
J
H
E
P
1
1
(
2
0
2
1
)
2
1
1

Published for SISSA by Springer

Received: October 5, 2021
Accepted: October 28, 2021

Published: November 29, 2021

A 3d disordered superconformal fixed point

Chi-Ming Changa,b , Sean Colin-Ellerinc , Cheng Pengd and Mukund Rangamanic
aYau Mathematical Sciences Center (YMSC), Tsinghua University,
Beijing, 100084, China
bBeijing Institute of Mathematical Sciences and Applications (BIMSA),
Beijing, 101408, China
cCenter for Quantum Mathematics and Physics (QMAP),
Department of Physics & Astronomy, University of California,
Davis, CA 95616 U.S.A.
dKavli Institute for Theoretical Sciences (KITS) and
CAS Center for Excellence in Topological Quantum Computation,
University of Chinese Academy of Sciences,
Beijing 100190, China
E-mail: cmchang@tsinghua.edu.cn, scolinellerin@ucdavis.edu,
pengcheng@ucas.ac.cn, mukund@physics.ucdavis.edu

Abstract: We initiate the study of a three dimensional disordered supersymmetric field
theory. Specifically, we consider a N = 2 large N Wess-Zumino like model with cubic
superpotential involving couplings drawn from a Gaussian random ensemble. Taking in-
spiration from analyses of lower dimensional SYK like models we demonstrate that the
theory flows to a strongly coupled superconformal fixed point in the infra-red. In par-
ticular, we obtain leading large N spectral data and operator product coefficients at the
critical point. Moreover, the analytic control accorded by the model allows us to compare
our results against those derived in the conformal bootstrap program and demonstrate
consistency with general expectations.

Keywords: 1/N Expansion, Conformal Field Theory, Field Theories in Lower Dimensions

ArXiv ePrint: 2108.00027

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)211

mailto:cmchang@tsinghua.edu.cn
mailto:scolinellerin@ucdavis.edu
mailto:pengcheng@ucas.ac.cn
mailto:mukund@physics.ucdavis.edu
https://arxiv.org/abs/2108.00027
https://doi.org/10.1007/JHEP11(2021)211


J
H
E
P
1
1
(
2
0
2
1
)
2
1
1

Contents

1 Introduction 1

2 The disordered field theory 4
2.1 The 3d model 4
2.2 The low energy fixed point 5

3 Spectrum of the IR superconformal fixed point 8
3.1 The general four-point correlator 8
3.2 The ladder kernel 11
3.3 Features of the IR spectrum 13

3.3.1 Unitarity bounds 14
3.3.2 Anomalous dimensions 16
3.3.3 Regge intercept and hyperbolic chaos 17

4 Euclidean four-point function 19
4.1 Superconformal partial waves 20
4.2 Superconformal inner product 22
4.3 Four-point functions 24
4.4 The non-chiral OPE coefficients 25

4.4.1 The singlet sector OPE decomposition 26
4.4.2 The non-singlet sector OPE 28

4.5 Central charges 29

5 Chiral sector and the analytic bootstrap 30
5.1 Charged double-twist operators 31
5.2 Neutral double-twist operators 35

5.2.1 The leading neutral OPE data 35
5.2.2 The subleading neutral OPE data 37

6 Discussion 39

A Conventions 41

B Generalization to q-body superpotential in d dimensions 42

C Conformal partial waves: review 44

D Superconformal three-point function 46

E Supershadow coefficients 49

F Determinants for gauge-fixing 50

– i –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
1

1 Introduction

Strongly correlated critical behaviour occurs in a wide class of physical systems and un-
derlies some of the interesting physical phenomena in nature. Over the years we have seen
examples of such, not only in low energy dynamics of many-body systems, but also in the
dynamics of black holes in quantum gravity. Tractable models of strong coupling critical
behaviour, while scarce, have the potential to provide valuable insight into the dynamics
of a wide class of physical systems. We therefore motivate the study of one such system.

The classic example of strong coupling critical behaviour is provided by the Wilson-
Fisher fixed point [1] occurring in the simplest field theory, the self-interacting scalar.
This example provides the low energy fixed point for the three-dimensional Ising model
which has seen incredible precision studies using the conformal bootstrap [2, 3]. Analytic
methods for analyzing such systems range from the classic ε-expansion [4] and the use of
large N techniques [4, 5], both of which have the advantage of rendering the analysis of
the fixed point amenable within perturbation theory. The large N expansion for these
systems may be characterized as being vector-like and is qualitatively different from the
planar diagrammatics of matrix-like models (which typically have strong coupling fixed
points). The difference can be traced to the presence of nearly conserved higher spin
currents of these vector models cf., [6]. In turn this feature has interesting implications for
holographic duals of such critical points — they are given in terms of higher spin theories in
an asymptotically AdS spacetime [7]. Planar field theories typically end up with strongly
coupled fixed points with a sparse low lying spectrum with a dual holographic description in
terms of classical gravitational dynamics [8]; they are however are hard to analyze directly.

In recent times a new class of large N models has emerged which provides a happy
middle ground between the two classes described above. These models have a different set
of diagrams dominating the large N limit, the so-called melonic diagrams, and give rise to
strongly coupled fixed points, with a spectrum that is not entirely sparse per se, but one
that is nevertheless amenable to direct analysis. The prototype example is the disordered
quantum mechanical Sachdev-Ye-Kitaev (SYK) model [9–11]. As demonstrated in [12, 13]
the model is explicitly solvable using large N techniques — the Schwinger-Dyson equa-
tions truncate (owing to the disorder averaging over random couplings). In this model the
low energy spectrum is not sparse, as in the matrix models, but the dynamics is largely
controlled by a single Goldstone mode that dominates over the rest of the spectrum. Con-
sequently, the system admits a holographic dual in terms of a two dimensional classical
gravitational theory, the Jackiw-Teitelboim (JT) gravity [13–15]. It additionally exhibits
maximal Lyapunov exponent [16] as measured by the out-of-time order four-point correla-
tion function, a feature it shares with (higher dimensional AdS) black holes, rendering it
an invaluable toy model for understanding holography and black hole physics, cf., [17–19]
for some salient developments. Additionally, the SYK model has played an important role
in elucidating local criticality in fermionic systems without quasiparticles [20, 21].

In the past few years various generalizations of these models have been considered.
On the one hand, there are works analyzing quantum mechanical models without disorder
using colored [22, 23], or uncolored [24, 25] tensor valued degrees of freedom. The strat-
egy here is to pick Hamiltonians with specific tensor contractions which ensure that only
melonic diagrams contribute in the large N limit (the subleading 1/N effects are differ-
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ent, and to our knowledge not extensively analyzed). There have also been attempts to
include additional flavour symmetries [26, 27] and supersymmetry [28, 29] in the quantum
mechanical disordered model.

Beyond quantum mechanics (i.e., 0 + 1 dimensional field theories) the class of models
that have been investigated have been somewhat limited. In [30] two dimensional SYK like
models with disorder were analyzed in detail, both with and without supersymmetry. The
problem with higher dimensional models is two fold. Firstly, pure fermionic models do not
generically have relevant operators (a four-Fermi interaction being marginally irrelevant in
two dimensions). Secondly, including bosonic degrees of freedom is problematic, since dis-
ordered Hamiltonians fail to be generically positive definite. Furthermore, even with these
issues brought under control one has to account for the generation of relevant operators
along the RG flow to low energy, making the analysis more involved.

In [30] an interesting class of supersymmetric models was analyzed in detail. In this
case the aforementioned problems can be overcome and one obtains an IR superconformal
fixed point. We refer henceforth to the model with N = 2 supersymmetry analyzed therein
as the MSW model; see [31] for further analysis of this model. From the spectral analysis
one learns that the low energy collective modes are not sparse enough to admit a classi-
cal gravity dual; for one, the Lyapunov exponent is sub-maximal indicative of a classical
string description (one which however is as yet unknown). The reason for this can be
traced to the fact that the low energy dynamics is not altogether controlled by the energy-
momentum tensor but the presence of other light collective degrees of freedom. There have
also been studies of models with lower, (0, 2), supersymmetry [32], which allow for tuning
the interactions so that the Lyapunov exponent can range from the value attained for the
MSW model down to zero, when it is an integrable vector model. In this example one can
track the emergence of higher spin symmetries in the integrable limit [33]. Analysis of two
dimensional non-disordered models is more intricate and is explored for example in [34].

Thus far there has been no full-fledged analysis of models beyond two dimensions,
though a class of tensor models and the disordered SYK model in three dimensions with
N = 1 supersymmetry was analyzed in [35], and a class of tensor models in dimension
1 < d < 3 with four supercharges was studied in [36]. In this paper we provide a concrete
example of a disordered field theory in 2 + 1 dimensions that can be solved using large N
melonic Schwinger-Dyson equations. We restrict our attention to supersymmetric models
with N = 2 supersymmetry to keep the renormalization group flow analysis tractable. In a
sense our model is a natural generalization of the MSW model to three dimensions. Parts
of our analysis has partial overlap with the earlier work of [35] though the models we study
are different.

Specifically, we explore the low energy dynamics of a disordered N = 2 supersymmetric
three dimensional field theory. The physical field content comprises of N complex scalars
φi, complex fermions ψα,i, and auxiliary fields Fi, arranged into a suitable chiral multiplet
Φi of the superalgebra. The interactions are governed by a set of cubic couplings that
we draw out of a random Gaussian ensemble. Our interest will be in understanding the
dynamics of the low energy collective modes deep in the IR in the disorder averaged theory.1

1Large N theories with disordered couplings were analyzed in [37] while connections to holography were
explored in [38] and [39, 40].
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Our primary motivation for analyzing these models is to understand the dynamics of
thermal field theories at the strongly coupled fixed point attained. However, for the present,
we will focus on understanding the superconformal theory in its own right and focus on
spectral properties and OPE coefficients which one can extract analytically. The analysis
of the vacuum Schwinger-Dyson equations in the model are straightforward (and related
to tensor model analysis in [35]). One can show that the model flows to a supersymmetric
critical point, leading to an IR SCFT. While certain properties such as the conformal
dimensions of the chiral fields are fixed by the supersymmetry, there are other, non-chiral,
aspects of the spectrum that we can explore quantitatively in the model, thanks to the
truncation of the aforesaid Schwinger-Dyson equations. One can in fact view the model we
discuss in terms of a disordered version of the super-Ising model in three dimensions. We
will exploit this connection and in particular find it useful to compare our results for the
IR fixed point with numerical bootstrap results derived for the super-Ising model [41, 42].
In addition, using the results from analytic bootstrap [43–45] we are able to obtain various
OPE data in both the chiral and non-chiral sector.

We found it instructive to consider a general set of correlation functions that allows
one to also explore the non-singlet part of the OPE data. Most analyses of SYK-like
models focus on four-point functions where one averages not only over disorder, but also
over the external operator insertions. These operator averaged correlation functions may
be easily understood using the collective field approach. However, they project one down
to the singlet sector under an emergent symmetry in the IR since one restores democracy
between the microscopic fields after disorder averaging. For the model we analyze it will
be a U(N) symmetry rotating the N chiral multiplets, though as we shall see, there will
no flavour currents associated with this that are generated in the IR. The fixed point
we obtain is expected to have a large conformal manifold based on general arguments
regarding marginal operators [46–48]. Our analysis will however not shed light on this
structure directly as the marginal operators are expected to appear in the triple-twist
sector, while our study of four-point functions and bootstrap data only gives insight into
double-twist sector.2

The outline of the paper is as follows: we begin in section 2 by delineating the class of
models we study and solve for the low-energy fixed point. We then proceed in section 3 to
examine the superconformal field theory thus obtained in some detail, obtaining the spectral
data for the non-chiral states. In section 4 and section 5 we analyze the 4-point correlation
function to obtain information about the OPE coefficients and the central charges. The
discussion in section 4 pertains to the non-chiral operators in the theory, while section 5
uses crossing to get information about the chiral sector. We end with a brief discussion in
section 6.

Some of the technical details pertinent to our analysis are collected in various appen-
dices: appendix A summarizes our supersymmetry conventions. In appendix B we general-
ize our discussion to q-body superpotential in d dimensions for completeness. appendix C
reviews conformal partial waves necessary for the analysis in section 4. In appendix D

2We thank Ofer Aharony and Adar Sharon for helpful discussions on this point.
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we describe the superconformal three-point function with extended supersymmetry which
we use to construct the superconformal partial wave in the supershadow formalism. In
appendix E we outline the computation of the supershadow coefficients for the supercon-
formal block decomposition and in appendix F we present the analysis of the Berezinian
for the gauge fixing to compute the measure for the inner product of the superconformal
partial waves.

2 The disordered field theory

We will focus on models with N = 2 global supersymmetry in three spacetime dimensions.
To set the stage for the discussion we begin by outlining some basic features and construct
the microscopic Lagrangian. We work directly in Euclidean signature as we are interested
in vacuum dynamics. We begin in subsection 2.1 by describing the model of primary
interest, and describe the Schwinger-Dyson equations for the analysis of the RG flow in
subsection 2.2.

2.1 The 3d model

The basic field content of an N = 2 chiral multiplet in three dimensions comprises of a
complex scalar φ, a two component fermion ψα and an auxiliary field F . These can be
succinctly encoded into a single chiral superfield

Φ (X) = φ (y) +
√

2 θα ψα (y) + θ2 F (y) (2.1)

where yµ ≡ xµ − i θ σµθ̄ is the chiral coordinate in superspace R3|4 which we have cho-
sen to coordinatize by Xµ = {xµ, θ1, θ̄1, θ2, θ̄2}. We delineate some of the details of our
supersymmetry conventions in appendix A. The anti-chiral superfield is likewise

Φ
(
X†
)

= φ̄
(
y†
)

+
√

2 θ̄α ψ̄α
(
y†
)

+ θ̄2 F̄
(
y†
)

(2.2)

with y†µ ≡ xµ + i θ σµθ̄. The theory we study will have N such chiral and anti-chiral
superfields Φi, Φi, respectively, with i = 1, 2, · · · , N in three dimensions. The classical
Lagrangian density for this system is a generalized Wess-Zumino model, and comprises of
a canonical Kähler term and a cubic superpotential with random couplings, viz.,

L = −
ˆ
d2θ d2θ̄ Φi(y†) Φi(y)−

[ˆ
d2θ

1
3 g

ijk Φi(y) Φj(y) Φk(y) + c.c
]
. (2.3)

The model has a discrete Z3 global symmetry that phase rotates the chiral superfields Φi by
a cubic root of unity. We give the salient results for an q-body superpotential in arbitrary
dimensions in appendix B (though the IR fixed points exist only in d ≤ 3) for comparison
with existing results in lower dimensions [28, 30].

The couplings gijk are taken to be random Gaussian variables, with zero mean and
non-vanishing variance which we normalize suitably to obtain a large N fixed point. They
are drawn from a classical ensemble with probability distribution:

P(gijk) ∝ e−N2 gijkgijk
3J ,

〈
gijk

〉
= 0 ,

〈
gijkgpqr

〉
= 3J
N2 δ

i
(p δ

k
q δ

k
r) . (2.4)
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The cubic superpotential ensures that the interaction term remains a relevant operator.
We can view the theory with fixed couplings gijk as generalized Wess-Zumino model or
as a N = 2 super-Ising model. Indeed, expanding out the superpotential, we find the
Lagrangian density

L=−i ψ̄i /∂ψi+∂µφ̄i∂µφi−F̄ iFi−gijk (φiφj Fk−ψiψj φk)−gijk
(
φ̄i φ̄j F̄ k−ψ̄i ψ̄j φ̄k

)
.

(2.5)
Integrating out the auxiliary field F we see that we induce a quartic scalar potential,
thus making contact with a Wilson-Fisher like interaction. We note in passing that the
undisordered models have been analyzed in the d = 4− ε expansion in [49, 50].

The critical point for the undisordered 3d critical Wess-Zumino theory with N = 1
was analyzed using superconformal bootstrap in [41, 42]. We will compare our results to
their numerical bootstrap data as well as the general results from analytic bootstrap [43–
45] in the course of our discussion. There are related models where one of the superfields
is singled out to give a vector-like large N model which will be analyzed elsewhere [51]
(though we make some brief comments in section 6).

For the discussion that follows it is useful to record the fact that in the microscopic
(UV) theory the scalar fields φi have scaling dimension half, while those of the fermion ψα,i
and the auxiliary field Fi are unity and 3

2 , respectively. Let us define the propagators:3

Gφ(x12) δij =
〈
φ̄i(x1)φj(x2)

〉
,

Gα
β(x12) δij =

〈
ψ̄iα(x1)ψβj (x2)

〉
,

GF (x12) δij =
〈
F̄ i(x1)Fj(x2)

〉
.

(2.6)

In the UV the free propagators (denoted by a tilde accent) of the non-interacting theory
in momentum space are simply

G̃φ(p) = 1
p2 , G̃ β

α (p) = −p
µ(σµ)αβ
p2 , G̃F (p) = −1 , (2.7)

consistent with the classical engineering dimensions. The IR fixed point will be domi-
nated by the superpotential and thus leads to non-trivial anomalous dimensions for these
operators.

