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1 Introduction

The quantum critical point (QCP) is a door to understanding strongly correlated sys-
tems [1], where the basic building blocks of the matter lose particle characters by the
strong correlation so that usual field theory is difficult to apply. The gravity dual descrip-
tion [2–4] might work there due to the striking similarities between the QCP and the black
hole: both get the universality by the information loss and both can be assigned with
transport coefficients [5–7]. However, too much information is lost at the QCP to identify
the physical system from the observed data so that informations off the QCP are essential
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for it. Such motivation led our recent study on the effect of the symmetry breaking on
the fermion spectral function in [8]. We found features like Fermi arc of semi-metals, flat
band [9] and nodal lines [10] as well as the gap and pseudo gap [11, 12]. What we found
was rather surprising since we did not intend it and the topology is known to be associated
with band structure rather than the correlation which makes the band structure fuzzy.

In this paper, we will show that when the fermion couples to the scalar with conden-
sation in the holographic bulk space, the fermion can get a topologically protected zero
mode localized at the AdS boundary, hence at the bulk of the material, and it can be used
to provide an analytic solution to the prototype quantum transition like that of metal to
insulator.

2 The fermion zero mode in AdS

Let the bulk fermion ψ be the dual field to the boundary fermion χ and ΦI be the dual
bulk field of the operator χ̄ΓIχ, where I is an index set for arbitrary type of tensor:
I = {µ1µ2 · · · } or {5µ1µ2 · · · } and the dot means the Lorentz contraction. We can encode
the effect of the symmetry breaking on the spectrum of the fermions by considering the
coupling ψ̄Φ · Γψ where Φ becomes a classical field under the symmetry breaking. Our
model is given by the action given by the sum S = SΦ + Sψ + Sbdy, where

SΦ =
∫
dd+1√−g

(
DµΦ2 −m2

ΦΦ2
)
, (2.1)

Sψ =
∫
dd+1√−gx iψ̄ (ΓµDµ − (m+ gΦ))ψ, (2.2)

Sbdy = i

∫
∂M

ddx
√
−hψ̄ψ. (2.3)

in the fixed metric and gauge field background gµν , Aµ. Our action is a local field theory
in the bulk, and we do not care whether its dual theory is strictly local field theory at the
boundary, because the strongly correlated boundary systems are not necessarily described
by a local field theory in the boundary due to the quantum entanglement of such many-
body system. However, we assume that ΦI ψ̄ΓIψ, in leading order is dual to the boundary
operator φsI χ̄ΓIχ, where φsI is the source field of the operator χ̄ΓIχ. ΦI is the ‘extension’
of φsI according to the standard dictionary.

In this paper, we use the most canonical and simplest AdS black hole metric,

ds2 = −f(z)
z2 dt2 + 1

z2f(z)dz
2 + 1

z2

d−1∑
i=1

dx2
i , (2.4)

where f(z) = 1−(z/zH)d for AdSd+1 and zH is related to the temperature by zH = d/4πT .
We take d = 3 throughout this paper unless mentioned as otherwise.

The fermion equation of motion is given by

(ΓµDµ −m− gΦ)ψ = 0, (2.5)
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where g = ±1 and Dµ = ∂µ + 1
4ωµabΓ

ab. According to the choice of sign of Sbdy, half of the
bulk spinor degrees of freedom are projected out so that for ± sign, only ψ± survive [9, 13].
Following ref. [14], we use following Gamma matrices representation:

Γr = σ3 ⊗ 12, Γµ = τ1 ⊗ γµ, with γµ = {iσ2, σ1, σ3} for µ = 0, 1, 2.

For m2
Φ = −2 the solution for the scalar in the zero temperature limit near the boundary

is given by
Φ = M0z +M1z

2. (2.6)

Due to the in-falling condition at the horizon, one of M0 and M1 is a BC and the other
is determined as a consequence. If M0 as source is zero, then M1 is identified as the
condensation corresponding to the spontaneous symmetry breaking. In general, Φ includes
the non-zero source termM0, which can correspond to the external driving force like doping
parameter or pressure. In the zero temperature limit, the probe solution is good almost
everywhere since the horizon is at the z →∞.

We can prove the existence of the zero modes by solving above Dirac equation explicitly
to find the boundary Green functions whose poles give us the full information of the
spectrum. The readers can find the derivation of the Green functions at zero temperature
limit in the appendix A. Here we give just the result.

For Φ = M0z,

Gg=1
R = (4µ)

1
2 +mΓ(−2m)Γ (1 +m+ ν)

(k2 − w2) Γ(−m+ ν)Γ(1 + 2m)γ
µkµγ

t, (2.7)

Gg=−1
R = (4µ)

1
2 +mΓ(−2m)Γ (1 +m− ν)

(k2 − w2) Γ (−m− ν) Γ(1 + 2m)γ
µkµγ

t, (2.8)

where parameters µ, ν are given by µ = k2 − w2 + M2
0 and ν = m√

1−ε′ with ε′ = ω2−k2

M2
0

.
The poles of the Green function are given by those of gamma function at the non positive
integers. The massive spectrum is given by

ω2 − k2 = M2
0

(
1−m2/(n+m+ 1)2

)
, n = 0, 1, 2 · · · , (2.9)

for both g = ±1. From the Green functions, we can check that the zero mode pole of Gg=1
R

is cancelled, while that of Gg=−1
R survives.

