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1 Introduction

The multiverse suffers from an information loss problem akin to that of black holes: the
so-called “measure problem” [1]. This arises in cosmological models that assume a classical
near de Sitter (dS) background, in which quantum fluctuations produce physically distinct
patches where inflation locally ends and a more interesting cosmological evolution can
ensue. The archetypal example is false vacuum-driven eternal inflation with multiple decay
channels. As in the case of black holes, the “problem” concerns a breakdown of predictivity.
The formation of a mosaic of bubbles or patches with different physical properties, say
different statistical features of the Cosmic Microwave Background (CMB), means the theory
fails to predict what we should observe.

Semiclassical quantum cosmology (QC) in low-energy gravity offers a very different
description of the multiverse that is seemingly at odds with the view of a cosmic patchwork

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
2

of bubbles. The global fine-grained mosaic of bubbles in the description above is replaced
in semiclassical QC with a small number of distinct saddle point geometries. The latter are
associated with coarse-grained descriptions of the universe.1 Specifically, each individual
saddle geometry contains information about a limited cosmic patch or bubble only, while
coarse-graining, or averaging, over any putative mosaic structure on much larger scales. It
has been argued that this semiclassical description resolves the information loss problem
associated with multiverse cosmology [2]. The semiclassical theory encodes any “global”
information that is relevant to the prediction of local observations of a given observer not
as a mosaic structure, but as distinct past (saddle point) histories of a given observer, with
the relative weighting of saddle points specifying a measure.

The semiclassical recovery of information in multiverse cosmology bears striking simi-
larities to the recent low-energy gravity description of black hole evaporation as a unitary
process [3–9]. In both cases, the semiclassical low-energy framework appears to capture the
essential quantum physics without an explicit knowledge of the microscopic quantum state.
Equally striking, semiclassical reasoning appears to cast doubt on the assumption that
a definite spacetime background with independent degrees of freedom exists well beyond
horizons, let alone indefinitely, in a manner that is independent of the observable of interest.
Instead, an additional saddle appears when a given observer aims to perform some of
the extraordinarily complicated measurements needed to recover a significant amount of
information. For example, the semiclassical calculation of the fine-grained Von Neumann
entropy of Hawking radiation which reproduces the “Page curve” [10, 11], long regarded as
a key signature of unitary evolution, involves additional saddles: replica wormholes [5–9].

A complementary and calculationally tractable description of the semiclassical purifica-
tion process is provided by the “island rule.” According to this, the Von Neumann entropy
of Hawking radiation collected in a region R can be obtained by extremizing the generalized
entropy over possible configurations R ∪ I, where I is an additional island region, and then
taking the resulting global minimum,

S(ρR) = min ext
I
Sgen(R ∪ I), (1.1)

where
Sgen(X) = Ssemi-cl(X) + Area(∂X)

4GN
. (1.2)

Here, Ssemi-cl(X) is the Von Neumann entropy of quantum fields of region X of a classical
background geometry, and Area(∂X) is the gravitational area term of the boundary ∂X.
While originally motivated on the basis of considerations of holographic entanglement
entropy [12–15], the island rule eq. (1.1) in the context of black holes was later found to be
consonant with an analysis based on the semiclassical gravitational path integral [5, 6].

Moving back to cosmology, the island prescription opens up a new semiclassical angle to
study the multiverse. This is interesting, for an oft-voiced criticism against the semiclassical

1This is terminology from decoherent histories quantum mechanics. In this context, by “fine-graining”
we mean retaining information on the largest scales whereas “coarse-graining” does not. Indeed the specific
coarse-grained saddle geometries that will be of interest to us later will contain fine-grained information in a
local region.
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quantum cosmology resolution of the measure problem has been that the saddle point
approximation of the wavefunction of the universe simply misses relevant information in
the global fine-grained patchwork that eternal inflation supposedly generates. If, however,
large islands were to develop in multiverse configurations whenever one calculates suffi-
ciently refined observables, then this would suggest that the coarse-graining inherent in the
semiclassical theory is not a bug but a feature, and an interesting one indeed. The goal of
this paper is to explore precisely this possibility. We do so in two-dimensional toy model
multiverse cosmologies where explicit computations of the Von Neumann entropy of matter
fields are possible, and we then relate our findings in these models to the more general
semiclassical QC description of eternal inflation.

We pursue our analysis in the Jackiw-Teitelboim (JT) theory of two-dimensional linear
dilaton gravity [16, 17]. JT gravity has seen a recent resurgence in interest as a simple
solvable theory of quantum gravity [18, 19] and given its implications in low dimensional
holography (see e.g. [20]). For our purposes, we shall be primarily interested in the de
Sitter version of JT gravity [21, 22], which has featured in earlier studies of islands in
low-dimensional cosmological toy models [23–28]. We construct a first toy model multiverse
by analytic continuation of the dS2 solution. Then, inspired by [24], we generalize the model
by allowing for regions to be excised and replaced with bubbles of zero- or negative-curvature
spacetime, and we couple conformal matter to the background metric. The result is a
low-dimensional model for the global mosaic spacetimes featuring in traditional (classical)
studies of eternal inflation. We use the value of the dilaton to characterize regions of
spacetime with different physical properties, identifying regions of weak gravity and of
strong gravity along the way. We then consider interval subregions R located in weakly
gravitating regions of the background. Using the island formula (1.1), we compute the
Von Neumann entropy associated to R and study its dependence on properties of R and
properties of the global spacetime.

In all cases that we analyze, we are able to show that for a sufficiently large region
R, and at sufficiently late times, an island develops. Consequently, while initially the Von
Neumann entropy of the region grows with its size, a Page-like transition occurs at a critical
point beyond which a configuration with a non-trivial island minimizes the generalized
entropy (1.2).

Further, we find rather universally that islands, when they exist, cover nearly all of
the multiverse structure outside R. This agrees with the results of a recent work [29]
which considers the formation of islands in a higher dimensional multiverse setting using
the “island finder” prescription [30]. Both sets of results lend support to the intuition
emanating from the semiclassical QC description of the multiverse that distant regions may
not carry independent degrees of freedom, and thus that the huge coarse-graining which
the semiclassical theory encodes may be appropriate to derive well-defined predictions for
local observations.

The precise point at which the Page-like transition occurs depends on the details of
the multiverse configuration. Nonetheless, reading the semiclassical QC description the
other way around, we are led to conjecture that, quite generally, islands should form at the
threshold of the regime of eternal inflation that surrounds the weakly or non-gravitating

– 3 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
2

patch containing R, provided of course one considers an appropriate observable. The picture
that arises is that of an “inside out” version of black holes, in which the definite classical
spacetime around us corresponds to an oasis surrounded by (quantum) uncertainty [2, 31].

The organization of this paper is as follows. We begin in section 2.1 with a brief review
of de Sitter, flat, and anti de Sitter versions of JT gravity, and a discussion of how to glue
these solutions together to construct JT multiverse models. We also review in section 2.2
results for the generalized entropy of an interval in a probe conformal field theory (CFT)
with large central charge coupled to JT gravity. In section 3, we analyze the generalized
entropy of an interval region in a single de Sitter or flat patch of the JT multiverse, and
demonstrate the late time, large interval entropy preferring the formation of a large single
island. We comment on other configurations including multiple small islands and intervals
spanning several patches in appendix A. In section 4, we develop the analogy between the
qualitative general lessons from our investigations of the JT multiverse and a semiclassical
quantum cosmology description of higher dimensional inflationary multiverses. We conclude
with an extensive discussion of our results in section 5, and point to some future directions.

2 Jackiw-Teitelboim “cosmology”

In this section, first we discuss our toy model of cosmology in section 2.1 and then, in
section 2.2, we prepare the formulae for the computation of the generalized entropy of
subregions. We borrow techniques developed in refs. [23, 24] and expand them to build
two-dimensional de Sitter solutions with multiple flat, crunching, and expanding bubbles.

2.1 Bubbles in de Sitter JT gravity

Our starting point is the de Sitter version of JT gravity, extensively studied in refs. [21, 22,
32, 33]. It is a theory of two-dimensional spacetime with positive curvature coupled to a
dilaton field, φ. The action is given by

IdS-JT[gµν , φ] = φ0
16πGN

∫
M
d2x
√
−gR+ 1

16πGN

∫
M
d2x
√
−gφ(R− 2) + IGHY[gµν , φ],

(2.1)

where R is the bulk scalar curvature, IGHY is the Gibbons-Hawking-York counterterm,

IGHY[gµν , φ] = φ0
8πGN

∫
∂M

K + 1
8πGN

∫
∂M

φ̃(K − 1), (2.2)

φ̃ is the boundary value of the dynamical dilaton, and K is the trace of the extrinsic
curvature of the boundary ∂M of a manifoldM. In writing eq. (2.1), we have also included
a topological term proportional to φ0, a positive constant. Moreover, we have set the length
scale of the cosmological constant to one.

Varying IdS-JT with respect to φ enforces R = 2; i.e., the spacetime is fixed to be locally
dS2. Consider first the exactly dS2 solution. We may write its line element in terms of
compact global coordinates (σ, ϕ) as

ds2 = sec2 σ
(
−dσ2 + dϕ2

)
, (2.3)
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Figure 1. Penrose diagram for dS2. The horizontal line σ = π/2 corresponds to I+. The expanding
patch (the past domain of dependence of the part of I+ where φ diverges to +∞) is shaded in
yellow, and the crunching patch (the past domain of dependence of the part of I+ where φ diverges
to −∞) is shaded in green.

where the timelike coordinate σ takes values in (−π/2, π/2) and the spacelike coordinate
ϕ ∈ (−π, π) is periodically identified at its endpoints. These coordinates cover the whole
dS2 manifold and are useful for depicting its conformal structure in a Penrose diagram, as
shown in figure 1. Varying IdS-JT with respect to gµν gives the metric equation of motion

(gµν∇2 −∇µ∇ν + gµν)φ = 0, (2.4)

whose solution for the line element (2.3) is given by

φ(σ, ϕ) = φr
cosϕ
cosσ , (2.5)

where φr > 0, which satisfies φ̃ = φr/ε for a small UV cutoff ε.
Although the spacetime metric has R = 2 everywhere, we can think of this dS2 solution

as a simple, low-dimensional model of a cosmological spacetime that has two types of
regions with different physical properties. These two types of regions are distinguished by
the dilaton’s behavior in the asymptotic future [23, 24]. Namely, I+ can be partitioned
into an interval where φ→ +∞ and an interval where φ→ −∞. The two types of region in
question are then identified with these intervals’ past domains of dependence. In previous
literature, the past domain of dependence of the part of I+ where φ→ +∞ has been called
an “expanding patch”, and the past domain of dependence of its complement has been called
a “crunching patch.” The intuition for this termninology comes from viewing JT gravity as
descending from a higher dimensional theory, which we briefly review here for completeness;
see, e.g., [21, 22] for more details. However, we emphasize that we will always treat the
two-dimensional de Sitter JT gravity theory as a standalone toy model of cosmology.

