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1 Introduction

The ultimate motivation of this work is to achieve a better understanding of integrable
conformal field theories in 4d, without appealing to the holographic correspondence with
2d world-sheet integrable models [1]. The most suitable toy model that we know in order
to pursue the investigation is the family of planar (multicolour) theories dubbed as Fishnet
conformal field theories (CFTs) [2, 3]. The Fishnet CFTs are related to the integrable
supersymmetric N = 4 Yang-Mills theory by a limit of weak coupling g and strong twists
γj of its R-symmetry deformation [4–8]

g → 0, γj → i∞, ξ2
j = g2 exp(iγj); j = 1, 2, 3. (1.1)

Moreover, they are conformal symmetric theories at large N limit, for every value of their
couplings ξj , well defined in the double-scaling limit (1.1).1 Their main feature is the ex-
tremely simple content of planar Feynman diagrams entering the weak coupling expansion
of correlators, which allows to handle all the contribution at once, and to compute quanti-
ties at finite coupling. In this respect, further simplification happens by setting one or two
couplings ξj to zero. The topology of such diagrams in the bulk is constrained to be that
of a regular lattice, namely a squared-lattice for the bi-scalar Fishnet (ξ1 = ξ2 = 0)

Lbi−scalar = N Tr
[
ξ2

3 φ
†
1φ
†
2φ1φ2

]
, φi ∈

(
N, N̄

)
, (1.2)

that of an honeycomb for the N = 2 analogue of the theory [11], or a mix of them for a
more general doubly-scaled deformation (ξ3 = 0)

Lχ0 = N Tr
[
ξ2

1 φ
†
2φ
†
3φ2φ3+ξ2

2 φ
†
3φ
†
1φ3φ1+ i

√
ξ1ξ2

(
ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1

) ]
. (1.3)

These properties allow for a non-perturbative re-summation of the Feynman integrals
of two-point functions of single trace operators, and establish a map between the spec-
tral problem of the dilation operator and that of the integral “Bethe-Salpeter” kernel of
the Dyson equation. The latter happens to coincide with the transfer matrix of an in-
tegrable model — the periodic non-compact conformal spin chain SO(1, 5) [10, 12, 13].
This statement of integrability, extensible to fishnet theories in any space-time dimen-
sion [14], matches with the expectations and data from N = 4 SYM (see the review [15]),
but it is a first-principle observation and does not rely on whatsoever holography. The
present work is meant to be the first paper of a series devoted to the extension of the
Feynman integrals/spin-chain approach to the integrability of n-point functions of single-
trace operators, depicted in figure 1. In practise, we aim to a rigorous derivation of the
hexagonalization techniques for correlation functions developed in [16–19] and deformed
to the bi-scalar fishnet limit in [20]. Namely, we are going to show that in the theories
at hand the entire picture of cutting-and-gluing planar correlators into hexagonal patches

1The conformal symmetry of the Fishnet theory is realized in the planar limit, where the fields are
adjoint SU(N) matrices of infinite size N → ∞, by tuning the strongly-twisted N = 4 SYM lagrangian
with appropriate double-trace counter-terms [9, 10]. Conformal properties of the Fishnet beyond the planar
limit are yet to be explored.
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Figure 1. Left: scheme of a planar Feynman integral of an n-point function of single-trace operators
in the bi-scalar fishnet theory. The Feynman integral lies on an n-punctured sphere and its bulk
— far from the punctures, is a square-lattice of scalar propagators. Right: analogue in the fishnet
theory with two coupling ξ1, ξ2. The bulk of the Feynman integral mixes the topology of hexagonal
lattice of Yukawa vertices and the square-lattice of quartic scalar interactions.

=

Figure 2. Cutting a disk out of the bulk of a Feynman integral, and setting the cut legs to external
— in general different — points, we have a generalized fishnet on the disk. This Feynman integral
is the unique contribution to n-point single-trace correlators of type 〈Tr [Φ1(x1)Φ2(x2) · · ·Φn(xn)]〉,
where Φj(xj) is an elementary field of the theory. The correlators with point-split fields inside a
SU(N) trace are allowed by the Fishnet theories since the limit (1.1) breaks the gauge invariance
of N = 4 SYM. The diagrams can be decomposed into integral kernels with external fixed points
(white blobs), and such graph-building operators are in fact spin chain transfer matrices.

can be realized at the level of Feynman graphs, and the picture of mirror excitations as
particles that scatter in (1 + 1) dimensions emerges from the computation of the graphs.
The latter, as already mentioned, is mapped to the spectral problem for specific SO(1, 5)
spin chain transfer matrices. In this paper we describe the eigenfunctions and spectrum of
the transfer matrices. In fact, a fishnet graph on the disk can be regarded as a product of
integral graph-building operators that are transfer matrices for the conformal spin-chain
with non-periodic (“open”) fixed boundaries. Each transfer matrix can be decomposed over
a basis of mirror excitations, whose quantum numbers are the separated variables of the
lattice. The main result of the paper are the wave-functions of mirror excitations, studied
in section 4 in the general spinning and inhomogeneous chain. This model is introduced in
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section 3 by an integrable twist to fixed boundaries (mirror model) of the periodic chain
of [21]. The reason of such generalization is twofold: first, it tells about the complete
integrability of the spin-chain model as we diagonalize transfer matrices with higher-spin
auxiliary space (section 4.3.1). Secondly, we need a more general lattice in order to describe
the more general fishnet theories, i.e. of an inhomogeneous chain whose sites are in the rep-
resentations of a scalar and fermion fields. This fact is established in section 3.1 where the
graph-builder transfer matrices for fishnet graphs are listed, relating Feynman integrals to
conformal chains. The picture that emerges from the Feynman graph/spin-chain computa-
tions is that of a (1+1)d integrable (factorized) scattering between mirror excitations with
internal symmetry SO(4) ∼ SU(2) × SU(2). Its discussion, in the last section 5, links our
language to that proper of hexagonalization [16]. The computation of hexagon form fac-
tors, the explicit tessellation of planar n-point correlators and the gluing-back of hexagonal
patches, rely entirely on the knowledge of a basis of mirror excitations and their overlap,
and is the topic of the part II of the series [22]. To start with, in the next section 2 we
introduce the relevant spin chain model SO(1, 5) and the graphical computation technique
based on the star-triangle duality of a conformal invariant vertex — largely recalling the
results of [21, 23]. We dedicate a few appendices to list useful integral identities and to the
most cumbersome proof of equations of the main text.

2 Conformal quantum chain

Let us consider a quantum particle moving in the 4d Euclidean space with left/right spins
`
2 and ˙̀

2 . Its state is described by a wave function of the position x = (x1, x2, x3, x4) with
`-fold and ˙̀-fold symmetric spinor indices

Φaȧ(x) = Φ(a1...a`)(ȧ1...ȧ ˙̀)(x) , ai, ȧi ∈ {1, 2} . (2.1)

The wave-functions (5.3) belong to the Hilbert space

V ' L2
(
d4x

)
⊗ Sym`

[
C2
]
⊗ Sym ˙̀

[
C2
]
, (2.2)

for Sym`[C2] ⊂ (C2)⊗` the space of complex symmetric spinors ua = u(a1,...,a`). The scalar
product on (2.2) is inherited from the standard ones defined on its factors, that is

〈F,G〉V =
ˆ
d4x 〈F (x)|G(x)〉 ≡

ˆ
d4x (F ∗)aȧ(x)Gaȧ(x) , (2.3)

where repeated spinor indices are summed over. An isometry of the Euclidean space xµ 7→
Λµνxν rotates the wave-function according to the decomposition SO(4) ∼ SU(2) × SU(2),
by two matrices U, V acting on left/right spinor indices (see appendix A)

Λµ
ν (σµ)ȧa = U ba (σµ)ḃb

(
V †
)ȧ
ḃ
, where σk = iσk , σ0 = 1 , σk = σ†k , (2.4)

ua 7→ u′a = [U ]ba ub , vȧ 7→ v′ȧ = [V ]ḃȧ vḃ , (2.5)

– 3 –
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and the following notation for symmetric representations will be frequently used throughout
the text (

[U ]`
)b

a
= [U ]ba = U

(b1
(a1
· · ·U b`)a`) .