Similarly, for Φ = M1z
2, the Green functions are given by

Gg=1
R = M

−1/2+m
1

Γ
(1

2 −m
)
Γ
(1

2 +m− ε
)

2Γ
(1

2 +m
)
Γ(1− ε)

γµkµγ
t, (2.10)

Gg=−1
R = M

−1/2+m
1

Γ
(1

2 −m
)
Γ(−ε)

2Γ
(1

2 +m
)
Γ
(1

2 −m− ε
)γµkµγt, (2.11)

where ε = ω2 − k2/(4M1) and therefore the spectrum is given by

ω2 − k2 = 4M1(n+m+ 1/2) for g = 1,
ω2 − k2 = 4M1n, for g = −1. (2.12)

Here again the n = 0 mode for g = 1 is gapful but that for g = −1 is a gapless mode.
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(a) gΦ > 0, Gap (b) gΦ = 0, QCP (c) gΦ < 0, Gapless

Figure 1. Spectral Functions for Φ = M0z. (a) for gapped phase, (b) for the QCP, (c) for the
topological phase.

From these results, we see that for both Φ = M0z and Φ = M1z
2, a gapless phase as

well as the gaped phase emerges from the same QCP by invoking the scalar orders with
different signs. See figure 1(a) and (c).

This is a surprising aspect of the holographic theory because such phenomena can
never happen in flat spacetime or in weakly interacting system where the scalar order
always introduces a gap. Such fermion zero mode has not been reported in holographic
context as far as we know. Now, we are forced to ask, if an ordered state is gapless, how
the order can be protected? We now want to understand its origin.

3 The topological insulator in AdS

The closest phenomena in the flat spacetime is the Jackiw-Rebbi (JR) fermion zero mode
in the soliton background [15]. It is a solution of the Dirac equation (γµ∂µ − ϕ)ψ = 0,
where ϕ changes sign across the domain wall. For such ϕ, the fermion has a normalizable
zero mode, ψ0(x) = exp (−

∫
dxϕ), which is localized at the domain wall. Its stability is

guaranteed by the boundary condition of ϕ, which makes it topological. See figure 2(a) top.
There were flurries of activity last decade, under the name of the topological insulator after
this solution is realized as the surface mode of condensed matter systems [16, 17]. In flat
space, the soliton ϕ can be realized by the sign changing fermion mass across the boundary
of the material, ϕ = m · sign(x), which in turn can be realized by the band inversion. See
figure 2(a) bottom.

The gravity dual description has asymptotically Anti-de Sitter (AdS) space whose
boundary is identified with the physical space in which materials are sitting. We will
show that our zero mode solution is nothing but the AdS version of the Jackiw-Rebbi
solution [15]. The argument can be greatly simplified in the approximation where gravity
is AdS4 where the Dirac equation becomes[

Γz∂z + iKµΓµ − m+ gΦ
z

]
ψ = 0, (3.1)
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Soliton φ

Fermion zero mode

x-x

m -m

(a) Jackiw-Rebbi mode

M0 -M0

+z-z AdS

∂AdS = our space time

Mirror
AdS

Zero mode

(b) JR mode in AdS

Figure 2. (a: top): Jackiw-Rebbi fermion zero mode in the soliton background. (a: bottom)
Realization of the soliton ϕ by sign changing mass. (b) M0 corresponds to the m in flat space. The
boundary of AdS is the bulk of the physical space.

withKµ = (ω, kx, ky). Here the vielbeins in Γµ = eµaΓa were taken care of and all Γ matrices
in eq. (3.1) denote the constant ones Γa. Note that in the diagonal metric, the non-zero
vielbein components are just square roots of the diagonal metric components. We construct
the fermion zero mode in AdS by the separation of variables: ψ0±(z, k) = φ±(z)χ0±(k),
where φ± is a scalar and the spinor χ0±(k) is defined by Γzχ0±(k) = ±χ0±(k). They satisfy[

∓∂z + m+ gΦ
z

]
φ± = 0, KµΓµχ0±(k) = 0, (3.2)

respectively. The solution is given by

φ0±(z, x) = z±m exp(±g
∫ z

0
dz′ϕ(z′))χ0±, (3.3)

where ϕ = Φ/z for z > 0. The standard (alternative) quantization means we project
out ψ0− (ψ0+) [9, 18]. We choose the standard quantization and negative m because the
spectral function A ∼ w2m and we want the spectral function to go zero when ω → ∞.
Then for g = −1, the wave function are localized at z = 0 as well as normalizable. Notice
that z±m factor does not make an issue of the normalizability because |m| < 1/2 by the
unitarity bound [18]. We see that the existence of the zero mode depends on whether the
normalizable one survives the projection we choose.

At this point, we remind the reader that the essence of the Jackiw-Rebbi (JR) solution
is the presence of the domain wall or a boundary where the mass changes its sign. The
AdS has a natural boundary although we did not install it. To make the parallelism with
JR solution more explicit, one may introduce the mirror AdS in the regime z < 0. See
figure 2(b). The sufficient condition for the normalizability of the zero mode in −∞ < z <

∞, is ϕ(−z) = −ϕ(z) which is clearly satisfied by

ϕ = M0 sign(z) +M1z. (3.4)

– 5 –
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Each term can exist separately and their corresponding fermion zero modes are

ψ
(M0)
0− = |z|me−M0|z|χ0−, ψ

(M)
0− = |z|me−

1
2M1z2

χ0−, (3.5)

respectively. Obviously these are localized at the boundary for m < 0. The reader can read
more explicit construction of the full solution in the appendix E. It should be reminded
that the boundary of the AdS is the physical space where materials are sitting, therefore
our zero mode describes a bulk phenomena, while the zero mode in a usual topological
insulator (TI) describes a surface phenomena of the matter.

In the next subsection, we will discuss the topology of the solution and the possibility
to see the topology without introducing the mirror AdS.