2.2 The low energy fixed point

The effective action for the field theory can be obtained by the path integral for the
collective fields after integrating out the bare fields. We define

e−Seff =
ˆ ∏

dgijk e
−N2 |gijk|

2

3J

ˆ
[Dφi] [Dψα,i] [DFi] e−

´
d3xL . (2.8)

3We will consistently write the two-point functions, self-energies etc., with the anti-chiral operator
preceding the chiral operator. The fermionic objects in matrix form are boldfaced G,Σ, but in component
form are simply characterized by the fermionic indices, i.e., G β

α . The bosonic functions are subscripted by
the corresponding field, and bare (free) propagators carry a tilde decoration. Superspace Green’s functions
will be disambiguated by a mathscript font (G). The argument of the function should make clear whether
we are in position space or in the Fourier domain.
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The collective field effective action is encoded in terms of the two-point functions and
self-energies. Integrating out the random couplings which are Gaussian distributed, the
effective action to the leading order in 1

N reads4

1
N
Seff =

ˆ
dxdy

[
− log det

[
i δ (x− y) (σµ∂µ)αβ + Σαβ (x, y)

]
+ log det [δ (x− y) ∂µ∂µ + Σφ (x, y)] + log det [δ (x− y) + ΣF (x, y)]

+ Σαβ (x, y)Gαβ (x, y) + Σφ (x, y)Gφ (x, y) + ΣF (x, y)GF (x, y)

− J
{
Gφ (x, y)2 GF (x, y) + 2Gφ (x, y) det(G)

}]
.

(2.9)

In the large N limit, the two-point functions can be seen to satisfy the Schwinger-Dyson
equations

Gφ(x12) = G̃(x12) +
ˆ
d3x3d

3x4 G̃(x13) Σφ(x43)Gφ(x42),

G β
α (x12) = G̃ β

α (x12) +
ˆ
d3x3d

3x4 G̃
γ
α (x13) Σδ

γ(x43)G β
δ (x42),

GF (x12) = G̃F (x12) +
ˆ
d3x3d

3x4 G̃F (x13) ΣF (x43)GF (x42),

(2.10)

with the self-energies given by

Σφ(x) = J
[
2GF (x)Gφ(x)−G β

α (x)Gαβ(x)
]
,

Σ β
α (x) = 2 J G β

α (x)Gφ(x) ,
ΣF (x) = J Gφ(x)2 .

(2.11)

The diagrammatic derivation of these equations follows along similar lines to that of the
SYK model [12]. The truncation to the simple set of closed form equations owes to the ran-
dom couplings that suppresses the higher-point interactions from appearing at the leading
order in the 1

N expansion, which diagrammatically is illustrated in figure 1.
In momentum space representation the Schwinger-Dyson equations take the form:

Gφ(p) = 1
G̃φ(p)−1 − Σφ(−p)

= 1
p2 − Σφ(−p) ,

G(p) =
(
G̃(p)−1 −Σ(−p)

)−1
= (−pµσµ −Σ(−p))−1 ,

GF (p) = 1
G̃−1
F − ΣF (−p)

= 1
−1− ΣF (−p) .

(2.12)

4Strictly speaking we only consider the replica diagonal solution in this analysis. Alternatively, we can
promote the coupling gijk to a slow varying “heavy” superfield; giving it a vev leads to the same dynamics
as we analyze here. The fact that such a field is “heavy” is automatic in the large N limit since it has
3 indices and any quantum corrections to it is suppressed by powers of N [52], therefore this is a valid
analysis. We thank Jinwu Ye for raising this question.
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G = +

G

G

G

Figure 1. The diagrammatic representation of the Schwinger-Dyson equation for cubic superpo-
tential (2.10).

Since the theory is supersymmetric, the two-point functions and self-energies in a super-
symmetric vacuum ought to satisfy the Ward identities

G(x) = −i /∂Gφ(x), GF (x) = ∂2Gφ(x),
Σ(x) = −i /∂ΣF (x), Σφ(x) = ∂2ΣF (x).

(2.13)

The Schwinger-Dyson equations can readily be solved, and one is explicitly aided by
the underlying supersymmetry. It suffices to solve for the scalar propagator, exploiting the
Ward identities (2.13) to obtain the low energy fixed point. In momentum space, we obtain
the relations:

Gφ(p) Σφ(p) = −1 = −p2Gφ(p) ΣF (p) . (2.14)

We pick a scale invariant anstaz for the propagators

G∗φ(x, y) = bφ

|x− y|2∆φ
, (2.15)

which leads upon Fourier transforming to (cf., (B.6))

G∗φ(p) = π
3
2 23−2∆φ bφ

Γ
(

3
2 −∆φ

)
Γ (∆φ) |p|2∆φ−3 ,

Σ∗F (p) = J π
3
2 23−4∆φ b2φ

Γ
(

3
2 − 2∆φ

)
Γ (2∆φ) |p|4∆φ−3 ,

(2.16)

The solution is given by demanding consistency with the last Schwinger-Dyson equation
in (2.11) and is given by

∆φ = 2
3 , bφ = 1

2 2
3
√

3π J 1
3
. (2.17)

The conformal dimensions of the other fields are fixed by supersymmetry to be

∆ψ = 7
6 , ∆F = 5

3 . (2.18)

A quick self-consistency check of the solution can be provided by noting that the
self-energy of the scalar field dominates over the bare propagator since Σ∗φ ∼ |p|

5
3 and

that the Fourier transformations involved are UV finite, obviating any potential source of
supersymmetry breaking along the RG flow.5

5While this behaviour would be unusual it does occur in some supersymmetric tensor quantum mechan-
ical models [53] due to strong IR effects in low dimensions.
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Note that while the collective field action focuses on the singlet correlators it is natural
to assume that the low energy SCFT has N chiral multiplets Φi with ∆(Φi) = ∆φ = 2

3 .6
Since the spectrum is degenerate there is a U(N) symmetry rotating these superfields into
each other. We will make use of this observation below in analyzing higher-point functions.

3 Spectrum of the IR superconformal fixed point

We now turn to analyzing aspects of the fixed point theory in the infra-red. Since the chiral
spectrum is determined by the superconformal symmetry, we will investigate the non-chiral
4-point function. We find it useful to begin with a general correlator where the external
indices are labeled by the N chiral or anti-chiral superfields present in the microscopic
theory. This will allow us to understand the spectrum of both the singlet sector and the
non-singlet sector under an emergent U(N) rotation of the chiral multiplets Φi.

Our first task will be to obtain the ladder kernel which can be iterated to give a geomet-
ric series representation for the 4-point function; this turns out to be most straightforward
in superspace. We solve for the eigenspectrum of the ladder kernel to obtain the spectrum
of intermediate states in the Φ × Φ OPE demonstrating, in particular, the existence of a
stress tensor multiplet. We explore the asymptotic features of the spectrum and compare
against analytic bootstrap and Regge limit predictions. We also take the opportunity to
contrast our model with lower dimensional models investigated previously in [28, 30] (and
also [29, 31, 32]). We will investigate the four-point function itself in greater detail in
section 4 and section 5 where we will extract the OPE data and central charges.

3.1 The general four-point correlator

Let us start by considering the most general un-normalized disorder averaged four-point
function of the chiral and anti-chiral superfields

W il
kj(X1, X2, X3, X4) =

〈
Φi
(
X1
)

Φk (X2) Φj (X3) Φl
(
X4
)〉

. (3.1)

where Xi are the super-coordinates on R3|4.
The 4-point function (3.1) can be evaluated in the large N expansion, thanks to the

disorder averaging, by summing over a set of ladder diagrams, which we illustrate dia-
grammatically in figure 2. From the expansion it is easy to see, using (2.4) for the disorder
average, that

W il
kj

(
X1, X2, X3, X4

)
= (F0)ilkj

(
X1, X2, X3, X4

)
+
∞∑
n=1

(Kn F0)ilkj
(
X1, X2, X3, X4

)
+ (F0)iljk

(
X1, X3, X2, X4

)
+
∞∑
n=2

(Kn F0)iljk
(
X1, X3, X2, X4

)
.

(3.2)
6The U(N) symmetry can also be argued by promoting the random coupling gijk into a random constant

superfield that transforms in the tri-fundamental representation of U(N). Such a symmetry is manifest in
a similar analysis [52].
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G

Φi(X1) Φj(X3)

G
Φk(X2) Φl(X4)

+

G

Φi(X1)

G
Φk(X2)

G

G

Φl(X4)

G

Φj(X3)

+

G

Φi(X1)

G
Φk(X2)

G

G

G

G

G

Φj(X3)

G

Φl(X4)

+ · · ·

+ G

Φi(X1)

Φk(X2)

G

Φj(X3)

Φl(X4)

+

G

Φi(X1)

G

Φj(X3)

G

G G

G

G

Φk(X2)

G

Φl(X4)

+ · · ·

Figure 2. The diagrammatic expansion of the four-point function of superfield Φ and its conju-
gate (3.1) in the disorder averaged large N expansion.

The first line on the r.h.s. of (3.2) is a sum over the s-channel (horizontal) ladder diagrams
starting from the zero-rung diagram, and the second line is a sum over the u-channel
(vertical) ladder diagrams but without one-rung diagram, because the s- and u-channels
have identical one-rung diagram. The quantities (F0)ilkj and Kil

kj are can be expressed as

(F0)ilkj
(
X1, X2, X3, X4

)
= δijδ

l
k F0

(
X1, X2, X3, X4

)
Kil
kj

(
X1, X2, Xa, Xb

)
= N + 2

N2

(
δikδ

l
j + δijδ

l
k

)
K
(
X1, X2, Xa, Xb

)
,

(3.3)

factoring out the contribution from the U(N) tensor structure and super-coordinate de-
pendence. The latter is encoded in the disconnected 4-point function F0 and the ladder
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kernel K, which are themselves defined in terms of the super-propagator G(X1, X2), given
below in (3.18), as

F0
(
X1, X2, X3, X4

)
= G

(
X1, X3

)
G
(
X4, X2

)
,

K
(
X1, X2, Xa, Xb

)
= 2 J G

(
X1, Xa

)
G
(
Xb, Xa

)
G
(
Xb, X2

)
,

(3.4)

The action of the kernel is defined by summing over intermediate U(N) labels, and inte-
grating over the intermediate vertex positions, viz.,

(KF)ilkj
(
X1, X2, X3, X4

)
≡

N∑
a,b=1

Kia
kb (F)blaj

(
X1, X2, X3, X4

)
,

K F
(
X1, X2, X3, X4

)
≡
ˆ
dXadXbK

(
X1, X2, Xa, Xb

)
F
(
Xb, Xa, X3, X4

)
.

(3.5)

To compute the ladder sums note that the nth power of the kernel Kil
kj is

(Kn)ilkj = 1
N
Knδikδ

l
j +O

(
N−2

)
for n > 1 , (3.6)

where we have only retained the index label structure to isolate the large N contributions.
This implies that in the large N limit, we have

W il
kj(X1, X2, X3, X4) = δijδ

l
k

[
F0
(
X1, X2, X3, X4

)
+ 1
N

K

1−KF0
(
X1, X3, X2, X4

)]
+ δikδ

l
j

[
F0
(
X1, X3, X2, X4

)
+ 1
N

K

1−K F0
(
X1, X2, X3, X4

)]
+O

(
N−2

)
.

(3.7)

In the IR the chiral superfields Φi are degenerate in their conformal dimension ∆φ = 2
3 ,

so it is sensible to decompose the correlator (3.1) using the U(N) symmetry that rotates
them. In terms of the projection matrices P1 and Padj that project onto the contributions
of operators in the Φi×Φk OPE that transform in the trivial or adjoint representations of
the SU(N), one can expand

W il
kj = (P1)ilkj W1 +

(
Padj

)il
kj Wadj . (3.8)

The projection matrices themselves are formed by bilinears of the Clebsch-Gordan coeffi-
cients as

(Pr)ilkj ≡
dim(r)∑
a=1

(cr)ik,a (cr)lj,a for r = 1,adj . (3.9)

and obey the orthogonality condition

N∑
k,l=1

(Pr)ilkj (Pr′)jnlm = δrr′ (Pr)imkm . (3.10)
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Explicitly, they are given by

(P1)ilkj = 1
N
δikδ

l
j ,

(
Padj

)il
kj = δijδ

l
k −

1
N
δikδ

l
j . (3.11)

As a consequence it follows that the contribution to the singlet and the adjoint sectors
can be isolated as

W1
(
X1, X2, X3, X4

)
= N F0

(
X1, X3, X2, X4

)
+ 1

1−K F0
(
X1, X2, X3, X4

)
+ 1
N

K

1−K F0
(
X1, X3, X2, X4

)
+O

(
N−1

)
,

(3.12)

and

Wadj
(
X1, X2, X3, X4

)
= F0

(
X1, X2, X3, X4

)
+ 1
N

K

1−KF0
(
X1, X3, X2, X4

)
+O

(
N−2

)
,

(3.13)
respectively.

It is common in the SYK literature to focus on the singlet contribution to the OPE,
which can equivalently be isolated by considering the external operator averaged correlation
function:

W
(
X1, X2, X3, X4

)
≡ 1
N2

N∑
i,j,k,l=1

δki δ
j
l W

il
kj

(
X1, X2, X3, X4

)
,

= 1
N
W1

(
X1, X2, X3, X4

)
.

(3.14)

There is nevertheless a non-singlet part which also can be extracted. We will for the most
part focus on the singlet contribution but shall comment on the non-singlet part when we
analyze the OPE data in section 4.

3.2 The ladder kernel

Our discussion thus far has focused on the 4-point function itself, but to extract the OPE
data it is sensible to normalize this by the two-point function of the theory. We therefore
define the normalized correlator:7

Ŵ il
kj

(
X1, X2, X3, X4

)
≡
W il
kj

(
X1, X2, X3, X4

)
G
(
X1, X2

)
G
(
X4, X3

) . (3.15)

We will use the same normalization for the singlet and non-singlet pieces in the decompo-
sition. Note that in particular, with this normalization one has for the singlets

Ŵ
(
X1, X2, X3, X4

)
= 1 + 1

N
F̂
(
X1, X2, X3, X4

)
+O

(
N−2

)
, (3.16)

where we define the connected contribution to the normalized Euclidean four-point func-
tion as

F̂ (u, v) = 1
1−K F̂0 = 1

1−K
G
(
X1, X3

)
G
(
X4, X2

)
G
(
X1, X2

)
G
(
X4, X3

) . (3.17)

7The disorder average is taken independently for each correlation function appearing in (3.15).
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We have gauge fixed the supercoordinates and written the result in terms of the conformal
cross-ratios u, v. They can be obtained from the supersymmetric cross-ratios û = z2

12 z
2
43

z2
13 z

2
42

and

v̂ = z2
1234

z2
13 z

2
42

built from the superspace translation invariant (3.19) and another combination
z1234. The precise form of the latter is unnecessary as we can use the 8 fermionic generators
of the Euclidean superconformal group OSp(4|2, 2) to set θ̄1 = θ2 = θ3 = θ̄4 = 0 and reduce
to the standard cross-ratios constructed using xij .

With this preamble we can proceed to analyze the intermediate states appearing in
the OPE decomposition of the 4-point function. All we need is the super-propagator, G, to
evaluate (3.17), which can be obtained from the scalar propagator computed hitherto, viz.,

G
(
X1, X2

)
= Gφ (z12) , (3.18)

using the superspace translational invariant combination:

zµij ≡ x
µ
i − x

µ
j + iθiσ

µθ̄i + iθjσ
µθ̄j − 2iθjσµθ̄i = y†µi − y

µ
j − 2iθjσµθ̄i . (3.19)

We need to obtain the eigenspectrum of the ladder kernel — diagonalizing it will give
us the intermediate states in the Φ × Φ operator product expansion. We can utilize the
observation from [12] that these are given in terms of the (super)conformal three-point
functions, Tτ,` where the labels correspond to the spin ` and the conformal dimension ∆,
respectively. The latter can be traded for the twist τ = ∆ − `. The eigenfunctions are
simplest when one of the operator in the 3-point function is taken to infinity, whence

T∆,`
(
X4, X3

)
= |z43|∆−`−2∆φ z43,µ1 · · · z43,µ` A

µ1 ···µ` , (3.20)

where Aµ1µ2···µ` is a symmetric traceless tensor.
The eigenvalue equation of the ladder kernel takes the form:

k (∆, `) T∆,`
(
X1, X2

)
=
ˆ
d3xa d

2θa

ˆ
d3xb d

2θ̄bK
(
X1, X2, Xa, Xb

)
T∆,`

(
Xb, Xa

)
.

(3.21)
Plugging in the expressions for the propagator and the 3-point function, and carrying out
the integral in the expression above, we get after some algebra, the sought for eigenvalue:

k (∆, `) = (−1)` 22−2∆φ (2∆φ − 1) Γ (∆φ − 1) Γ (2 ∆φ)

Γ
(∆φ

2

)2

Γ
(
∆φ − ∆−`

2

)
Γ
(

∆+`
2 + 1−∆φ

2

)
Γ
(
2∆φ − ∆−`

2

)
Γ
(

∆+`
2 + 1+∆φ

2

) .
(3.22)

The operators that appear in the singlet sector of the Φ × Φ OPE8 can be read off
from the above. Their spectrum is determined by the condition

k(∆, `) = 1 , (3.23)
8The OPE decomposition of the operator averaged correlator (see subsection 4.3, eq. (4.31) for its

definition) will be denoted without any index decoration on the superfields Φ, Φ. When we discuss the
OPE for the general correlator Wil

kj we will indicate it with appropriate external operator labels.
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Figure 3. Plots of the spectrum of low lying operators with ` ≤ 5. On the left we plot the
dimensions for various spins, while on the right we plot the anomalous dimension as a function of
level number m, viz., γ(m, `) = ∆− 2∆φ − 2m− ` defined in (3.35).

which owes to the geometric series originating from the ladder summation, cf., (3.17). There
will be some additional states in the non-singlet part of the OPE decomposition which we
will postpone till subsection 4.3. For the remainder of this section we will examine the
features of the singlet spectrum.

3.3 Features of the IR spectrum

There are several observations to be made about the spectrum of operators which we
now turn to. We will argue that the spectrum is consistent with known bounds from the
conformal bootstrap and confirm our identification of the low-energy dynamics being a
non-trivial SCFT by exhibiting the presence of a stress-tensor multiplet.