Starting from the de Sitter-Schwarzschild black hole solution to four-dimensional
Einstein gravity,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 with f(r) = 1− 2M/r − r2/L2

4d, (2.6)

one can obtain de Sitter JT gravity via dimensional reduction of the near horizon geometry.
The procedure follows by taking the limit where the zeros (0 < r− < r+) of f(r) degenerate
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(r− = r+ = r̂), i.e. the zero temperature limit, which produces the Nariai dS2×S2 spacetime
geometry:

ds2 = r̂2ds2
dS2 + r̂2(1 + δ)2dΩ2

2 with 1 + δ = r/r̂. (2.7)

Expanding the four-dimensional theory perturbatively to zeroth order in δ and dimensionally
reducing on the transverse S2 gives the topological terms in eqs. (2.1) and (2.2) with
φ0 = L2

4dr̂
2/4G4d. By including the leading deformation at O(δ), the same dimensional

reduction yields the full JT gravity action in eq. (2.1) with dynamical dilaton φ = 2φ0δ.
Locations where the dilaton becomes negative therefore correspond to the black hole interior
in the higher dimensional picture, and positive values of the dilaton correspond to the
black hole exterior, where spacetime expands eternally as φ → +∞. While φ cannot be
less than −1 according to eq. (2.7), φ→ −∞ in the two-dimensional model is commonly
viewed as signalling the eventual black hole singularity in the higher dimensional theory.
This motivates the nomenclature “expanding patch” and “crunching patch,” which we will
continue to use throughout this work. More relevantly, we call spacetime regions in which
φ→ +∞ regions of weak gravity, and regions where φ→ −∞ regions of strong gravity in
our model. Much like the terms “expanding” and “crunching,” this identification is inspired
by the higher dimensional theory; the black hole singularity is clearly a region of strong
gravity, while the four-dimensional Newton’s constant is small when the dilaton is large.
However, we take this identification to be intrinsic to the two-dimensional model itself and
independent of any specific choice of parameters.

We can push this low-dimensional cosmological model further by making two additional
observations. First, one can analytically extend the spacetime by allowing the angular
coordinate ϕ to be 2πn-periodic for natural numbers n ≥ 1. This results in a larger
spacetime where the line element is still given by eq. (2.3) and on which the dilaton is still
given by eq. (2.5), but now we allow ϕ to take values in (−nπ, nπ). The Penrose diagram
of such an extension consists of n copies of the diagram in figure 1 that are glued together
before being periodically identified along the leftmost and rightmost sides, as illustrated in
figure 2 with n = 3. In terms of an embedding of dS2 as a hyperboloid in R1,2, such an
extension covers the hyperboloid n times. We will denote this n-fold extension of dS2 by
dSn2 , and the decompactified limit is obtained by formally taking n→ +∞.2

Second, as was pointed out in ref. [24], one can excise an expanding patch or a crunching
patch and replace it with a patch of flat spacetime. A flat version of JT gravity is obtained
by replacing the integrand of the second term in eq. (2.1) with

√
−g (φR− 2), leading to3

Iflat-JT[gµν , φ] = φ0
16πGN

∫
M
d2x
√
−gR+ 1

16πGN

∫
M
d2x
√
−g(φR− 2) + IGHY[gµν , φ].

(2.8)

2While an n-fold extension of dS2 is a well-defined classical solution that can function as a background
for a quantum field theory, subtleties arise if one tries to define a quantum state for the gravitational sector.
We will discuss this point in section 5.

3Notice that there are other possible choices in place of eq. (2.8) that would give flat spacetime solutions
in two dimensions. We followed the conventions of [24], which result in the dilaton diverging to +∞ toward
the future.
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Figure 2. Penrose diagram for extended dSn2 . The case with n = 3 is drawn here for illustration.
The region R lies in the expanding patch that is centered about ϕ = 0. We take as an ansatz an
island, I, whose endpoints (σI ,±ϕI) are in the crunching patches that are adjacent to R.

The resulting dilaton equation of motion is R = 0, and the metric equation of motion is

(gµν∇2 −∇µ∇ν)φ+ gµν = 0. (2.9)

In terms of the usual planar coordinates (t, x) for which ds2 = −dt2 + dx2, the general
solution for the dilaton is φ(t, x) = 1

2(t2 − x2) + At+Bx+ C for constants A, B, and C.
Let us instead choose coordinates (σ, ϕ) by defining

t = tan
(
σ + ϕ

2

)
+ tan

(
σ − ϕ

2

)
,

x = tan
(
σ + ϕ

2

)
− tan

(
σ − ϕ

2

)
.

(2.10)

The range of these coordinates is |σ ± ϕ| < π, and the line element reads

ds2 = −dσ2 + dϕ2

1
4(cosσ + cosϕ)2 = −dσ2 + dϕ2

cos2(σ+ϕ
2 ) cos2(σ−ϕ2 )

. (2.11)

If we set the integration constants A = B = 0 and C = φr, the dilaton reads

φ(σ, ϕ) = φr + 2 tan
(
σ + ϕ

2

)
tan

(
σ − ϕ

2

)
, (2.12)

and we can continuously join the flat solution in eqs. (2.11) and (2.12) to the dS2 solution
in eqs. (2.3) and (2.5) along the line segments σ = |ϕ|; see figure 3. The dilaton’s first
derivatives will be discontinuous whenever φr 6= 1, which signals that the interface must
carry some tension. We will return to this point in the next subsection. Then, by extension,
it follows that for the right choice of integration constants (as well as an appropriate offset
for ϕ), one can substitute a flat patch as defined by eqs. (2.11) and (2.12) for any expanding
or crunching patch in an extended dSn2 manifold. In this way, we can build up a model
which we call a “JT multiverse” that consists of a pattern of expanding, crunching, and flat
patches that can be arbitrarily long.

It is also possible to patch in a portion of a two-dimensional anti de Sitter (AdS2)
spacetime in lieu of an expanding or crunching dS2 patch.4 Upon replacing (R− 2) with

4The extension of ϕ’s range and the inclusion of AdS2 bubbles are both departures from the model
proposed in ref. [24].
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Figure 3. (Left) Penrose diagram for R1,1. (Right) Penrose diagram for dS2 where the expanding
patch has been replaced with a bubble of flat spacetime. The potion of full R1,1 that this bubble
corresponds to is shaded in the left diagram.
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Figure 4. (Left) Penrose diagram for global AdS2. (Right) Penrose diagram for dS2 where the
crunching patch has been replaced with a bubble of AdS2. The potion of the AdS2 manifold that
this bubble corresponds to is shaded in the left diagram. Although not illustrated here, the diamond
centred about (σ′, ϕ′) = (0, π/2) could be used to replace the expanding patch of dS2.

(R + 2) in eq. (2.1), the usual story for R = −2 follows [19, 34]: in terms of Poincaré
coordinates (t, z), the AdS2 line element reads ds2 = z−2(−dt2 + dz2) and the general
solution for the dilaton is φ = (A+Bt+ C(t2 + z2))/z. We will instead work with global
coordinates (σ′, ϕ′), where t± z = tan((σ′ ± ϕ′)/2). The AdS2 line element then reads

ds2 = csc2 ϕ′(−dσ′ 2 + dϕ′ 2), (2.13)

where σ′ ∈ R and ϕ′ ∈ (0, π); see figure 4 for a Penrose diagram. For the dilaton, we set
A = C = 0 and B = φr to obtain

φ = φr
sin σ′

sinϕ′ , (2.14)

where φr is the same as in eq. (2.5) so that we may perform a continuous gluing. If we shift
the global coordinates by defining ϕ = ϕ′ − π/2 and σ = σ′ − π/2 (resp. σ = σ′ + π/2),
then we can glue a diamond with σ > |ϕ| into a crunching patch (resp. expanding patch).
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In terms of these shifted coordinates, the AdS2 line element reads

ds2 = sec2 ϕ(−dσ2 + dϕ2), (2.15)

and the dilaton is given by
φ = ±φr

cosσ
cosϕ, (2.16)

where we must take the positive sign when substituting for an expanding patch and the
negative sign when substituting for a crunching patch.

A bubble of AdS2 behaves somewhat similarly to a crunching patch regarding whether
or not an island forms, and so we will not focus too much on such bubbles. Nevertheless, it
is interesting and satisfying that one can construct toy JT multiverses that contain both
flat and negative curvature bubbles in an ambient positive curvature spacetime. As such,
these JT multiverses are low-dimensional models for the sorts of mosaic universes predicted
by traditional eternal inflation. In such universes, instantons can nucleate bubbles that
have different values of the cosmological constant and different physical properties within
an ambient, eternally inflating spacetime that has a positive cosmological constant. In the
JT multiverses considered here, the background curvature and asymptotic behavior of the
dilaton are proxies for different, distinguishable cosmological properties.

2.2 CFTs and generalized entropy in JT gravity

Here we consider deforming the action of de Sitter and flat JT gravity in eq. (2.1) and
eq. (2.8), respectively, by coupling to the background metric gµν a two-dimensional CFT with
field content collectively denoted by ψ, where ICFT[gµν , ψ] is the action of the Lorentzian
CFT describing the matter sector. Crucially, we assume as usual that the CFT does not
couple to the dilaton, and so there is no backreaction to take us away from the background
solution of the dilaton equation of motion. Further, we assume that the central charge
of the CFT is very large, c � 1, such that we can consistently treat the gravitational
sector in the presence of matter at the semiclassical level and neglect fluctuations in the
boundary mode of the dynamical dilaton.5 Finally, we require that the CFT is in a global
vacuum and therefore that the stress tensor has vanishing one-point function 〈Tµν〉 = 0 in
the geometries that we consider below. With these assumptions, the metric equations of
motion in eqs. (2.4) and (2.9) are left unmodified.

While requiring 〈Tµν〉 = 0, we need to be careful about trace anomaly contributions,

〈Tµµ〉 = c

12R, (2.17)

arising in regions of our JT multiverse solutions with non vanishing R. Such a term can enter
as a source for the dilaton as can be seen, for example, by computing the trace of eq. (2.4),

(∇2 + 2)φ = 8πGN 〈Tµµ〉. (2.18)
5Given that our perspective on JT gravity coupled to a probe CFT is purely two-dimensional, we may

freely dial φ0 and φr so long as c � 1. However, if we were to consider our model as embedded in a
higher dimensional theory, e.g. a feature necessary in the analysis of [27], then the parameters of the lower
dimensional theory would have to lie in a hierarchy 1 � c � φr/GN � φ0/GN in order to work in a
semiclassical regime where gravity is weak and the matter sector is a probe of the classical background.
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However, including boundary contributions, the integrated trace anomaly of a two-dimen-
sional CFT takes the form∫

d2x
√
−g〈Tµµ〉 = c

24π

∫
M
d2x
√
−gR+ c

12π

∫
∂M

K. (2.19)

Therefore, at the level of the action, we can redefine the constant value of the dilaton
φ0 → φ′0 = φ0 + 2cGN/3 to remove the source. Thus, without loss of generality, we will
assume the dilaton obeys source-free metric equations of motion in what follows.