3.1 Topology of JR solution on the half line

One may ask if one can find the topological nature without extending the AdS to Mirror
AdS. The question is natural since we did not use the Mirror AdS in the construction of
the fermion zero mode in eq. (3.5). This is a subtle point that is worth while discussing in
detail. However, we can ask the same question to the original JR solution. If we restrict
the domain to half line x ≥ 0, the wave function

ψ ∼ exp[−
∫ x

0
ϕ(x′)dx′]φ0 = e−mxφ0, (3.6)

with φ0 a constant spinor, is still a zero energy, normalizable solution of the Dirac equation
which is localized at the boundary x = 0, just like our case. So, where is the topology?

First, please be reminded that any domain wall solution can be viewed as the solution
in 1+1 where the topological current is

jµ = 1
v
εµν∂νϕ, (3.7)

where v is a normalization constant defined as the difference of ϕ values at the two boundary
points.

The stability of fermion solutions comes from the topology of the soliton ϕ whose
winding number given by

w = 1
v

∫
S1
ε01∂xϕ(x) = 1

v
[ϕ(−∞)− ϕ(+∞)] = 1. (3.8)

If we restrict ourselves to the half line x > 0, we get the same winding number as far as

1. We identify the half line as a circle by identifying two boundary points of the domain,

2. ϕ(0) 6= ϕ(∞) and we identify the end points to make the image of ϕ as the circle.

A subtlety comes not from the restriction to x > 0 but from the approximation of the soliton
by the piecewise constant function m(x) = sign(x). Notice that the entire contribution of
the winding number, when we use m(x) = sign(x), comes from x = 0, because ∂xsign(x) =
2δ(x). When the domain is the entire line as in the original JR case, we can intuitively see
that the value of m(x) at x = 0 is 0 as the average value of ϕ around x = 0, so that the
winding number is 1.

We now look at the problem of topology of the JR solutions at the half line.

– 6 –
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(i) If we realize the kink by the ϕ(x) = x, there is no subtlety at all in getting w = 1 in
the half line. (Notice that the normalization factor v depends on the ends points of
ϕ.) This means that there is no subtlety in AdS for the condensation part Φ = M1z

2

without mirror AdS.

(ii) When we realize the kink by the piecewise constant mass function, the winding
number is still 1 as far as we accept m(0) = 0, because the discontinuity gives us the
delta function. That is, the price to pay for the non-zero winding after restricting
ourselves to the half line is just accepting m(0) = 0. From the fermion side, the
fermion configuration given in eq. (3.5) does NOT depends on the choice of m(0)
at all. Therefore stability of the fermion should not depends on it. The stability is
checked by numerical experiment also.

In short, the topological nature of the JR soliton can be realized in the half line x ≥ 0
as far as we install the discontinuity of the mass function at x = 0. However, great deal
of our intuition about the topology is lost in the half line case. So it is better to take the
domain as the entire line by introducing the Mirror AdS.

3.2 Appearance of topological liquid

The gapless phase generated by the zero mode is dissipation free due to the topological
protection, hence we call it as the topological liquid (TL). Notice that due to the presence
of the quantization choice, our zero mode is a chiral in the sense of Γz eigenvalue, which
make sense independent of whether the boundary is 3+1 or 2+1 dimension. Such chiral and
topological character of the zero mode makes the TL phase very different from the critical
point. For example, one can see that, in figure 1(c), the zero mode is clearly separated from
other modes, while figure 1(b) shows no separation of the massless spectrum from others.
In mathematical term, the critical point has a brach cut type singularity for m 6= 0, while
the topological phase has a pole type singularity.

4 Phase diagrams near the QCP

As the first application of the appearance of zero mode, we consider the phase diagram
near the QCP. First, notice that we can associate a metal insulator transition at the QCP,
because both the gap and the gapless features are coming out of a QCP by a single order
parameter as we vary it passing the zero. Then, by adding the temperature, we can discuss
the phase diagram near the quantum critical point. The finite temperature is described
by the black hole geometry. The order parameter field Φ’s configuration for the pure AdS
remains as a good approximation at finite temperature also, because the large z region,
where true solution deviates much from the probe solution, is cut out by the presence of
the horizon.

The shape of density of states (DOS) is determined by the half width Γ, which depends
on the order parameter and temperature. Therefore we can classify the phases according
to Γ as function of T/M0. Since we have the analytic result for the latter, the entire phase

– 7 –
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(c) Gap
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(d) Pseudo-gap

Figure 3. DOS for various phases Γ(T ) for m = −0.3: (a,b) is along gM0 = −2 with T = 0.1, 0.8.
(c,d) is along gM0 = 1 with T = 0.01, 0.15 respectively.

diagram could be understood analytically. To visualize the typical density of states(DOS)
of each phases, we calculated the DOS numerically. See the figure 3.

4.1 The half width

The half width Γ(T ) of fermion can be calculated within the probe approximation and the
result is given by,

Γ(T ) = 2πT/
∫ 1

0

dtF (t;T )
t(1− t)2/3 ,

F = sinh
[

4
3 |m| tan−1√t−

1∑
n=0

gMn

T 1+nβn(t)
]
, (4.1)

with β0(t) = B
(
t; 1

2 ,
1
3
)
/2π, β1(t) = (3/8π2)B

(
t; 1

2 ,
2
3
)
. We take −1/2 < m < 0 for the bulk

mass of the fermion. The point we want to make is that when the temperature is much
larger than the order parameters, we have the linear-T dependence,

Γ ' πT/γm, (4.2)

with 1/γm = 2m
3 B

(1
2 ,

1−2m
3
)
3F2

(1
2 ,

3−4m
3 , 3−2m

3 ; 3
2 ,

5−4m
6 ; 1

)
. In the figure 4, we plotted the

half width given in eq. (4.1) as function of T for gM0 = −2. The derivation and more
general result can be found in the supplementary materials C.