(2.6)

We are interested in quantum systems with conformal symmetry, that is into particles
evolving under the action of an Hamiltonian operator H which is invariant under a confor-
mal change of coordinates xµ 7→ yµ(x)

∂yµ

∂xκ
∂yν
∂xκ

= λ(y) δµν , λ(y) =
∣∣∣∣det

(
∂yµ

∂xν

)∣∣∣∣ . (2.7)

The eigenstates of a conformal invariant system transform under an irreducible unitary
representation [24] of the conformal group

Φaȧ(x) 7→ Φ′aȧ(x) = λ(y)∆ [U ] b
a [V ] ḃ

ȧ Φbḃ(y) , (2.8)

and without loss of generality we can restrict to the representations of the principal series,
that means ∆ = 2 + iν with ν on the real line.2 The evolution of the quantum system with
respect to a certain parameter u is given by the action of an evolution operator t(u) —
that in a chain model is dubbed transfer matrix operator — which in the case at hand is a
conformal invariant function of operators position xµ and momenta p̂µ, hence the evolution
is unaffected by a conformal transformation xµ 7→ yµ(x)

Φ′aȧ(u, xµ) = (t(u)Φaȧ)′(0, xµ) = t(u)Φ′aȧ(0, xµ) . (2.9)

In the next sections we consider the integrable conformal chain studied in [21, 25], that is a
system of L particles with a nearest-neighbour interaction defined starting from a solution
of the Yang-Baxter equation for the conformal group SO(1, 5).

2.1 Conformal R-operator and Star-Triangle duality

Let us summarize here the properties of the R-operator and the underlying star-triangle
dualities following the analysis of [21]. An explicit solution Rij(u) of the Yang-Baxter
equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) , (2.10)

acting on the space Vi⊗Vj of two particles in the principal series representations (∆i, `i, ˙̀
i)

and (∆j , `j , ˙̀
j) can be expressed following [25] in terms of the operators position xµ and

momentum p̂µ = i∂µ of the two particles. For this and later scope, we introduce a notation
for (operator valued) SU(2) matrices

x = σµ
xµ

(x2)
1
2
, x = σµ

xµ

(x2)
1
2
, p = σµ

p̂µ

(p̂2)
1
2
, p = σµ

p̂µ

(p̂2)
1
2
, (2.11)

2The unitary irreducible representations of SO(1, 5) would include also the complementary series, for
which 0 < ∆ < 4. Our results throughout the paper can extended to this latter case by analytic continuation
of ν to the imaginary axis.
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and with the notation [·] of formula (2.6) the same group elements in the n-symmetric
representation read [x]n and [x̄]n. A non-integer power u of the laplacian −p̂2, as the
terms appearing in (2.11), is defined via Fourier transformation by the integral operator

p̂2uf(x) = 4u Γ(u+ 2)
π2Γ(−u)

ˆ
d4x

f(y)
(x− y)2(u+2) . (2.12)

The solution R12(u) then can be compactly written as

R12(u) = P12
[x12] ˙̀1R ˙̀1`2(u−∆+)[x12]`2

x
2(−u+∆+)
12

[p2]`2R`2`1(u+ ∆−)[p2]`1

p̂
2(−u−∆−)
2

×

×
[p1] ˙̀2R ˙̀2 ˙̀1(u−∆−)[p1] ˙̀1

p̂
2(−u+∆−)
1

[x12]`1R`1 ˙̀2(u+ ∆+)[x12] ˙̀2

x
2(−u−∆+)
12

,

(2.13)

where ∆− = ∆1−∆2
2 , ∆+ = ∆1+∆2

2 − 2. The matrix Rmn(u) that multiplies [x]n, [x̄]m
and [p]n, [p̄]m in the numerators of (2.13) is the SU(2)-invariant solution of Yang-Baxter
equation acting on the n-fold and m-fold symmetric representation, and defined via fusion
procedure [26] (see also the appendix of [27])

(Rmn)bd
ac (u) = R(b1...bm)(d1...dn)

(a1...am)(c1...cn)(u) , (2.14)

Rnm(u− v)Rn`(u)Rm`(u) = Rm`(v)Rn`(u)Rnm(u− v) . (2.15)

The matrix (2.14) satisfies also unitarity

Rnm(u)Rnm(−u) = 1n ⊗ 1m , (Rnm(u))† = Rnm(u∗) , (2.16)

and the crossing equation

(Rmn(u))tn = (Rmn(u))tm = rmn(u)(σ2)⊗nRmn(−u− 1)(σ2)⊗n , (2.17)

where tm, tn are the transposition in the space of m− or n− symmetric spinors, σ2 defines
the charge conjugation and the crossing factor rmn(u) is

rmn (u) = (−1)mn
Γ
(
u+ m+n

2 + 1
)

Γ
(
u− m+n

2 + 1
)

Γ
(
u+ m−n

2 + 1
)

Γ
(
u+ n−m

2 + 1
) . (2.18)

From the definition of R-operator (2.13) and the properties (2.16) it follows that

R12(−u) = R−1
12 (u) = R12(u) , R12(u)† ≡ R12(u)†1†2 = R1̇2̇(u∗) , (2.19)

where the dotted subscripts denote the exchange of left/right spins `1 ↔ ˙̀1 and ˙̀2 ↔ `2.
Recalling the representation (2.8), it is straightforward to check the conformal invariance
of the operator R12(u)

R12 (u) 7→

 ∏
k=1,2

λ (xk)∆k [U ]`k [V ] ˙̀
k

R12 (u)

 ∏
k=1,2

[
U †
]`k [

V †
] ˙̀
k
λ (xk)−∆k

 , (2.20)

– 5 –
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b
a d

c Rcbad(u)

x1 x2
aa b

b

x1 x2

I)

II)

Figure 3. (I) Left: graphic representation of the conformal propagator x2u [x]`[x] ˙̀ with conformal
dimension −u and spins `, ˙̀. The two dashed lines stand for the two spinorial matrices x and x, the
one with the bar denoting x. The arrows denote the flow of spinor indices. (I) Right: explicit spinor
structure corresponding to the notation of arrows and dashed lines. (II) Left: graphic representation
of R-matrix in x2u [x]`R` ˙̀(u)[x] ˙̀. The two dashed lines stand for the two spinorial matrices x and
x. The arrows denote the flow of spinor indices and the grey thick segment defines where R(u) is
inserted along the spinorial matrix structure. (II) Right: explicit spinor structure.

based on the SU(2) invariance of the fused R-matrix and on the transformation property
of a conformal propagator

[x]` [x] ˙̀

(x2)∆ −→ λ (x)−2∆

[
UxV †

]` [
V xU †

] ˙̀

(x2)∆ . (2.21)

Besides (2.10), the operator Rij(u) satisfies another non-trivial algebraic relation in-
volving its adjoint [21], crucial in order to define diagonalizable transfer matrices

R12(u)R32(u+ v∗)R13(v)† = R13(v)†R32(u+ v∗)R12(u) . (2.22)

Making use of the integral representation (2.12), the operator (2.13) can be introduced in
an equivalent fashion as an integral operator with the kernel

R
(
x1,x2|x′1,x′2

)
=

(
1−u+ `+ ˙̀

2

)
Γ
(
1−u+ ˙̀−`

2

)
Γ
(
1−u+ ˙̀−`

2

)
π4Γ

(
u+ ˙̀−`

2

)
Γ
(
u+ ˙̀−`

2

)
×

[x21] ˙̀1 R ˙̀1`2 (u−∆+) [x21]`2

x
2(−u+∆+)
12

[x12′ ]`2 [x12′ ]`1

x
2(u+∆−+2)
12′

[x21′ ]
˙̀2 [x21′ ]

˙̀1

x
2(u−∆−+2)
21′

×
[x1′2′ ]`1 R`1 ˙̀2 (u+∆+) [x1′2′ ]

˙̀2

x
2(−u−∆+)
1′2′

,

(2.23)

where ∆+ = (∆1 + ∆2)/2 − 2 and ∆− = (∆1 − ∆2)/2. The formula (2.23) allows for a
graphical representation of R-operator via the notation of lines and dots used for Feynman
integrals. Indeed the function x2u [x]`[x] ˙̀ is the propagator of a conformal field [28] of
scaling dimension ∆ = −u and left/right spins `, ˙̀ — stripped of all constants — and
we represent it with a double-dashed line as in figure 3(I). The mixing of spinor by the
R-matrix in x2u [x]`R` ˙̀(u)[x] ˙̀ is illustrated in figure 3 (II). The notation of by figure 3 is
ubiquitous in our computations since it allows for a compact representation of complicated
integral kernels in the form of Feynman graphs, and translates tedious integral identities

– 6 –
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R

R

2'2

1

1'

-u+2-(Δ1+Δ2)/2

-u-2+(Δ1+Δ2)/2 u+2+(Δ1-Δ2)/2

u+2-(Δ1-Δ2)/2

R

R

2'2

1

1'

-u*+2-(Δ1+Δ2)/2

-u*-2+(Δ1+Δ2)/2 u*+2+(Δ1-Δ2)/2

u*+2-(Δ1-Δ2)/2

Figure 4. Left: diagram representation of the kernel R12(x1, x2|x′1, x′2) of the operator R12(u).
Right: diagram representation of the kernel of the operator R12(u)† = R21(u∗). The position of
different spinor spaces — identified by differenet colours of dashed lines — gets exchanged by the
hermitian conjugation.

into elementary moves of lines of the graph. For example, the kernel (2.23) takes the form
of a square of propagators depicted in figure 4. The proof of Yang-Baxter equation (2.10)
is a consequence of the generalized star-triangle duality

p̂2u [p] ˙̀Rm ˙̀(u)[p]m x2(u+v) [x]mRm`(u+ v)[x]` p̂2v [p]`R` ˙̀(v)[p] ˙̀

= x2v [x] ˙̀R` ˙̀(v)[x]` p̂2(u+v) [p]`Rm`(u+ v)[p]m x2u [x]mRm ˙̀(u)[x] ˙̀
.