Ultimately, we will be interested in computing the Von Neumann entropy S(ρR)
associated to a subregion R in our JT multiverse plus CFT model. According to the island
formula eq. (1.1), we will therefore need to compute the generalized entropy for different
configurations of R and I. From eq. (1.2), we obtain

Sgen(R ∪ I) = SCFT(R ∪ I) + Area(∂I)
4GN

− Sct(∂I), (2.20)

where SCFT is the semiclassical entropy of CFT fields — that is, the entropy of the quantum
fields on a fixed background geometry evaluated according to the conventional techniques of
quantum field theory in curved spacetime. The second term in eq. (2.20) is the gravitational
contribution to generalized entropy coming from the boundary of the island. In JT gravity,
the “area” of the boundary of the island is just φ0 + φ, evaluated at and summed over all of
the island’s endpoints. We omit an area term due to the boundary of R; in principle we
could include this contribution, but it would not change any of our conclusions, as we will
see shortly. In writing eq. (2.20), we have included Sct, a counterterm originating from the
gravitational contribution that renormalizes the UV divergence in SCFT coming from the
boundary of I.

To compute the semiclassical entropy of fields, owing to the simplicity of our model, we
can use standard universal results of Von Neumann entropy of a two-dimensional CFT in
Minkowski vacuum [35–37]. For a subregion taken to be a single interval of proper length `,
it is given by

SCFT = c

6 log `2

ε2uv
+ s0, (2.21)

where εuv � ` is a UV regulator and s0 is a scheme-dependent constant. In our case,
we are working under the assumption that all CFT fields are in a vacuum state of a JT
multiverse geometry written in (σ, ϕ) coordinates. Therefore, we need to translate our
global coordinates to those in which the CFT is in a Minkowski vacuum.

For all values of R, we can put the background metric in the form

ds2 = 1
ω2(σ, ϕ)(−dσ2 + dϕ2), (2.22)

where

ω(σ, ϕ) =


cosσ (σ, ϕ) in a R = 2 patch
1
2(cosσ + cosϕ) (σ, ϕ) in a R = 0 patch

cosϕ (σ, ϕ) in a R = −2 patch.

(2.23)
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By rescaling σ = nσ̃ and ϕ = nϕ̃, such that the spatial coordinate takes values ϕ̃ ∈ (−π, π),
we may perform the coordinate transformation

z = e−i(σ̃+ϕ̃), z̄ = e−i(σ̃−ϕ̃), (2.24)

and the metric eq. (2.22) becomes

ds2 = n2dzdz̄
ω2(nσ̃, nϕ̃)e−2iσ̃ =: dzdz̄

Ω2(z, z̄) . (2.25)

With respect to (z, z̄) coordinates, the CFT is in a Minkowski vacuum up to a Weyl
rescaling.

Thus, given the entangling region be an interval with endpoints at (z1, z̄1) and (z2, z̄2),
using the metric eq. (2.25) in the universal formula eq. (2.21), we find

SCFT = c

6 log
[
z12z̄12
ε2uvΩ1Ω2

]
, (2.26)

where zij := zi − zj (resp. z̄ij) and Ωi := Ω(zi, z̄i). Following from the coordinate
transformations above for a CFT on the background described in eq. (2.22), we find the
following expression for the single interval Von Neumann entropy

SCFT = c

6 log
[

2n2(cos(σij/n)− cos(ϕij/n))
ε2uvω1ω2

]
+ s0, (2.27)

where we adopt the notation σij , ϕij from above for zij and ωi := ω(σi, ϕi). Eq. (2.27) will
prove useful for comparisons in the following sections in our search for islands in dSn2 .

Since the matter sector we are considering is a two-dimensional CFT, the regularizing
term Sct(∂I) takes a simple form. That is, if we consider an island configuration of a system
of disjoint intervals I =

⊔
j Ij with k endpoints, then

Sct = k
c

6 log εrg
εuv

, (2.28)

where εrg � εuv is an arbitrary renormalization scale. The appearance of this scale can be
thought of as due to contact terms in the non-minimally coupled CFT which contributes
to the RG flow of 1/GN [38].6 As we will use in the subsequent section for single island
configurations, and for multiple disjoint islands in the appendix, the net effect of Sct on the
rest of the non-geometrical part of the generalized entropy, i.e. SCFT, will be to renormalize
ε2uv → εrgεuv.

Before moving on, there are a few remaining subtleties that we must address. The
above review of generalized entropy for large c CFTs in JT gravity implicitly assumed
a smooth gluing of the interfaces between different patches. However, since we consider
configurations with patches of different R glued together below, we should address the
possible shortcomings of our approach.

6This new scale, εrg, can be absorbed into GN , but we will keep it explicit throughout the following
sections.
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First, we will assume below that it is sufficient to consider transparent boundary
conditions for the CFT matter at the interface between patches. That is, from the
perspective of the CFT, the interface is trivial. However, in the case that the interface
carries some non-trivial tension due to φr 6= 1, it is not clear a priori that this assumption
holds insofar as the presence of such an interface could break conformal symmetry by
interface couplings between the bulk conformal matter and interface-localized degrees of
freedom. For the following analysis, we can either assume that no interface couplings appear,
such that the probe CFT is completely decoupled, or that the conformal symmetry enjoyed
by the probe CFT is manifest, at least approximately, in regions far from a non-trivial
interface. With either of these assumptions, it is possible to apply the above results for the
Von Neumann entropy of the CFT (reliably in regions far from a non-trivial interface) in
all cases.

This brings us to the last point that we need to address regarding the configurations
of the entangling region R and the islands I. It is well known that in two-dimensional
CFTs on a background with a non-empty boundary the Von Neumann entropy for a region
R that has non-trivial intersection with the boundary is not simply given by eq. (2.21)
but rather picks up an additional universal log(g) term [37, 39]. The same log(g) could
ostensibly appear in the generalized entropy if there exists a non-empty intersection between
a non-trivial interface between patches in dSn2 and R ∪ I. However, since the g-function is
not extensive in the size of the region, neglecting its effects will not change the results of
our analysis in any meaningful way.

3 Islands in JT multiverses

In this section, we use the island formula (1.1) to compute the Von Neumann entropy
associated to a spacelike interval R in the JT multiverses coupled to a CFT described above.
In particular, we consider regions R that are confined to a single patch, and we look for
islands I that are supported outside of R’s patch. We first consider the case of dSn2 , followed
by the case where we include flat and negatively curved bubbles.

3.1 Extended dS2

Consider an n-fold extension of dS2 with a line element and dilaton given by eqs. (2.3)
and (2.5) respectively, and where the coordinate ϕ runs from −nπ to nπ. Let R be a
spacelike interval with endpoints (σR, ϕR) and (σR,−ϕR),7 where we take 0 < ϕR ≤ σR
so that R is contained within a single expanding patch, as shown in figure 2. For this
configuration, let us compute the von Neumann entropy of the reduced state on R, per the
island formula. We must therefore look for extrema of the generalized entropy Sgen(R ∪ I)
with respect to the inclusion of island regions, I, and identify the extremum that gives the
smallest generalized entropy.

7More accurately, the endpoints of R define a causal diamond to which the entropy of R is associated.
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One extremum is of course the trivial island, I = ∅. In this case, the entropy of R
reduces to

Sgen(R) ≡ SCFT(R) = c

3 log
[2n sin(ϕR/n)

εuv cosσR

]
, (3.1)

where we have used eq. (2.27) with ω = cosσ, and here and henceforth we drop the non-
universal constant s0. Following [24], we neglect the (gravitational) area term contribution
to Sgen(R) coming from the boundary of R because we will choose the latter to lie near
I+ where φ → +∞, which is our proxy for a non-gravitating region in any parametric
regime. Including this contribution would just shift Sgen(R) by (φ+ φ0)/4GN evaluated at
the endpoints of R. For any nontrivial island, Sgen(R ∪ I) would shift by the same amount,
therefore an area term due to ∂R would not affect the competition among extrema.

Motivated by the results of [24], next we search for a nontrivial island contained in the
causal complement of R, whose endpoints are (σI ,−ϕI) and (σI , ϕI); see figure 2. Since the
CFT is in a pure vacuum state, we have that Sgen(R∪ I) is equal to the generalized entropy
evaluated for the complement, Sgen((R ∪ I)c), where (R ∪ I)c denotes the complement of
R ∪ I on any Cauchy slice that contains R ∪ I. (R ∪ I)c is therefore a symmetric pair
of intervals whose endpoints are (±ϕI , σI) and (±ϕR, σR), respectively. In the operator
product expansion (OPE) limit, the disconnected components of (R ∪ I)c are each small
and spaced far apart, and so, the reduced state approximately factorizes across them. Thus,
in the OPE limit, Sgen((R ∪ I)c) is determined by the sum of the entropies of its two
constituent intervals. Using eq. (2.27), we get

Sgen((R ∪ I)c) = c

3 log

2n2
(
cos(σI−σR

n )− cos(ϕI−ϕR
n )

)
εrgεuv cosσI cosσR

+ 2φr
cosϕI
cosσI

+ 2φ0. (3.2)

Note that we again omit any area term contribution from R, but we include the area term
due to ∂I. The latter has also the effect of renormalizing εuv, as discussed in section 2.2.
The OPE limit approximation is checked in appendix A.2. Here and henceforth we set
4GN = 1.

In order for I to be an entanglement island, the boundary of I must be a quantum
extremal surface. In other words, Sgen(R ∪ I) (or equivalently, Sgen((R ∪ I)c)) must be
stationary with respect to variations of the endpoint coordinates σI and ϕI . The system of
equations

∂

∂σI
Sgen((R ∪ I)c) = 0

∂

∂ϕI
Sgen((R ∪ I)c) = 0

(3.3)

has no general closed-form solution that we could discern, but it can be solved in the limits
φr � c and φr � c, as well as numerically in other parametric regimes. In all cases, we
find a critical point, (σI∗, ϕI∗), located in the upper left corner of the crunching patch that
is adjacent to R’s patch, as illustrated in figure 2. We remark that this critical point is
actually a maximum with respect to variations of both σI and ϕI , but evaluation of the
Hessian reveals that this point is still a saddle of Sgen((R ∪ I)c) as a function of σI and
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ϕI .8 We can then evaluate the generalized entropy eq. (3.2) at this critical point to obtain
Sisland(R), which we denote as such to distinguish it from the (non-extremized) ansatz (3.2).