Before proceeding with these analyses, we first note that ∆ = ` = 0 the eigenvalue
equation is proportional to the Schwinger-Dyson equation itself. For a general q-body
interaction, we expect based on the analysis in [12, 30] the coefficient of proportionality to
be 1− q. We indeed verify k(0, 0) = −2 for our cubic superpotential.

The spectrum contains a supermultiplet with ∆ = 2 and ` = 1 which we identify
as the supercurrent multiplet. This multiplet has as its top component the spin-2 energy-
momentum tensor and the bottom component is the R-current. In superfields the multiplet
is of the form:

Rµ = Jµ + θ Sµ + θ̄ S̄µ + θσν θ̄ Tµν . (3.24)

with Jµ being the R-current. This multiplet can arise in the Φ × Φ operator product,
which is the non-chiral part of the spectrum that we are exploring. Its presence confirms
our assertion that the low energy dynamics is indeed dominated by a superconformal
fixed point.

The spectrum we have obtained is consistent with existing results from the numerical
bootstrap of the N = 2 super-Ising model [41]. The latter is a three dimensional (non-
disordered) Wess-Zumino model and the numerical bounds obtained therein admit the
spectrum we have obtained for the IR SCFT, see table 1. We also plot the spectrum of
the low lying operators in figure 3.
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operator ` ∆ bootstrap bound
(ΦΦ) 0 1.6994 < 1.9098
(ΦΦ)′ 0 3.4295 < 5.3
Jµ 1 2 2

(J ′)µ 1 4.2676 < 5.25

Table 1. Comparison between the actual dimension of the operators and their bounds from boot-
strap. (ΦΦ) and (ΦΦ)′ are the lowest dimension and second-lowest dimension scalar superconformal
primaries in the Φ × Φ OPE, respectively. Jµ is the R-current, while (J ′)µ is the second-lowest
dimension spin-1 superconformal primary in the Φ× Φ OPE.

Note that while we have exploited a U(N) symmetry rotating the Φi into each other,
there are no flavour current multiplets in the spectrum. They contain a dimension one
scalar as their bottom component, and there are no such scalars in the singlet spectrum we
have analyzed, and also the adjoint spectrum as we will see explicitly in subsubsection 4.4.2.
We believe the symmetry is emergent in the IR, but has no corresponding Noether charges
owing to the disorder average. We also highlight the absence of any marginal operators in
the spectrum: in fact the only relevant operators are in the scalar (ΦΦ) multiplet and the
R-current multiplet.

3.3.1 Unitarity bounds

The spectrum of superconformal primaries appearing in the Φ × Φ OPE is furthermore
unitary, as would be desired for a sensible SCFT. In the sector under consideration all
operators must have R-charge QR = 0. The unitarity bound for these superconformal
primaries [54, 55] is9 

∆ > `+ 1 ` > 1 ,
∆ ≥ 2 ` = 1 ,
∆ = 0 or ∆ > 1 ` = 0 .

(3.25)

More explicitly, the superfield Φ is in the superconformal multiplet LB1[0](QR)
∆ with ∆ =

QR = 2
3 in the notation of [55]. We have the fusion rule

B1L[0](−
2
3 )

2
3
× LB1[0](

2
3 )

2
3

= B1B1[0](0)
0 +A1A1[1](0)

2 +
∑

`∈Z≥0,∆>`+1
LL[2`](0)

∆ , (3.26)

where B1B1[0](0)
0 is the multiplet of the identity operator, A1A1[1](0)

2 is the stress tensor
multiplet, and LL[2`](0)

∆ are long multiplets.
One can show that operators violating the unitary bound do not satisfy equation (3.23).

We will assume that all possible operators appearing in the spectrum have real conformal
dimension ∆ (which can independently be checked numerically). First consider ` = 0,

9For ` = 0, there is also the special case ∆ = 0 corresponding to the identity operator, which we have
accounted for above.
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when the kernel becomes

k(∆, 0) = − 2 5
3π

3 3
2 Γ
(

1
3

)2

Γ
(

2
3 −

∆
2

)
Γ
(

∆
2 + 1

6

)
Γ
(

4
3 −

∆
2

)
Γ
(

∆
2 + 5

6

) . (3.27)

One observes that for ∆ < 1 all the Gamma functions have positive argument — all such
terms are positive, and hence k(∆, 0) < 0. Thus, all operators violating the unitarity
bound (3.25) for ` = 0 do not satisfy (3.23).

Next, we consider the case ` > 0. We can restate the unitarity bound (3.25) in terms
of the twist τ as

τ ≥ 1 , τ = ∆− ` . (3.28)

It is then convenient to rewrite the kernel eigenvalue in the terms of the twist as

k (τ, `) = (−1)`+1 B
Γ
(

2
3 −

τ
2

)
Γ
(

4
3 −

τ
2

) Γ
(
τ
2 + `+ 1

6

)
Γ
(
τ
2 + `+ 5

6

) , (3.29)

where

B = −22−2∆φ (2∆φ − 1) Γ (∆φ − 1) Γ (2∆φ)

Γ
(∆φ

2

)2 = 2 5
3π

3 3
2 Γ
(

1
3

)2 > 0. (3.30)

Due to the factor (−1)`+1 appearing in (3.29), we break the argument into two cases: `
even and ` odd.

• ` even: here we employ the same reasoning as the ` = 0 case. For τ < 1, all Gamma
functions in (3.29) have positive argument so they are all positive, and hence k(τ, `) < 0
leading to no states in the spectrum violating the unitarity bound.

• ` odd: this case is more involved, and to proceed we will argue that

k(τ, `) < 1 for all τ < 1 . (3.31)

For ` = 1, this bound is saturated, namely k(1, 1) = 1 owing to the presence of the R-
current multiplet. For this reason, the bound is difficult to show analytically for ` = 1
and instead we check numerically that k(τ, 1) < 1 for all τ < 1. For ` ≥ 3, we can
demonstrate the bound analytically. We employ Wendel’s inequality

Γ(x)
Γ(x+ t) ≤

(x+ t)1−t

x
, 0 < t < 1 , 0 < x, (3.32)

to bound each of the Gamma function ratios appearing in (3.29) separately and obtain

k (τ, `) ≤ B

(
4
3 −

τ
2

) 1
3(

2
3 −

τ
2

)
(
τ
2 + `+ 5

6

) 1
3(

τ
2 + `+ 1

6

) . (3.33)
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`

m 0 1 2 3

0 0.36611 0.09618 0.04680 0.02925
1 −1

3 −0.06574 −0.035945 −0.02399
2 0.18578 0.05683 0.03207 0.02181

Table 2. The anomalous dimension γ(m, `) for ` = 0, 1, 2 and m = 0, 1, 2, 3.

For each ` the r.h.s. is a monotonically increasing function for τ < 1, and hence obtains
its maximum at τ = 1. The resulting function of ` is monotone decreasing and is
bounded in turn by the value at ` = 3. Altogether,

k (τ, `) ≤ k (1, `) ≤ k (1, 3) = B 18
11

(65
18

) 1
3
≈ 0.67 < 1 , (3.34)

which indeed establishes the unitarity of the spectrum.

3.3.2 Anomalous dimensions

We now turn to the asymptotic part of the spectrum. The solutions to (3.23) are organized,
for each value of spin, `, into the following sequence:

τ = 2 ∆φ + 2m+ γ(m, `) . (3.35)

Here γ(m, `) parameterizes the anomalous dimensions and for each spin ` the solutions are
labeled by an ‘oscillator level’ m ∈ Z+. This is in accord with the general expectations
from the analytic bootstrap results of [43, 44], where it was argued that for a CFT whose
spectrum contains a scalar operator of dimension ∆φ, one must have a tower of operators
for each value of spin `, with the twist τ accumulating towards τ → 2∆φ + 2m. We give
the anomalous dimensions for the operators of the first few spins and levels in table 2.

It is instructive to examine the behaviour of the spectrum at large m for fixed spin, or
for large spin. We find for large m and fixed spin

γ (m, `) = (−1)`+1 g3 (∆φ)
m2∆φ

, m� ` ∼ 1 (3.36)

while for large spin

γ (m, `) = (−1)`+1 g3 (∆φ)
`∆φ

Γ (m−∆φ + 1)
Γ(m+ 1) , `� 1 (3.37)

where we defined:

g3 (∆φ) =
42−∆φ (2 ∆φ − 1) sin (π∆φ) cos

(
π∆φ

2

)
Γ (∆φ − 1) Γ (2∆φ)

πΓ
(∆φ

2

)2 ,

g3
(

2
3

)
= − 3

2 1
3 Γ

(
−2

3

)2 ' −0.147 .
(3.38)
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Figure 4. A plot of the anomalous dimension γ(m, `) as a function of level number m displaying
the convergence to the asymptotic behaviour ±0.147m− 4

3 predicted in (3.36) which are indicated
by the solid curves for even and odd spins, respectively.

One can check that the anomalous dimensions computed perfectly match the large m

asymptotics, as illustrated in figure 4.
The behaviour at large spin can be directly deduced from analytic bootstrap analy-

sis [43]. One expects on general grounds

γ(m, `) = (−1)` γm
`τmin

, (3.39)

where τmin is the minimal twist among operators appearing in the Φj × Φk OPE. This
can be deduced by comparing the s-channel expansion of the 4-point function with the
corresponding t-channel expansion using crossing symmetry. By Nachtmann’s theorem we
are guaranteed that the minimal twist should be found for the operator with the smallest
spin, which for us would correspond to a scalar operator. In fact, given the cubic Yukawa
interaction in the superpotential, the ψi × ψj OPE contains the scalar φ̄k. Thus, we are
led to conclude that

τmin = τφ = ∆φ , γm = 0.147
Γ
(
m+ 1

3

)
Γ(m+ 1) . (3.40)

consistent with the expression (3.37). In light of the arguments for the convexity of twists
of double-trace operators at large spin [43, 44], it may seem puzzling that the anoma-
lous dimensions we found are positive for even spin. However, the supersymmetric case
is more subtle because there are cancellations between conformal blocks within a given
superconformal block at leading order in the large ` expansion, as we will explain in detail
in section 5.2.

3.3.3 Regge intercept and hyperbolic chaos

We have thus far focused on the solution to the kernel eigenvalue equation (3.23) which
have real integral spin ` and noted for each spin there are distinct solutions parameterized
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by the ‘oscillator level’ m. There is however also another branch of solutions where the
conformal dimension lies on the principal series representation of the conformal group, with

∆ = d

2 + i ν . (3.41)

For fixed ν one again has multiple solutions to the eigenvalue equation. Let us index the
solutions by n ∈ Z+ with Re(`0(ν)) > Re(`1(ν)) > Re(`2(ν)) > · · · . For ν = 0 the solutions
`n(0) are all real, and the leading Regge intercept is given by `0(0) [45].

Not only does the leading Regge intercept capture some of the spectral information,
but it can also be related to the Lyapunov exponent obtained from the out-of-time-order
four-point function in hyperbolic space [30]. This follows from the fact that the vacuum cor-
relation functions of a CFT in flat space, can be conformally mapped to thermal correlators
on hyperbolic space (with curvature radius set by the inverse temperature). Geometrically
one maps a Rindler wedge of flat spacetime, which is conformal to the domain of depen-
dence of a spherically symmetric ball-shaped region of flat spacetime, to the hyperbolic
cylinder, cf., [56] for an explicit map. Tracking the observables through the map, one finds
that the Regge limit is equivalent to the chaos limit of the resulting thermal system in
hyperbolic space with

λhypL = `0(0)− 1 . (3.42)

For the 3d SYK kernel (3.21), owing to the presence of the factor (−1)`, even and odd
spin superconformal primaries form different Regge trajectories. It is convenient to rewrite
the kernel as

k(∆, `) = 1 + (−1)`
2 keven(∆, `) + 1− (−1)`

2 kodd(∆, `) . (3.43)

The dimensions of the even (odd) spin superconformal primary operators appearing in the
Φ× Φ OPE are given by solutions to the equations

keven(∆, `) = 1, kodd(∆, `) = 1 . (3.44)

There are also Regge trajectories formed by the conformal primary but superconformal
descendant operators that appear in the Φ×Φ OPE. In the long multiplet LL[2`](0)

∆ , those
operators have dimensions and spins given by10

(∆ + 1, `± 1) , (∆ + 2, `) . (3.45)

Hence, they are solutions to the equations

keven/odd(∆− 1, `− 1) = 1, keven/odd(∆− 1, `+ 1) = 1 , keven/odd(∆− 2, `) = 1 .
(3.46)

We find that the largest leading Regge intercept of the Regge trajectories occurs among
the even spin operators (either superconformal primaries or the conformal primary super-
conformal descendants) to be

`even,0(0) = −0.263329 , for ∆φ = 2
3 . (3.47)

10This follows directly from the formula for the superconformal blocks in terms of the conformal blocks
in (66) of [42] which we describe in section 4, see eqs. (4.7) and (4.8).
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Likewise among the odd spin operators we find the largest leading Regge intercept

`odd,0(0) = 1.15207 , for ∆φ = 2
3 . (3.48)

The hyperbolic chaos exponent is then determined from the odd spin sector and is thus

λhypL = 0.15207 , for ∆φ = 2
3 . (3.49)

We note that this value is considerably smaller than the exponents obtained in two-
dimensional SYK models. These can be deduced from the computations of [30]. For
instance, in the model with N = (1, 1) or N = (2, 2) supersymmetry in d = 2, one finds
that λhypL ∼ 0.58. In models with N = (0, 2) supersymmetry in d = 2, one finds a tunable
exponent that has a maximum value λhypL ∼ 0.58, cf., [32]. In two dimensions however,
there is no distinction between the Lyapunov exponent in hyperbolic space and the thermal
chaos correlator in flat spacetime (a single spatial direction does not support curvature).
This being no longer true in d = 3 one is left with two possibilities:

• The fact that the λhypL (d = 3) < λhypL (d = 2) could be taken to suggest that the
model under consideration is very weakly chaotic. Random couplings constrained by
spacetime locality are not effective scramblers.

• The exponential growth of spatial volume in hyperbolic spacetimes overwhelms in
d = 3 the effective scrambling of the infra-red fixed point theory. In other words, the
drastic reduction in λhypL is more due to the nature of the observable and the ambient
geometry and not intrinsic to the fixed point.

One would like to have a clear answer to which of these two possibilities characterizes the
three-dimensional disordered fixed point. There is a straightforward way to proceed, one
which involves studying the real-time thermal observables which can be done numerically.
We hope to report on this elsewhere [57].

4 Euclidean four-point function

We now turn to an explicit calculation of the Euclidean four-point function Ŵ il
kj defined

in (3.15). For simplicity, we will illustrate the general idea by working first with the
singlet sector or equivalently with the connected part of the averaged correlator encoded
in F̂(u, v) introduced in (3.16). The main technical tool involves expanding F̂ in the basis
of three-dimensional N = 2 superconformal partial waves Υ∆,` as follows:

F̂(u, v) = 1
1−K F̂0(u, v) =

∞∑
`=0

ˆ ∞
0

ds

〈
Υ∆,`, F̂0

〉
1− k(∆, `)

Υ∆,`(u, v)〈
Υ∆,`,Υ∆,`

〉 , (4.1)

where F̂0 is the zero-rung ladder described earlier (see figure 2). The principal series for
the N = 2 superconformal partial waves have conformal dimension ∆ = 1

2 + is.11

11Our discussion hitherto has been confined to representations of the Euclidean 3d conformal group
SO(4, 1) whose principal series has dimension ∆ = 3

2 + i s. We will henceforth travel back and forth
between superconformal and conformal algebras and will indicate without introducing new notation the
relevant representation labels (without hopefully causing any confusion).
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The goal is to find an inner product on the space of N = 2 superconformal partial
waves and then use it to compute the desired inner products in (4.1). Armed with these
quantities, we will obtain an analytic formula for the OPE coefficients in the Φ× Φ OPE.
Finally, we compute the central charge of our model and interestingly demonstrate that it
agrees exactly with that of the super-Ising (WZ) model (modulo a trivial factor of N from
the species).

4.1 Superconformal partial waves

We will define the superconformal partial waves using the corresponding superconformal
block and its supershadow block. This will allow us to rewrite them in terms of the bosonic
conformal partial waves for which calculations are simpler. One can equivalently define
them in the supershadow formalism as an integral over a product three-point functions
(cf., appendix E).

To define the superconformal partial waves, we use the Euclidean superconformal group
OSp(4|2, 2) to fix coordinates. This group has 10 bosonic generators coming from the
conformal group, an R symmetry generator, and 8 fermionic generators. We use the bosonic
generators in the usual way to fix x1 = 0, x2 = ( z+z̄2 , z−z̄2i , 0), x3 = (1, 0, 0), x4 = ∞ and
we use the fermionic generators to fix

θ̄1 = θ2 = θ3 = θ̄4 = 0. (4.2)

By chirality, Υ∆,` now has no dependence on the Grassmann variables and is simply a
function of the complex variables z, z̄, or equivalently, the cross-ratios u = zz̄ and v =
(1− z)(1− z̄).12 The superconformal Casimir after fixing these coordinates acting on our
four point function (3.16) is given by [42]13

1
2Dz,z̄ = z2 (1−z) ∂2+z̄2 (1−z̄) ∂̄2−

(
z2∂+z̄2 ∂̄

)
+
(
z∂+z̄∂̄

)
+ zz̄

z−z̄

[
(1−z)∂−(1−z̄) ∂̄

]
.

