:

tr (E) = tr (EΦµνΦµν + Eaαaα + EΦµν
aα + EaαΦµν ). (A.2)

We have

tr (EΦµνΦµν ) = 0,
tr (Eaαaα) = 6F̄µνF̄µν ,

tr (EΦµν
aα) = 0,

tr (EaαΦµν ) = 0.
(A.3)

Using eqs. (A.2) and (A.3), we get the trace of E (3.22).

• Trace of E2:

tr (E2) = tr (EΦµνΦρσE
ΦρσΦµν + EaαaβE

aβ
aα + EΦµνΘE

Θ
Φµν

+ EΘ
ΦµνE

ΦµνΘ + EΦµν
aρE

aρΦµν + EaµΦρσE
Φρσ

aµ).
(A.4)
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We have

tr (EΦµνΦρσE
ΦρσΦµν ) = 3RµνθφRµνθφ − 2RµνRµν ,

tr (EaαaβEaβaα) = 9(F̄µνF̄µν)2,

tr (EΦµνΘE
Θ

Φµν ) = −RµνRµν ,

tr (EΘ
ΦµνE

ΦµνΘ) = −RµνRµν ,

tr (EΦµν
aρE

aρΦµν ) = −3
2R

µνRµν + 3
2RµνθφF̄

µνF̄ θφ,

tr (EaµΦρσE
Φρσ

aµ) = −3
2R

µνRµν + 3
2RµνθφF̄

µνF̄ θφ.

(A.5)

From eqs. (A.4) and (A.5), we get the tr (E2) (3.22).

• Trace of (ΩαβΩαβ):

tr (ΩαβΩαβ) = tr {(Ωαβ)Φµν Φρσ(Ωαβ)Φρσ Φµν + (Ωαβ)aµaρ(Ω
αβ)aρaµ

+ (Ωαβ)Φµν
aρ

(Ωαβ)aρΦµν + (Ωαβ)aµΦρσ(Ωαβ)Φρσ
aµ
},

(A.6)

where

(Ωαβ)Φµν Φρσ(Ωαβ)ΦρσΦµν

=
{

2Rµραβ ḡσν︸ ︷︷ ︸
A1

+ (ωα)Φµν
aθ

(ωβ)aθ Φρσ − (ωβ)Φµν
aθ

(ωα)aθΦρσ︸ ︷︷ ︸
A2

}

×
{ 1

2

(
Rρµ

αβ ḡνσ +Rσµ
αβ ḡνρ +Rρν

αβ ḡµσ +Rσν
αβ ḡµρ

)
︸ ︷︷ ︸

B1

+ (ωα)Φρσ aθ(ωβ)aθΦµν − (ωβ)Φρσ aθ(ωα)aθΦµν︸ ︷︷ ︸
B2

}
, (A.7)

(Ωαβ)aµaρ(Ωαβ)aρaµ
=
{
Rµραβ︸ ︷︷ ︸
A3

+ (ωα)aµΦθφ(ωβ)Φθφ
aρ − (ωβ)aµΦθφ(ωα)Φθφ

aρ︸ ︷︷ ︸
A4

}

×
{
Rρµ

αβ︸ ︷︷ ︸
B3

+ (ωα)aρΦηκ(ωβ)Φηκaµ − (ωβ)aρ
Φηκ(ωα)Φηκaµ︸ ︷︷ ︸

B4

}
, (A.8)

(Ωαβ)Φµν
aθ

(Ωαβ)aθΦµν

=
{
Dα(ωβ)Φµν

aθ
−Dβ(ωα)Φµν

aθ︸ ︷︷ ︸
A5

}

×
{
Dα(ωβ)aθΦµν −D

β(ωα)aθΦµν︸ ︷︷ ︸
B5

}
(A.9)
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and
(Ωαβ)aµΦρσ(Ωαβ)Φρσ

aµ
=
{
Dα(ωβ)aµΦρσ −Dβ(ωα)aµΦρσ︸ ︷︷ ︸

A6

}

×
{
Dα(ωβ)Φρσ

aµ
−Dβ(ωα)Φρσ

aµ︸ ︷︷ ︸
B6

}
.