(2.24)

The propagators involved in both sides of (2.24) carry spin indices in the spaces

Symm

[
C2
]
⊗ Sym`

[
C2
]
⊗ Sym ˙̀

[
C2
]
, (2.25)

and are pair-wise mixed by the R-matrix acting on the product of SU(2) symmetric tensors.
Applying the both sides of (2.24) to the delta-function δ(4)(x− z) we obtain the following
identity for integral kernels

ˆ
d4y

[x− y] ˙̀[x− y]m
(x− y)2(u+2)

[y]mRm`(u+ v)[y]`
y−2(u+v)

[y− z]`[y− z] ˙̀

(y − z)2(v+2)

= π2a ˙̀m(u)a` ˙̀(v)
a`m(u+ v)

[x] ˙̀R` ˙̀(v)[x]`
x−2v

[x− z]`[x− z]m
(x− z)2(u+v+2)

[z]mRm ˙̀(u)[z] ˙̀

z−2u ,

(2.26)

where a` ˙̀(u) is a prefactor

a` ˙̀(u) =
(i) ˙̀− ˙̀ Γ

(
−u− `+ ˙̀

2

)
(
u+ `+ ˙̀

2 + 1
)

Γ
(
u+ 1 + `− ˙̀

2

) . (2.27)

The form (2.26) of the duality — obtained in [21] — can be represented compactly in
the graphical notation of propagators and vertices as in figure 5. As it was pointed out
in [21, 27, 32], the diagram notation defined in figure 3 is way more compact than analytic
formulas, especially when dealing with SU(2) symmetric spinors and their indices. The

– 7 –
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u+2

-u-v v+2

-u

-v u+v+2

R(v)

R(u)R(u+v)

lm

l

l

l

m

Figure 5. Star-triangle identity (2.26): on the left a cubic vertex of conformal propagators with
scaling dimensions u + 2 , v + 2 ,−u − v, and left/right spins ( ˙̀,m) , (m, `) , (`, ˙̀) — the star. On
the right, the equivalent triangle of conformal propagators that extend between the vertices of the
star, with dual scaling dimensions −u ,−v , u+v+ 2. In the general case of propagators of spinning
fields we use the double-dashed line notation and different colours for different spins. Both in the
star and in the triangle the spinor indices are mixed by the action of fused SU(2) R-matrices (2.14).
For zero spins, the identity boils down to its scalar version [29–31].

x3
x4

x1 x2

x3
x4

x1 x2

a

a'

b

b'

2-b'

2-b

2-a'

2-a

2-a-a'
2-b-b' =

x3
x4

x1 x2

x3
x4

x1 x2

a

a'

b

b'

2-b'

2-b

2-a'

2-a

2-a-a'
2-b-b' =

I)

II)

Figure 6. Diagram of the interchange relations I and II, valid under the constraint a+a′ = 4−b−b′.
The move of a vertical propagator across the quartic vertex exchanges the blue/gray spinorial
structures and changes the weights of the propagators of the vertex.

star-triangle identity can be cast in a few equivalent forms, obtained via conformal boosts
and/or reshuffling the position of R-matrices via unitarity and crossing symmetry, and we
list some of them in the appendix B. Moreover (2.26) is the building block of more involed
identities that describe the move of a spinning propagator across a quartic vertex; two of
them are listed in figure 6 and are referred to as interchange relations. The latter are the
fundamental step of several spin-chain computations in section 4.
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2.2 Inhomogeneous spinning Fishnet

The solution Rij(u) of the Yang-Baxter equation acting on any two unitary irreps of the
conformal group SO(1, 5) is the building block of a family of integrable non-compact spin
chains with SO(1, 5) symmetry [21, 25]. These are systems of (quasi-)particles labelled by
an index k = 1, . . . , L, which interact only with their nearest neighbours k + 1 and k − 1.
Each particle is carachterized by a scaling dimension ∆k and by left/right spin numbers `k
and ˙̀

k, in a given representation of the principal series. Therefore, the quantum states of
a spin chain with L sites are wavefunctions in the Hilbert space [21]

V = V1 ⊗ V2 ⊗ · · · ⊗ VL , (2.28)

where each Vk is the module of the representation
(
∆k, `k, ˙̀

k

)
— in general different at

each site — and the scalar product on V is inherited by those on the sites Vk (see (2.3)).
Each wavefunction depends on the position of the particles xµk ∈ R and carries (`k, ˙̀

k)-
symmetric spinor indices ak, ȧk; under a conformal change of coordinates it transforms in
the tensor product of the representations defined at each site k

Φa1ȧ1...aLȧL(x1, . . . , xL) , ak = (ak,1, . . . , ak,`k) , ȧk = (ȧk,1, . . . , ȧk, ˙̀k) . (2.29)

The Hamiltonian operator of the model with closed boundary conditions, i.e. where the
(L+1)-th and the first particle are identified,3 can be introduced starting from the definition
of a monodromy matrix operator

T1,...,L,a(u) = R1a(u+ θ1)R2a(u+ θ2) · · ·RLa(u+ θL) , (2.30)

which act on the physical space of system V and on an auxiliary space Va — the module of
a unitary irrep (∆a, `a, ˙̀

a). Its integral kernel is represented in figure 7. The inhomogeneity
parameters θk are complex numbers to be determined. It follows from the YBE (2.10) that
the monodromy operator satisfies the RTT relation (Yangian algebra)

Rab(u− v)T1,...,L,a(u)T1,...,L,b(v) = T1,...,L,a(u)T1,...,L,b(v)Rab(u− v) , (2.31)

which in turn implies the commutation relation of the transfer matrix operators defined as
the infinite dimensional trace of (2.30) over the auxiliary spaces Va ⊗ Vb.

t(a)(u)t(b)(v) = t(b)(v)t(a)(u) , (2.32)

t(a)(u) ≡ t(a)
1,...,L(u) ≡ TrVa (T1,...,L,a(u)) . (2.33)

The conformal invariance of the model is inherited via its transfer matrices from the in-
variance of the R-operator (2.20), and reads

t(a)(u) 7→
(

L∏
k=1

λ(xk)∆k [U ]`k [V ] ˙̀
k

)
t(a)(u)

(
L∏
k=1

λ(xk)∆k [U ]`k [V ] ˙̀
k

)−1

. (2.34)

3This condition can be relaxed by the introduction of a twist at the boundary while preserving the
integrability of the model, as for the model of section 3.
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Figure 7. Integral kernel of the monodromy matrix operator T1,2,3,a(u) obtained from the con-
volution of operators Rka(u + θk) in the auxiliary space Va for k = 1, 2, 3. The black blobs are
integrated, the circles are external coordinates. Black and blue lines denote the propagation of
auxiliary space Weyl spinors (`a, 0) and (0, ˙̀

a), while the red and green lines are Weyl spinor prop-
agators in the representations (`k, 0) or (0, ˙̀

k) in the physical spaces Vk, k = 1, . . . , L. The mixing
of spinorial indices between auxiliary (black, blue) and physical (red, green) representations is given
by the SU(2) R-matrices denoted with a grey line.