Having in mind that σR, ϕR, σI , and ϕI are all close to the corners of their respective
patches, let us write

σR = π

2 − δσR, σI = π

2 − δσI ,

ϕR = π

2 − δϕR, ϕI = π

2 + δϕI ,
(3.4)

where δσR, δϕR, δσI , and δϕI are all positive and small. Making these substitutions in
eq. (3.2), we get

Sgen((R ∪ I)c) ≈ c

3 log

2n2
(
cos( δσI−δσR

n )− cos( δϕI+δϕR
n )

)
εrgεuvδσIδσR

− 2φr
δϕI
δσI

+ 2φ0. (3.5)

Next, let us also assume that the sum δϕI + δϕR and the difference δσI − δσR are small,
giving

Sgen((R ∪ I)c) ≈ c

3 log
[

(δϕI + δϕR)2 − (δσI − δσR)2

εrgεuvδσIδσR

]
− 2φr

δϕI
δσI

+ 2φ0. (3.6)

Notice that the generalized entropy is independent of n to leading order. Let us further
assume that δσI � δσR, which we can justify later. With that assumption, so that
(δσI−δσR) ≈ δσI in the numerator above, the system of equations ∂δσI

Sgen = 0, ∂δϕI
Sgen =

0 has a very simple solution:

δσI = 6φr
c
δϕR, δϕI =

√
1 + 36φ2

r

c2 δϕR. (3.7)

Note that δϕI > δσI , and so the endpoint of I is in the crunching patch, as we initially
required. Plugging this solution back into eq. (3.6), we get

Sisland(R) ≈ c

3 log

 c

3φrεrgεuv

1 +

√
1 + 36φ2

r

c2

 δϕR
δσR

− c

3

√
1 + 36φ2

r

c2 + 2φ0. (3.8)

Now let us consider two separate parametric limits and choose the endpoint of R
accordingly. First, suppose that φr � c. In this case, choose the endpoint of R such that
δσR = δϕR/N , where N is at least O((φr/c)0). In other words, we suppose that as we drag
the right endpoint of R toward the upper right corner of the expanding patch, we keep the
ratio δσR/δϕR fixed. It follows that δϕR > δσR, so that the endpoint of R is indeed in the
expanding patch, and in this regime where φr � c, the assumption δσI � δσR is justified.

8Using the local hyperbolic coordinates X and T introduced in eq. (7.5) of ref. [24] instead, it is possible
to show that the saddle that we found is a maximum in T and a minimum in X. The critical point that
we identify here coincides with that found in ref. [24] when we set n = 1. Further note that the result of
appendix B of ref. [24] only guarantees that the critical point of Sgen is a timelike maximum and makes no
statement about the spacelike direction.
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The endpoints of R are also parametrically close to I+. Making this choice and dropping
subdominant terms, we arrive at

Sisland(R) ≈ c

3 log
[

2N
εrgεuv

]
− 2φr + 2φ0. (3.9)

If we further drop the logarithmic correction, we have that Sisland(R) ≈ 2(φ0−φr), which is
just twice the value of the dilaton evaluated at the boundary of the crunching patch. Either
way, Sisland(R) is approximately constant, while SCFT(R) diverges as the endpoints of R
approach (π/2,±π/2). There is therefore a “Page transition” beyond which the nontrivial
island entropy is the smaller extremum.

Let us compare Sisland(R) to SCFT(R) to determine the location of the Page transition.
Plugging eq. (3.4) into eq. (3.1), we get

SCFT(R) ≈ c

3 log
[

fn
εuvδσR

]
, (3.10)

where fn = 2n sin(π/2n). Equating SCFT(R) and Sisland(R), we find that the Page transition
occurs at

δσPage
R = fnεrg

2N e−
6
c

(φ0−φr), δϕPage
R = fnεrg

2 e−
6
c

(φ0−φr). (3.11)

We can also read off the mild dependence of the Page transition on n. Because fn
monotonically increases up to π as n→ +∞, we see that the size of R at which the Page
transition occurs correspondingly monotonically decreases to a finite size.

If we instead suppose that φr � c, choose the endpoints of R such that δσR =
(6φr/Nc)δϕR for the same consistency reasons as above, where N is at least O((c/φr)0). It
then follows that

Sisland(R) ≈ c

3

(
log

[
Nc2

9φ2
rεrgεuv

]
− 1

)
+ 2φ0, (3.12)

which again remains constant while SCFT(R) diverges. In this case, the Page transition
occurs at

δσPage
R = fnεrg

4N

(6φr
c

)2
e−

6
c

(φ0−1), δϕPage
R = fnεrg

4

(6φr
c

)
e−

6
c

(φ0−1). (3.13)

For other parametric regimes, we must turn to numerics; see, for example, figures 5
and 6.9 In all cases, however, we see the same basic physics at play: SCFT(R) gives the
lesser entropy for small R, but there is a Page transition after which Sisland(R) is the lesser
entropy for sufficiently large R. The crossover point monotonically decreases as a function
of n, and in numerical analyses, we can study the limiting behavior by taking the n→ +∞
limit of eq. (3.2), which gives

lim
n→∞

Sgen((R ∪ I)c) = c

3 log
[

(ϕI − ϕR)2 − (σI − σR)2

εrgεuv cosσI cosσR

]
+ 2φr

cosϕI
cosσI

+ 2φ0. (3.14)

9A Mathematica notebook that reproduces the plots in this manuscript is included as supplementary
material.
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Figure 5. SCFT(R) (brown, blue, dark green) versus Sisland(R) (orange, red, black) in dSn2 for
n = 1, 2,+∞, respectively, with σR = π/2− 10−5 held fixed. The size of R beyond which the island
contribution to generalized entropy becomes dominant slightly decreases as n increases. Because
σR is held fixed in this plot, taking ϕR all the way to π/2 moves the endpoint of R outside of the
expanding patch. In this limit, the endpoint of I also moves outside of the crunching patch and
R ∪ I tends to a full Cauchy slice on which the state is pure, resulting in vanishing entropy. The
parameter values used for this plot are c = 600, φr = 10, φ0 = 0, εuv = 1, εrg = 1.

Figure 5 Shows the competition between SCFT(R) and Sisland(R) for different n as
ϕR varies with σR held fixed. These curves reproduce the same qualitative features that
followed from the approximate analysis above. We can also examine the competition
between SCFT(R) and Sisland(R) as σR is varied, as shown in figure 6 for n = 1. A Page
transition still occurs as σR is decreased, and the value of ϕR at which the transition occurs
also decreases. We also find that moving the subregion R back in time pushes the island
forward in time toward I+. Below a limiting value σ?R, the island is formally pushed beyond
I+, outside the allowed range of the parameters of the crunching patch. A similar behavior
persists for all values of n.

While we have found an island that extremizes Sgen(R ∪ I), one should ask whether
there are other island configurations consisting of multiple disjoint components that give
smaller values of Sgen(R∪I). Heuristically, such islands are disfavored by the island formula.
One would expect that a single large island, such that R ∪ I covers as much of a Cauchy
surface as possible, would be more efficient at purifying the state of R compared to several
smaller disjoint components, thus lowering the CFT entropy cost. Moreover, the area of the
boundary of every disjoint piece of an island contributes to the total generalized entropy.
Therefore (at least when φ0 � φr) the geometric cost to form an island is larger for a greater
number of disconnected components. While we cannot prove that the single large island is
the minimal extremum, we were able to verify that the extrema for which I consists of two
disconnected components result in a larger generalized entropy for a theory of c� 1 free
Dirac fermions. The details of our numerical analysis are elaborated in appendix A.3. In
particular, a plot of Sgen(R ∪ I) for these non-minimal extrema I as a function of the size
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Figure 6. Sisland(R) (orange, red, black) versus SCFT(R) (dashed, same color scheme) in dS2 (i.e.
n = 1) for σR = π/2− 0.001, π/2− 0.02, and π/2− 0.051, respectively. As we decrease σR, the size
of R at which the Page transition occurs also decreases. The parameter values used for this plot are
c = 10000, φr = 100, φ0 = 0, εuv = 1, εrg = 1. These exaggerated choices of parameters were made
to clearly illustrate the shifts in entropy.

of R is shown in figure 18. This constitutes evidence that the single large island is indeed
likely the minimal extremum.

We can also consider the case where R is in a crunching patch. However, if we look
for an island whose endpoints lie in the surrounding expanding patches, we find that the
extremality conditions (3.3) cannot be satisfied.10 In other words, there are no quantum
extremal surfaces, and so no islands of this type form.

3.2 Extended dS2 with bubbles

We now consider an n-fold extension of dS2 where the expanding patch centred about ϕ = 0
has been replaced with a flat bubble with the line element eq. (2.11) and on which the
dilaton is given by eq. (2.12); see figure 7. Let R have endpoints (σR,±ϕR) contained
within this flat bubble; we will examine the entropy of R as its size increases while keeping
its endpoints close to I+ (i.e. ϕR + σR ≈ π).

We again compute S(ρR) using the island formula. In this case, the trivial island gives

Sgen(R) ≡ SCFT(R) = c

3 log
[

2n sin(ϕR/n)
εuv cos(1

2(σR − ϕR)) cos(1
2(σR + ϕR))

]
, (3.15)

where we used eq. (2.27) with the flat Weyl factors for our chosen coordinates. Next, we look
for an island with endpoints (σI ,±ϕI) that lie in the crunching patches that are adjacent

10This is consistent with the fact that the necessary conditions for island formation presented in ref. [24]
are not satisfied in the expanding patch.
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Figure 7. A single-component island I in an extended JT multiverse for R in a flat bubble.

to the flat bubble, as depicted in figure 7. The generalized entropy for such an island is

Sgen((R ∪ I)c) = c

3 log

 2n2
(
cos(σI−σR

n )− cos(ϕI−ϕR
n )

)
εrgεuv cosσI cos(1

2(σR − ϕR)) cos(1
2(σR + ϕR))

+ 2φr
cosϕI
cosσI

+ 2φ0

(3.16)
where we again compute the entropy of the complement and have invoked an OPE limit
approximation.