The emergence of strange metallicity Γ(T ) ∼ T could be understood directly from the
equation of the motion (3.1) by rescaling z = ζ/T , without calculating Γ(T ) explicitly.
The idea is that the Dirac equation contains the temperature dependence only through
w := ω/T , if M0

T � 1. If we call the spectral width in w as Γ0, it is independent of T .
Then, Γ(T ) defined as the spectral width in ω is given by

Γ(T ) = ∆ω = Γ0T, (4.3)

where Γ0 = ∆w. This explains the appearance of the strange metal for temperature
higher than the order parameter in figure 4(c): Γ(T ) ∼ ~/τ ∼ T can be translated into
the resistivity data ρ ∼ 1/τ ∼ T . The same argument can be applied to the equation
describing the gauge field or metric field fluctuation in AdS space, and it gives the linear-T
dependence for the width of the Drude peaks in the AC conductivity or in momentum
dissipation rate. It works as far as there is a horizon in the background gravity.

– 8 –
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Analytic result

High T limit

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T

Γ

(a) Γ(T ) at gM0 = −2

Analytic result

High T limit

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

3

4

T

Γ

(b) Γ(T ) at gM0 = +1

Figure 4. Γ as a function of T . For high temperature, Γ(T ) ∼ T universally. (a) is for gM0 > 0,
(b) is for gM0 < 0. In (b) Γ < 0 at low T means the appearance of the gap.

The strange metal has been discussed in the context of the holographic theory previ-
ously [19–24]. However, most of these literatures are based on the electric conductivity,
and it has been argued only for the case where temperature is much smaller than any scale
appearing in the theory [25], which is not what the data shows near QCP. This has been the
difficulty in the holographic description of phase diagram near QCP. It is also worthwhile
to notice that the argument based on the hydrodynamics has some difficulty also: while one
should assume the slow momentum dissipation for the validity of hydrodynamics, which is
just conservation law, the phenomena one want to explain is the ultra fast relaxation such
that τ ∼ 1/T � T 2/EF .

4.2 Phase boundaries

The phase boundaries can be calculated by using eq. (4.1). We first introduce the key
parameter a by

a(T,M0) := ∂ log Γ
∂ log T , (4.4)

so that if a(T,M0) is constant along a curve C in T -M0 plane, then Γ ∼ T a on C. From
eq. (4.1): if Φ = M0z, Γ/T depends on the T only through the combinationM0/T , therefore
a is constant on the straight line T/M0 = c0. Completely parallel argument says that for
Φ = M1z

2, the exponent a is constant on any parabola T/
√
M1 = c1. The phase diagram

of the fermion theory with Φ = M0z and that of Φ = M1z
2 are similar apart from the

shape of the line of constant exponent. Since the phases near the QCP can be classified
according to the power law T a of Γ(T ), the phase boundaries are along the lines of constant
a. The resulting phase diagrams are figure 5(b,d).

The structure of the phase diagram inM0-T plane can be explained as the competition
of three phase regimes: i) Topological liquid(TL) around the negativeM0 axis where a =∞,
ii) the strange metallic phase around T axis where a = 1, iii)Gapped phase around the
positive M0 axis.

– 9 –
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(d) phase diagram with M1

Figure 5. True Phase transition exists only along T∗ lines. Others are crossover. In (b,d) ‘Fermi
liquid(FL) and strange metal(SM)’ phases are around a = 2, 1 lines respectively.

The phase boundaries are mostly crossover except the T ∗ line given by T ∗ = M0/m

with −1/2 < m < 0. It is the boundary between gapped and gapless regimes. When there
is no order parameter, the strange metal appears even for the T → 0 limit, which explains
why the strange metallic phase is of fan shape starting from the QCP in the phase diagram.
The figure 5(a) explains this idea. It would be interesting to compare figure 5(b,d) with
the phase diagrams describing the semi-metals [26, 27] and heavy fermion systems [28]
respectively, although we can not expect that they can be identified to specific materials,
based on the universality near the QCP.

The presence of zero mode and its topological stability predicts the emergence of the
topological liquid near zero temperature for a strongly correlated system with scalar source
or condensation. On the other hand, from the holographic point of view, the strange metal
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is requested by the presence of horizon. Then between TL (a =∞) and SM (a = 1), there
must be region of the Fermi liquid with a = 2 by continuity.

4.3 A field theory model

Before we leave the phase diagram, it is worthwhile to discuss a related field theory model
to see what we really achieved from the analysis above. Consider following field theory
model [5],

L = φψ̄ψ + rφ2 + uφ4 + (∂φ)2 + ψ̄iγµ∂µψ. (4.5)

For r > 0, 〈φ〉 = 0, and the fermion ψ is massless, and free below the scale
√
r. For r < 0,

〈φ〉 6= 0 and the fermion is massive. The critical point is of Gross-Neveu type. There is an
apparent similarity between the field theory model given in eq. (4.5) and our holographic
one in the sense that both have the transition from gapful to gapless phases in (r, T ) phase
diagram. However, in the phase diagram of weakly coupled theory, the strange metal (SM)
phase (linear T in the resistivity or in the decay rate), can not appear, since no one got
SM behavior by perturbative calculation. Nevertheless, the model (4.5) is truly intriguing,
because in the presence of the Fermi Surface the above field theory model is a strongly
coupled one in low energy [29–36], so that there is a possibility that in low energy it is in
the same universality class with our holographic model. The reason why the linear in T
behavior appeared in the decay rate Γ(T ) so naturally in our work is, of course, due to the
gravity set up: the presence of the horizon and the structure of differential equation does
everything as we have shown earlier.