(4.3)
The superconformal partial waves are eigenfunctions of the superconformal Casimir (4.4)
with the same eigenvalue as the superconformal block G∆,`:

Dz,z̄ Υ∆,` (z, z̄) = [∆ (∆− 1) + ` (`+ 1)] Υ∆,`(z, z̄). (4.4)

They can be defined as the unique solution to (4.4) that is single-valued and symmetric
under z ↔ z̄. This fixes Υ∆,` to be the following linear combination of the superconformal
block and its supershadow block (up to an overall normalization)

Υ∆,`(z, z̄) = A∆̃,` G∆,`(z, z̄) +A∆,` G∆̃,`(z, z̄), (4.5)

where ∆̃ ≡ 1 − ∆ is the conformal dimension of the supershadow operator and A∆,` is
the supershadow coefficient. This is the advantage of working with superconformal partial

12We adhere to the standard notation and hope that the use of zµij for the supertranslation invariant,
cf., (3.19), does not cause confusion.

13Note that we are considering the four-point function
〈
φ̄(0)φ(z)φ(1)φ̄(∞)

〉
while [42] considered〈

φ(0)φ̄(z)φ(1)φ̄(∞)
〉

so our superconformal Casimir and superconformal block differ from theirs by
z → z

z−1 .
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waves instead of superconformal blocks, viz., they are single-valued and thus allow for an
inner product for which the superconformal Casimir is self-adjoint.

The superconformal partial wave Υ∆,` can be expressed in terms of the bosonic con-
formal partial waves Ψ∆12,∆34

∆,` which are more familiar (we review them in appendix C), by
observing a relation between the superconformal and conformal blocks as follows [42]:14

G∆,`(z, z̄) = 1
|z|

G1,−1
∆+1,`(z, z̄), (4.6)

where G∆12,∆34
∆,` (z, z̄) is the conformal block of a four-point function of scalar primary

operators of dimensions ∆i for i = 1, · · · , 4. This formula can be further unpacked as

G∆,` = G∆,` + a1(∆, `)G∆+1,`+1 + a2(∆, `)G∆+1,`−1 + a3(∆, `)G∆+2,`, (4.7)

where G∆,` ≡ G0,0
∆,` and the coefficients ai(∆, `) are

a1(∆, `) = (∆ + `)
2(∆ + `+ 1) ,

a2(∆, `) = `2(∆− `− 1)
2(∆− `)(2`− 1)(2`+ 1) ,

a3(∆, `) = ∆2(∆ + `)(∆− `− 1)
4(∆− `)(2∆− 1)(2∆ + 1)(∆ + `+ 1) .

(4.8)

We adopt the same normalization of the conformal block as in [42], that in the z � z̄ � 1
limit (or equivalently the u� (1− v)� 1 limit) the conformal block behaves as

G∆12,∆34
∆,` (z, z̄) ∼ (−1)`

2` (zz̄)
∆
2

(
z̄

z

) `
2
. (4.9)

The superconformal partial wave (4.5) thus becomes the following linear combination
of the conformal and shadow conformal blocks15

Υ∆,`(z, z̄) = 1
|z|

(
A∆̃,`G

1,−1
∆+1,`(z, z̄) +A∆,`G

1,−1
2−∆,`(z, z̄)

)
. (4.10)

Observe that this takes the same form as |z|−1 times the conformal partial wave Ψ1,−1
∆+1,`

given in (C.1). Since the linear combination of blocks appearing in the superconformal
partial wave is fixed by single-valuedness, we must have

Υ∆,`(z, z̄) = f(∆, `)
|z|

Ψ1,−1
∆+1,`(z, z̄), (4.11)

14Our superconformal block is related to the superconformal block in [42] by

Gus
∆,`(z, z̄) = (−1)`(G0,0

∆,`)
them

(
z

z − 1 ,
z̄

z̄ − 1

)
.

To get the formula (4.6), we have used (64) in [42] and the relation

G−1,−1
∆,`

(
z

z − 1 ,
z̄

z̄ − 1

)
= (−1)`|1− z|−1G1,−1

∆,` (z, z̄) .

15We use ∆̂ = 3 − ∆ to denote the shadow conformal dimension in appendix C, but write out the
dimensions explicitly in this section.
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where f(∆, `) is a normalization that relates the supershadow coefficient to the shadow
coefficient (see (C.2)) by

A∆̃,` = f(∆, `)S∆34=−1
2−∆,` . (4.12)

An explicit expression for the function f(∆, `) will not be needed for our purposes because it
cancels in the four-point function. Nevertheless, since the N = 2 supershadow coefficients
do not seem to have been reported in the literature, we provide a computation of f(∆, `)
in appendix E.

Finally, it was shown in [58] that Ψ∆12,∆34
∆,` ∝ Ψ∆12,∆34

3−∆,` , which implies that Υ∆,` ∝ Υ∆̃,`.
This allows us to restrict to s > 0 since s → −s is equivalent to ∆ → ∆̃. We shall see
momentarily that the superconformal partial waves with s > 0 form a complete basis with
respect to the natural superconformally invariant inner product.

4.2 Superconformal inner product

We want to find a superconformally invariant inner product on the space of N = 2 su-
perconformal partial waves. Let us briefly recall how this is done in the bosonic case. We
start with the conformally invariant integral

〈F,G〉unfixed
0 =

ˆ
d3x1 d

3x2 d
3x3 d

3x4
x6

12x
6
34

F ({xi})G({xi}), (4.13)

where F and G are conformally invariant functions. Due to conformal invariance, this
inner product is proportional to the volume of the conformal group, and hence diverges.
To remedy this, we gauge-fix the coordinates using the conformal group and include the
associated determinant which is computed in appendix F. If we fix our coordinates to the
choice in the previous section, the inner product becomes16

〈F,G〉0 =
ˆ
d2z
|z − z̄|
|z|6

F (z, z̄)G(z, z̄). (4.14)

The functions F and G implicitly depend on the external dimensions ∆i and the internal
dimension and spin (∆, `). This inner product actually only holds for external dimensions
living in the bosonic principal series: ∆i ∈ 3

2 + iR. After analytic continuation to real
external dimensions, the inner product becomes17

〈F,G〉∆12,∆34
0 =

ˆ
d2z
|z − z̄|
|z|6

|1− z|−∆12+∆34 F (z, z̄)G(z, z̄). (4.15)

Crucially, the bosonic conformal Casimir is self-adjoint with respect to this inner product.
Due to the relation (4.11), we will only need the following bosonic inner product:

〈F,G〉1,−1
0 =

ˆ
d2z

|z − z̄|
|1− z|2 |z|6 F (z, z̄)G(z, z̄). (4.16)

16Note that our inner product differs from [58] by a factor of 4: 〈,〉us
0 = 4 〈,〉them

0 .
17We explain this subtlety in appendix C.

– 22 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
1

The N = 2 inner product follows from a similar procedure. Consider two functions
f, g on superspace R3|4 that satisfy the chirality conditions

D1,4f = D1,4g = D2,3f = D2,3g = 0, (4.17)

where Di,j , Di,j are the superderivatives acting on the ith or jth coordinate. We define the
superconformally invariant integral

〈f,g〉unfixed =
ˆ
d3x1d

3x2d
2θ̄1d

2θ2
|z12|4

d3x3d
3x4d

2θ3d
2θ̄4

|z43|4
f({xi},{θi})g({xi},{θi}). (4.18)

Once again, we must gauge-fix the superspace coordinates and include the corresponding
Berezinian in order to obtain a finite inner product. If we choose to gauge-fix the bosonic
coordinates as we did above and gauge-fix the Grassmann coordinates to (4.2), we obtain
the inner product (see appendix F)

〈f, g〉 =
ˆ
d2z

|z − z̄|
|1− z|2 |z|4 f(z, z̄)g(z, z̄). (4.19)

It is straightforward to check that the superconformal Casimir (4.3) is self-adjoint with
respect to this inner-product.

Observe that there is a simple relation between the N = 2 inner product (4.19) and
the bosonic inner product (4.16):

〈f, g〉 = 〈|z| f, |z| g〉1,−1
0 . (4.20)

We can now use this relation along with (4.11) to compute the desired inner products in
the four-point function (4.1) using bosonic conformal partial waves and the bosonic inner
product. In particular, the normalization of the superconformal partial waves now follows
from the bosonic case:

〈
Υ∆,`,Υ∆′,`′

〉
= f (∆, `) f

(
∆′, `′

) 〈 1
|z|

Ψ1,−1
∆+1,` ,

1
|z|

Ψ1,−1
∆′+1,`′

〉
= f (∆, `) f

(
∆′, `′

) 〈
Ψ1,−1

∆+1,` ,Ψ
1,−1
∆′+1,`′

〉1,−1

0

= f (∆, `)2 n∆+1,` 2πδ
(
s− s′

)
δ``′ ,

(4.21)

where the normalization constant n∆,` is given in (C.4). The superconformal partial waves
thus obey the following completeness relation:

1
f (∆, `)2 n∆+1,`

∞∑
`=0

ˆ ∞
0

dsΥ∆,` (z, z̄) Υ∆,`
(
z′, z̄′

)
= |1− z|

2 |z|4

|z − z̄|
δ(2) (z − z′) , (4.22)

which confirms our previous statement that a complete basis of eigenfunctions of the su-
perconformal Casimir is formed by restricting to the s > 0 superconformal partial waves.
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4.3 Four-point functions

With the superconformal inner product at hand, we can finally turn to the evaluation of
the inner product

〈
Υ∆,`, F̂0

〉
. The zero-rung ladder is

F̂0 =
G
(
X1, X3

)
G
(
X4, X2

)
G
(
X1, X2

)
G
(
X4, X3

) fixing coords.−−−−−−−−→ |z|2∆φ . (4.23)

Therefore, 〈
Υ∆,`, F̂0

〉
= f (∆, `)

〈
Ψ1,−1

∆+1,`, |z|
2∆φ+1

〉1,−1

0
. (4.24)

We can compute this by writing Ψ1,−1
∆+1,` in the shadow formalism (C.12). With the standard

gauge fixing the x5 integral is difficult to compute. This can be avoided by undoing the
gauge-fixing of the bosonic coordinates and choosing the gauge x1 = 0, x2 = 1, x5 = ∞
instead. With this new gauge-fixing, we arrive at〈

Υ∆,`, F̂0
〉

= f (∆, `)
ˆ
d3x3 d

3x4
|x34|2∆φ−∆−3

|x4|2|x3|2∆φ |1− x4|2∆φ
(−1)` Ĉ`

(1 · x34
|x34|

)

= f (∆, `) 3
√

3π 5
2 (−1)` Γ (`+ 1)

2`−2Γ
(
`+ 1

2

)
(∆ + `) (∆− `− 1)

k (∆, `) ,
(4.25)

where the integral can be evaluated using equation (B.8) in [30] twice.
We now have all the pieces we need to compute the four-point function (4.1). Putting

them all together,

F̂ (u,v) =
∞∑
`=0

ˆ ∞
0

ds

〈
Υ∆,`, F̂0

〉
1−k (∆, `)

Υ∆,` (u,v)〈
Υ∆,`,Υ∆,`

〉
=
∞∑
`=0

ˆ ∞
−∞

ds

2π
k (∆, `)

1−k (∆, `)
3
√

3π 5
2 (−1)` Γ(`+1)

2`−2n∆+1,` (∆+`)(∆−`−1) Γ
(
`+ 1

2

) S∆34=−1
2−∆,` G∆,` (u,v)

=
∞∑
`=0

˛
∆= 1

2 +is

d∆
2πi ρ(∆, `) G∆,` (u,v) ,

(4.26)

where we have defined the spectral coefficient function

ρ(∆, `)≡ ρMFT (∆, `)
1−k (∆, `)

ρMFT (∆, `) = k (∆, `)
2` 3
√

3 (−1)` Γ
(
`+ 3

2

)
(∆−`−1) Γ(`+1)

Γ(∆) Γ(1−∆+`) Γ
(

∆+`
2

)2

Γ
(
∆− 1

2

)
Γ(∆+`) Γ

(
1−∆+`

2

)2

(4.27)

with ρMFT(∆, `) the coefficient function for mean field theory of a single chiral superfield. In
the second line of (4.26), we used the fact that ρ(∆, `) = ρ(∆̃, `) to write the contribution
to Υ∆,` coming from the superconformal shadow block G∆̃,` in terms of the superconformal
block G∆,` integrated from −∞ to 0.
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While we have illustrated the computation using the singlet sector, we in fact now
have all the data at hand to discuss the general structure of the correlation functions and
the OPE coefficients, for both the singlet sector (3.14) and the non-singlet sectors (3.13).

4.4 The non-chiral OPE coefficients

To obtain the superconformal block expansion (4.31) in our theory, we deform the contour
in (4.26) to the right of the principal series line ∆ = 1

2 + is. This will allow us to write
the OPE decomposition of the 4-point function, with the residues at the poles of ρ(∆, `)
giving us the product of the OPE coefficients.

In general, we expect the normalized four-point function Ŵ il
kj to be a sum over the

superconformal blocks of all the superconformal primaries appearing in the s-channel Φi×
Φk OPE:18

Ŵ il
kj(z, z̄) =

∑
V∆,`,(r,a)∈Φi×Φk

C
ΦiΦkV∆,`,(r,a)

C
ΦlΦjV∆,`,(r,a)

G∆,`(z, z̄) . (4.28)

The OPE coefficient is proportional to the Clebsch-Gordan coefficient, and we write

C
ΦiΦkV∆,`,(r,a)

= (cr)ik,a CΦΦV∆,`,r
. (4.29)

Equivalently, the functions W1 andWadj in (3.1), after normalizing as in (3.15), admit the
expansion

Ŵr(z, z̄) =
∑
V∆,`,r

∣∣∣∣CΦΦV∆,`,r

∣∣∣∣2 G∆,`(z, z̄) for r = 1,adj . (4.30)

Since the superconformal blocks are independent of the dimensions of the external
operators, the singlet contribution isolated by averaging over the external operators Ŵ can
similarly be expanded in terms of the superconformal blocks as

Ŵ(z, z̄) = 1
N
Ŵ1(z, z̄) =

∑
V∆,`∈Φ×Φ

∣∣∣∣CΦΦV∆,`

∣∣∣∣2 G∆,`(z, z̄). (4.31)

We let Φ×Φ denote the set of superconformal primaries that appear in any of the Φi×Φi

OPE, and C
ΦΦV∆,`

is the operator averaged OPE coefficient, viz.,

C
ΦΦV∆,`

≡
∑

r=1,adj

(
1
N

N∑
i=1

) 1
dim(r)

dim(r)∑
a=1

 C
ΦiΦiV∆,`,(r,a)

= 1√
N
C

ΦΦV∆,`,1
. (4.32)

This is naturally mapped to OPE coefficients for operators appearing in the singlet channel,
V∆,`,1 (using the SU(N) representation label for characterization), due to the relations of
the Clebsch-Gordan coefficients

1
N

N∑
i=1

(cr)ii,a = 1√
N
δr,1δa,1 . (4.33)

18We use CABC to denote the OPE coefficient between three superconformal primary operators reserving
Cabc for the OPE coefficient of conformal primary operators.
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4.4.1 The singlet sector OPE decomposition

The contour deformation in (4.26) to the right picks up the poles from the spectrum
at k(∆, `) = 1. The residue of a pole gives the OPE coefficient of the corresponding
superconformal primary V∆,` in the Φ× Φ OPE:

∣∣∣∣CΦΦV∆,`

∣∣∣∣2 = − 1
N

Res
∆=∆V

ρ(∆, `) = ρMFT(∆V , `)
N k′(∆V , `)

, (4.34)

where k′(∆, `) = ∂k(∆,`)
∂∆ . The negative sign arises because of the contour running clockwise

while the factor of 1
N originates from the relation between F̂ and the full four-point function

Ŵ, (3.16).

When we deform the contour to the right, we also pick up any poles in ρ(∆, `) or G∆,`
with Re(∆) > 1

2 . In order for the spectrum to localize on the physical states, k(∆, `) = 1,
we must also check that the contribution from the poles of ρ(∆, `) disappear. A general
theory independent argument (for non-supersymmetric theories) showing the cancellation
of the contributions from the spurious poles in the coefficient function and the poles coming
from the conformal block was given in [58]. Their argument can be applied to our four-
point functionW after rewriting it in terms of bosonic conformal blocks using (4.6). Hence
the expression for the four-point function (4.26) is a sum over only the physical operators
in our theory. Furthermore, note that k(∆, `) itself has poles when ∆ = 2∆φ + `+ 2n with
n ∈ Z≥0, but these are not poles of the integrand in (4.26).

Let us analyze our formula (4.34) for the OPE coefficients in the Φ×Φ OPE. Firstly,
one can extract the OPE coefficients of the low dimension operators discussed in table 1:

∣∣∣C
ΦΦ(ΦΦ)

∣∣∣2 ≈ 1
N

0.6601,
∣∣∣C

ΦΦ(ΦΦ)′

∣∣∣2 ≈ 1
N

4.216× 10−3,
∣∣∣C

ΦΦJ′

∣∣∣2 ≈ 1
N

1.329× 10−3.

(4.35)
We have not found any bootstrap bounds in the literature for these OPE coefficients; it
would be interesting to investigate if our OPE coefficients satisfy them.

One can also compute the OPE coefficient of the supercurrent multiplet (3.24):

∣∣∣C
ΦΦR

∣∣∣2 = 1
N

9
√

3π
32
(

2π√
3 −

9
8

) . (4.36)

We will use this OPE coefficient to compute the central charges of the theory below.