As before, we can explicitly solve the extremality conditions (3.3) in the limits φr � c

and φr � c, as well as numerically in other regimes. In our current configuration, we set

σR = π

2 + δσR, σI = π

2 − δσI ,

ϕR = π

2 − δϕR, ϕI = π

2 + δϕI ,
(3.17)

so that the endpoints of R and I are near I+. With these definitions, eq. (3.16) approximately
reduces to

Sgen((R ∪ I)c) ≈ c

3 log
[

(δϕI + δϕR)2 − (δσI + δσR)2

εuvεrgδσI(δϕR − δσR)

]
− 2φr

δϕI
δσI

+ 2φ0. (3.18)

Again assuming that δσI � δσR, upon extremizing eq. (3.18) with respect to δσI and δϕI ,
we find the same critical point as eq. (3.7). This gives

Sisland(R)≈ c

3 log

 c

3φrεrgεuv

1+

√
1+ 36φ2

r

c2

 δϕR
δϕR−δσR

− c3
√

1+ 36φ2
r

c2 +2φ0 (3.19)

for the generalized entropy corresponding to R ∪ I. Similarly, the no-island entropy is

SCFT(R) ≈ c

3 log
[

fn
εuv(δϕR − δσR)

]
≈ c

3 log
[

fn
εuvδϕR

]
, (3.20)

where the second step follows because we will always choose δσR to be much less than δϕR.
In the limit where φr � c, we again choose δσR = δϕR/N . This gives

Sisland(R) ≈ c

3 log
[

2
(1−N−1)εuvεrg

]
− 2φr + 2φ0, (3.21)
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Figure 8. S(ρR) evaluated for no islands (brown, blue, dark green ascending lines) and a single
large island for n = 1, 2,+∞ (orange, red, black curves, respectively, from bottom to top). For a
given ϕR, we set σR = −(2/π)(π/2− 10−3)ϕR + π − 10−3 so that R grows large while its endpoints
remain near I+. Other parameter values are c = 600, φr = 10, φ0 = 0, εuv = 1, εrg = 1.

and results in a Page transition at the same location as in eq. (3.11). In the limit where
φr � c, we choose δσR = (6φr/Nc)δϕR as in the previous section, which gives

Sisland(R) ≈ c

3

(
log

[
2c

3φrεuvεrg

]
− 1

)
+ 2φ0. (3.22)

The Page transition in this case happens as in eq. (3.13).
A plot of SCFT(R) and Sisland(R) outside of the regimes discussed above for different

values of n is shown in figure 8. The n→ +∞ limit is computed in the same way as eq. (3.14),
but with cosσR replaced with the Weyl factor for flat spacetime, 1

2(cosσR + cosϕR).
The endpoints of R are initially chosen such that σR > π/2 and are dragged toward
σR = ϕR = π/2 to increase the size of R. For these parameter choices, the Page transition
is visually very clear.

As in our analysis of dSn2 , we can also consider the case where R is in a flat bubble that
is surrounded by two expanding patches, e.g., a flat bubble that replaces the crunching
patch centred about ϕ = π. Once again, we find that the extremality conditions (3.3)
cannot be satisfied for an island whose endpoints are in the adjacent expanding patches.

Finally, we note that islands continue to develop when the crunching dS2 patches
are replaced with bubbles of AdS2. To see this, we return to the case where R has
endpoints (σR,±ϕR) that lie in a central dS2 expanding patch, but we now replace the
adjacent crunching patches with AdS2 bubbles, in which the line element and dilaton are
given by eqs. (2.15) and (2.16), respectively. For an island with endpoints (σI ,±ϕI) with
π/2 < ϕI < 3π/2, we now have

Sgen((R∪I)c) = c

3 log

2n2
(
cos(σI−σR

n )−cos(ϕI−ϕR
n )

)
εrgεuv cos(ϕI−π)cosσR

−2φr
cosσI

cos(ϕI−π) +2φ0. (3.23)
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Figure 9. S(ρR) evaluated for no islands (brown, blue, dark green ascending lines) with R located in
an expanding patch and a single large island for n = 1, 2,+∞ (orange, red, black curves, respectively,
from bottom to top) whose endpoints lie in adjacent AdS2 bubbles. σR is fixed to π/2− 10−5. Other
parameter values are c = 600, φr = 10, φ0 = 0, εuv = 1, εrg = 1.

The behavior of the dilaton near the corners of an AdS2 bubble is very different compared
to its behavior in dS2 crunching patches. In the latter case, φ → −∞ near a crunching
patch’s corners at I+, whereas φ→ 0 near the corners of an AdS2 bubble. This ultimately
locates the endpoints of I away from the corners of the AdS2 bubbles surrounding R, and
so a perturbative expansion like eq. (3.17) is no longer useful. Nevertheless, we still find
nontrivial islands numerically and we see that an island produces the minimal generalized
entropy past a critical value of ϕR, which we show in figure 9.

3.3 Features of island formation

To briefly summarize the last two subsections, we applied the island formula to compute
the fine-grained entropy associated to a region R that is confined to either an expanding
patch of dSn2 , or a flat bubble embedded in dSn2 . In both cases, once R’s endpoints are close
enough to I+, once R exceeds a certain size, and provided that R’s patch is surrounded by
crunching patches or AdS2 bubbles on either side, an island forms outside of R’s patch that
covers most of the external universe. Exactly where this transition happens depends mildly
on n (i.e., the size of the universe), but it monotonically decreases toward a limiting value
ϕPage
R (n→∞) < π/2. Moreover, changing position of R in time, we observe that an island

may appear only for sufficiently large σR. As σR approaches I+, the islands’ endpoints
move back in time toward a limiting location.

There is a clear interpretation for the island entropy, at least when φ0 � φr and
φ0 � c. Examining eqs. (3.9) and (3.12) or eqs. (3.21) and (3.22), we see that Sisland(R)
is equal to 2φ0 up to O(φr) or O(c log c) corrections depending on whether φr � c or
φr � c, respectively. That is, in the regime of parametrically large φ0, Sisland(R) ≈ 2φ0
is the two-dimensional de Sitter horizon entropy. Therefore, the Page transition in this
cosmological setting occurs when R grows so large that its matter entropy would exceed the
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de Sitter entropy. If we view a maximum entropy as a bound on Hilbert space dimension,
it is tempting to speculate that the appearance of islands is a semiclassical signal that the
dimension of the Hilbert space for putative fine-grained degrees of freedom associated with
R is bounded by the de Sitter entropy. Moreover, this bound persists regardless of how
much spacetime lies outside of R’s patch.

In particular, one might have thought that the island entropy would depend on the
pattern of patches and bubbles outside of R’s patch, but this is not the case. The value of
SCFT(R) depends only on the size of R and on n and, to leading order, Sisland(R) depends
only on the former. In other words, Sisland(R) is the same irrespective of the spacetime that
lies beyond R’s patch.

The fact that Sisland(R) depends only on the endpoints of R has further consequences
for when an island forms and gives the minimal extremum of Sgen(R ∪ I). As long as the
endpoints of R are sufficiently close to the corners of expanding patches or flat bubbles,
an island will form with endpoints lying in the adjacent patches to those containing
R’s endpoints provided they are crunching patches or AdS2 bubbles. Examples of such
configurations are illustrated in figures 16a and 16b. Under these conditions, (R ∪ I)c is
locally identical to the cases that we examined in the previous two subsections, and so a
Page transition occurs for sufficiently large R.

Much as crunching patches or AdS2 regions are necessary to form islands, we also
observed that islands do not form when R is surrounded by expanding patches, or by flat
bubbles; the extremality conditions (3.3) cannot be satisfied in expanding dS2 patches,
or flat bubbles. One might wonder, then, whether islands whose endpoints lie in the
nearest crunching or AdS2 regions can form and whether they can give a lower generalized
entropy than the absence of islands. Examples of such configurations are illustrated in
figures 15a, 15b, and 15c. Though these configurations lie outside of the OPE limit, we
can compute their associated entropies for a specific choice of CFT. Taking the CFT to be
a theory of c � 1 free Dirac fermions, we find that islands do indeed form, in the sense
that extrema of Sgen(R ∪ I) with nontrivial I exist, but that the configurations shown in
figures 15a and 15b always result in an entropy that is larger than SCFT(R). Therefore, it
appears that surrounding R with expanding patches can “screen” the rest of the universe
from R to a certain extent. However, this is not a hard and fast rule since, for example,
the configuration shown in figure 15c still exhibits a Page transition for sufficiently large R.
Computational details and the associated Page curves are elaborated in appendix A.2.

4 False vacuum inflation in quantum cosmology

In the previous section, we have seen islands appear in the calculation of the Von Neumann
entropy associated with a spacelike interval R confined to a patch of the global spacetime
in various two-dimensional toy-model multiverses (provided R is taken sufficiently large).
The formation of an island suggests that, if we had been working in the framework of
semiclassical quantum cosmology, an additional saddle point geometry of the gravitational
path integral would have come into play in the calculation of the Von Neumann entropy,
and perhaps also of “observables” with a sufficiently rich information content.
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In this section, we elaborate on this point by examining a similar, but more conventional
toy-model multiverse in four dimensions, one that is often associated with the decay of an
inflating false vacuum through bubble nucleation. To be precise, we consider the Hartle-
Hawking quantum state for universes that contain a scalar field whose potential possesses
false and true vacua. We will compare the calculation of Von Neumann entropy in the
two-dimensional model to the calculation of probabilistic predictions for local cosmological
observables using the Hartle-Hawking state in this model, and we will discuss how each
model informs the other.

In the current setting, different gravitational saddles contribute to the calculation of
probabilities depending on the level of detail of the local observation in question. This leads
us to draw an analogy between the appearance of new saddles here, when the observational
question is made sufficiently precise, and the appearance of a large island in the two-
dimensional model, when R is sufficiently large. These saddles are saddle point geometries
of the Hartle-Hawking wavefunction, and in particular, they involve an enormous coarse-
graining over the external (with respect to the local observation) fine-grained multiverse
structure. This further resonates with the fact that the formation of an island is insensitive
to almost all of the multiverse structure external to R.

Altogether, the comparisons drawn here are meant to exemplify how semiclassical QC
appears to incorporate the huge reduction of degrees of freedom suggested by the islands
program in cosmology, while retaining some information in terms of a multiplicity of pasts.
Our discussion in this section closely follows part of [31] albeit with a somewhat different
emphasis.

4.1 Multiverse model

We consider four-dimensional Einstein gravity coupled to a single scalar field χ moving in
a positive potential. We take the potential to have a false vacuum F with two quantum
decay channels to two vacua A and B where the potential vanishes. Figure 10 gives an
example. Classically, this theory has an eternally inflating de Sitter solution with an effective
cosmological constant given by the value of the potential in the false vacuum. Quantum
mechanically, this solution decays through the nucleation of bubbles of true vacuum. The
geometry inside these bubbles is that of an open universe which expands in the de Sitter
background.

We allow for different decay rates of the false vacuum to A and B. We further assume
that the potential toward the vacua has flat patches where the slow roll conditions hold so
that while the scalar slowly rolls down, the open universes11 inside the bubbles undergo a
period of inflation before the bubble universe reheats and standard cosmological evolution
ensues. Finally, we assume the potential is such that detailed CMB-related observables, say
the spectral tilt or the tensor to scalar ratio, enable observers inside one of the bubbles to
determine whether they live in A or B.

The quantum mechanical nucleation of bubbles of type A or B in the false vacuum
background is thought to give rise to a toy-model multiverse. These bubbles are the

11Whether the local geometry inside is open remains a matter of debate [40].
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Figure 10. A potential with one false vacuum and two true vacua A and B. The false vacuum
is assumed to be separated from both true vacua by a barrier followed by a relatively flat patch
where the slow roll conditions for inflation hold. The different shapes of the two barriers and of the
potential in the two slow roll regimes leading on to the true vacua gives different false vacuum decay
rates and different predictions for CMB related observables in universes ending up in either A or B.