5 Discussion

5.1 Chiral symmetry and its breaking in the AdS/CFT

It is interesting to notice that the scalar is associated with the chiral symmetry breaking
in the bulk. But there is no chiral symmetry in 2+1 boundary, since Lorentz group of 2+1
does not contain two copies of SU(2). On the other hand, the symmetry group should be
the same if the bulk and boundary theories are dual to each other. Therefore without a
definition of chiral symmetry which works for both even and odd dimension, there would
be a crash in the symmetry correspondence.

The way to solve this problem is to define the chiral symmetry in the odd dimension
by introducing two flavors in the boundary and consider the chiral symmetry operation as
the U(1) rotation with opposite charges for the two flavors. In our construction, we will
use 2-component (Weyl) spinors for the boundary fermions for both AdS4 and AdS5.

First we discuss AdS5 which has chiral symmetry at the boundary. Each of 4-component
Dirac fermions can be decomposed into two Weyl fermions χ1, χ2. Then, the chiral sym-
metry in 4 dimension is the rotation of them defined as

χ1 → eiαχ1, χ2 → e−iαχ2. (5.1)

Now, there are two 4-component fermions ψ1, ψ2 in AdS5 bulk. Out of four components
of a bulk spinor ψ, two of them are projected out by the choice of ‘quantization’. In the
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representation where Γz = diag(1, 1,−1,−1), the standard quantization keep the upper
two components ψ+, while the alternative quantization keeps the lower ones ψ− [9, 18].

We now embed χ1 as the upper two components of ψ1 and χ2 as the lower two com-
ponents of ψ2, namely,

ψ1+ = χ1, ψ2− = χ2. (5.2)

After projections defined by the standard (S) quantization for ψ1 and the alternative one
(A) for ψ2, degrees of freedom precisely match between the bulk and boundary. Further-
more, such correspondence induces a flavor rotation for the bulk fermions in AdS5:

ψ1 → eiαψ1, ψ2 → e−iαψ2. (5.3)

So it is natural to call such symmetry operation as the ‘chiral’ rotation in the AdS5 bulk.
In this way the ‘chiral symmetry’ in the bulk of AdS5 is induced by that of the boundary.

Now we consider AdS4. Here the boundary is 2+1 dimension and there is no notion
of chirality defined by the Lorentz group and parity. So introduce two fermions χ1, χ2,
each of which has two components. Now embed the boundary fermions into that of the 4-
component bulk fermion exactly as the same as the AdS5 case, namely, ψ1+ = χ1, ψ2− =
χ2. Now, notice that in AdS4 bulk, there is a well defined chiral symmetry given by

ψ± → e±iαψ±, (5.4)

which induces the flavor rotation in AdS4:

χ1 → eiαχ1, χ2 → e−iαχ2. (5.5)

Such flavor rotation can be called as ‘chiral rotation’ in the 2+1 boundary.
Notice that in the above discussion of the chiral symmetry for the AdS/CFT, essen-

tially the same construction works both for AdS4 and AdS5. If we intended to show the
conservation of such a symmetry, the problem would be much more non-trivial because a
global symmetry should be gauged to be preserved in quantum gravity [37]. Here, however,
we consider the broken symmetry, we can stop here. It is not surprising even in the case a
global symmetry be spontaneously broken by the strong interaction.

What happen if there is only one flavor in 2+1 boundary of AdS4? From AdS/CFT
point of view, the theory is chiral in the sense that out of two chiral fermions of AdS4, only
one has its boundary dual partner. Such a theory is chiral, that is, the ‘chiral symmetry’
is broken.

5.2 When the back reaction can be neglected?

We considered the probe limit of matter fields in this paper. Especially we should ask
when the contribution from the fermions can be neglected in the equation of motion for
the scalar. For high electron density, the back reaction is essential. Here, however, electrons
couple weakly, so that Fermi liquid theory may be enough. This is because high density
leads to the weak effective coupling. There is an approach called ‘electron star’ where one
counts the electron contribution to the gravity. Indeed, many of its properties show those
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of the Fermi liquid theory. In fact, the strongly coupled nature of the electrons are coming
when the density is low or the band width is small. Since we want to describe the strongly
coupled electrons, we can describe it in the probe limit.

We conclude with following comment: the presence of the zero modes is related to the
fact that the gravity dual use the asymptotically anti de Sitter space which must have a
boundary, and the appearance of the strange metal is associated with the presence of the
black hole horizon.

A Spectrum and the zero modes with scalar order for g = −1

Here we show the presence of the zero mode by working out the full spectrum. Our fermion
action is given by the sum S = Sg,A,Φ + Sψ + Sbdry, where

Sg,A,Φ =
∫
dd+1x

√
−g

(
R+ 6

L2 −
1
4F

2
µν +DµΦ2

I −m2
ΦΦ2

)
, (A.1)

Sψ =
∫
dd+1√−gx iψ̄

(1
2Γµ(−→Dµ −

←−
Dµ)− (m+ gΦ)

)
ψ, (A.2)

Sbdy = ± i2

∫
∂M

ddx
√
−hψ̄ψ. (A.3)

This action give the complete dynamics of all the fields including the Dirac field. According
to the choice of sign of Sbdy, half of the bulk spinor degrees of freedom are projected out
so that for +(−) sign, only ψ+(ψ−) survive and this choice of the boundary action is called
standard (alternative) quantization [9, 13]. In this paper we use the simplest AdS black
hole metric,

ds2 = − 1
L2

f(z)
z2 dt2 + L2

z2f(z)dz
2 + 1

L2z2dx
2
i , f(r) = 1−

(
z

zH

)d
, (A.4)

where the horizon radius is related to the temperature by zH = d/4πT and we set L = 1.
If we define φ±(z) by ψ± = (− det ggzz)−1/4e−iwt+ikix

i
φ±(z), the φ satisfies[

∂z + 1√
f

(
iKµΓµ + m+ gΦ

z

)
Γz
]
φ = 0, with Kµ =

(
− ω/

√
f, kx, ky

)
. (A.5)