(A.10)

We get the following trace results:
tr (A1B1) = −6RµνθφRµνθφ,
tr (A2B2) = 12RµνRµν − 24(F̄µνF̄µν)2,

tr (A1B2) = 0,
tr (A2B1) = 0,
tr (A3B3) = −RµνρσRµνρσ,

tr (A4B4) = 22RµνRµν − 30(F̄µνF̄µν)2,

tr (A3B4) = 2RµνRµν ,
tr (A4B3) = 2RµνRµν ,
tr (A5B5) = 9RµνRµν − 9RµνθφF̄µνF̄ θφ,
tr (A6B6) = 9RµνRµν − 9RµνθφF̄µνF̄ θφ.

(A.11)
Using eqs. (A.7) to (A.11), we have

tr {(Ωαβ)Φµν
Φρσ(Ωαβ)Φρσ

Φµν} = −6RµνθφRµνθφ + 12RµνRµν − 24(F̄µνF̄µν)2,

tr {(Ωαβ)aµaρ(Ω
αβ)aρaµ} = −RµνθφRµνθφ + 26RµνRµν − 30(F̄µνF̄µν)2,

tr {(Ωαβ)Φµν
aρ

(Ωαβ)aρΦµν} = 9(RµνRµν −RµνθφF̄µνF̄ θφ),

tr {(Ωαβ)aµΦρσ(Ωαβ)Φρσ
aµ
} = 9(RµνRµν −RµνθφF̄µνF̄ θφ). (A.12)

Using eqs. (A.6) and (A.12), we have the expression for tr(ΩαβΩαβ) (3.22) in the
bosonic sector of “non-minimal” N = 1, d = 4 EMSGT.

Fermionic sector: the expressions of E and Ωαβ for the fermionic sector of “non-
minimal” N = 1, d = 4 EMSGT are given in eqs. (3.38) and (3.39).

• Trace of E:
tr (E) = tr (EΨµΨµ + Eλλ + EΨµ

λ + EλΨµ). (A.13)
We have

tr (EΨµΨµ) = −4F̄µνF̄µν ,
tr (Eλλ) = −4F̄µνF̄µν ,

tr (EΨµ
λ) = 0,

tr (EλΨµ) = 0.
(A.14)

Using eqs. (A.13) and (A.14), we get the tr(E) expressed in (3.40).

• Trace of E2:

tr (E2) = tr(EΨµΨνE
ΨνΨµ + EλλE

λ
λ + EΨµ

λE
λ

Ψµ + EλΨµE
Ψµ

λ). (A.15)

We have
tr (EΨµΨνE

ΨνΨµ) = 5RµνRµν + 2RµνθφRµνθφ + 2(F̄µνF̄µν)2,

tr (EλλEλλ) = −4RµνRµν + 8(F̄µνF̄µν)2,

tr (EΨµ
λE

λ
Ψµ) = RµνRµν −RµνθφF̄µνF̄ θφ,

tr (EλΨµE
Ψµ

λ) = RµνRµν −RµνθφF̄µνF̄ θφ.

(A.16)

From eqs. (A.15) and (A.16), we get the tr (E2) (3.40).
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• Trace of (ΩαβΩαβ):

tr (ΩαβΩαβ) = tr {(Ωαβ)Ψµ
Ψν (Ωαβ)Ψν

Ψµ + (Ωαβ)λλ(Ωαβ)λ
λ

+ (Ωαβ)Ψµ
λ(Ωαβ)λ

Ψµ + (Ωαβ)λΨµ(Ωαβ)Ψµ
λ}
, (A.17)

where

(Ωαβ)Ψµ
Ψν (Ωαβ)Ψν

Ψµ

=
{
Rµ

ν
αβI4︸ ︷︷ ︸
X1

+ 1
4Rαβξκγ

ξγκḡνµ︸ ︷︷ ︸
X2

+
(

(ωα)Ψµ
λ(ωβ)λΨν − (ωβ)Ψµ

λ(ωα)λΨν︸ ︷︷ ︸
X3

)}

×
{
Rν

µαβI4︸ ︷︷ ︸
Y1

+ 1
4R

αβ
ητγ

ηγτ ḡµν︸ ︷︷ ︸
Y2

+
(

(ωα)Ψν
λ(ωβ)λ

Ψµ − (ωβ)Ψν
λ(ωα)λΨµ︸ ︷︷ ︸

Y3

)}
,

(A.18)