Figure 11. A conformal representation that evokes a fine-grained configuration of (possibly infinitely
many) bubble universes in a false vacuum de Sitter background. The false vacuum is indicated in
blue, regions inside bubbles of type A are in yellow, and regions inside bubbles of type B are in
green. A quantum state of the universe Ψ does not describe one specific such configuration, but an
ensemble of possible ones.

analog of the expanding or flat bubbles we patched in, in the two-dimensional toy-model
multiverses in the preceding sections. The “crunching,” or strong gravity patches in the two-
dimensional models correspond to the false vacuum background here. The CMB observables
discriminating between A and B are the analog of the different dilaton behaviors in the
patches containing R in the two-dimensional models.

A particular eternally inflating history consisting of a specific configuration of bubble
universes in a false vacuum de Sitter background is illustrated in figure 11. In an essentially
classical approach to eternal inflation, such a particular fine-grained global configuration is
taken as a starting point for the calculation of predictions for local observations. In the
absence of a quantum state, these predictions are derived by counting the number of Hubble
volumes (or bubbles) in a global configuration where observables take different values.
This requires an extraneous notion of typicality in sync with a prescription for regulating
infinities because a fine-grained history typically follows an infinite number of bubbles,
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each of which is itself infinite. This prescription, which specifies a measure, supplements
the theory. It consists, e.g., of specifying a spacelike three-surface beyond which one no
longer counts instances of observations. It is well known, and hardly surprising, that the
resulting predictions are highly regulator-dependent. This is known as the measure problem
of eternal inflation. It is essentially a problem of information; the theory is underdetermined
and that gives rise to a breakdown of predictivity.

In the previous section, we have taken the analog of such a particular fine-grained
configuration as a starting point for a semiclassical calculation of the Von Neumann entropy
of subregions. It is tempting to interpret the formation of an island in that context as a
signature that the idea of a normal definite global spacetime may be questionable. Here
we take the complementary viewpoint and follow up on this reasoning with a conventional
semiclassical quantum cosmology treatment of this false vacuum model. In the next section,
we substantiate the resonances between both analyses.

4.2 Local predictions from coarse-grained saddle point geometries

We consider the Hartle-Hawking no-boundary wavefunction (NBWF) in the model above
on a closed spacelike three-surface Σ. Schematically, we have

ΨHH = Ψ[h(~x), χ(~x), ζ(~x)],

where ζ represents linear scalar perturbations around the background saddles, h(~x) is the
induced metric on Σ and χ is the scalar field.

In the semiclassical approximation, the NBWF is given by a sum of saddle points, each
contributing a term of the form [41]

Ψ[h, χ, ζ] ∼ exp(−I/~) = exp{(−IR[h, χ, ζ] + iS[h, χ, ζ])/~}. (4.1)

Here, IR[h, χ, ζ] and −S[h, χ, ζ] are the real and imaginary parts of the Euclidean action
I, evaluated on a saddle point solution of the field equations that matches (h, χ, ζ) on
its only boundary Σ and is otherwise regular. In regions of superspace {h, χ, ζ} where S
varies sufficiently rapidly, the semiclassical wavefunction (4.1) describes a family of locally
classical Lorentzian cosmologies that are the integral curves of S and have amplitudes to
leading order in ~ that are proportional to exp[−IR(h, χ, ζ)]/~], which is constant along the
integral curve [42].

In the model we consider, the wavefunction comprises two distinct sets of cosmological
backgrounds. First, there is a one-parameter family of saddle points, labeled by the absolute
value χ0 of the scalar field at their “South Pole”, with χ0 somewhere on the slow roll
slope near one of the true vacua A or B. Each of these saddles corresponds to a closed
inflationary Friedmann-Lemaître-Robertson-Walker (FLRW) background, without eternal
inflation, ending up in either A or B [42]. Second, there are two isolated saddle geometries
describing the expansion of a bubble, either of type A or B, embedded in the false vacuum
background at χ = 0. These saddles are no-boundary versions of the well-known Coleman-
De Luccia (CDL) or Hawking-Moss (HM) instantons (which one dominates depends on the
shape of the barrier). As regular compact solutions of the Euclidean field equations, these
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Figure 12. The semiclassical prediction of local observations in the false vacuum eternal inflation
model of figure 10 involves two distinct saddle point geometries. Each of these corresponds to a
coarse-grained history describing a different possible past of a given “observer” D, in which she
evolves either toward the true vacuum A or B. The saddle geometries average over any multi-bubble
configuration outside — represented by gray — but enter as a superposition of pasts of D.

instantons are valid saddle points of the NBWF. In this interpretation, CDL instantons
are associated with histories following a single bubble evolving toward a true vacuum that
expands in a false vacuum background. The nucleation point of the bubble lies at the throat
of the de Sitter background. Indeed the saddle describes the creation of both bubble and
background. Crucially, the saddle does not keep track of other bubbles which may or may
not be nucleating at various other locations in the false vacuum background. Instead it
averages over everything happening outside one bubble [31]. This is illustrated in figure 12.

In the language of decoherent histories quantum mechanics, one says that CDL in-
stantons, as NBWF saddle points, correspond to coarse-grained histories [43]. Quantum
mechanical coarse-graining amounts to some sort of averaging whereby one bundles together
detailed histories in coarser grained sets retaining less information. Taking the semiclassical
wavefunction at face value, therefore, we see that this includes a huge amount of coarse-
graining over possible multi-bubble configurations. Nevertheless, the semiclassical theory
repackages some information contained in that putative fine-grained structure in terms of a
limited set of distinct coarse-grained saddle geometries. While these saddles are consistent
with there being no independent degrees of freedom in those far-flung regions at all, they do
not necessarily imply this, although the dynamics of eternal inflation does suggest that at
the very least, the wavefunction is very much spread out over a wide range of configurations
on the largest scales.

Decoherent histories quantum cosmology speaks of different descriptions of quantum
systems at different levels of coarse-graining. Which level is the appropriate one depends
on the correlation of interest [43]. The crux of previous semiclassical quantum cosmology
calculations in models of this kind [2, 31, 44] is that the coarse-graining inherent in
the semiclassical description is the relevant and appropriate one for the calculation of
probabilities for local observations.

To adopt an intrinsic perspective of a local observer, it is convenient to specify an
observational situation in terms of data D treated as part of the quantum system. Consider
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thus the correlation p(F|D≥1) between a feature F of the local universe, e.g., a statistical
feature of the CMB that we seek to predict, and at least one instance of a set of local data D
(denoted by D≥1), which we take also to select a surface of homogeneity of a given density.
One can think of D as a specific local configuration of matter fields and geometry inside
one Hubble volume that has ultimately evolved from the primordial perturbations ζ and
whose probability to occur in any Hubble volume can therefore in principle be computed
from the Gaussian fluctuation wavefunctions. All one knows from local observations is that
there is at least one instance of D. For any kind of realistic data, this probability is of
course exceedingly small.

The condition on D≥1 in the correlation p(F|D≥1) suppresses the first class of no-
boundary saddle points labeled by χ0, i.e. those not associated with the false vacuum and
the nucleation of a bubble of kind A or B. The reason is that the surfaces of homogeneity
in the former class are relatively small, rendering p(D≥1)� 1. On the other hand, bubbles
have extremely large or even infinite surfaces of homogeneity, rendering the condition on
D trivial, i.e. p(D≥1) ≈ 1 [31]. This selection of bubble saddles by taking D sufficiently
precise is the analog of taking R sufficiently large in the island calculations above. Adding
more bubbles does not change anything, for the condition on D≥1 obviously remains moot.
Assuming the probability of bubble collisions is negligible, a coarse-graining that follows
what happens inside one bubble and ignores what goes on outside thus appears to be
adequate for evaluating the quantum mechanical probabilities p(F|D≥1). If the feature
F distinguishes between a bubble of type A or B, then the relevant coarse-grained set
of histories consists of the two remaining saddle point geometries, each following only
one bubble (ours) but distinguished by whether this is of type A or B. The picture one
might have in mind here is one that is familiar from holography — that these two saddle
geometries corresponds to two distinct ways of filling in the past (say, the bulk) leading to
a given set of data D on a homogeneous boundary surface of given density and subject to a
no-boundary condition deep in the interior.

Evidently the relative probabilities for the outcome FA or FB will be specified by the
action I of the dominant saddle mediating the decay of the false vacuum toward resp. A or
B. Thus for the relative probabilities that we, systems characterized by data D, observe
the physical properties of bubble A or B, we get

p(FA|D≥1)
p(FB|D≥1) = e2IB

R−2IA
R (4.2)

where IAR and IBR are the real parts of the Euclidean no-boundary actions of the (CDL or
HM) saddle point geometries. This includes a weighting of the false vacuum background
because no-boundary saddles describe the nucleation of both a bubble and the background,
in contrast with the use of CDL or HM instantons in tunneling transitions where one
assumes a pre-existing vacuum state.

For a broad barrier where the Hawking-Moss saddle gives the dominant decay channel,
the no-boundary weighting in eq. (4.2) is given by

− IR = 24π2
( 1
V (χmax) −

1
V (0)

)
+ 24π2

V (0) , (4.3)
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where χmax denotes the value of χ at the maximum of V and we have added and subtracted
the false vacuum weighting. The terms inside the brackets are simply equal to the difference
in entropy of both de Sitter backgrounds and combine to form the bubble nucleation rate,
and the third term represents the no-boundary weighting of the false vacuum background.

For a narrow barrier, there is a CDL saddle that straddles the maximum. CDL
instantons are slightly more complicated saddle points in which the field χ varies from an
initial value χi near the false vacuum to a final value χf on the other side of the barrier. In
the limit V,χχ/H2(χmax)→ −4, the CDL solution tends to HM and so does its action. By
contrast, in the limit where the barrier is narrow and sharp and hence |χf − χ0| � 1, the
decay rate implied by the CDL action tends to the well-known thin-wall result, giving for
the no-boundary weighting in eq. (4.2),

− IR =
(

27π2T 4

2V (0)3 −
24π2

V (0)

)
+ 24π2

V (0) , (4.4)

where T is the tension of the narrow barrier separating F from the true vacuum,

T =
∫ χf

χi

dχ
√

2V (χ). (4.5)

The third term in eq. (4.3) and eq. (4.4) is just the de Sitter entropy of the false vacuum.
Thus the no-boundary weighting of the saddles has formally a very similar structure to
the island entropy we obtained above, given by the dS entropy plus a small correction. In
relative probabilities, the weighting of the background cancels, of course, so we end up in
eq. (4.2) with a difference between two relatively small corrections to the entropy of the
false vacuum.

To summarize, correlations of the kind p(F|D≥1) that capture predictions for local
cosmological observations in the Hartle-Hawking state in false vacuum models are specified in
terms of a superposition of saddle point geometries, each representing a highly coarse-grained
configuration.