Following the standard dictionary of AdS/CFT for the p-form bulk field Φ dual to the
operator O with dimension ∆, its mass is related to the operator dimension by

m2
Φ = −(∆− p)(d−∆− p), (A.6)

and asymptotic form near the boundary is

Φ = Φ0z
d−∆−p + 〈O∆〉z∆−p. (A.7)

We use following Gamma matrices representation [14],

Γr = σ3 ⊗ 12, Γµ = τ1 ⊗ γµ, with γµ = {iσ2, σ1, σ3}, for µ = 0, 1, 2. (A.8)
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A.1 Case 1: Φ = Mz2

First we consider the case Φ = Mz2. Then the Dirac equation is equivalent to

−φ± ′′ +
(
M2z2 + m(m±1)

z2 + 2gM
(
m∓ 1

2

))
φ± = Eφ±, (A.9)

where E = w2 − ~k2. The solution to the eq. (A.9) is given by

φ+ = 2
1
2 ( 1

2−m)z−me−M
z2
2

(
C1+U

1
2−m
u (Mz2) + C2+L

− 1
2−m
−u (Mz2)

)
(A.10)

φ− = 2
1
2 ( 1

2 +m)zme−M
z2
2

(
C1−U

1
2 +m
v (Mz2) + C2−L

− 1
2 +m
−v (Mz2)

)
(A.11)

with ε = w2 − ~k2

4M ,u = 1
2(g − 1)

(
m− 1

2

)
− ε, v = 1

2(g + 1)
(
m+ 1

2

)
− ε, (A.12)

Uku (z) = z−u2F0(u, 1+u− k; ;−z−1), Lku(z) = Γ(k + 1 + u)
Γ(k + 1)Γ(u+ 1)1F1(−u, k+1; z) (A.13)

where Ci± are two component constant spinors and Uku and Lku are associated Laguerre,
whose asymptotic behavior determines the normalizability of ψ. Since the Laguerre func-
tion Lku in general contains eMz2 we need to set C2± = 0. The z →∞ behaviors are

φ+ ∼ 2
1
4−

m
2 e−

Mz2
2 z−2u−mC1+M

−u,

φ− ∼ 2
1
4 +m

2 e−
Mz2

2 z−2v+mC1−M
−v. (A.14)

Then, z → 0 behaviors are given by

φ+ ∼ 2
1
4−

m
2
(
z−mB1+ + zm+1B2+

)
, φ− ∼ 2

1
4 +m

2
(
z1−mB1− + zmB2−

)
(A.15)

where B1+ = C1+
Γ(m+ 1/2)

Γ(u+m+ 1/2) , B2+ = C1+M
1/2−mΓ(−1/2−m)

Γ(u) ,

B1− = C1−M
1/2−m Γ(m− 1/2)

Γ(u+m+ g/2) , B2− = C1−
Γ (1/2−m)

Γ(u+ (g + 1)/2) . (A.16)

The relation

B2− = i(2m+ 1) γµkµ
w2 − k2B2+, B1− = i(2m− 1) γµkµ

w2 − k2B1+ (A.17)

which was established in [14] still hold here in the presence of the interaction term. Then
the Green Function GR is defined by

GR = −iSγ0, with S defined by B2− = SB1+. (A.18)

Now we can write down Green functions for each sign of g.For Φ = Mz2,

Gg=1
R = M−1/2+mΓ

(1
2 −m

)
Γ
(1

2 +m− ε
)

2Γ
(1

2 +m
)
Γ(1− ε)

γµkµγ
t, (A.19)

Gg=−1
R = M−1/2+m Γ

(1
2 −m

)
Γ(−ε)

2Γ
(1

2 +m
)
Γ
(1

2 −m− ε
)γµkµγt. (A.20)
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The poles of the Green function are given by those of gamma function at the non positive
integers so that the spectra are given by

ω2 − k2 = 4M(n+m+ 1/2), for g = 1, (A.21)
ω2 − k2 = 4Mn, for g = −1, (A.22)

with n = 0, 1, 2, · · · . The first spectrum is gapful for any n, but the second one has the
zero mode at n = 0.

A.2 Case 2: Φ = M0z

Now we turn to the case Φ = M0z. The equation of motion for φ with scalar source M0 is
equivalent to

− φ′′± +
(
m(m± 1)

z2 +M2
0 + g

2mM0
z

)
φ± = Eφ±. (A.23)

After fixing the coefficients to remove the divergent pieces in z →∞ limit, the solution is

φ± = e−
√
µz(2√µz)∓mU∓2m

∓m+gν(2√µz) (A.24)

µ = k2 − w2 +M2
0 , ν = m√

1− ε′
, ε′ = ω2 − k2

M2
0

. (A.25)

The z → 0 behavior of the solution is

φ+ ∼ z−m
(2√µ)−mΓ(1 + 2m)

Γ(1 +m+ gν) + z1+m (2√µ)1+mΓ(−1− 2m)
Γ(−m+ gν) (A.26)

φ− ∼ z1−m (2√µ)1−mΓ(2m− 1)
Γ(m+ gν) + zm

(2√µ)mΓ(1− 2m)
Γ(1−m+ gν) . (A.27)

These data give the Green functions for Φ = M0z:

Gg=1
R = (4µ)

1
2 +mΓ(−2m)Γ (1 +m+ ν)

(k2 − w2) Γ(−m+ ν)Γ(1 + 2m)γ
µkµγ

t, (A.28)

Gg=−1
R = (4µ)

1
2 +mΓ(−2m)Γ (1 +m− ν)