The label (a) in the definition (2.33) distinguish the between the infinite possible represen-
tation chosen for the auxiliary space. This is a crucial fact for the complete integrability
of the model, as different representation will generate — in general — independent com-
muting integrals of motion. As analytic functions of the parameter u ∈ R, the operators
t(a)(u) can be Taylor expanded around a chosen u = u0 leading to an infinite tower of
commuting operators

H
(a)
k =

[
1
k!

dk

duk
t(a)(u)

]
u=u0

, H
(a)
i H

(b)
j = H

(b)
j H

(a)
i . (2.35)

In order to define an integrable model with commuting charges H(a), we should ensure
that such operators are indeed diagonalizable. In fact, we require the operator t(a)(u) to
be normal, i.e. to commute with its hermitian conjugate[

t(a)(u), t(a)(u)†
]

= 0 , (2.36)

and this constrains the inhomogeneities in the monodromy matrix to satisfy

θk + θ∗k = θj + θ∗j , ∀j, k = 1, . . . , L . (2.37)

The condition (2.37) actually guarantees the stronger property

t(a)(u) (t(b)(v))† = (t(b)(v))† t(a)(u) , ∀u, v , (2.38)

valid for any two auxiliary space representations (∆a, `a, ˙̀
a) and (∆b, `b, ˙̀

b). The proof
of (2.38) makes use of the R-operator property (2.22), in the same way that (2.32) follows
from the YBE. The hermitian conjugate of the monodromy operator (2.30) reads

T†1,...,L,a(u) = RLa(u+ θL)† · · ·R2a(u+ θ2)†R1a(u+ θ1)† , (2.39)
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and † refers to the hermitian conjugation in both the physical and auxiliary space of each
R-operator. The analogue of RTT relations is a TRT † relation

T1,...,L,a(u)Rba(u+v∗+θ+θ∗)T1,...,L,b(v)†=T1,...,L,b(v)†Rba(u+v∗+θ+θ∗)T1,...,L,a(u) ,
(2.40)

where θ+ θ∗ = θk + θ∗k for any k = 1, . . . , L. The algebra (2.38) follows from the trace over
auxiliary spaces in the previous equation, where

(t(a)(u))† = TrVa
(
T†1,...,L,a(u)

)
= TrVa

(
RLa(u+ θL)† · · ·R2a(u+ θ2)†R1a(u+ θ1)†

)
.

(2.41)
Following the prescription of [21], in this paper we realize the constraint (2.37) with
the choice

θk = ∆k

2 = 1 + iνk , (2.42)

as it is suitable for studying the fishnet reductions [2, 10, 12] of the operator t(a)(u) at
special values of u. Whenever (2.37) is satisfied the operators t(a)(u) are normal operators
for any choice of auxiliary space and for any u, hence the operator-valued coefficients of
their Taylor expansions satisfy [H(a)

k , H
(b) †
j ] = 0. In particular, this property guarantees

that operators H(a)
k form a continuous infinity of mutually diagonalizable operators for

any k, Va. The Hamiltonian of the spin chain [23, 33] is usually picked to be the local
nearest-neighbor operator

H ≡ H(a)
1 , u0 = 0 , (2.43)

therefore any other operator H(a)
k is a conserved charge4

[
H, H(a)

i

]
= d

dt
H

(a)
i = 0 . (2.44)

The complete integrability of the quantum spin-chain model is the statement that one can
extract from the infinite tower of conserved charges {H(a)

k }, a maximal subset of linearly
independent operators.

3 Fixed boundary conditions

In this section we generalize the open conformal spin chain with fixed boundaries defined
in [32, 34], and applied the computation of the Basso-Dixon integrals in [27, 32], to the
inhomogeneous and spinning setup of the previous section — which means that the k-
th site of the chain hosts a function in the representation (∆k, `k, ˙̀

k) of the conformal
group SO(1, 5). Besides the homogeneous scalar choice (1, 0, 0) of [32, 34], other useful
reductions of the model for the computation of planar diagrams are the homogeneous chain
of Weyl fermions (3/2, 1, 0) which generates an hexagonal “honeycomb” lattice of Yukawa
vertices [11], and the inhomogeneous chain of mixed scalars and fermions describing the
planar Feynman integrals of the doubly-scaled γ-deformation of N = 4 SYM (9) of [3, 10].

4In this respect, any otherH(a)
k or hermitean linear combinations thereof can be taken as the Hamiltonian

of the system. This includes infinite linear combinations, for instance t(a)(u0) itself.
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Figure 8. Left: transfer matrix for the twisted model t(a)
Γ (u). The auxiliary space twist is rep-

resented by the grey blob as an integral operator, and the points y are the same. Right: transfer
matrix Qa of the mirror chain model, resulting from the choice of integrable twist (3.4). Here the
spinorial structures of the auxliary space (black and blue dashed lines) are closed and traced over.
Without Kronecker-δ in the spinor indices of the twist, the picture is the same but the SU(2) indices
of the auxiliary spaces are open between last and first sites.

The wavefunctions of the chain with L particles/sites belong to the Hilbert space

V1 ⊗ V2 ⊗ · · · ⊗ VL , (3.1)

where — otherwise than the closed chain treated in the previous section — they are not
subject to any cyclicity constraint. The model with fixed boundary conditions, that we
may dub the mirror chain — is defined via an integrable twist in the transfer matrix
operator (2.33), as represented in figure 8 (left). As a general fact, the introduction of an
auxiliary space twist Γa : Va → Va, reads

t
(a)
Γ (u) = Tra[R1a(u1) . . .RLa(uL)Γa] , (3.2)

and it preserves the integrability of the model, i.e. the properties (2.32) and (2.38), under
two sufficient conditions

[Rab(u),ΓaΓb] = 0 , Γ†aRab(u)Γb = ΓbRab(u)Γ†a. (3.3)

The integrable model we aim to is defined by breaking the auxiliary space convolution
in (3.2) with a twist Γx0 , which is an integral operator with kernel

Γx0(x|y)bd
ac = δb

a δ
d
c δ

(4)(x− x0) , and Γ†x0(x|y)bd
ac = Γx0(y|x)ac

bd , (3.4)

where the point xµ0 is a parameter of the twist. We refer to this type of twisted transfer
matrix with the notation Qa(u) ≡ t(a)

Γx0
(u). The first property in (3.3) ensures the commu-

tation of two twisted transfer matrices at any different values of u and for any auxiliary
space representations, and it holds as a consequence of

Rab(u)(Γx0)a(Γx0)b =C(u)(Γx0)a(Γx0)bR`a`b (u+∆ab)⊗R ˙̀
a

˙̀
b
(u−∆ab) = (Γx0)a(Γx0)bRab(u) ,

(3.5)
where ∆ab = (∆a − ∆b)/2 and C(u) is the complex number defined in (E.3). The proof
of (3.5) is given in detail in appendix E. The second relation in (3.3) guarantees that the
twisted operators commute with their hermitian conjugates. One can verify that such
property for Qa follows from the relation

(Γ†x0)aRab(u)(Γx0)b =C(u)(Γx0)a(Γx0)bR`a`b (u+∆ab)⊗R ˙̀
a

˙̀
b
(u−∆ab) = (Γx0)bRab(u)(Γ†x0)a

(3.6)
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The proof of (3.6) follows closely the steps of (3.5) as given in the appendix and is based
on the following properties of the kernel Rab(xa, xb|ya, yb)
ˆ
d4xad

4ybRab(xb, xa|ya, yb)(u) = C(u) R`a`b (u+ ∆ab) R ˙̀
a

˙̀
b

(u−∆ab) ,

Rab(xb, x0|ya, x0) = C(u) R`a`b (u+ ∆ab) R ˙̀
a

˙̀
b

(u−∆ab) δ(4)(x0 − xa)δ(4)(x0 − yb) .
(3.7)

The twisted transfer matrix Qa(u) has the diagrammatic representation of figure 8 (right),
and can be rewritten as

Qa,L(u) =
∑
a,ȧ

ˆ
d4xa

[
T1,...,L,a(u) δ(4)(xa − x0)

]aȧ

aȧ
=

=
∑
a ȧ

ˆ
d4xa

[
R1a(u+ θ1)R2a(u+ θ2) · · ·RLa(u+ θL) δ(4)(xa − x0)

]aȧ

aȧ
,

(3.8)

namely the convolution in the space Va — the auxiliary space of the spin chain — of L
copies of the R-operator — each acting on a different physical space Vk for k = 1, . . . , L
— where the last auxiliary space point is fixed to x0 and the first is integrated. In fact, we
can regard this first integrated point to be connected by a propagator to the point at ∞,
and eventually restore it via a conformal boost. It is useful to define explicitly a related
operator with open spinor indices in auxiliary space

(Qa,L(u))bḃ
aȧ =

ˆ
d4xa

[
T1,...,L,a(u) δ(4)(xa − x0)

]aȧ

bḃ
, Qa,L(u) = Tr`a ⊗ Tr ˙̀

a
Qa,L(u) ,

(3.9)

whose reduction for scalar physical spaces ∆k = 1, `k = ˙̀
k = 0 and a fermion in auxiliary

space ∆a = 3/2, `a = 1, ˙̀
a = 0 has been studied in [27] as graph-building operator of

fishnet integrals with fermions on the disk. We point out that — differenlty than its trace
in the auxiliary space spinors — the operator Qa,L(u) is not diagonalizable.