4.3 Comparative summary of the models

In section 2, we built toy model multiverses out of solutions of two-dimensional JT gravity
theories, and we used the islands prescription to compute the Von Neumann entropies
associated to regions R. In this section, we examined a more familiar four-dimensional
multiverse model from quantum cosmology, and we explained how to compute probabilities
for cosmological observations using saddles of the Hartle-Hawking wavefunction. We end
this section with a short recap of the similarities, differences, and resonances between the
two models and the two calculations.

The two models are similar in the sense that they aim to model the physics of an
inflationary multiverse with multiple vacua. Roughly speaking, bubbles of the terminal A and
B vacua in the QC model correspond to the weakly-gravitating patches of a JT multiverse
where we situated R, and the false vacuum F corresponds to strongly-gravitating regions.

When following the islands prescription, the appearance of a nontrivial island generally
signals the appearance of a new saddle in an underlying Euclidean gravitational path integral.
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While we currently lack a Euclidean description of the JT multiverses, the selection of
particular gravitational saddles is clearly exhibited in the calculation of probabilities in the
QC model. Furthermore, this calculation is a true quantum gravitational calculation, albeit
in the semiclassical approximation, in the sense that it explicitly tracks the state of the
gravitational sector. The QC calculation is of course not a calculation of Von Neumann
entropy. Nevertheless, the selection of saddles in the QC model and the formation of islands
in the JT multiverse model are analogous in that both are a consequence of having asked
a sufficiently detailed question: islands form when calculating the fine-grained entropy of
regions that nearly span an entire cosmological patch in a JT multiverse, and sufficiently
detailed observational conditions select saddles associated with false vacuum decay in the
Hartle-Hawking wavefunction.

Finally, both models suggest a huge redundancy in the global picture of an eternally
inflating spacetime. The saddles in the QC model explicitly coarse-grain over scales larger
than those of the observational condition in question. In the JT multiverse models, an
island always forms for sufficiently large R, independent of the global structure beyond R
and despite the fact that R is locally the same for any such structure. Furthermore, the
fine-grained degrees of freedom of R are supposed to encode the island itself, at least at a
semiclassical level. (We will further comment on this point in the Discussion.) Given that
the geometry of the JT multiverses reflect a more traditional view of the spacetime produced
by eternal inflation, it is tempting to speculate that the formation of these islands is a
semiclassical hint that the global view of an operationally well-defined, eternally inflating
spacetime eventually breaks down, as is manifest in the QC model. In particular, the
fragmentation of the global description into a number of disconnected, separate saddle
points for each type of bubble in the QC model suggests that something similar will happen
in a quantum gravitational analysis of the two-dimensional model, at least when the latter
is considered in (perhaps some appropriate generalization of) the Hartle-Hawking state.

5 Discussion

We have considered toy multiverse models inspired by false vacuum eternal inflation. We
found that in the semiclassical calculation of the Von Neumann entropy associated with
a sufficiently large spacelike interval R in two-dimensional models, an island I develops
covering most of the rest of the multiverse. This further substantiates the quantum
cosmology treatment of models of this kind in which predictions for local cosmological
observables are specified by saddle points that discriminate between different pasts of R
but otherwise coarse-grain, or “average,” over any large-scale multiverse structure outside
one bubble.

The two-dimensional multiverse geometries we considered contain bubbles of zero or
negative curvature within an analytic extension of dS2 that is a solution of the de Sitter
version of JT gravity. Within these geometries, we used the behavior of the dilaton to
label regions of weak gravity and of strong gravity. Coupling a CFT to these geometries
as a matter model, we then calculated the generalized entropy Sgen(R ∪ I) associated to a
spacelike interval R and additional putative islands I. This let us implement the islands
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program to compute the Von Neumann entropy S(ρR): given a spacelike interval R and the
generalized entropy for different island configurations Sgen(R ∪ I), we looked for islands I
that extremize Sgen(R∪I), and then we took the minimum of these extrema. For sufficiently
large subregions R in regions of weak gravity, an island forms with endpoints in surrounding
regions of strong gravity. The island covers most of the multiverse to the exterior of R,
suggesting that the global spacetime does not capture fundamental degrees of freedom
independent from those in R.

In our analysis of false vacuum eternal inflation, we considered observables localized
within bubbles that have exited from eternal inflation where gravity can be said to be
relatively weak. The averaging entering in the semiclassical QC setting amounts to a coarse-
graining over the regime of eternal inflation surrounding the observer’s patch. Stretching
the analogy with our two-dimensional toy models as far as we can, we view the “crunching”
patches, the proxies for a strong gravity regime, as the toy-model analog of the regime of
eternal inflation. In establishing this connection, our analysis has implicitly assumed the
validity of the islands program in a setting where R and I are part of the same spacetime.12

Regardless, R is always entangled with its complement, and taking R larger thus increases
the amount of this entanglement. It is thus plausible that the fine-grained Von Neumann
entropy S(ρR) becomes sensitive to geometric effects in the form of entanglement islands,
and that is what we found.

We now comment on some loose ends and open questions in our two-dimensional
multiverse models. In addition to the configurations that we considered, another possibility
would have been to locate the subregion R within one static patch of our JT multiverse
models, in the spirit of ref. [26]. In that work, given a region R in a static patch of dS3, an
island develops in the opposite wedge, which leads to a Page transition. Yet another avenue
would be to consider island configurations which are timelike separated from the region
R, as explored in ref. [23] for the simple case of a dS2 solution of JT gravity with positive
cosmological constant. Similarly to the analysis of ref. [25], it should also be possible to
entangle our multiverse configurations with a disjoint non-gravitating system, with the
auxiliary system playing the role of R.

While islands and saddles are manifestly nonpertubative objects, an interesting question
to ask is whether the perturbative dependence of I on R could be understood using the theory
of bulk operator reconstruction. In the AdS/CFT correspondence, bulk reconstruction gives
a prescription for how to represent bulk operators that lie in the entanglement wedge of a
given boundary subregion as CFT operators supported on that subregion [48–51]. In the
case of an AdS black hole coupled to an external reservoir in which an island develops in

12When R and I are (parts of) disjoint spacetimes associated to a manifestly bipartite Hilbert space,
such as in the study of entanglement between disjoint closed universes [25, 45–47], the development of
entanglement islands can be thought of as a consequence of monogamy of entanglement. In such situations,
one considers entangling a collection of non-gravitating degrees of freedom, A, with a disjoint collection of
gravitating degrees of freedom, B. The latter are entangled with degrees of freedom in the gravitational
sector due to gravitational interactions. A consequence of monogamy of entanglement is that the structure
of entanglement between B and the gravitational sector cannot be perfectly preserved as one increases the
entanglement between A and B. Therefore, the Von Neumann entropy of A eventually becomes sensitive to
geometric effects in B, which is manifested by the formation of entanglement islands.
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the black hole interior, bulk operators supported on the island are then represented through
this prescription as operators in the reservoir [5, 6]. In both cases, the bulk operator is
“represented” in the sense that both it and its reconstruction’s expectation values agree on
a restricted set of perturbatively close states known as the code subspace. In the present
cosmological setting, it would be interesting to investigate whether operators supported on
I can be represented as operators supported on R for an appropriate code subspace and
given a mapping between effective degrees of freedom on R ∪ I and fine-grained degrees of
freedom on R.

A feature of the two-dimensional models that we considered is that they offer precise
quantum control over the CFT matter model and its contribution to generalized entropy.
We did not focus on quantum aspects of the spacetime in these models; nevertheless, a
Euclidean construction of JT multiverses and an analysis based on the gravitational path
integral are interesting avenues for future inquiry. These are not straightforward tasks,
however, as there are subtleties involved in defining a quantum state for the gravitational
sector. Suppose, for example, that we wished to define a Hartle-Hawking-like state for
dSn2 (see figure 2) by continuing the manifold into the Euclidean past at the σ = 0 slice.
The resulting manifold possesses a conical excess, and so it cannot be a solution of the JT
theory, which has R = +2 everywhere. In principle, one would therefore have to modify the
theory at the level of its action so that it could support a conical excess.13 That said, it
appears that a sensible gravitational path integral can still be defined, at least for pure dSn2 .
Ref. [22] constructs a gravitational path integral that prepares a state at I+ via a double
analytic continuation in time and of the Hubble length. The problem is then mapped onto
a path integral for Euclidean AdS2, which may be a possible starting point for a Euclidean
calculation of Von Neumann entropies in JT multiverses.

In the language of semiclassical gravitational path integrals, the formation of entan-
glement islands signals that one or more new saddles comes into play. While we did not
pursue a path integral analysis of our two-dimensional toy multiverses in de Sitter JT
gravity, we pointed out that this observation is very much in line with existing results in
quantum cosmology in models of this kind in four dimensions. As an illustration, we gave
a brief discussion of the probabilistic predictions for local cosmological observables such
as, say, the CMB temperature anisotropies, in a false vacuum model of eternal inflation
with two distinct decay channels and in the Hartle-Hawking state. In these and other
models of inflation, probabilities for observations in quantum cosmology typically involve
a superposition of saddle point geometries that include an averaging over any multiverse
structure on the largest scales. This built-in coarse-graining was one of the key elements
behind the semiclassical resolution of the measure problem.

The upshot of the quantum cosmology analysis of these models appears to be that
the global spacetime breaks up into a sum of a small number of distinct saddle point
geometries, each of which involving a huge coarse-graining over much, if not all, of the
bubble exterior. The fundamentally classical picture of a global spacetime is thus basically

13Similarly, as discussed in section 2, additional degrees of freedom are required to support the discontinu-
ities in the dilaton’s first derivative in the bubble spacetimes.
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replaced in semiclassical quantum cosmology by a multiplicity of a few past histories of R,
combined with much “uncertainty” on super-bubble scales. That is, contrary to appearances,
the saddle geometries would not specify a global classical state, but rather delineate the
limitations of classical spacetime, a point much emphasized by Hartle et al. [2, 31]. This
may not be entirely inconsistent with the ideas behind bulk reconstruction that one can
represent operators on I as operators on R. Imagine one were interested in constructing,
or better still, measuring some heavy operator in R that contains a significant amount
of information about a distant patch. One expects that such extraordinary and complex
measurements would result in a backreaction on the spacetime in R to the extent that the
measurement amounts to selecting the saddle point corresponding to the patch in question.

The picture that emerges from the confluence of these analyses is one in which, fun-
damentally, a definite spacetime geometry in cosmology comes about in an “inside out”
way. In a sense, the entire multiverse would be reduced to an oasis consisting of a patch of
classical spacetime around us surrounded on all sides by quantum fuzziness. That was the
essence of the “top-down” approach to (quantum) cosmology advocated by Hawking [2, 52].
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A Exact island entropies in a theory of free fermions

The different multiverse configurations in section 3 involve a region (R∪I)c which consists of
two disjoint intervals. When the size of these intervals is small compared to their separation,
the two-interval entropy is approximately given by the sum of the single interval components.
This regime is sometimes called the OPE limit.