It is interesting to examine the OPE coefficients of the double-twist (2t) operators
V2t with twist τ = 2∆φ + 2m + γ(m, `) whose anomalous dimensions we computed in
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log
∣∣∣∣C2

ΦΦV2t

∣∣∣∣ m

Figure 5. A plot of the product of OPE coefficients
∣∣∣C

ΦΦV2t

∣∣∣2 against the level number m displaying
the convergence to the asymptotic behaviour −4 log 2m − 11

6 logm predicted in (4.38) (indicated
by the solid line).

subsubsection 3.3.2. At large spin ` and fixed twist τ , one finds

∣∣∣C
ΦΦV2t

∣∣∣2 = `2∆φ− 3
2

N

2
√
π

22∆φ+2m+`

Γ
(
∆φ − 1

2 +m
)2

Γ (2∆φ +m− 2)

Γ (m+ 1) Γ (∆φ)2 Γ
(
∆φ − 1

2

)2
Γ (2∆φ + 2m− 2)

×
[
1 + (−1)` γm

`∆φ

(
ψ (1 +m−∆φ) + ψ (2− 2m− 2∆φ) + ψ

(1
2 −m−∆φ

)

− 2ψ (1− 2m− 2∆φ)− ψ (m+ 1)− π cot (π∆φ)− log (2)
)

+O
(
`−2∆φ

)]
, `� 1,

(4.37)

where ψ(x) is the digamma function. Notice that the leading contribution is equal to the
large ` limit of the mean field theory (MFT) OPE coefficients, which can already be seen
from the way we wrote ρ(∆, `) in (4.27), while the subleading correction behaves as `−∆φ .
We shall see in the next section that these results all agree with the predictions of the
analytic bootstrap. For large twist τ and fixed spin ` the double-twist OPE coefficients
become (for m� ` ∼ 1)

∣∣∣C
ΦΦV2t

∣∣∣2 = −
3
√

2 Γ
(
`+ 3

2

)
g3 (∆φ)

24∆φ+` Γ (`+ 1)
m−2∆φ− 1

2 e−4 log(2)m
(
1 +O

(
m−2∆φ

))
, (4.38)

These have the expected exponential decay of heavy operators in any unitary CFT [59].19
The approach to the asymptotic value is clearly demonstrated in figure 5.

19Note that it is not actually required that the OPE coefficients of a given tower of operators decay
exponentially at large ∆. It is only necessary that this be true on average in the CFT, i.e., that the integral
over all OPE coefficients in the CFT lying within some finite ∆-window must decay exponentially.
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4.4.2 The non-singlet sector OPE

To understand the non-singlet sector spectrum we go back to (3.13) from which we con-
clude that

Ŵadj (u, v) = F̂0 (u, v) + 1
N

G
(
X1, X3

)
G
(
X4, X2

)
G
(
X1, X2

)
G
(
X4, X3

) ( K

1−K F̂0

)(1
u
,
v

u

)
+O

(
N−2

)
.

(4.39)
Computing the inner product of the terms on the r.h.s. with the superconformal partial
waves we end up with

Ŵadj (u, v) = F̂0 (u, v) + 1
N
u∆φ

∞∑
`=0

˛
∆= 1

2 +is

d∆
2πi ρadj (∆, `) G∆,`

(1
u
,
v

u

)
+O

(
N−2

)
,

(4.40)
where

ρadj (∆, `) = k (∆, `)
1− k (∆, `)ρMFT (∆, `) . (4.41)

The leading term can be expanded in terms fo the s-channel superconformal blocks by

F̂0(u, v) =
∞∑
`=0

ˆ ∞
0

ds
〈

Υ∆,`, F̂0
〉 Υ∆,`(u, v)〈

Υ∆,`,Υ∆,`
〉

=
∞∑
`=0

˛
∆= 1

2 +is

d∆
2πi ρMFT(∆, `)G∆,`(u, v) .

(4.42)

Deforming the contour to the right, we encounter the poles of ρMFT located at

∆ = ∆MFT ≡ 2∆φ + `+ 2n , n ∈ Z≥0 . (4.43)

We will refer to these as the mean field theory double-twist operators VMFT
∆,`,adj. For these

MFT poles (4.43) we find the OPE coefficients to be
∣∣∣∣CΦΦVMFT

∆,`,adj

∣∣∣∣2 = − Res
∆=∆MFT

ρMFT(∆, `) . (4.44)

The residues at these mean field theory poles can be evaluated explicitly to be

Res
∆=2∆φ+`+2n

ρMFT(∆, `) =

(−1)n+1
3
√

3 23+`−2∆φ Γ
(
`+ 3

2

)
Γ(n+1)Γ(`+1)

2∆φ−1
2∆φ−1+2n

Γ(∆φ−1)Γ(2∆φ)

Γ
(∆φ

2

)2

× Γ(1−2n−2∆φ)

Γ(∆φ−n)Γ
(

1
2−n−∆φ

)2

Γ
(1+∆φ

2 +`+n
)

Γ(`+n+∆φ)2 Γ(`+2n+2∆φ)

Γ(2`+2n+2∆φ)Γ
(1+3∆φ

2 +`+n
)

Γ
(
−1

2 +`+2n+2∆φ

) .
(4.45)
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This expression can be shown to be equivalent to the MFT OPE coefficients which were
computed in [42], who obtained∣∣∣∣CΦΦVMFT

∆,`,adj

∣∣∣∣2 = 2`

Γ(m+ 1)Γ(`+ 1)
(
`+ 3

2

)
m

×
(∆φ)2

m+`

(
∆φ − 1

2

)2

m

(2∆φ + 2m+ `)` (2∆φ +m− 1)m
(
2∆φ +m+ `− 1

2

)
m

.

(4.46)

The O
(
N−1) term in (4.40) can be expanded in terms of the u-channel superconformal

blocks by deforming the contour to the right and picking up the residue of the poles of
the integrand. However, it is not straightforward to re-expand it in terms of the s-channel
superconformal blocks. We leave this for future work.

4.5 Central charges

Given the canonical normalization of the R-current Jµ and the stress-tensor Tµν , the coef-
ficients in their two-point functions are physical quantities known as the central charges CJ
and CT , respectively. We can compute them using the R-current OPE coefficient

∣∣∣C
ΦΦR

∣∣∣2
given in (3.24) as follows. The Ward identity for an infinitesimal conformal transformation
(a diffeomorphism along a conformal Killing vector) fixes the OPE coefficient Cφ̄φT , while
the Ward identity for the R-current fixes Cφ̄φJ . One has

Cφ̄φT = − 1
V 2

S2

, Cφ̄φJ = −2
3

1
V 2

S2

(4.47)

where V
S2 is the volume of a unit S2. Extracting the contribution of the R-current Jµ to the

φ̄× φ OPE in the limit u� (1− v)� 1 gives the following contribution to the four-point
function 〈

φ̄(x1)φ(x2)φ(x3)φ̄(x4)
〉

〈
φ̄(x1)φ(x2)

〉〈
φ(x3)φ̄(x4)

〉 ⊃ −|Cφ̄φJ |22CJ
V 2

S2 u
1
2 (1− v). (4.48)

Comparing to (4.31) and using the behavior of the superconformal block in the same limit

G2,1(u, v) ∼ −1
2 u

1
2 (1− v) (4.49)

gives a simple relation between CJ and
∣∣∣C

ΦΦR

∣∣∣2:20
CJ = 4

9|cΦΦR|2
= N

27

34
√

3π

( 2π√
3
− 9

8

)
. (4.50)

20With our choice of normalization, the free central charge is Cfree
T = 2C(b)

T + C
(f)
T = 6, where C(b)

T = 3
2

and C
(f)
T = 3 are the central charges for the free boson and free Dirac fermion, respectively. Similarly,

Cfree
J = 2C(b)

J + C
(f)
J = 1, where C(b)

J = Q(b)2 = 1
4 for the free boson and C(f)

J = 2Q(f)2 = 1
2 for the free

Dirac fermion.

– 29 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
1

The relationship between CT and
∣∣∣C

ΦΦR

∣∣∣2 follows from supersymmetry since Jµ and Tµν
live in the same multiplet, with the result

CT = 6CJ . (4.51)

This procedure was worked out in [60] and we refer the reader there for the details.21
Alternatively, the central charges can be computed from the squashed sphere partition

function ZS3
b
with squashing parameter b. They are proportional to the second derivative

of the free energy F = − logZS3
b
with respect to the squashing parameter b:

CT = 48
π2 Re ∂

2F

∂b2

∣∣∣∣
b=1

. (4.52)

The squashed sphere partition function for the 3d N = 2 Wess-Zumino model has been
computed via localization [61, 62] and one finds exact agreement with our value for the
central charges (up to the ubiquitous factor of N).22

5 Chiral sector and the analytic bootstrap

The diagrammatic analysis that we have used thus far to compute the two- and four-point
functions only gave us access to the non-chiral sector of our theory, that is, to operators
appearing in the Φi × Φk OPE. However, crossing symmetry relates this OPE to the
Φj ×Φk OPE which allows us to extract information about the chiral sector of the theory
using what we have computed for the non-chiral sector. We will use the analytic bootstrap
to determine the leading order anomalous dimensions and OPE coefficients of the charged
double-twist operators at large spin and to deduce the existence of a special operator in the
chiral sector along with its OPE coefficient. Furthermore, we will find that our result for
the OPE coefficients of the neutral double-twist operators (4.37) agrees with the prediction
of the analytic bootstrap.

Let us first summarize the allowed set of operators in the chiral sector of any 3d N = 2
SCFT [42]. Due to the chirality condition QαΦj = 0, any conformal primary operator O∆,`
appearing in the Φj × Φk OPE must also satisfy this condition. This condition turns out
to be highly constraining, in particular it implies that only one conformal primary in each
superconformal multiplet can appear in the OPE. The possible dimension and spin of the
conformal primary operators in the chiral sector are required to be the following:

• ∆O = 2 ∆φ + `, ` ∈ Z≥0

• ∆O = 3− 2 ∆φ, ` = 0, ∆φ ≤ 3
4

• ∆O ≥ 2 |∆φ − 1|+ `+ 2, ` ∈ Z≥0.

21Note that our conformal blocks have a different normalization from [60]: (G∆i
∆,`)

us = (−1)`

2` (G∆i
∆,`)

them.
22One can extend this comparison to arbitrary q with ∆φ = 2

q
whence one finds the simple relation

Cus
T = q2

9 C
localization
T . It is unclear how to interpret this since q > 3 models do not admit a low energy fixed

point, while the q = 2 theory is gapped in the IR.
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Observe that the operators in the first category, which correspond to the charged double-
twist operators at level m = 0, have vanishing anomalous dimension. The operators in
the second category are in general given by ξ = εαβQ̄αQ̄βΞ where Ξ is an anti-chiral field
with dimension ∆Ξ = 2(1 − ∆φ). Numerical bootstrap results suggest the existence of
such an operator in the Wess-Zumino model [41]. We will see that such an operator must
exist in our theory due to the anomalous dimension of neutral double-twist operators found
in (3.37). In fact, from the dimensions it is clear that Ξ = Φ and thus ξ = F̄ . The third
category contains the charged double-twist operators at level m > 0.

5.1 Charged double-twist operators

The analytic bootstrap [43, 44, 63] uses crossing symmetry to relate the anomalous di-
mensions and OPE coefficients of double-twist operators at large spin ` in one channel
to the twists and OPE coefficients of the minimal twist operators in the cross-channel.
Here we will be interested in the charged double-twist operators appearing in the Φj ×Φk

OPE which take the schematic form [φφ]m,` ∼ φj ∂
2m∂µ1 . . . ∂µ`φk and have dimension

∆[φφ]m,` = 2∆φ + `+ 2m+ γc(m, `).23
In the following analysis, we will focus on the averaged four-point function (3.14),

which have been expanded in terms of the s-channel superconformal blocks in (4.31),
with the OPE coefficients computed in subsection 4.4. We reproduce the expansion
formula here,

Ŵ(s)(z, z̄) =
∑
Vτ,`

∣∣∣∣CΦΦVτ,`

∣∣∣∣2 Gτ,`(z, z̄) , (5.1)

where we added the superscript (s) to emphasize that it is in s-channel, and relabeled the
blocks in terms of twist τ = ∆− `.

To study the OPE in the t-channel, let us return to the general four-point functions
Ŵ il
kj(z, z̄) introduced in (3.1). Using the U(N) symmetry, the four-point function can be

decomposed as

Ŵ il
kj(z, z̄) = (PS) il

jk ŴS(1− z, 1− z̄) + (PA) il
jk ŴA(1− z, 1− z̄) , (5.2)

where the projection matrices (PS) il
jk and (PA) il

jk are

(PS) il
jk = δi(jδ

l
k) , (PA) il

jk = δi[jδ
l
k] . (5.3)

The functionsWS(1−z, 1− z̄) andWA(1−z, 1− z̄) receive contribution from the operators
in the Φj × Φk OPE that transform in the symmetric or anti-symmetric representations
and admit the expansion

Ŵr(1− z, 1− z̄) = (zz̄)∆φ

(1− z)∆φ (1− z̄)∆φ

∑
Oτ,`,r

∣∣∣CΦΦOτ,`,r

∣∣∣2Gτ,`(1− z, 1− z̄) , (5.4)

23It is interesting to ask whether the ` = m = 0 operator, corresponding to ΦΦ, exists in our theory. For
the WZ model, the chiral ring relations set ΦΦ = 0, but for our theory the chiral ring relations for each
choice of couplings give a set of linear relations between the ΦiΦj and it is unclear what happens after the
disorder average. Our bootstrap analysis only pertains to large ` so we will be unable to determine the
existence of this operator.
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for r = S,A and Gτ,`(z, z̄) is the conformal block for the four-point function of identical
scalars. Note that by the Bose symmetry the conformal primaries Oτ,`,S are spin-even
and the conformal primaries Oτ,`,A are spin-odd. Comparing with the s-channel expan-
sion (3.8), we find the crossing equations

1
2
[
ŴS (1− z, 1− z̄)− ŴA (1− z, 1− z̄)

]
= 1
N

[
Ŵ1 (z, z̄)− Ŵadj (z, z̄)

]
,

1
2
[
ŴS (1− z, 1− z̄) + ŴA (1− z, 1− z̄)

]
= Ŵadj (z, z̄) .

(5.5)

Let us focus on the operator averaged four-point function, which admits the t-channel
expansion as

Ŵ(t)(z, z̄) = N + 1
2N ŴS(1− z, 1− z̄)− N − 1

2N ŴA(1− z, 1− z̄)

= (zz̄)∆φ

(1− z)∆φ (1− z̄)∆φ

∑
Oτ,`

(−1)`
∣∣∣CΦΦOτ,`

∣∣∣2Gτ,`(1− z, 1− z̄) .
(5.6)

where the OPE coefficient CΦΦOτ,`
is

CΦΦOτ,`
=


√

N+1
2N CΦΦOτ,`,S

for ` ∈ 2Z ,√
N−1
2N CΦΦOτ,`,A

for ` ∈ 2Z + 1 .
(5.7)

The crossing equation for the averaged four-point function reads

∑
Vτ,`

∣∣∣∣CΦΦVτ,`

∣∣∣∣2 Gτ,`(z, z̄) = (zz̄)∆φ

(1− z)∆φ (1− z̄)∆φ

∑
Oτ,`

(−1)`
∣∣∣CΦΦOτ,`

∣∣∣2Gτ,`(1− z, 1− z̄) . (5.8)

The first step of the analytic bootstrap is to consider the kinematic regime z � 1− z̄ � 1
where the conformal blocks simplify. To understand the behavior of the superconformal
block in this regime, it is useful to decompose the superconformal block in terms of the
conformal blocks of the primary operators as in (4.7). The conformal blocks in the s-channel
in the desired limit become

Gτ,` (z, z̄) ≈ (−1)` z
τ
2

(
z̄

2

)`
2F1

(
τ

2 + `,
τ

2 + `, τ + 2`; z̄
)

= (−1)` z
τ
2

(
z̄

2

)` Γ (τ + 2`)
Γ
(
τ
2 + `

)2 ∞∑
m=0

[ (
τ
2 + `

)2
m

Γ (m+ 1)2 (1− z̄)m

×
(

2ψ (m+ 1)− 2ψ
(
τ

2 + `

)
− log (1− z̄)

)]
.

(5.9)

Therefore, the leading contribution after the identity in the s-channel comes from the
minimal twist operator in the Φ× Φ OPE, which in our theory is the R-current multiplet
Rµ. Observe that the first two conformal primaries in the supermultiplet (4.7) have the
same twist as the superconformal primary, but the last two have larger twist so these can
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be ignored in our limit. We conclude that the four-point function in the s-channel can be
approximated by

Ŵ(s) (z, z̄) ≈ 1 +
∣∣∣C

ΦΦR

∣∣∣2 (Gτ=1,`=1(z, z̄) + 3
8Gτ=1,`=2(z, z̄)

)
. (5.10)

The crux of the analytic bootstrap is the observation that the sum over conformal
blocks in the t-channel expansion (5.2) (and likewise for Ŵ(t)) must have the divergent
behavior z−∆φ and z 1

2 τR−∆φ in order to match the z0 and z 1
2 τR behavior of the two contri-

butions, respectively, in the s-channel. However, the conformal blocks have power law and
logarithmic behavior in z so naively such divergent behavior can never be produced by the
t-channel blocks. The resolution is that the conformal blocks have divergent behavior at
large ` with z `2 held fixed and the infinite sum at large ` can indeed reproduce the desired
behavior in z.

The identity contribution in the s-channel can only be reproduced by the t-channel
if the OPE coefficients of the charged double-twist operators at leading order in large `
are equal to the OPE coefficients of double-twist operators in the mean field theory of two
non-identical scalar fields (nb: the Φi all have the same dimension)∣∣∣CΦΦ[φφ]m,`

∣∣∣2 = 2`

Γ(m+ 1) Γ(`+ 1)
(
`+ 3

2

)
m

×
(∆φ)2

m+`

(
∆φ − 1

2

)2

m

(2∆φ + 2m+ `− 1)` (2∆φ +m− 2)m
(
2∆φ +m+ `− 3

2

)
m

`�1−−→ 4
√
π

22∆φ+2m+` Γ(∆φ)2

(
∆φ − 1

2

)2

m

Γ(m+ 1) (2∆φ +m− 2)m
`2∆φ− 3

2 .

(5.11)

Note that this is the chiral superfield MFT OPE coefficient in contrast to (4.46) where we
reported the scalar field MFT coefficients.