The hamiltonians of the model are defined as an infinite set of mutually commuting
operators given by the operator-valued coefficients of the Taylor expansion of (3.8) around
a point u0

H(k)
a ≡ 1

k!
dk

duk
Qa(u)u=u0 . (3.10)

The operators H(k)
a mutually commute and are moreover diagonalizable under the condi-

tion (2.37), in fact the equations

[Qa(u),Qb(v)] = 0 ,
[
Qa(u),Qb(v)†

]
= 0 , (3.11)

hold after the twisting due (3.3). The constraint on inhomogeinities (2.37) is satisfied
setting θk = −∆k/2, as we consider unitary irreps of SO(1, 5) in the principal series
∆k − 2 = iνk.

In the next section of the paper we construct the eigenfunctions of Qa(u), compute its
spectrum and the overlap of the eigenfunctions, i.e. the spectral measure. The logic we fol-
low aims to the separation of variables (SoV) developed in [32] (and inspired by the SL(2,C)
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Figure 9. Factorization of the transfer matrix Qa via the factorization of its kernel. The squares
of propagators corresponding to R-operators are decomposed into two triangles by insertion of
1 = (x2

kk+1)2−∆k [xkk+1]R(∆k − 2)[x̄kk+1] (x2
kk+1)∆k−2[xkk+1]R(2−∆k)[x̄kk+1].

technique of [35]), promoted to the general setup of spinning particles and inhomogeneous
spin chain. The achievement of this program relies ultimately on the identity (2.26) and
its diagrammatic interpretation (figure 5).

We point out that due to lack of invariance of the twist (3.4), the mirror transfer
matrix Qa,L(u) is not invariant under a conformal change of coordinates, but transforms
non-trivially under conformal inversion I(xµ) = xµ/x2. Indeed, the result of such map reads(

L∏
k=1

[xk]`k [xk] ˙̀
k

(x2
k)−∆k

)(ˆ
d4xa

[x0a]`0 [x0a] ˙̀0

(x2
0)4−∆a

Ta,L(u)δ(4)(xa−x0) [x0] ˙̀0 [x0]`0
(x2

0)4−∆a

)(
L∏
k=1

[xk] ˙̀
k [xk]`k

(x2
k)∆k

)
,

(3.12)
the quantity in the left and right brackets are the standard SO(1, 5) invariance in the sites
of the chain, while the central bracket describes the simple modification affecting the kernel
of Qa,L with respect to the definition (3.8).

The computation of the eigenvalues of Qa(u) of section 4 is split into two parts following
the factorization of the transfer matrix into the product of two operators
Qa−(u)Qa+(u) via the representation of its integral kernel as the convolution of two
“halves” defined by figure 9 (see also appendix C for the underlying factorization of R-
operator).

3.1 Fishnet graph-builders

In the papers [2, 10, 12, 21] the model with periodic boundary conditions of section 2 has
been shown to reduce, for appropriate choices of the representations in the physical and
auxiliary spaces, to the graph-building operator of the Feynman integrals that dominate
the planar limit of bi-scalar Fishnet CFT or the more general chiral fishnet theories defined
in the double-scaling limit of γ-deformed N = 4 SYM. The choice of periodic boundary
corresponds to a fishnet graph wrapped onto a cylinder (figure 10, left) — hence such
transfer matrices are graph-building operators B̂ acting in radial direction — or direct
channel — around the insertion of a local operator in a planar correlator. This kind of
diagrams can be re-summed á-la Bethe-Salpeter, relating the dilation operator D̂ to the
graph-builder

D̂ ∼ log 1
1− ξ2B̂

, (3.13)
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Figure 10. Planar Feynamn diagram with mixed square-lattice and honeycomb topology, on the
sphere of poles x0 and∞. Dotted lines are the amputated legs to infinity. On the left its view from
the north-pole x0: each wrapping of scalar (continuos) or fermionic (dashed) type is added by the
action of a corresponding graph-building operator in radial direction. Any such operator belongs
to the family of the periodic transfer matrix operator t(a)(u). On the right, the same graph can be
obtained acting with a graph building operator of the family Qa(u) in angular direction. Before
the convolution between the last operator (up) and the first (down), the graph lies on a disk as the
sphere is cut along x0 −∞ direction.

hence the spectrum of the spin chain model captures the quantum correction to the scaling
behaviour of local operator at finite coupling. On the other hand, the open chain with fixed
boundaries (3.8) provides graph-building operators for the same type of Feynman graphs
acting in angular direction — or mirror channel — as exemplified in figure 10 (right).
The name direct and mirror channel are borrowed from the language of sigma-models on
R× S1: the interchange of the radial (non-compact) and angular (compact) directions by
means of a double Wick-rotation is called mirror transformation (see [36] and references
therein).

The mirror chain defined in this paper finds application to the computation of the
class of fishnet integrals on the disk that describe at finite coupling single-trace correlators
of point-split fields

〈Tr [Φ1 (x1) Φ2 (x2) · · ·Φn (xn)]〉 . (3.14)

Due to the absence of gauge invariance in the action of Fishnet theories, these correlators are
meaningful objects, and a worked-out example in this sense is the Basso-Dixon fishnet [32,
37] and its generalization with fermions [27]. Here we list three reductions of the general
spinning and inhomogeneous model that are relevant for the fishnet theories:

• Scalar fields in auxiliary space and physical spaces (figure 11): (∆k, `k, ˙̀
k) =

(∆a, `a, ˙̀
a) = (1, 0, 0), giving rise to the graph-builder of the squared-lattice Basso-

Dixon integrals.

• Fermions propagating in auxiliary space and scalar fields propagating in physical
space: (∆k, `k, ˙̀

k) = (1, 0, 0) and (∆a, `a, ˙̀
a) = (3/2, 0, 1), which is the graph builder

of a honeycomb of Yukawa vertices. In the formulation of the present paper, Qa(u)
correspond to the fishnet with generic fermionic indices (not diagonalizable), while
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Figure 11. Left: integral kernel of the transfer matrix operator Qa,L(u) for a spin chain of length
L = 3, for auxiliary space in the Weyl fermion representation (3/2, 0, 1) and physical spaces in the
scalar representation (1, 0, 0). Center: the transfer matrix kernel at u = −5/4 takes the shape of a
triangular lattice wrapped onto a cylinder. Right: by means of star-triangle duality the triangular
lattice can be re-written as an hexagonal lattice, with fermions propagating in angular direction
and scalars along the cylinder.

2
1 32

1 3

2'1' 3'

1'

1 32

'

1' 3'2'3'2' 1'1'

Figure 12. Left: integral kernel of the transfer matrix operator Qa,L(u) for a spin chain of
length L = 3, for spinless auxiliary space `a = ˙̀

a = 0 and physical spaces in the Weyl fermion
representation (3/2, 0, 1). Center: the transfer matrix kernel at u = −5/4 takes the shape of a
triangular lattice wrapped onto a cylinder. Right: by means of star-triangle duality the triangular
lattice can be re-written as an hexagonal lattice of Yukawa vertices, where fermions propagate along
the cylinder and scalar around it.

Qa(u) builds the trace over fermion indices of the graph (diagonalizable and inte-
grable).

• Fermions propagating along the physical space, and scalars in auxiliary space
(figure 12): (∆k, `k, ˙̀

k) = (3/2, 0, 1) and (∆a, `a, ˙̀
a) = (1, 0, 0), describing the Yukawa

honeycomb with fermions wrapping around a cylinder — as the one describing planar
integrals in N = 2 fishnet theories [11].

Furthermore, the extension to inhomogeneous chain allows to mix scalars (1, 0, 0) and
Weyl fermions (3/2, 0, 1) in the physical space, describing new classes of planar Feynman
integrals. The transfer matrix is a graph builder that mixes the topology of square lattice
and honeycomb lattice, describing the bulk of a planar graph in the fishnet theory (1.3),
and represented in figure 13.