(k2 − w2) Γ (−m− ν) Γ(1 + 2m)γ
µkµγ

t. (A.29)

where parameters µ, ν are given by µ = k2 − w2 + M2
0 and ν = m√

1−ε′ with ε′ = ω2−k2

M2
0

.
Although these two look similar, there is a striking difference: notice that (k2−w2)Γ(−m+
ν) ≈ −2M2

0 /m near the lightcone k2 = ω2, therefore the apparent zero mode pole of Gg=1
R

is cancelled, while the zero mode of Gg=−1
R survives. The massive particle spectra exist

only for m < 0 if g = 1, while they exist only for m > 0 if g = −1. In both cases, the
massive tower is given by

ω2 − k2 = M2
0

(
1− m2

(n+m+ 1)2

)
, n = 0, 1, 2 · · · . (A.30)

The spectra given in eq. (A.22) and (A.30) are the Kaluza Klein tower associated with the
box character of AdS space, which gives an effective compactification.
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B Analytic expression for Γ(T )

To calculate the Γ as a function of the temperature, we define the spectral function A by

A = Tr(ImGR) (B.1)

and expand A for small w by,

A = A(0)(1− τw + · · · ) (B.2)
= A(0) + wA(1) + · · · (B.3)

Then the relaxation time τ is defined by the small w expansion

τ = 1
Γ = −A

(1)

A(0) (B.4)

The Dirac equation (A.5) is equivalent to the flow equation for ξ± as follows(
∂z + 2gΦ +m/z√

f(z)

)
ξ±(z) =

(
w

f(z) ±
k√
f(z)

)
ξ±(z)2 +

(
w

f(z) ∓
k√
f(z)

)
(B.5)

where ξ+ = iy−
z+
, ξ− = − iz−

y+
and φ± = (y±, z±)T . The retarded Green function GR =

z2mdiag(ξ+, ξ−)|z→0 [14]. From now on we set k = 0, so that the equations for ξ+ and ξ−
are the same for k = 0 and we delete the lower index ± from ξ±. Now, we expand the ξ in
w up to first order,

ξ(z) = ξ(0)(z) + wξ(1)(z) + · · · . (B.6)

Substituting the eq. (B.6) into eq. (B.5), the equations for the zero-th and first order in w
expansion becomes (

∂z + 2gΦ +m/z√
f(z)

)
ξ(0)(z) = 0, (B.7)(

∂z + 2gΦ +m/z√
f(z)

)
ξ(1)(z) = 1 + ξ(0)(z)2

f(z) . (B.8)

The in-falling boundary conditions at the horizon implies ξ(0)(zH) = i, ξ(1)(zH) = 0. We
now can calculate the decay rate Γ using

Γ = −A
(0)

A(1) = − Imξ(0)(z)
Imξ(1)(z)

∣∣∣
z→0

. (B.9)

Case m 6= 0. A decay rate Γ for AdSd+1 with Φ = M0z +M1z
2 is given by,

Γ(T ) = 2πT∫ 1
0 dt(1− t)(1/d−1)F (t)/t

, (B.10)

with F (t) = − sinh[4m
d

tan−1√t+ gM0β0(t)
T

+ gM1β1(t)
T 2 ], (B.11)
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(b) M = 1

Figure 6. Γ(T ) for m = −0.4: for (a) M1 = −2 (b)M1 = 1 respectively. Numerical Γ is defined
by a half width of spectral function at w = 0.

where β0(t) = 1
2πB(t; 1

2 ,
1
d), β1(t) = d

8π2B(t; 1
2 ,

2
d). Notice that in this paper we take

−1/2 < m < 0. This result explains the appearance of the strange metallicity at the
critical point and near by region. At the criticality where the order parameters are zero,
the appearance of the strange metalicity is equivalent to the presence of the black hole
horizon, which in turn is equivalent to the presence of the scrambling power of the chaotic
fluctuation of the quantum critical point. However, the appearance of other phases is
consequence of the symmetry breaking. Such competition of the strange metallicity, or
chaos, and the order determines the shape of the phase diagram near the QCP. Notice that

Γ ' πT/γm,d, at T �
√
M1,M0, (B.12)

with

γ−1
m,d = 2m

d
B

(1
2 ,

1− 2m
d

)
3F2

(1
2 ,

1
2 −

2m
d
, 1− 2m

d
; 3

2 ,
1
2 + 1− 2m

d
; 1
)
.

For d = 1, 2, we have simple result γd = π
2 tan(mπ). We used eq. (B.11) to calculate the

phase boundaries.
One may want to compare above analytic result with numerical calculation to check its

validity. The result is figure 6, showing that our formula agrees with numerical calculation
precisely.

B.1 Case m = 0

Form = 0, the spectral function A has non zero asymptotic value, i.e. limω→∞ ImG(ω) = 1.
Therefore, the usual definition does not work. To overcome, we define the Drude function
AD by AD = A − 1. Then the relaxation time τ is defined by the small ω expansion
AD(w) ∼ AD(0)(1 − τw + · · · ), so that τ = 1

|AD|
∂AD
∂w |w=0. Obviously negative-Γ can be

interpreted as a measure of the gap. With this preparation, we get the following formula
for m = 0 for AdSd+1, d > 1:

Γ = 2πT (e
αgM0
T − 1)∫ 1

0 (1− t)(1/d−1) sinh(gM0β0(t)/T )
t dt

, (B.13)
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d 1 2 3 4

γd 1 1.1662
√

3π/4 π/2
γ′d

7
5 π/2 1.7538 1.9468

Table 1. γd and γ′d for AdSd+1, d = 1, 2, 3, 4.

where α = 1
2πB

(1
2 ,

1
d

)
, β0(t) = 1

2πB(t; 1
2 ,

1
d). Notice that for the large T, the width is also

reduced to linear in T : Γ ' πT
γd

, with γd = 3F2
(1

2 ,
1
2 , 1−

1
d ; 3

2 ,
1
2 + 1

d ; 1
)
.