First, to verify that we do reproduce the identity contribution in the s-channel, we
expand the conformal blocks in the t-channel in 1− z̄ and large `

Gτ,` (1− z, 1− z̄) = Gτ,` (1− z̄, 1− z)

≈ (−1)`

2` (1− z̄)
τ
2 kτ+2` (1− z)

≈ (−1)` 2τ+`
√
π
`

1
2 (1− z̄)

τ
2 K0

(
2`
√
z
)
,

(5.12)

where k2a(z) = z
τ
2 2F1(a, a, 2a; z) is the conformal block in one dimension, i.e., the SL(2,R)

block. If we focus on the level m = 0 double-twist operators, the t-channel expansion now
becomes

Ŵ(t) ⊃
(

zz̄

(1− z) (1− z̄)

)∆φ ∑
`�1

∣∣∣∣CφMFT
ΦΦ[φφ]0,`

∣∣∣∣2G2∆φ,` (1− z̄, 1− z)

≈ 4
Γ (∆φ)2 z

∆φ
∑
`�1

K0
(
2`
√
z
)
`2∆φ−1 ≈ 1,

(5.13)
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where we approximated the sum over ` as an integral. One can show that the higher order
terms in (1− z̄) get cancelled by the level m > 0 contributions.

Next, we need to reproduce the R-current contribution in the s-channel from the t-
channel decomposition. Let us expand the contribution to the t-channel at large ` of
the charged double-twist operators around their MFT conformal dimensions and OPE
coefficients. Denoting the shift away from the MFT value of the OPE coefficients by δ and
letting γc(m, `) be the anomalous dimensions, we find

Ŵ(t) ⊃ 4
Γ(∆φ)2

(
∆φ − 1

2

)2

m

Γ(m+ 1) (2∆φ +m− 2)m
z∆φ (1− z̄)m

×
∑
`�1

K0(2`
√
z) `2∆φ−1

(
δ

∣∣∣∣CφMFT
ΦΦ[φφ]m,`

∣∣∣∣2 + log(2)γc(m, `) + γc(m, `)
2 log(1− z̄)

)
,

(5.14)

where δ|CφMFT
ΦΦ[φφ]m,`

|2 denotes the deviation of the OPE coefficients away from the MFT OPE

coefficients. To reproduce the z 1
2 τR behavior in the s-channel, the anomalous dimensions

and shift in the OPE coefficients of the charged double-twist operators at leading order in
large ` must take the following form

γc(m, `) = γc(m)
`τR

, δ

∣∣∣∣CφMFT
ΦΦ[φφ]m,`

∣∣∣∣2 = Cc(m)
`τR

. (5.15)

Here the subscript c indicates the contribution from charged double-twist operators.
Focusing on the level m = 0 case, the anomalous dimension γc(0, `) is obtained by

matching the (1− z̄)0 log(1− z̄) on the two sides of the crossing equation. One finds that
in the s-channel the (1 − z̄)0 log(1− z̄) terms cancel between the two conformal blocks
appearing in (5.10), and hence

γc(0, `) = 0 . (5.16)

This is exactly what is required by supersymmetry for these protected operators.24 The
OPE coefficient for level m = 0 can be obtained by matching the (1 − z̄)0 term on each
side of the crossing equation with the result

Cc(0) = − 16
3π
∣∣∣C

ΦΦR

∣∣∣2. (5.17)

The case m > 0 is much more involved, but it has been worked out for the bosonic
case in [64], which we can adapt to our supersymmetric theory. Denoting the anomalous
dimension due to an s-channel conformal primary of twist τ and spin ` by γ(τ,`)

m and taking

24This bootstrap argument only shows that the leading contribution to γc(0, `) vanishes, but one can
show that the cancellation of the (1 − z̄)0 log(1− z̄) terms between the two conformal blocks is actually
true for any superconformal primary appearing in the s-channel, and hence γc(0, `) = 0 exactly.
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into account our normalization of the conformal blocks, we find

γc(m) = −1
2γ

(1,1)
m + 3

32γ
(1,2)
m

= (−1)m 32
π2

∣∣∣C
ΦΦR

∣∣∣2 Γ(m+ 1)Γ(∆φ)2

Γ
(
∆φ − 1

2

)2

×
m∑
k=0

(2∆φ +m− 2)k
Γ(m− k + 1)

Γ
(
k + 3

2

)2

Γ(k + 1)2

[
3F2

(
−k,−k, ∆φ − 2

−
(
k + 1

2

)
,−
(
k + 1

2

) ; 1
)

−
(2k

3 + 1
)2

3F2

(
−k,−k ,∆φ − 3

−
(
k + 3

2

)
,−
(
k + 3

2

) ; 1
)]

.

(5.18)

We have not analyzed Cc(m) for m 6= 0 which while in principle feasible is technically more
challenging.

5.2 Neutral double-twist operators

We would now like to repeat these analytic bootstrap arguments for the neutral double-
twist operators whose anomalous dimensions and OPE coefficients at large ` were computed
for our theory in (3.37), (3.38) and (4.37), respectively. Recall that we argued below (3.39)
that the behavior γ(0, `) ∼ `−∆φ of the anomalous dimension comes from the existence of
φk in the ψi×ψj OPE in the t-channel which is a consequence of the cubic superpotential.
However, one does not have explicit access to the ψi × ψj OPE in the superconformal
four-point function so, at the level of the superconformal bootstrap, there must exist some
conformal primary in the Φj × Φk OPE that implies this behavior for the anomalous
dimension. It will turn out, rather non-trivially, that the operator ξ (introduced in the
beginning of this section) must exist in our theory in order to produce this behavior; we
will identity this operator to be F̄ .

First, we must determine the leading large ` behavior of the OPE coefficients of the
neutral double-twist operators, which come from reproducing the identity contribution in
the cross-channel. However, one cannot use the previous crossing equation (5.8) because
the identity operator does not appear in the Φj × Φk OPE due to R-charge conservation.
Therefore, we need a crossing equation that relates the Φi×Φk OPE to the Φl ×Φk OPE.
We will begin with this and then revert back to the previous crossing equation to compute
the corrections to the OPE coefficients.

5.2.1 The leading neutral OPE data

The superconformal block expansion of the four-point function (3.1) in the u-channel reads

Ŵ il
kj(z, z̄) = |z|2∆φ

[
(P1)iljk Ŵ1

(1
z
,

1
z̄

)
+
(
Padj

)il
jk Ŵadj

(1
z
,

1
z̄

)]
(5.19)

with the expansions of Ŵ1 and Ŵadj given in (4.30). Comparing with the s-channel
expansion, we find the crossing equation

1
N

[
Ŵ1(z)− Ŵadj(z)

]
= |z|2∆φŴadj

(1
z
,

1
z̄

)
. (5.20)
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Now let us focus on the averaged four-point function, which admits the u-channel expansion

Ŵ(u)(z, z̄) = |z|2∆φ

[
1
N2 Ŵ1

(1
z
,

1
z̄

)
+ N2 − 1

N2 Ŵadj

(1
z
,

1
z̄

)]
. (5.21)

The crossing equation for the averaged four-point function reads

1
N
Ŵ1(z, z̄) = |z|2∆φ

[
1
N2 Ŵ1

(1
z
,

1
z̄

)
+ N2 − 1

N2 Ŵadj

(1
z
,

1
z̄

)]
. (5.22)

It is convenient to change the variable z → z
z−1 and write the above as

Ŵ1

(
z

z−1 ,
z̄

z̄−1

)
=
∣∣∣∣ z

z−1

∣∣∣∣2∆φ
[

1
N
Ŵ1

(
1− 1

z
,1− 1

z̄

)
+N2−1

N
Ŵadj

(
1− 1

z
,1− 1

z̄

)]
. (5.23)

Now, in the limit 1− z � z̄ � 1, the crossing equation at leading order becomes

1
N

z̄∆φ

(1− z)∆φ
≈
∑
`�1

∣∣∣C
ΦΦV2t

∣∣∣2G2∆φ,`

(
z

z − 1 ,
z̄

z̄ − 1

)
=
∑
`�1

(−1)`
∣∣∣C

ΦΦV2t

∣∣∣2G(−)
2∆φ,`

(z, z̄) ,

(5.24)
where the l.h.s. is the identity contribution to the u-channel and r.h.s. is the sum over
neutral double-twist operators in the s-channel. In the second equality, we have used the
relation of the conformal block

G∆,`(z, z̄) = (−1)`Gτ,`
(

z

z − 1 ,
z̄

z̄ − 1

)
. (5.25)

The superconformal block G(−)
∆,` is expanded in terms of conformal blocks as

G(−)
∆,` = Gτ,` − a1(τ, `)Gτ,`+1 − a2(τ, `)Gτ+2,`−1 + a3(τ, `)Gτ+2,` . (5.26)

In the desired kinematic regime and large ` limit, the (−) superconformal blocks at leading
order in z̄ become

G(−)
τ,` (z̄, z) ≈ Gτ,` − a1(∆, `)Gτ,`+1

`�1−−→ (−1)` 2τ+`+1
√
π

`
1
2 z̄

τ
2 K0

(
2`
√

1− z
)
. (5.27)

The crossing equation (5.24) now implies that the OPE coefficients of the neutral double-
twist operators at leading order in large ` are equal to those of mean field theory for a
chiral superfield. These are the same as those given in (4.46) (up to a factor of 1/N)

∣∣∣∣CΦMFT

ΦΦV2t

∣∣∣∣2 = 1
N

2` (∆φ)2
m+`

(
∆φ− 1

2

)2

m

Γ(m+1)Γ(`+1)
(
`+ 3

2

)
m

(2∆φ+2m+`)` (2∆φ+m−1)m
(
2∆φ+m+`− 1

2

)
m

`�1−−→ 1
N

2
√
π

22∆φ+2m+`Γ(∆φ)2

(
∆φ− 1

2

)2

m

Γ(m+1)(2∆φ+m−1)m
`2∆φ− 3

2 .

(5.28)

A very similar calculation to (5.13) verifies that the sum over m = 0 neutral double-twist
operators at large ` in (5.24) indeed produces the l.h.s. of (5.24) and the terms with m > 0
cancel the higher order terms (1− z̄).
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5.2.2 The subleading neutral OPE data

Armed with the leading large ` OPE coefficients, we would now like to compute the sub-
leading corrections to these OPE coefficients as well as the anomalous dimensions. If one
applies the analytic bootstrap arguments to the crossing equation between the s- and u-
channel, one will find γ(m, `) ∼ δ|CΦMFT

ΦΦV2t
|2 ∼ `−τR since the R-current Rµ is the minimal

twist operator in the s-channel.
However, in our theory, such behavior is subdominant — the leading order behavior is

actually `−∆φ . Physically it means that the `−∆φ behavior must come from the minimal
twist operator in the Φj×Φk OPE. We must therefore return to the crossing equation (5.8).

Since the neutral double-twist operators now appear in the s-channel instead of the t-
channel, we consider the kinematic regime 1−z � z̄ � 1. The t-channel is then dominated
by the minimal twist operators appearing in the Φj × Φk OPE which are restricted by
supersymmetry to be [φφ]0,` and ξ. The r.h.s. of the crossing equation is thus

W(t)(1− z, 1− z̄) ≈ (zz̄)∆φ

(1− z)∆φ (1− z̄)∆φ

∞∑
`=0

[∣∣∣CΦΦ[φφ]0,`

∣∣∣2G2∆φ,`(1− z, 1− z̄)

+
∣∣∣CΦΦξ

∣∣∣2G3−2∆φ,0(1− z, 1− z̄)
]
.

(5.29)

We want to relate this to the sum over large ` neutral double-twist operators in the s-
channel, which contribute (with γ′(`) = γ(0, `))

W(s)(z, z̄) ⊃
∑
`�1

∣∣∣C
ΦΦV2t

∣∣∣2G2∆φ+γ′(`),`(z, z̄). (5.30)

We previously stated that the analytic bootstrap matches divergent sums at large `
of double-twist operators in one channel to minimal twist operators in the cross-channel
that give a divergent contribution in the chosen kinematic limit. However, it was shown
in [65] that the more precise statement is that each low twist operator whose contribution
can be made divergent by repeated application of the one-dimensional conformal Casimir
Dd=1 ≡ z2(1−z)∂2

z −z2∂z can be matched by a sum over double-twist operators at large `.
A contribution of this type is called Casimir-singular. The contribution of each such low
twist operator in one channel maps to a given term in the asymptotic expansion at large `
of the anomalous dimension of double-twist operators in the cross-channel.

Let us now illustrate this for our crossing equation. We want to find the lowest twist
Casimir-singular contribution to the t-channel. While the charged double-twist operators
at level m = 0 are the minimal twist operators appearing in the t-channel, they have power
law and logarithmic behavior in (1 − z) so they are not Casimir-singular. On the other
hand, the contribution of ξ behaves as (1−z)

∆ξ
2 −∆φ which becomes singular after applying

the Casimir operator.
Next, we need to find the leading Casimir-singular contribution to the s-channel. At

leading order in large `, the sum over neutral double-twists gives∑
`�1

∣∣∣∣CΦMFT

ΦΦV2t

∣∣∣∣2G2∆φ,`(z, z̄) ≈
∑
`�1

(−1)`
N

2
√
π `2∆φ− 3

2 z̄∆φ

22∆φ+2`Γ(∆φ)2

[
k2∆φ+2`(z)− 1

4k2∆φ+2(`+1)(z)
]
.

(5.31)
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One can see that this cannot be Casimir-singular by the following argument. Consider the
MFT relation

∞∑
`=0

∣∣∣∣CΦMFT

ΦΦV2t

∣∣∣∣2G2∆φ,`(z, z̄) = (zz̄)∆φ , (5.32)

which demonstrates that the lefthand side is Casimir-regular. Furthermore, observe that
the blocks k2a(z) are eigenfunctions of the SL(2,R) Casimir operator:

Dd=1k2a(z) = a(a− 1) k2a(z), (5.33)

and hence the SL(2,R) blocks are Casimir-regular. Now the large ` sum in (5.31) differs
from the Casimir-regular sum in (5.32) by a finite sum of SL(2,R) blocks so the large `
sum must also be Casimir-regular.

The fact that the sum over neutral double-twists at leading order in large ` is not
Casimir-singular can be understood as due to the (−1)` appearing in the sum coming from
the normalization of the superconformal blocks. However, the sub-leading contribution in
` involves the anomalous dimension and the correction of the OPE coefficient to MFT,
each of which comes with a factor of (−1)` cancelling the (−1)` coming from the block. As
a result, this sub-leading contribution is in fact Casimir-singular.

Therefore, matching the leading Casimir-singular terms between the s- and t-channels
gives

δ
∑
`�1

∣∣∣C
ΦΦV2t

∣∣∣2 {Dd=1G2∆φ+γ′(`),`(z̄, z)
}

≈
∣∣∣CΦΦξ

∣∣∣2{Dd=1
(zz̄)∆φ

(1− z)∆φ (1− z̄)∆φ
G∆ξ,0(1− z, 1− z̄)

}
,

(5.34)

where the δ on the l.h.s. indicates that we consider the correction from MFT at large `
coming from the anomalous dimension and the correction to the OPE coefficients, analogous
to (5.14) and we let γ′(`) = γ(0, `). This can be written out more explicitly

δ
∑
`�1

(−1)`
2`

∣∣∣C
ΦΦV2t

∣∣∣2z̄∆φ+ γ′(`)
2

×
{
Dd=1

[
k2∆φ+2`+γ′(`)(z)− 1

2 a1(2∆φ + `+ γ′(`), `) k2∆φ+2(`+1)+γ′(`)(z)
]}

≈ −
∣∣∣CΦΦξ

∣∣∣2 z̄∆φ

(∆ξ

2 −∆φ

)2
(1− z)

∆ξ
2 −∆φ−1 Γ(∆ξ)

Γ(∆ξ

2 )2

[
2γE + 2ψ

(∆ξ

2

)
+ log z̄

]
.

(5.35)

Let us examine the l.h.s. of this equation more closely. At leading order in large `, the
SL(2,R) block k2a(z) can be approximated by a Bessel function, as given in (5.12). How-
ever, this leading contribution cancels between the two blocks on the l.h.s. of (5.35), and
hence we need the subleading correction to the block at large `. This can be extracted
from the integral representation of the hypergeometric function, as explained in [65], with
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the result

k2∆φ+2`+γ′(`) (z) = 22∆φ+2`+γ′(`)
√
π

`
1
2

[
A (η) + B (η)

`
+O

(
`−2

)]
A (η) = K0 (2η)

B (η) = η2K2 (2η)− η
(
2∆φ + γ′ (`)

)
K1 (2η) + 1

4

(
2∆φ + γ′ (`)− 1

2

)
K0 (2η)

(5.36)

where η ≡ `
√

1− z is held fixed in the small 1− z and large ` limit.
We now have all the pieces that we need to match the two sides of the crossing equation

to determine the anomalous dimensions and the correction to MFT of the OPE coefficients
of V2t. The behavior (1 − z)

∆ξ
2 −∆φ−1 in the t-channel can be produced by the sum over

neutral double-twist operators at large ` in the s-channel if their anomalous dimensions and
OPE coefficients at large ` are given by (subscript n denoting contribution from neutral
double-twist operators)

γ(m, `) = (−1)` γn(m)
`∆ξ−1 , δ

∣∣∣C
ΦΦV2t

∣∣∣2 = (−1)` Cn(m)
`∆ξ−1 . (5.37)

Matching the z̄∆φ log z̄ term on each side of the crossing equation gives

∣∣∣CΦΦξ

∣∣∣2 = −γn(0)
N

(4∆φ − 2∆ξ − 1)
Γ
(∆ξ

2

)2

8 Γ(∆ξ)
Γ
(
∆φ −

∆ξ

2

)2

Γ(∆φ)2 , (5.38)

and matching the z̄∆φ term gives

Cn(0) = γn(0)
(
γE + ψ

(∆ξ

2

)
− log(2)

)
. (5.39)

Let us see the consequences of this rather general analysis for our theory. We found that
the existence of the operator ξ is equivalent to the behavior of the anomalous dimension
γ(0, `) ∼ `1−∆ξ of the neutral double-twist operators. Since in our theory we know that
γ(0, `) ∼ `−∆φ we must have ∆φ = ∆ξ−1. Moreover, its OPE coefficient can be computed
from (5.38) since we computed γ(m, `) explicitly in (3.37), (3.38). One finds

∣∣∣Cus
ΦΦξ

∣∣∣2 = g3(∆φ)
N

(4∆φ − 2∆ξ − 1)
Γ
(∆ξ

2

)2
Γ
(
∆φ −

∆ξ

2

)2
Γ(1−∆φ)

8 Γ(∆φ)2 Γ(∆ξ)
≈ 2.91

N
. (5.40)

The leading order large ` OPE coefficients of V2t and their subleading correction (5.39)
agree exactly with what we found for our model (4.37). Therefore ξ indeed must exist in
our theory — in fact from the derived data it is clear that ξ = F̄ .