4 Eigenfunctions

In this section we carry on the computation of eigenfunctions and spectrum of the integrable
mirror chain. In order to be in closer contact with the notations and definitions of the
papers [27, 32], the operators Qa,k(u) in this section are related to the definition (3.8)
by a shift u → −2 + u,∆k → 4 − ∆k = ∆∗k, which conserves all the properties of the
model. Moreover, for the sake of simplicity, we assume that any operator Rij(u) entering
the definition (3.8) of Qa,L(u) is given by the integral kernel (2.23) stripped of all the
constants with respect to the spacetime coordinates xµi .
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Figure 13. Left: integral kernel of the transfer matrix operator Qa,L(u) for a spin chain of length
L = 3, for scalar auxiliary space `a = ˙̀

a = 0 and inhomogeneous representation in mallthe physical
spaces: scalar V1 = (1, 0, 0) or Weyl fermion V2 = (3/2, 0, 1). Center: reduction of the kernel at
the point u1 = u+ θ1 = −1, u2 = u+ θ2 = −5/4. Right: by star-triangle duality the reduced kernel
can be written as the graph building operator for a planar Feynman diagram on the disk, whose
topology mixes square-lattice and Yukawa hexagonal lattice.

4.1 Iterative construction

The eigenfunctions of the transfer matrix Qa(u) were found in [32] for the homogeneous
spinless model, namely for a given unitary irrep (∆, 0, 0) at each site of the chain, and for
the special choice of spinless auxiliary space `a = ˙̀

a = 0. The main result of that paper is
an iterative construction of the eigenfunctions based on the equation

Qa,k(u)Λk(Y ) = qa(Y ) Λk(Y )Qa,k−1(u) , qa(Y ) ∈ C , (4.1)

where Qa,k(u) is the transfer matrix acting on the space of k particles V⊗k, all in the same
representation (∆, 0, 0), while qa(Y ) is a function of the quantum number Y — a separated
variable of the system. The quantum numbers Y found in [32] are of the form

Y = n

2 + iν , Y ∗ = n

2 − iν , ν ∈ R , n ∈ N , (4.2)

and encode the principal series scaling dimension ∆ = 2 + iν and the spin n/2 of the
excitation carried by the layer Λk(Y ). Each layer operator Λk(Y ) carries matrix indices
of left/right n-fold symmetric spinors, as the excitation transforms under SO(4) in the
left/right (n + 1)⊗ (n + 1) representations of SU(2)

Λk(Y )b
ȧ −→ [V †]ḃȧΛk(Y )b

ḃ[U ]ab . (4.3)

The spinor indices of the layer are not specified in (4.1) since they are the same in the
two sides of the equation. The layer operators map an eigenfunction of the chain of length
L = k − 1 sites to an eigenfunction of the chain of length L = k, adding the k-th site

Λk(Y )b
ȧ : V⊗ · · · ⊗ V︸ ︷︷ ︸

k−1

−→ V⊗ · · · ⊗ V︸ ︷︷ ︸
k

. (4.4)

The iteration of (4.1) reduces the spectral problem of the transfer matrix from a model of
length L to that of length one, of easy solution. In this section we extend the construction
of [32] to the most general situation in which each particle of the chain transforms in
a unitary irrep (∆k, `k, ˙̀

k) of the conformal group, and also to transfer matrices with
spinning auxiliary space. In particular, the spectral problem of transfer matrices with

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
4

spinless auxiliary space can be solved by separation of variables, and we are going to solve
the equation (4.1) in its generalized form5

Qa,k(u)Λk(Y |η, η̄) = qa,k(Y ) Λk(Y |η, η̄)Q′a,k−1(u) , qa,k(Y ) ∈ C . (4.5)

In (4.5) Qa,k is the transfer matrix for a system of k particles, acting on the tensor product
of k Hilbert spaces V1⊗· · ·⊗Vk, where Vj = (∆j , nj , ṅj), while the tranfer matrix Q′(a)

k−1(u)
acts on k−1 particles V′1⊗· · ·⊗V′k−1 with shifted spins V′j = (∆j , `j , ˙̀

j+1) , j = 1, . . . , k−1.
For a chain of spinless sites `j = ˙̀

j = 0 — as in the case described by (4.1) — the two
spaces coincide V′j ≡ Vj . The operators

Λk(Y |η, η̄) : V′1 ⊗ · · · ⊗ V′k−1 −→ V1 ⊗ · · · ⊗ Vk , (4.6)

define a linear map on the Hilbert space of k − 1 particles V′j to the space of k particles
Vj parametrized by a quantum number Y and two spinors η̄ċ, ηc in the ˙̀1−fold and
`k-fold symmetric representations of SU(2). The spinor structure of a layer is that of a
matrix acting on k dotted and k undotted symmetric spinors belonging respectively to the
representations (`1, ˙̀1), . . . , (`k, ˙̀

k) of the physical space, in addition to left and right n-fold
symmetric indices of the excitation (4.3), that we keep implicit

Λk(Y |η, η̄)b1...bk−1ḃ2...ḃk
a1...akȧ1...ȧk

= Λk(Y )b1...bkḃ1...ḃk
a1...akȧ1...ȧk

η̄ḃ1
ηbk . (4.7)

In the following we’ll often use the compact notation

Λk(Y |η, η̄) = Λk(Y )|η〉|η̄〉 . (4.8)

Assuming the knowledge of layer operators at length k > 1, the equation (4.5) together
with an initial condition at k = 1 determine a solution for the model of L-particles, hence
the eigenfunctions take an iterative structure

Ψ(Y|x,η, η̄) = ΛL(YL)ΛL−1(YL−1) · · ·Λ2(Y2)Λ1(Y1)|η〉|η′〉 =
= ΛL(YL|ηL, η̄1) · · ·Λ2(Y2|η2, η̄L−1)Λ1(Y1|η1, η̄L) ,

(4.9)

where we used the compact notation for the quantum numbers Y = (Y1, . . . , YL), the
coordinates x = (x1, . . . , xL) and the symmetric spinors η = (η1, . . . , ηL), η̄ = (η̄1, . . . , η̄L).
The layer at depth h in the eigenfunction acts on the tensor product of L−h Hilbert spaces

V(h)
1 ⊗ · · · ⊗ V(h)

h , V(h)
j =

(
∆j , `j , ˙̀

j+h
)
, j = 1, . . . , L− h . (4.10)

For clarity, let’s write explicitly the contractions between spinor indices belonging to dif-
5The separation of variables in a classical system is achieved by a canonical transformation on the phase

space that brings the Hamiltonian into a separated form — i.e. a form in which the Hamilton-Jacobi equa-
tions can be solved as a collection of 1-dimensional uncoupled systems [38]. At the quantum level the canon-
ical transformation is replaced by a unitary transformation — i.e. an isometry of two Hilbert spaces realized
by an orthonormal change of basis. In this regard, the condition (4.5) is the quantum version of a the clas-
sical separable Hamiltonian of type H(q1, p1, . . . , qL, pL) = fL(qL, pL, fL−1(qL−1, pL−1, . . . f1(q1, p1)) . . . ).
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Figure 14. Left: scheme of the layer Λ3(Y3) with the red/green lines being the left/right part
of physical space particles, and the black line standing for the excitation Y3 carried by the layer.
Right: the eigenfunction (4.9) has a pyramidal structure of layers of decreasing length (here L = 3).
The first right (green) spin and the last left (red) spin of the chain gets factored out at each level.
Therefore, the spins of the physical spaces at depth h (layer of length L− h) are shifted according
to (4.10).

ferent layers for L = 2, L = 3

Ψ(Y|x,η, η̄)a1a2ȧ1ȧ2
= Λ2 (Y2|η2, η̄1)c1ċ2

a1a2ȧ1ȧ2
Λ1 (Y1|η1, η̄2)c1ċ2

,

Ψ(Y|x,η, η̄)a1a2a3ȧ1ȧ2a3
= Λ3 (Y3|η3, η̄1)b1b2ḃ2ḃ3

a1a2a3ȧ1ȧ2ȧ3
Λ2 (Y2|η2, η̄2)c1ċ3

b1b2ḃ2ḃ3
Λ1 (Y1|η1, η̄3)c1ċ3

.