The single interval entropy is a universal quantity, i.e. valid for any CFT with a given
central charge, up to a scheme-dependent constant. However, the Von Neumann entropy of
the reduced state of a CFT on disconnected intervals is in general not universal. In this
appendix, we compute exact multi-interval entropies for free massless Dirac fermions, and
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we compare the exact result to the OPE limit approximation in order to check the latter’s
accuracy. We also use the exact result to investigate island configurations in JT multiverses
for which the OPE limit is not valid. Finally, we compute Sgen(R ∪ I) directly for an island
that consists of two disjoint intervals in order to give evidence that an island consisting of a
single large interval is the extremum that gives the smallest value of Sgen(R ∪ I).

A.1 Multi-interval entanglement entropy

Consider p disjoint intervals in R2 whose endpoints we label by (ui, vi), with i = 1, . . . , p.
The corresponding Von Neumann entropy for a two-dimensional Euclidean CFT consisting
of c free massless Dirac fermions was computed in ref. [53] and is given by

S
(p)
CFT = c

3

∑
i,j

log |ui − vj | −
∑
i<j

log |ui − uj | −
∑
i<j

log |vi − vj | − p log εuv

 , (A.1)

where εuv is a small UV regulator.
Let us first consider the case where p = 2, and suppose that we place the theory on a

manifold with the line element ds2 = dzdz̄/Ω(z, z̄)2. Labelling the two intervals’ endpoints
by (z1, z2) and (z3, z4), where zi ≡ (zi, z̄i), the two-interval entropy is

S
(2)
CFT = c

6log
[
|z12|2|z23|2|z34|2|z14|2

ε4uv|z13|2|z24|2Ω1Ω2Ω3Ω4

]
, (A.2)

where zij := zi− zj and Ωi = Ω(zi, z̄i). For simplicity, in writing eq. (A.2), we have dropped
a scheme-dependent constant.

To calculate S(2)
CFT using the replica trick is equivalent to inserting twist operators at

the endpoints of the intervals [37], meaning that with four endpoints, the computation
reduces to evaluating a four-point function. In the limit where the cross ratios

z13z24/(z23z14)→ 1 and z̄13z̄24/(z̄23z̄14)→ 1 , (A.3)

the two contributions to S(2)
CFT decouple, and the two-interval entropy written in eq. (A.2)

reduces to the sum of the single interval entropies of the form in eq. (2.26). The limit
eq. (A.3) thus corresponds to evaluating this four-point function in the OPE limit.

For p = 3, the three-interval entropy is given by

S
(3)
CFT = c

6log
[
|z12|2|z14|2|z16|2|z23|2|z34|2|z36|2|z25|2|z45|2|z56|2

ε6uv|z13|2|z24|2|z15|2|z35|2|z26|2|z46|2Ω1Ω2Ω3Ω4Ω5Ω6

]
, (A.4)

where the three intervals’ endpoints are (z1, z2), (z3, z4), and (z5, z6). We will utilize
eqs. (A.2) and (A.4) in the rest of this appendix.
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A.2 Single component island

We start by focusing on configurations with a single island I extending throughout the
multiverse to be able to examine several cases of interest. First, we reproduce our results
in the main text for dSn2 and for the case of flat bubbles in dSn2 with the exact free
fermion entropy. Subsequently, with the aim of testing how close the island must be to the
radiation region in order to produce a Page transition, we consider additional JT multiverse
configurations where bubbles are inserted asymmetrically and where the crunching regions
are not adjacent to the expanding patch. In all the following cases we set ϕ1 = −ϕ4 = ϕI ,
σ1 = σ4 = σI , ϕ2 = −ϕ3 = ϕR, and σ2 = σ3 = σR.

For the models studied in this work, namely pure dSn2 and dSn2 with bubbles, the
two-interval entropy of free fermions can be expressed in global coordinates via eq. (2.24) as

S
(2)
CFT = c

6log
[
4n4

(
cos

(
σ12
n

)
− cos

(
ϕ12
n

))(
cos

(
σ23
n

)
− cos

(
ϕ23
n

))
×

×
(

cos
(
σ14
n

)
− cos

(
ϕ14
n

))(
cos

(
σ34
n

)
− cos

(
ϕ34
n

))]
(A.5)

− c

6log
[(

cos
(
σ31
n

)
− cos

(
ϕ31
n

))(
cos

(
σ42
n

)
− cos

(
ϕ42
n

))
ε4uv

4∏
i=1

ωi

]
,

with σij = σi − σj , ϕij = ϕi − ϕj and ωi = ω(σi, ϕi). We will use this expression shortly to
evaluate the generalized entropy of interest.

A.2.1 Extended dS2

Consider the symmetric configuration R ∪ I shown in figure 2. The conformal factors at
the endpoints for this disjoint interval are given as ω1 = ω4 = cosσI and ω2 = ω3 = cosσR.
Plugging these factors into eq. (A.5), we compute the corresponding generalized entropy
eq. (2.20) and extremize with respect to ϕI and σI . We find numerically the entropy plots
shown in figure 13. Notice that, as guaranteed by subadditivity of Von Neumann entropy,
the OPE approximation that we used in the main text provides an upper bound to the exact
generalized entropy with a non-trivial island. While the qualitative behavior of the Page
curve is unchanged, the precise value of ϕR at which the Page transition occurs depends
on whether we consider the free fermion model or the OPE limit of the twist operators.
Nevertheless, as explained in the introduction of this appendix, both entropies agree for
large enough ϕR.

A.2.2 Extended dS2 with flat bubbles

Next, we compare the exact generalized entropy for a theory of free fermions to the results
in section 3.2 for the configuration illustrated in figure 7. The conformal factors at the
endpoints of R ∪ I are ω1 = ω4 = 1

2 (cosσR + cosϕR) and ω2 = ω3 = cosσI . The plot
showing this comparison is displayed in figure 14. Again, for sufficiently large R, we find
good agreement between the exact and the approximated generalized entropy.
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Figure 13. Sgen(R∪ I) as derived using an exact two-interval formula for the generalized entropy in
the context of free fermions (in red), the OPE limit (black), and the corresponding no-island entropy
(blue) for a choice of parameters n = 10, σR = π

2 − 10−5, c = 100, φr = 10, φ0 = 0, and εuv = 1,
εrg = 1. The results coincide only for large spatial extension of the region R. The comparison shows
that the matter entropy evaluated in the OPE limit gives a good approximation when the separation
between the disjoint intervals is much greater than their proper lengths, which might occur before
or after the Page transition depending on the parameters of the theory.
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Figure 14. Comparison between generalized entropy with non-trivial island for a free fermion
theory (red), the OPE limit of twist operators (black), and the no-island entropy (blue), illustrated
when the endpoints of R satisfy the relation σR = − 2

π

(
π
2 − 10−3)ϕR + π − 10−3. The parameters

of the theory are chosen as n = 10, c = 600, φr = 10, φ0 = 0, and εuv = 1, εrg = 1. The free fermion
and the OPE generalized entropies coincide once R is large enough.
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Figure 15. (a)–(c) Penrose diagrams and the corresponding generalized entropy for different R ∪ I
configurations. The red curves indicate the generalized entropy including islands, while the blue ones
indicate the no-island entropy. The endpoints of the non-trivial islands are inside crunching patches
and they do not have to be located adjacent to the patch where R resides. We observe, however,
that the generalized entropy for the case (a) and (b) is minimal for the no-island configuration.
The endpoints of R are held at σR = − 2

π

(
π
2 − 10−3)ϕR + π − 10−3 for configurations (a)–(b), and

σR = π
2 − 10−5 for (c). Other parameters used in the plots are n = 10, c = 600, φr = 10, φ0 = 0,

εrg = 1, and εuv = 1.

A.2.3 Alternative island configurations

Here, let us consider an alternative set of island configurations as displayed in figures 15
and 16. We are interested in investigating under what circumstances islands arise when the
endpoints of I lie in crunching regions that surround R.14

In particular, in figure 15a–15c, we consider configurations where the region R is
confined to one flat or expanding patch, which has at most one adjacent crunching patch.
In figures 15a–15b, we observe that islands may form, but they are somewhat screened by
the intermediate additional flat and expanding bubbles, in the sense that they never have
lower generalized entropy than the configuration with no island. In contrast, we find that
the configuration depicted in figure 15c exhibits a Page transition, albeit for a very large
value of ϕR, when R is close enough of I+.

14There have been settings in which islands appear in expanding patches, e.g. [27], albeit with a different
assumption imposed on the CFT state.
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Figure 16. (a)–(b) Penrose diagrams and the corresponding Page curves, in which we relocate region
R to be as close to I as possible to produce higher purification of the quantum state with respect to
figures 15a–15b. Red and blue denote the entropy with or without islands, and the constants are
chosen as n = 10, c = 600, φr = 10, φ0 = 0, εrg = 1, and εuv = 1. Both endpoints of R are located
at σR = π

2 − 10−5 in (a), while for (b) one endpoint is at σR1 = − 2
π

(
π
2 − 10−3)ϕR + π − 10−3 and

the other one at σR2 = π
2 − 10−5.

On the other hand, if we extend R so that it spans multiple patches and so that
its endpoints lie very close to crunching patches, we see that a Page transition occurs,
as illustrated in figures 16a–16b. These numerics are fully consistent with the analytic
arguments from section 3.3. Intuitively, the entropy of R ∪ I is once again almost that of a
pure state in these configurations.

A.3 Two-component islands

In this section, we consider the possibility of an island in dSn2 that consists of two dis-
connected components, as depicted in figure 17. To compute the generalized entropy
Sgen(R ∪ I), we once again consider the complement (R ∪ I)c, which is now comprised of
three intervals. As already emphasized, such an entropy depends on the particular model
under consideration. Here, we use the three-interval formula eq. (A.4), valid for the case of c
free massless Dirac fermions, and we adapt it to the global coordinates defined in eqs. (2.3)
and (2.5) through eq. (2.24).

The result of our numerical computation for n = 2 is shown in figure 18. We find
that a two-component island configuration only appears for sufficiently large ϕR. The two
components are symmetric about R, and the endpoints of the right component lie in the
range (π/2, π) within the crunching region to the right of R. For larger values of n, the
value of ϕR beyond which these island configurations appear increases. In all circumstances,
the corresponding generalized entropy is always greater than the case of no islands or a
single component island, and so a two-component island never dominates.
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Figure 17. An island with two disconnected components in dS2
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Figure 18. Two-component island (green curve) versus single-component island (red curve) versus
no island (blue curve) for n = 2. We plot the regime of ϕR for which a two-island configuration
exists as an extremum of Sgen(R ∪ I) and we observe that such a configuration is never dominant.
We choose the endpoints of R to be fixed at σR = π

2 − 10−5, and the parameters of the theory are
chosen as n = 2, c = 600, φr = 10, φ0 = 0, εrg = 1, and εuv = 1.
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