6 Discussion

We have constructed a large N superconformal fixed point in three dimensions exploiting
the advantages accorded by the random couplings. The physical data of the low-energy

– 39 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
1

theory, specifically the spectrum and OPE coefficients, are obtained directly by solving
the Schwinger-Dyson equations and decomposing the result for 4-point functions into su-
perconformal blocks (along with suitable use of crossing symmetry). The analytic control
arising from the disorder averaging enabled us to scrutinize the model in some detail. We
were able to obtain not just the spectrum of the non-chiral operators, but also the explicit
OPE data which were confirmed to obey the known conformal bootstrap bounds. We also
have some additional information (eg., non-chiral OPE coefficients) which have not been
constrained thus far in the bootstrap literature. Our analysis not only captured the singlet
sector of the OPE (i.e., the data from the operator averaged correlators) but also aspects
of the non-singlet states.

There are several interesting directions that are worth exploring. A simple variant of
the model we studied wherein we single out one of the chiral superfields should allow one
to make contact with vector-like large N theories. This class of models have been analyzed
in the ε expansion in [66, 67] and were critically investigated recently in [68, 69]. We will
only describe some key features here leaving a more detailed analysis for the future [51].

To be precise, consider taking N chiral superfields Φi and an additional (N +1)st field,
X, distinguished from the rest. One takes the Φi and X to have canonical Kähler terms.
There are various possibilities for the superpotential (see eg., [68]) but the simplest choice
of interest is one where we have a cubic monomial hijΦi Φj X with hij now drawn from a
Gaussian random ensemble. This model has a Z2 × U(1) global symmetry where the Z2
acts by reflection Φi → −Φi and q(X = −2) and q(Φ) = 1 under the global U(1). To see
these are the disordered analog of the vector-like models analyzed in [68] we simply note
that hij = h δij gives us a global O(N) symmetric models with Φi transforming in the
vector representation.

Since there are N Φi and only one X it is reasonable to expect that the Φ affect X

more than the other way around. Indeed a quick diagrammatic check indicates that the
diagrams where X runs in the loops are sub-dominant. The theory at large N flows to
a fixed point where Φ stays free but X picks up an anomalous dimension; ∆(φ) = 1

2 and
∆(a) = 1 where a is the bottom component of X. For the undisordered O(N) symmetric
model this was confirmed numerically in [69]. We expect this theory to have higher spin
conserved currents at large N , which would be interesting to investigate.

One motivation for us to analyze the 3d model was to understand the finite temperature
dynamics in the system. For one, it is interesting to understand the analytic structure of
real-time thermal Green’s functions. We recall that strongly coupled systems such as
those with holographic duals exhibit quasinormal poles (resulting from the thermal density
matrix being dual to a black hole geometry), in contrast to weakly coupled examples which
exhibit branch cuts [70]. Relatedly, it would be interesting to analyze transport properties
(see eg., [71, 72] for recent studies of the O(N) vector model) and the nature of chaotic
scrambling dynamics of the fixed point. In quantum mechanics, one doesn’t have spatial
profile and hence no notion of a butterfly velocity for scrambling. In two dimensional
critical systems, the underlying conformal invariance fixes the butterfly velocity to be the
speed of light (though there can non-trivial momentum dependence). We refer the reader
to [73] for a detailed analysis from a wide class of models studied in the literature. In
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higher dimensions, one expects a butterfly cone and perhaps even a non-trivial velocity
dependence for the Lyapunov exponent. Thus, a-priori, it is possible that the higher
dimensional examples exhibit features that are quite distinct.

The non-trivial part in computing the thermal properties of the IR SCFT is that
one has to numerically solve the Schwinger-Dyson equations to obtain the thermal real-
time propagators (as explained in [12]). Unlike in lower dimensional examples thermal
2-point functions are no longer determined by a conformal map from the vacuum 2-point
function. A related consequence is a fact that we already discussed in subsubsection 3.3.3:
the chaos exponent is no longer simply related to the Regge intercept of the vacuum 4-
point function. Our preliminary numerical investigations [57] suggests that the model will
not provide an example of a system exhibiting maximal chaos, and is thus unlikely to
have a sparse enough spectrum to admit a classical gravitational dual. We anticipate that
the theory has a finite string tension and the semiclassical worldsheet dynamics would be
more strongly coupled in the three dimensional case than in the two dimensional example
analyzed in [30]. Nevertheless much more needs to be done to confirm these preliminary
findings — we hope to report on these issues in the not too distant future.
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A Conventions

We will find it convenient to work in N = 2 superspace, which we parameterize by a pair
of complex spinor coordinates θα, θ̄α. The two supercharges

Qα = − ∂

∂θα
+ i Cβγ θ̄γ (σµ)αβ

∂

∂xµ
, Q̄α = − ∂

∂θ̄α
− i Cβγ θγ (σµ)βα

∂

∂xµ
, (A.1)

satisfy the supersymmetry algebra

{Qα,Qβ} =
{
Q̄α, Q̄β

}
= 0 ,

{
Qα, Q̄β

}
= 2i (σµ)αβ

∂

∂xµ
. (A.2)

Here σ are the Pauli matrices and we take Cαβ , a Hermitian matrix, which defines the
inner product between fermions via

χψ = χαψα = Cαβ χβψα = ψχ , (A.3)
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to be
Cαβ =

(
0 −i
i 0

)
. (A.4)

This matrix satisfies some identities which are useful to record:

Cαβ = −Cαβ , Cαβ = −Cβα .
CαβC

σγ = δσαδ
γ
β − δ

γ
αδ

σ
β , CαβC

γβ = δγα , CαβC
αβ = 2 .

(A.5)

Finally, for functions on superspace the following identities are useful in expansion:

f (yµ) = e−i θσ
µθ̄ ∂µf (xµ) , f

(
y†µ
)

= ei θσ
µθ̄ ∂µf (xµ) , (A.6)

where
yµ = xµ − i θ σµθ̄ , y†µ = xµ + i θ σµθ̄ . (A.7)

B Generalization to q-body superpotential in d dimensions

Let us consider supersymmetric SYK model with 4 supercharges in d (Euclidean) space-
time dimensions. We will consider the cases d = 1, 2, 3 where the low energy theory exists;
cf., [28, 74] for the quantum mechanical model and [30] for the two dimensional system.25
However, it is helpful to write the formal expressions for arbitrary dimensions. The super-
symmetric Lagrangian density is given by

L =
ˆ
d2θd2θ̄ΦiΦi −

ˆ
d2θ

1
q
gi1···iqΦi1 · · ·Φiq −

ˆ
d2θ̄

1
q
gi1···iqΦ

i1 · · ·Φiq .

= −iψ̄iα (σµ)α
β∂µψiβ + ∂µφ̄

i∂µφi − F̄ iFi

− gi1···iq
(
Fi1φi2 · · ·φiq −

q − 1
2 ψαi1ψi2αφi3 · · ·φiq

)
+ c.c

(B.1)

The coupling constants are Gaussian distributed with zero mean and variance given by

〈
gi1···iqgj1···jq

〉
= qJ2(d−1)−(d−2)q

N q−1 δi1(j1 · · · δ
iq
jq) ≡

qĴd,q
N q−1 δ

i1
(j1 · · · δ

iq
jq) , (B.2)

the choice of normalization being made to ensure the existence of a large N limit. Ĵd,q sets
the mass scale of the interaction.

The Schwinger-Dyson equations for the propagators are as in (2.10) with the only
change being in the equations for the self-energies which are now given by

Σφ (x) = Ĵd,q (q − 1)
[
GF (x) Gφ (x)− 1

2 (q − 2) G β
α (x)Gαβ (x)

]
Gφ (x)q−3 ,

Σ (x) = Ĵd,q (q − 1) G (x) Gφ (x)q−2 ,

ΣF (x) = Ĵd,q Gφ (x)q−1 .

(B.3)

25Notice that in this appendix we only consider models with the non-chiral supersymmetry. For the d = 2
results in the theory with chiral (N = (0, 2)) supersymmetry, see [32]. For d = 1 SYK models with lower
(N = 1 or 2) supersymmetry, see [29].
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We can solve the Schwinger-Dyson equations in the strong coupling limit |p|−1J →∞.
As before we drop the UV contribution (the free propagator), and consider the conformal
ansatz:

G∗φ(x) = bφ

|x|2∆φ
, G∗(x) = bψ

xµσµ

|x|2∆ψ+1 , G∗F (x) = bF
|x|2∆F

. (B.4)

The self-energies evaluate to

Σ∗φ(x) = Ĵd,q (q − 1)

 bF b
q−2
φ

|x|2∆F+2(q−2)∆φ
− (q − 2)

b2ψ b
q−3
φ

|x|4∆ψ+2(q−3)∆φ

 ,
Σ∗(x) = Ĵd,q (q − 1) bψ bq−2

φ

xµσµ

|x|2∆ψ+1+2(q−2)∆φ
,

Σ∗F (x) = Ĵd,q b
q−1
φ

1
|x|2(q−1)∆φ

.

(B.5)

In deriving these expressions (and the analogous ones in the main text) we have made use
of the following Fourier transformations:

ˆ
ddx

eikx

|x|2∆ =
π
d
2 Γ

(
d
2 −∆

)
22∆−d Γ (∆)

1
|k|d−2∆ ,

ˆ
ddx

xµ eikx

|x|2∆+1 = i
π
d
2 Γ

(
d
2 −∆ + 1

2

)
22∆−d Γ

(
∆ + 1

2

) kµ

|k|d−2∆+1 .

(B.6)

On the supersymmetric vacuum, the equations (2.13) give the relations:

∆ψ = ∆φ + 1
2 , ∆F = ∆φ + 1 ,

bψ = 2i∆φ bφ , bF = 2∆φ (2∆φ + 2− d) bφ .
(B.7)

Consequently, the solution to the Schwinger-Dyson equations can be readily obtained and
reads:

∆φ = d− 1
q

,

bqφ Ĵd,q = 1
4πd+1 cos

((d− 1)(q − 2)π
2q

)
Γ
(
d− 1
q

)
Γ
((d− 1)(q − 1)

q

) (B.8)

which reduces to (2.17) for d = 3 and q = 3 which is the situation of primary focus.
Given the general solution above, we can compare this against the results obtained in

d = 2 by [30] and in d = 1 by [28].26 For example the asymptotics at large twist and spin
for the two dimensional model can be deduced from the above (see also the results in [31]).
Specifying to q = 3 we find the conformal dimensions are organized into the sequence

h = `+ t

2 , h̄ = t

2 , t = 2∆φ + 2m+ γ(m, `) (B.9)

26For a complete analysis of the N = 2 model and more detailed results, see [75, 76].
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the anomalous dimensions γ(m, `) are captured by

γ(m, `) = F2(∆φ)
m2−4∆φ

, m� ` ∼ 1 ,

γ(m, `) = F2(∆φ)
s1−2∆φ

Γ(m+ 2∆φ)
Γ(m+ 1) , `� 1 ,

(B.10)

with

F2 (∆φ) = 2 (∆φ − 1) ∆φ sin (2π∆φ) Γ (−∆φ)2

π Γ (∆φ)2

F2

(
∆φ = 1

3

)
= −

2 Γ
(
−1

3

)2

3
√

3 Γ
(

1
3

)2 = −0.281 .
(B.11)

On the other hand in d = 1 we simply have

∆ = 2 ∆φ + 2m+ γ(m)

γ(m) = 16∆φ sin2(2π∆φ) Γ(2− 2∆φ) Γ(−2∆φ)
π2m1−4∆φ

.
(B.12)

C Conformal partial waves: review

We review bosonic conformal partial waves briefly in this appendix, for many of these
results enter our calculation of the four-point function in § 4. A detailed discussion can be
found in the early work [77] and in the recent analysis of Lorentzian OPEs in [58, 78].

The conformal partial waves Ψ∆12,∆34
∆,` are labelled by four external dimensions ∆i and

an internal dimension and spin (∆, `). Here ∆ij = ∆i −∆j . They can be written as the
following linear combination of a conformal block and its shadow block27

Ψ∆12,∆34
∆,` = S∆34

∆̂,`
G∆12,∆34

∆,` + S∆12
∆,` G

∆12,∆34

∆̂,`
(C.1)

where ∆ = 3
2 + is is the principal series for the conformal group SO(4, 1) and ∆̂ = 3 −∆

is the conformal dimension of the shadow operator. A complete set of conformal partial
waves can be constructed by restricting to s > 0 and ` ≥ 0. The shadow coefficients S∆12

∆,`
are given by

S∆12
∆,` = π

3
2

Γ
(
∆− 3

2

)
Γ (∆ + `− 1) Γ

(
∆̂+∆12+`

2

)
Γ
(

∆̂−∆12+`
2

)
Γ (∆− 1) Γ(∆̂ + `) Γ

(
∆+∆12+`

2

)
Γ
(

∆−∆12+`
2

) . (C.2)

The normalization of the conformal partial waves can be computed directly from the ex-
pansion of the conformal blocks around the origin with the result〈

Ψ∆12,∆34
∆,` ,Ψ∆12,∆34

∆′,`′
〉∆12,∆34

0
= n∆,` 2πδ(s− s′)δ``′ , (C.3)

27Note that our conformal blocks have a different normalization from [58]: (G∆i
∆,`)

us = (−1)`

2` (G∆i
∆,`)

them.
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where we have used the inner product defined in (4.15) and the normalization constant is

n∆,` = π4 (2`+ 1)
22`−1 (∆ + `− 1) (2−∆ + `)

Γ
(
∆− 3

2

)
Γ
(

3
2 −∆

)
Γ (`+ 1)2

Γ (∆− 1) Γ (2−∆) Γ
(
`+ 3

2

)2 . (C.4)

Let us now explain the subtlety regarding the bosonic inner product for real external
dimensions that gives (4.15). When the external dimensions live in the principal series
(∆i ∈ 3

2 + is), the inner product (4.14) gives (∆̂ij ≡ ∆̂i − ∆̂j)〈
Ψ∆12,∆34

∆,` ,Ψ∆12,∆34
∆′,`′

〉
0

=
ˆ
d2z
|z − z̄|
|z|6

Ψ∆12,∆34
∆′,`′ (z, z̄) Ψ∆12,∆34

∆′,`′ (z, z̄)

=
ˆ
d2z
|z − z̄|
|z|6

Ψ∆i
∆′,`′(z, z̄) Ψ∆̂12,∆̂34

∆̂′,`′ (z, z̄).
(C.5)

After analytic continuation to ∆i ∈ R, one now has ∆i 6= ∆̂i. Using the identity

G−∆12,−∆34
∆,` = |1− z|−∆12+∆34 G∆12,∆34

∆,` , (C.6)

one can see that the correct analytic continuation of the inner product is〈
Ψ∆12,∆34

∆,` , Ψ∆12,∆34
∆′,`′

〉∆12,∆34

0
=
ˆ
d2z
|z − z̄|
|z|6

|1− z|−∆12+∆34 Ψ∆12,∆34
∆′,`′ (z, z̄) Ψ∆12,∆34

∆̂′,`′ (z, z̄).

(C.7)
Finally, we review an alternate definition of the conformal partial wave using the

shadow formalism. In this formalism, the conformal partial wave Ψ∆i
∆,` is constructed from

the three-point function
〈
O1O2O∆,`

〉
and the corresponding three-point function for the

shadow operator
Ô∆̂,`(x) =

ˆ
d3y

1
|x− y|2∆̂

O∆,`(y). (C.8)

To wit,

Ψ∆12,∆34
∆,` ({xi}) =

ˆ
d3x5

〈
O1(x1)O2(x2)Oµ1...µ`

∆,` (x5)
〉〈
Ô∆̂,`;µ1...µ`

(x5)O3(x3)O4(x4)
〉

〈O1(x1)O2(x2)〉 〈O3(x3)O4(x4)〉 .

(C.9)
The three-point function appearing in (C.9) is

〈
O1(x1)O2(x2)Oµ1...µ`

∆,` (x5)
〉

= Zµ1
12 . . . Z

µ`
12 − traces

|x12|∆1+∆2−∆|x25|∆2+∆−∆1 |x15|∆1+∆−∆2
, (C.10)

where
Zµ12 = |x15||x25|

|x12|

(
xµ15
x2

15
− xµ25
x2

25

)
, Z2

12 = 1. (C.11)

Explicitly, the conformal partial wave is

Ψ∆12,∆34
∆,` =

ˆ
d3x5

|x12|∆

|x25|∆2+∆−∆1 |x15|∆1+∆−∆2

|x34|∆̂

|x35|∆3+∆̂−∆4 |x45|∆4+∆̂−∆3
Ĉ`(η), (C.12)
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where
η = |x15||x25|

|x12|
|x45||x35|
|x34|

(
xµ15
x2

15
− xµ25
x2

25

)(
x35,µ
x2

35
− x45,µ

x2
45

)
(C.13)

and Ĉ` is given by

Ĉ`(x) ≡
√
π Γ(`+ 1)

2` Γ
(
`+ 1

2

) 2F1

(
−`, `+ 1, 1; 1− x

2

)
. (C.14)

D Superconformal three-point function

The form of the three-point function of general primary superfields in 3d CFTs with N -
extended supersymmetry is derived in [79]. In this appendix, we first review the result
in [79], and then specialize it to the three-point function of our interest — that of a chiral
superfield, an anti-chiral superfield and a general spin-` superfield in N = 2 SCFT.