(4.11)

The general structure of an eigenfunction in terms of layers is schematically presented in
figure 14. The eigenvalue corresponding to (4.9) is factorized into L contributions (to be
determined) according to (4.5), each depending on one of the Yj

L∏
k=1

qa,k(Yk) , (4.12)

and this is a statement of separation of variables of the model. Indeed, the iteration of (4.5)
defines a linear transformation via the ΛL(YL) · · ·Λ1(Y1) from the physical spaces of the
chain Vj to the spaces Ṽj of functions over the excitation quantum numbers Yj and spinor
indices

U : V1 ⊗ · · · ⊗ VL −→ Ṽ1 ⊗ · · · ⊗ ṼL ,
f(x1, . . . , xL) 7→ 〈f,Ψ(Y1, . . . , YL)〉V1⊗···⊗VL ,

(4.13)

With respect to such change of basis the transfer matrices are factorized, i.e. the variables
are separated

U Qa,L(u)U−1 = qa,1(Y1) · · · qa,L(YL) , (4.14)
and the excitation numbers Yj are the quantum separated variables (or to be more correct,
the eigenvalues of the s.v.). The scheme outlined in (4.13) and (4.14) should be made
rigorous by the definition of the space of functions of Yj as an Hilbert space. For one layer
only, i.e. for the model of one site L = 1, such an Hilbert space has the standard scalar
product inherited from its definiton

Ṽ = L2 (ν, dν)⊗
( ∞⊕
n=0

Symn

[
C2
]∗
⊗ Symn

[
C2
])

, (4.15)
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where the star ∗ is the standard notation for linear functionals (dual space). On the
other hand, for L > 1 we need to equip the tensor product of spaces Ṽj with a measure
ρ(Y1, . . . , YL) that defines a structure of Hilbert space

Ṽ = Ṽ1 ⊗ · · · ⊗ ṼL , (4.16)

In order for (4.13) to be an isometry, the measure amounts to the overlap of eigenfunctions,
and it is computed in the next subsections. Moreover we notice that in (4.13) the physical
spin vectors η, η̄ are not involved in the transformation and they are omitted. This fact
holds true for the transfer matrices with spinless auxiliary space, for which η, η̄ variables
are just spectators.

4.2 L = 1 eigenfunctions

Let us assume to know a solution Λk of (4.5): after L iterations the spectral problem
reduces to the single-particle model

Qa,1 (u) Λ1 (Y1|η, η̄) = Tra [R1a (u+ θ1) Γx0 ] Λ1 (Y |η, η̄) = qa,1 (Y ) Λ1 (Y |η, η̄) , (4.17)

that is, with explicit spinor indices:

[Qa,1(u)]b1ḃ1
a1ȧ1

Λ1(Y1|η, η̄)b1ḃ1
= qa,1(Y1)Λ1(Y1|η, η̄)a1ȧ1 , (4.18)

where the only particle in of this one-site chain transforms in the representation
(∆1, `1, ˙̀

L−1), thus ηa, η̄ȧ are symmetric spinors of degree `1, ˙̀
L−1, according to (4.5), (4.10).

As in this section we care only about the 1-site spectral problem, we drop indices and use
the lighter notation (∆1, `, ˙̀). The solution of (4.18) is constrained by the conformal in-
variance of the R-operator (2.13) and it is just a function with spinor indices (for k = 1
the layer (4.6) is acts from no site to one site, (4.4))

Ψ(Y |x, η, η̄)aȧ = [x− x0]n
(x− x0)2(2−∆1−iν) [x− x0]ċaηċη̄ȧ , (4.19)

where
Y = n

2 + iν , ν ∈ R , n ∈ N , a = (a1, . . . , a`) , ċ = (ċ1, . . . , ċ ˙̀) . (4.20)

The eigenvalue qa,1(u, Y ) corresponding to (4.19) reads

π4
Γ
(
−u−∆a

2 + `
2

)
Γ
(
4−u−∆a

2 + `
2

)
Γ
(
u+2+ ∆a

2 + `
2

)
Γ
(
−u−2+ ∆a

2 + `
2

) Γ
(
−2−u+ ∆a

2 −iν+ n
2

)
Γ
(
u+ ∆a

2 +iν+ n
2

)
Γ
(
u+4−∆a

2 +iν+ n
2

)
Γ
(
2−u−∆a

2 −iν+ n
2

) .
(4.21)

The computation of (4.21) follows from two applications of the star triangle identity in
its amputated form (figure 36 in appendix B), and is illustrated in figure 15. We focus
the reader’s attention on the two sources of spinor indices in the function (4.19): one is
the physical space spins of the chain (`1, ˙̀1), explicitly expressed in (4.21) (red and green
in figure 15), the other is carried by [x− x0]n and it depends on the quantum number n
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x
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Figure 15. Left to right: left hand side of equation (4.18); identification of x0 and simplification of
the spinorial structure via identity [xx] = 1; (amputated) star-triangle integration of the top blob;
the (amputated) star-triangle integration of the left blob delivers the initial function (4.19).

of the excitation (grey in figure 15). It may be convenient to pair the latter with some
auxiliary spinors αȧ, βa

[x− x0]` → (α∗)ċ[x− x0]cċ βc ≡ 〈α|x− x0|β〉` . (4.22)

When dealing with SO(4) invariant charges (`a = ˙̀
a = 0) the auxiliary spinors (4.22) are

left untouched by the action of Qa,k(u), and the spectrum is degenerate respect to space-
time rotations, hence we will often omit them from formulae. In fact, we will restore the
notation (4.22) when dealing with charges generated by a choice of spinning auxiliary space
(`a, ˙̀

a) 6= (0, 0), where the action of Qa,k(u) on layer operators rotates the n-spinor indices,
breaking the degeneracy. The exponent (2−∆1 + iν) in the denominator of (4.21) is fixed
requiring of orthogonality and completeness. In the notation of auxiliary spinors (4.22) we
can rewrite (4.19) as

〈β|Ψ(Y |x, η, η̄)|α〉 = 〈β|x|α〉n

(x2)2−∆+iν [x]η〉`|η̄〉 ˙̀
. (4.23)

We define the conjugate eigenfunction by complex conjugation followed by a shift ν → ν+2i
(convenient choice that simplifies the orthogonality relation)

〈α|Ψ̄(Y |x, η, η̄)|β〉 = 〈α|x̄|β〉
n

(x2)∆−iν 〈η[x]`〈η̄| ˙̀ . (4.24)

The overlap of two such functions reads

〈Ψ(Y ′),Ψ(Y )〉V =
ˆ
d4x
〈α′|x|β′〉n′〈β|x|α〉n

(x2)2+i(ν−ν′) 〈η′|[x][x]|η〉`〈η̄′|η̄〉 ˙̀ =

= 〈η′|η〉`〈η̄′|η̄〉 ˙̀
ˆ
d4x
〈α′|x|β′〉n′〈β|x|α〉n

(x2)2+i(ν−ν′) ,

(4.25)

thus the integration reduces to the scalar case ` = ˙̀ = 0, and the result is

〈Ψ(Y ′),Ψ(Y )〉V = 2π3

(n+ 1)δ(ν − ν
′)δn,n′ 〈β|β′〉n〈α′|α〉n 〈η′|η〉`〈η̄′|η̄〉

˙̀
. (4.26)
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The same result without auxiliary spinors (4.22) reads

〈Ψ
(
Y ′
)
,Ψ (Y )〉V = Λ̄1

(
Y ′|η′, η̄′

)
Λ1
(
Y |η′, η̄′

)
= 2π3

(n+ 1)δ
(
Y − Y ′

)
P11′〈η′|η〉`〈η̄′|η̄〉

˙̀
,

(4.27)
where we introduced the compact notation δ(Y − Y ′) = δn,n′δ(ν − ν ′) and P11′ exchanges
the spinor indices of the two excitations. The terms dependent on spinors in (4.26) are
actually δ-functions in the symmetric spinor spaceˆ

Dη 〈η′|η〉`φ (η) =
ˆ
d2η1d

2η2 e
−η∗·η 〈η′|η〉`φ (η) = φ

(
η′
)
, (4.28)

therefore the orthogonality (and completeness) of the eigenfunctions at L = 1 is a straight-
forward extension of the spinless case. Taking into account the normalization in (4.27) and
writing explicitly the excitation’s spinor indices a, ȧ, the completeness relation follows as

π3
∞∑
n=0

ˆ
R

dν

n+ 1 Ψ(Y |x, η, η̄)aȧ
(
Ψ̄(Y |y, η, η̄)∗

)aȧ
= δ(4)(x− y) (|η〉〈η|)⊗ (|η̄〉〈η̄|) . (4.29)