Similarly, for the condensation, the decay rate with the scalar condensation is

Γ = 2πT (e
α′gM1
T2 − 1)∫ 1

0 (1− t)(1/d−1) sinh(gM1β′(t)/T 2)
t dt

(B.14)

where α′ = d
8π2B

(
1
2 ,

2
d

)
, β′(t) = d

8π2B
(
t; 1

2 ,
2
d

)
, Γ ' πT

γ′
d
in the large T limit, with

γ′d =
√
π21− 2

d

Γ
(

1
2 + 2

d

)
Γ
(

1
2 + 1

d

)2 · 3F2

(1
2 ,

1
2 , 1−

2
d

; 3
2 ,

1
2 + 2

d
; 1
)
.

We tabulated γd and γ′d in table 1 explicitly.

C Comment on the conformal factor z±m

The point we want to make below is that z±m is not the factor that counts probability
of location but the conformal factor to embed the boundary theory into the AdS bulk,
which we should delete in probability interpretation of locality. To see why this is so,
we remind the basic dictionary of the AdS/CFT for scalar case: if a scalar operator of
dimension ∆ couple to the source φ0(x), then the bulk field dual to the operator, Φ(z, x),
is NOT given by the direct extension of the φ0. Due to the conformal structure of AdS
space [3], we need to dress the source and response by the conformal factor z∆∓ such that
two independent solutions of the bulk field Φ are given by Φ(z, x) = φ0(x)z∆−(1+ · · · ) and
Φ(z, x) = 〈O〉z∆+(1 + · · · ), where ∆± are the solutions of ∆(∆− d) = m2

Φ. The equation
of motion for Φ is of second order so that the general solution is given by the linear
combination of the two. Conversely, in other to read off the ‘extended configuration of φ0’
from the solution of the bulk equation of motion, we need to strip off the factor z∆± from
the first and second solutions. Therefore, we define the undressed physical source/response
bulk field Φu,s,Φu,r by dividing out the conformal factor from the corresponding solutions
of the bulk equation of motion.

Similarly for the spinor fields ψ = (ψ+, ψ−)T , we can define the undressed source and
response functions by ψ± = z∆∓ψu± with ∆± = 3/2±m. It is worthwhile to mention that
the boundary Green functions are given by the ratio of these undressed wave functions
for both bosons and fermions. Then we can show that the normalizable undressed wave
function is localized at the boundary and only the zero mode has such property.
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D Localization of zero modes at the AdS boundary

Coming back to the AdS plus mirror space, the undressed wave function for the zero mode is

ψ0u+ ' e−M0|z|, for −∞ < z <∞. (D.1)

This is precisely the Jackiw-Rebbi’s normalizable soliton solution localized at the domain
wall z = 0 where the kink configuration is realized by term M0sign(z). It also means
that our zero mode can be considered as the edge state of a virtual topological insulator.
However, we should not forget that our zero mode describe the bulk mode since it is free
to move along the boundary of the AdS, which is the bulk of the physical world. In all
these discussion, we introduced the mirror AdS to take direct similarity of JR solution.
However one should notice that all that is used is to have the refection symmetry of the
wave equation and a non-vanishing Dirichlet boundary condition of the undressed wave
function ψu± at z = 0.

For Φ = M1z
2 and the equation of motion (A.9) is invariant under z → −z without

sign change of M . The ground state given by

ψ+ ' e−M1z2/2, (D.2)

which is the zero mode localized at the domain wall at z = 0.
One might think that any state are localized the boundary of the AdS. Below, we will

show only the ground state for g = −1 is localized while all other states are not. To see
this, notice that

ψg=1
u+ (z = 0) ∼ 2

1
4−

m
2

Γ
(

1
2 +m

)
Γ(−n) = 0, for any integer n ≥ 0, (D.3)

ψg=−1
u+ (z = 0) ∼ 2

1
4−

m
2

Γ
(

1
2 +m

)
Γ(1− n) > 0, for n = 0, (D.4)

which shows clearly the uniqueness of the zero mode for g = −1. For a massive mode with
n ≥ 1, the wave functions are not localized for two reasons: first, the wave functions vanish
at z = 0 and secondly they oscillate and penetrates into larger z region. The larger is n,
the deeper it penetrates. See the figure 7. As far as M1 or M0, which is the gap between
the ground state and the others, is non-zero, there exists a fermion zero mode for g = −1
so we may say that the fermion zero mode is protected by the presence of the gap, therefore
we call the symmetry broken phase with g = −1 as ‘topological liquid’. The point we want
to make is that the zero mode has a topological character, and as such, it has to do with
a phenomena which looks like Fermi liquid but with an unusual stability.

E Existence of fermion zero mode for m2 6= −2

The existence of fermion zero mode is shown for m2 = −2. Although the analytical work is
possible to this value, one may ask whether these phenomena survive away from m2 = −2?
We numerical study showed the presence of a fermion solution with sharp dual boundary
spectrum, as you can see in the figure 8.
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Figure 7. wave function for M = 1,m = 0 for various modes. Only the ground state for g = −1
state is localized at the boundary of the AdS.

(a) ∆ = 0.5 (b) ∆ = 1 (c) ∆ = 1.5

(d) ∆ = 2 (e) ∆ = 2.5 (f) ∆ = 3

Figure 8. Spectral Functions for various ∆’s with m2 = ∆(∆ − 3). In all cases we can see the
poles in the Green function, meaning the presence of the zero mode for all available values of m2.
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