(Ωαβ)λλ(Ωαβ)λ
λ

=
{ 1

4γ
θγφRαβθφ︸ ︷︷ ︸
X4

+ (ωα)λΨµ(ωβ)Ψµ
λ − (ωβ)λΨµ(ωα)Ψµ

λ︸ ︷︷ ︸
X5

}

×
{ 1

4γ
ξγκRαβξκ︸ ︷︷ ︸
Y4

+ (ωα)λΨν (ωβ)Ψν
λ − (ωβ)λ

Ψν (ωα)Ψν
λ︸ ︷︷ ︸

Y5

}
, (A.19)

(Ωαβ)Ψµ
λ(Ωαβ)λ

Ψµ

=
(
Dα(ωβ)Ψµ

λ −Dβ(ωα)Ψµ
λ︸ ︷︷ ︸

X6

)
×
(
Dα(ωβ)λ

Ψµ −Dβ(ωα)λΨµ︸ ︷︷ ︸
Y6

)
(A.20)

and

(Ωαβ)λΨµ(Ωαβ)Ψµ
λ =

(
Dα(ωβ)λΨµ −Dβ(ωα)λΨµ︸ ︷︷ ︸

X7

)
×
(
Dα(ωβ)Ψµ

λ −Dβ(ωα)Ψµ
λ︸ ︷︷ ︸

Y7

)
.

(A.21)

We get the following trace results:

tr (X1Y1) = −4RµνθφRµνθφ,
tr (X2Y2) = −2RµνθφRµνθφ,
tr (X1Y2) = 0,
tr (X2Y1) = 0,
tr (X1Y3) = 4RµνRµν−4RµνθφF̄µνF̄ θφ,
tr (X3Y1) = 4RµνRµν−4RµνθφF̄µνF̄ θφ,
tr (X2Y3) = −2RµνRµν ,
tr (X3Y2) = −2RµνRµν ,

tr (X3Y3) = 6RµνRµν − 36(F̄µνF̄µν)2,

tr (X4Y4) = −1
2R

µνθφRµνθφ,

tr (X4Y5) = −2RµνRµν ,
tr (X5Y4) = −2RµνRµν ,
tr (X5Y5) = 8RµνRµν − 24(F̄µνF̄µν)2,

tr (X6Y6) = 10RµνθφF̄µνF̄ θφ−10RµνRµν ,
tr (X7Y7) = 10RµνθφF̄µνF̄ θφ−10RµνRµν .

(A.22)
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From eqs. (A.18) to (A.22), we have

tr {(Ωαβ)Ψµ
Ψν (Ωαβ)Ψν

Ψµ} = −6RµνθφRµνθφ + 10RµνRµν

− 8RµνθφF̄µνF̄ θφ − 36(F̄µνF̄µν)2,

tr {(Ωαβ)λλ(Ωαβ)λ
λ} = −1

2R
µνθφRµνθφ + 4RµνRµν − 24(F̄µνF̄µν)2,

tr {(Ωαβ)Ψµ
λ(Ωαβ)λ

Ψµ} = 10(RµνθφF̄µνF̄ θφ −RµνRµν),

tr {(Ωαβ)λΨµ(Ωαβ)Ψµ
λ} = 10(RµνθφF̄µνF̄ θφ −RµνRµν).

(A.23)

Using eqs. (A.23) and (A.17), one can get the tr (ΩαβΩαβ) (3.40) for the fermionic
sector of “non-minimal” N = 1, d = 4 EMSGT.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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