Let us consider the superspace R3|2N with bosonic coordinates xµ for µ = 1, · · · , 3,
and fermionic coordinates θiα for i = 1, · · · , N and α = 1, 2. We define the two-point
structures

xαβ12 = (x1 − x2)µ (σµ)αβ + 2iθi(α1 θ
iβ)
2 − iθiα12θ

iβ
12 , uij12 = δij + 2iθiα12

(
x−1

12

)
α

βθj12,β (D.1)

and
|x12|2 = −1

2x12,α
βx21,β

α , x12,α
β = x12,α

β

|x12|
. (D.2)

The two-point structures x12,α
β and uij12 transform only under the local Lorentz and the lo-

cal SO(N ) R-symmetry transformations of the superconformal algebra in the way indicated
by their Lorentz and R-symmetry indices. The structure |x12|2 transforms only under the
local scaling transformation with scaling dimension −1.28 The two-point structures satisfy

x12
β
α = −x21,α

β , uij21 = uji12 , x12,α
γx21,γ

β = δβα , uik12u
jk
12 = δij . (D.3)

Next, we define the three-point structures

X3,α
β =

(
x−1

13

)
α

γx12,γ
δ
(
x−1

32

)
δ

β , Θi
3,α =

(
x−1

13

)
α

βθi31,β −
(
x−1

23

)
α

βθi32,β ,

U ij3 = uik31u
kl
12u

lj
23 = δij + 2iΘiα

3

(
X−1

3

)
α

βΘj
3,β ,

(D.4)

and
|X3|2 = 1

2X3,α
βX3,β

α , X3,α
β = X3,α

β

|X3|
,

|Θ3|2 = Θiα
3 Θi

3,α , Θi
3,α =

Θi
3,α

|X3|
1
2
,

(D.5)

and also the cyclic permutations of the 1, 2, 3 of the above structures. The structures
X3,α

β , Θi
3,α and U ij3 transform only under the local Lorentz and the local SO(N ) R-

symmetry transformations in the way indicated by their Lorentz and R-symmetry indices.
28The local Lorentz, scaling and SO(N ) R-symmetry transformations are the corresponding transforma-

tions with the local parameters defined in equations (4.7a), (4.7b) and (4.7c) of [79].
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The structures |X3| and |Θ3| transform only under the local scaling transformation with
scaling dimension 1 and 1

2 , respectively. Hence, the combination

|Θ3|2

|X3|
(D.6)

is a three-point invariant. There are relations between the three-point structures

x13,α
γX3,γ

δx31,δ
β = X1,α

β

|X1|2
, Θiγ

1 x13,γ
δX3,δ

β = uij13Θjβ
3 , U ij3 = uik31U

kl
1 u

lj
13 , (D.7)

and the cyclic permutations of the 1, 2, 3 of them. We can choose to work with the set of
three-point structures

x13,α
β , x23,α

β , uij13 , u23 , X3,α
β , Θi

3,α , U ij3 . (D.8)

The rest of the structures can be generated by the structures in this set.
Consider a primary superfield ΦIA(X) that transforms in the Lorentz representation

T with indices denoted by A, B, · · · and the SO(N ) R-symmetry representation D with
indices I, J , · · · . The transformation law of primary superfields under the superconformal
algebra is given in (5.1) of [79], which constrains the two- and three-point functions of them
to only depend on the two- and three-point structures introduced above. For example, the
two-point function of a primary superfield ΦIA(X) and its conjugate ΦAI (X) takes the form

〈ΦIA (X1) ΦBJ (X2)〉 = TA
B (x12)DIJ (u12)
|x12|2∆ , (D.9)

where X = (x, θ) is the superspace coordinate and ∆ is the conformal dimension of ΦIA(X).
The three-point function of three different primary superfields takes the form

〈ΦI11,A1
(X1)ΦI22,A2

(X2)ΦI33,A3
(X3)〉= T (1)

A1
B1 (x13)T (2)

A2
B2 (x23)D(1)I1J1 (u13)D(2)I2J2 (u23)
|x13|2∆1 |x23|2∆2

×HJ1J2I3
B1B2A3

(X3,Θ3,U3) ,
(D.10)

where the function HJ1J2I3
B1B2A3

(X,Θ, U) satisfies the scaling condition

HJ1J2I3
B1B2A3

(λ2X, λΘ, U) = λ2∆3−2∆2−2∆1HJ1J2I3
B1B2A3

(X,Θ, U) , for λ > 0. (D.11)

The general three-point function (D.10) can be specialized to the three-point func-
tion of superfields in the short multiplets. The shortening conditions usually involve the
superderivatives

Di
α = ∂

∂θiα
+ iθiβσµβα

∂

∂xµ
(D.12)

acting on the superfields, and turn to differential equations on the function
HJ1J2I3
B1B2A3

(X,Θ, U). When deriving the differential equations, it would be useful to note
the identities

Di
1,γf

µ1···µ`(X3,Θ3) = −(x−1
31 )γαuij13D

j
3,αf

µ1···µ`(X3,Θ3),
Di

2,γf
µ1···µ`(X3,Θ3) = −i(x−1

32 )γαuij23Q
j
3,αf

µ1···µ`(X3,Θ3),
(D.13)
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where the differential operators Diα and Qiα are

Diα = ∂

∂Θiα
+ iΘiβσµβα

∂

∂Xµ
, Qiα = i

∂

∂Θiα
+ Θiβσµβα

∂

∂Xµ
, (D.14)

where Xµ = 1
2Xα

β(σµ)βα.
Now, we specialize to N = 2, and introduce the complex fermionic coordinates and

the complex superderivatives

θα = 1√
2

(θ1α + iθ2α) , θ̄α = 1√
2

(θ1α − iθ2α) . (D.15)

Dα = 1√
2

(D1
α − iD2

α) , Dα = − 1√
2

(D1
α + iD2

α) , (D.16)

Consider a chiral superfield Φ(X) that satisfies the chiral condition

DαΦ(X) = 0, (D.17)

which in particular constrains the conformal dimension ∆ to be equal to the R-charge
q. To write down the correlation functions involving chiral superfields, it is convenient to
introduce the chiral two-point structure

zαβ12 = xαβ12 − 2iθα12θ
β
12 = xαβ12 − i

(
θiα12θ

iβ
12 + iεijθ

iα
12θ

jβ
12

)
, (D.18)

which is related to the superspace translation invariant combination z12 defined in (3.19) by

zαβ12 = −zµ21 (σµ)αβ . (D.19)

We also have the identity
|z21|2 = |x12|2

(
u11

12 + iu12
12

)
. (D.20)

Specializing the general two-point function (D.9) to the two-point function of the chiral
superfield Φ(X) with its conjugate Φ(X), we find

〈Φ (X1) Φ (X2)〉 =
(
u11

12 − iu12
12
)∆

|x12|2∆ = 1
|z21|2∆ . (D.21)

Specializing the general three-point function (D.10) to the three-point function of the chiral
superfield Φ(X), its conjugate Φ(X) and a general spin-` superfield Vµ1···µ`

∆,` , we find

〈Φ (X1) Φ (X2)Vµ1···µ`
∆,` (X3)〉 =

(
u11

13 − iu12
13
)∆Φ (u11

23 + iu12
23
)∆Φ

|x13|2∆Φ |x23|2∆Φ
Hµ1···µ` (X3,Θ3) , (D.22)

where the function Hµ1···µ`(X3,Θ3) satisfies the chiral conditions

D1,αH
µ1···µ`(X3,Θ3) = 0 = D2,αH

µ1···µ`(X3,Θ3) . (D.23)

The useful identities (D.13) give

D1,γf
µ1···µ` (X3,Θ3) = −

(
x−1

31

)
γ

α
(
u11

13 − iu12
13

)
D3,αf

µ1···µ` (X3,Θ3) ,

D2,γf
µ1···µ` (X3,Θ3) =

(
x−1

32

)
γ

α
(
u11

23 + iu12
23

)
Q3,αf

µ1···µ` (X3,Θ3) ,
(D.24)
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where the differential operators Dα and Qα are

Dα = − 1√
2

(
D1
α + iD2

α

)
, Qα = − 1√

2

(
iQ1

α +Q2
α

)
. (D.25)

The chiral conditions (D.23) become differential equations

D3,αH
µ1···µ`(X3,Θ3) = 0 = Q3,αH

µ1···µ`(X3,Θ3) . (D.26)

The solution to the scaling condition (D.11) and the differential equations (D.26) is

Hµ1···µ` (X3,Θ3) = CΦΦV |Y3|∆−`−2∆Φ (Yµ1
3 · · ·Y

µ`
3 − traces) , (D.27)

where CΦΦV is the OPE coefficient and the vector Yµ
3 is

Yµ
3 = Xµ

3 − iΘα
3 (σµ)α βΘ3β . (D.28)

We have the identity29

|Y3|2 = |z21|2

|z31|2|z23|2
. (D.29)

In summary, the three-point function is

〈Φ (X1) Φ (X2)Vµ1···µ`
∆,` (X3)〉 = CΦΦV

|z21|∆−`−2∆Φ

|z31|∆−`|z23|∆−`
(Yµ1

3 · · ·Y
µ`
3 − traces) . (D.30)

E Supershadow coefficients

We discuss the computation of the supershadow coefficients A∆,` used to define the su-
perconformal partial waves in terms of superconformal blocks (4.5) in this appendix. This
can be done using an alternate definition of the superconformal partial waves Υ∆,` given
by the supershadow formalism for 3d N = 2 SCFTs, which to our knowledge has received
little attention in the literature (for analysis of the 4d N = 1 case, see [80, 81]).

In the supershadow formalism, the superconformal partial wave Υ∆,` corresponding
to a superconformal primary V∆,` is constructed from the three-point function of V∆,` and
the three-point function of its supershadow Ṽ∆̃,` in the following way:

Υ∆,` =
ˆ
d3x5 d

2θ5 d
2θ̄5

〈
Φ
(
X1
)

Φ(X2)Vµ1...µ`
∆,`

(
x5,θ5, θ̄5

)〉〈
Ṽ∆̃,`;µ1...µ`

(
x5,θ5, θ̄5

)
Φ(X3)Φ

(
X4
)〉〈

Φ
(
X1
)

Φ(X2)
〉〈

Φ(X3)Φ
(
X4
)〉 .

(E.1)
We have restricted our attention here to the set of superconformal partial waves for the par-
ticular four-point function of interest, but one can easily generalize the above to arbitrary
external operators. The three-point function is given in (D.30).

In practice, this definition of the superconformal partial waves is less useful than the
one in terms of superconformal blocks given in (4.5) because it requires integrating over

29This can be argued by the fact that both sides satisfy the chiral conditions and transform in the same
way under the superconformal algebra.
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θ5, θ̄5 which is fairly involved and leads to quite complicated expressions. This is the
reason we chose to work with the formulation in terms of superconformal blocks in the
main text. However, the latter definition is incomplete because we never computed the
supershadow coefficients A∆,`. One could in principle compute these by directly performing
the integrals (E.1) and rewriting the result in terms of superconformal blocks. Instead, we
will employ the simpler method of computing

〈
Υ∆,`,F0

〉
using (E.1) and comparing the

result with the calculation of this inner product in (4.25). This will give us an expression
for f(∆, `) and hence A∆,` via (4.12).

We start by gauge-fixing the bosonic coordinates to x1 = 0, x2 = 1, x5 = ∞ and the
Grassmann coordinates to θ̄1 = θ2 = θ5 = θ̄5 = 0. Let V∆,` be the conformal primary given
by the bottom component of V∆,`. After gauge-fixing, the three-point function involving
V∆,` appearing in (E.1) becomes a bosonic three-point function involving V∆,` and the
three-point function involving the supershadow operator becomes〈

Ṽ∆̃,`;µ1...µ`
(∞)Φ(X3)Φ(X4)

〉
〈

Φ(X3)Φ(X4)
〉 = (−1)`

〈
Ṽ∆̃,`;µ1...µ`

(∞)φ(x3)φ̄(x4)
〉

〈
φ(x3)φ̄(x4)

〉 ∣∣∣∣
x34→z43

(E.2)

where on the r.h.s. we replace x34 with z34 in the bosonic three-point function. The desired
inner product, including the Berezinian for this choice of gauge-fixing, is thus given by

〈
Υ∆,`,F0

〉
= − 2

π

ˆ
d3x3 d

2θ3 d
3x4 d

2θ̄4
|z43|∆̃−`−4∆Φz43,µ1 . . . z43,µ`(1µ1 . . .1µ` − traces)

|z13|2∆Φ |z42|2∆Φ

∣∣∣∣
X

,

X ≡ {θ̄1 = θ2 = 0;x1 = 1, x2 = 0}.
(E.3)

The factor −2/π comes from the fact that the Berezinian gives −1/(24Vol(SO(2))) =
−1/(25π) and then we multiply by a factor of 26 because this is how we normalized the
inner product below (F.7). The key observation is that this integral takes the exact same
form as the ladder kernel eigenvalue equation (3.21) for an operator with dimension ∆̃ and
spin ` after fixing coordinates in the same way as we have done here. Therefore,

〈
Υ∆,`,F0

〉
= − 1

π J b3φ
k
(
∆̃, `

)
= − 1

π J b3φ
k (∆, `) , (E.4)

where we have used the invariance of the kernel eigenvalue under ∆ → ∆̃. Comparison
with (4.25) gives

f(∆, `) = (−1)`+1
2` (∆ + `)(∆− `− 1) Γ

(
`+ 1

2

)
√
π Γ(`+ 1) . (E.5)

F Determinants for gauge-fixing

In this appendix, we explain how to compute the determinant and Berezinian for the gauge-
fixing maps used to fix coordinates in the bosonic (4.14) and N = 2 (4.19) inner products,
respectively.
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Let us begin with the bosonic case. Given the unfixed measure appearing in (4.13):

dα ≡ d3x1 d
3x2 d

3x3 d
3x4

x6
12x

6
34

, (F.1)

we want to fix the coordinates to x1 = 0, x2 = ( z+z̄2 , z−z̄2i , 0), x3 = 1 = (1, 0, 0), x4 = ∞
using the conformal group. We will denote the corresponding gauge-fixing map by P. The
Jacobian JP of the map P, i.e., induced by the action of the conformal group, is obtained
by contraction of the measure with the generators of the conformal algebra where the latter
are represented by vector fields. More precisely, we want to fix the 10 coordinates of the 4-
points {x1, x2, x3, x4}, which we denote by wj (j = 1, . . . , 10) using the 10 generators of the
conformal algebra: translations Pµ, special conformal transformations Kµ, rotations Mµν ,
and dilatation D, which we denote in turn by Vj (j = 1, . . . , 10). Let v(i) denote a generator
acting on the ith spatial coordinate. The generator V acting on the four coordinates is then
given by the sum on each of the coordinates, viz.,

V = v(1) + v(2) + v(3) + v(4). (F.2)

The Jacobian is now constructed from the contraction of the Vi with the wj :

(JP)ij = dwj(Vi). (F.3)

It is straightforward to compute the determinant of this Jacobian. Furthermore, there
exists a discrete symmetry z → z̄ that must be gauged in the inner product. We therefore
need to replace the factor Im(z) appearing in det (JP) with |Im(z)| and divide by a factor
of 1/2. Thus we obtain the gauge-fixed measure

dαfixed = dzdz̄
det (JP)
x6

12x
6
34

∣∣∣∣
x1=0,x3=1,x4=∞

→ dzdz̄
|z − z̄|
4 |z|6 . (F.4)

We are free the normalize our inner product such that there is no factor of 1
4 and hence we

obtain the bosonic inner product in the main text (4.14).
The supersymmetric case is similar. We start with the unfixed measure

dαN=2 ≡
d3x1d

3x2d
2θ̄1d

2θ2
|z12|4

d3x3d
3x4d

2θ3d
2θ̄4

|z43|4
. (F.5)

The superconformal group OSp(4|2, 2) includes four Poincaré supercharges Qα and four
conformal supercharges Sα which we use to fix the Grassmann coordinates to θ̄1 = θ2 =
θ3 = θ̄4 = 0. The super-Jacobian of the gauge-fixing map PN=2 is given by

sJPN=2 =
(

dw(V ) dθ(V ) dθ̄(V )
dw(Q,S) dθ(Q,S) dθ̄(Q,S)

)
. (F.6)
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where we have used the notation (dw(Q,S)) ≡
(
dw(Q)
dw(S)

)
. Therefore, we obtain the gauge-

fixed measure

dαfixed
N=2 = d3x1d

3x2d
2θ̄1d

2θ2
|z12|4

d3x3d
3x4d

2θ3d
2θ̄4

|z43|4
Ber(sJPN=2)

∣∣∣∣
x1=0,x3=1,x4=∞;θ̄1=θ2=θ3=θ̄4=0

→ d2z
|z − z̄|

26|1− z|2|z|4 ,

(F.7)

where there is a factor of 2−4 coming from the fact that d2θj = i
2d(θj)1d(θj)2. Again, we

are free to remove the factor of 2−6, which gives the inner product in the main text (4.19).
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