4.3 Spinless inhomogeneous model

Let us start by considering the model with spinless particles ∆k = 2 + iλk and `k = ˙̀
k = 0

at each site. We study the spectral problem of a transfer matrix defined by a spinless
auxiliary space, that is `a = ˙̀

a = 0. In the setup ∆i 6= ∆j the solution of (4.5) is a
generalization of the homogeneous one treated in [32], and reads

Λ1(Y ) = Ψ1(Y |x) = [(x−x0)]n

(x−x0)2(2−∆1+iν) ,

Λk(Y )≡Λk(n,ν) =R(n)
12

(
∆1

2 −iν
)
R(n)

23

(
∆2

2 −iν
)
· · ·R(n)

k−1k

(
∆k−1

2 −iν
)

[(xk−x0)]n

(xk−x0)2(2−∆k+iν) ,

(4.30)

where the operators R(n)
ij (u) are defined by their integral kernel[

R(n)
ij (u)

]
Φ(xi, xj) =

ˆ
d4y R(n)

u (xi, xj |y)Φ(y, xj)

R(n)
u (xi, xj |y) = [(x1 − y)(y− x2)]n

(xi − xj)2(2−∆i)(xi − y)
2
(
−u+ ∆i

2

)
(y − xj)

2
(
u+ ∆i

2

) , (4.31)

represented in figure 16 together with the layer operator (4.30). Following the very same
steps of the homogeneous model ∆i = ∆j treated in detail in [27], one can check the
iterative relation (4.5) and an exhaustive proof can also be read out of the more involved
spinning model treated in section 4.4. According to (4.5) the action of the layer Λk(Y )
singles out the space of the k-th particle Vk from the model, leaving behind a transfer
matrix of length k − 1 and factor

qa(u, Y ) = π4
Γ
(
−u− ∆a

2

)
Γ
(
4− u− ∆a

2

)
Γ
(
u+ 2 + ∆a

2

)
Γ
(
−u− 2 + ∆a

2

) Γ
(
−2− u+ ∆a

2 + Y ∗
)

Γ
(
u+ ∆a

2 + Y
)

Γ
(
u+ 4− ∆a

2 + Y
)

Γ
(
2− u− ∆a

2 + Y ∗
) ,

(4.32)
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Figure 16. Left: kernel of the operator R(n)

ij (∆1/2− iν); as usual the dashed lines stand for SU(2)
matrices that in a product are alternatively defined as [x] = σµx̂

µ and [x] = σµx̂
µ, to power n of the

symmetric representation. Right: product of R-operators defining the kernel of Λ3(Y ) according
to (4.30): the SU(2) indices flow from the point x1 to the point x0 according to the arrows on
dashed lines.
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Figure 17. L.h.s and r.h.s. of the equation (4.33) for a layer operators of length k + 1 = 4.

The first fraction appearing in (4.32) is in fact independent from Yj and can be included
into the definition of Qa,k(u) by a suitable normalization, and the spectrum is invariant
w.r.t. any permutation of the quantum numbers (Y1, . . . , YL). In agreement with such
symmetry, permuting the numbers Yj between the layers of the eigenfunctions amounts
just to a rotation of the SU(2) indices of the function (see figure 17)

Λk+1 (Y ) ·Λk

(
Y ′
)

= rk (Y ′)
rk (Y ) ×R

(
Y ′, Y

)
Λk+1

(
Y ′
)
·Λk (Y ) R(Y, Y ′) (4.33)

where we use the compact notation R(Y, Y ′) ≡ Rn,n′(iν−iν ′), and the coefficients rj(Y ) =
rj(n, ν) are given by

rj(n, ν) =
Γ
(
iν + n

2
)

Γ
(
2−∆j + iν + n

2
)

Γ
(
2− iν + n

2
)

Γ
(
∆j − iν + n

2
) . (4.34)

We define the eigenfunctions of Qa,L(u) with a suitable normalization

Ψ(Y|x) = ΛL(YL) · · ·Λ2(Y2)Λ1(Y1)
L∏
k=1

rk(Y )k−1 . (4.35)

For a general permutation π of quantum numbers (Y1, . . . , YL) in the eigenfunction (4.35),
the equation (4.33) implies that there is an associated product of matrices Rπ according
to the rule

(. . . , Yk, Yk+1, . . . )→ (. . . , Yk+1, Yk, . . . ) =⇒ R(Yk, Yk+1)
(Y1, . . . , YL)→ (Yπ(1), . . . , Yπ(L)) =⇒ Rπ(Y) ,

(4.36)
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Figure 18. L.h.s and r.h.s. of the equation (4.38) for a layer operators of length k + 1 = 4.

and the matrices R(Yk, Yk+1) define a representation of the symmetric group SL over the
spaces of SU(2) spinors, where unitarity (2.16) and YBE (2.15) are the Coxeter relations.
The straightforward consequence of (4.33) on the eigenfunctions is

Ψ(Yπ(1), . . . , Yπ(L)) = Rπ(Y)†Ψ(Y1, . . . , YL) Ṙπ(Y) . (4.37)

The orthogonality of eigenfunctions at L = 1 was established in the most general situation
in last section, while the overlap of eigenfunctions of length L > 1 is analyzed starting from
the convolution of two layer operators at ν 6= ν ′ (see figure 18)

Λ̄k+1(Y ′) ·Λk+1(Y ) = π4

µ(Y, Y ′)
rk(Y )
rk(Y ′)

×
[
R(Y ′, Y )t′Λk(Y ) · Λ̄k(Y ′)t

′R(Y, Y ′)t′
]t′

,

(4.38)

where t′ is the transposition in the spinor indices of the excitation Y ′, and

µ(Y, Y ′) =
∣∣∣∣i(ν − ν ′) + n− n′

2

∣∣∣∣2 ∣∣∣∣1 + i(ν − ν ′) + n+ n′

2

∣∣∣∣2 . (4.39)

In the r.h.s. of (4.38) the layer operators appear with length diminished by one respect to
the l.h.s., thus the iterative application of (4.38) reduces the overlap of two eigenfunctions
of lenght L to the product of L overlaps of eigenfunctions of length-1, computed in (4.27).
The first non-trivial example is the overlap at L = 2 can be computed via (4.38) as

Λ̄1(Y ′1)Λ̄2(Y ′2)Λ2(Y2)Λ1(Y1)

= π4

µ(Y1,Y2)
r(Y2)
r(Y ′2)×

[
R(Y ′2 ,Y2)t′2Λ̄1(Y ′1)Λ1(Y2)Λ̄1(Y ′2)t′2Λ1(Y1)R(Y2,Y

′
2)t′2

]t′2
= 4π10

(n1+1)(n2+1)µ(Y1,Y2)
r(Y2)
r(Y1)δ(Y1−Y ′2)δ(Y2−Y ′1)×R(Y2,Y

′
2)⊗R(Y1,Y

′
1)P1′2P12′ .

(4.40)

The operators P1′2 and P12′ are permutations in the tensor product of symmetric spinors

Pij′ : Symni [C]⊗ Symn′j
[C]→ Symni [C]⊗ Symn′j

[C]

|χ〉 ⊗ |η〉 7→ |η〉 ⊗ |χ〉 ,
(4.41)

and the definition is well posed since the condition ni = n′j is ensured by δ(Yi−Y ′j ) in (4.40).
The complete result of the overlap must be symmetric respect to the permutations of Y -s
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between layers, therefore for L = 2 we repeat (4.40) after the exchange Y1 ↔ Y2

Λ̄1(Y ′1)Λ̄2(Y ′2)Λ2(Y2)Λ1(Y1)

= r(Y1)
r(Y2) ×R(Y1, Y2)Λ̄1(Y ′1)Λ̄2(Y ′2)Λ2(Y1)Λ1(Y2)R(Y2, Y1)

= 4π10δ(Y1 − Y ′1)δ(Y2 − Y ′2)
(n1 + 1)(n2 + 1)µ(Y1, Y2) ×R(Y1, Y2)P1′1R(Y1, Y

′
2)R(Y2, Y

′
1)P22′R(Y2, Y1)

= 4π10

(n1 + 1)(n2 + 1)µ(Y1, Y2)δ(Y1 − Y ′1)δ(Y2 − Y ′2)× P1′1P22′ ,

(4.42)

and it follows that

〈Ψ2(Y ′1 , Y ′2),Ψ2(Y1, Y2)〉 = 1
µ(Y1, Y2)

2π10

(n1 + 1)(n2 + 1)×

×
[
δ(Y1 − Y ′1)δ(Y2 − Y ′2)P11′P22′ + δ(Y1 − Y ′2)δ(Y2 − Y ′1)R(Y2, Y1)⊗ Ṙ(Y1, Y2)P12′P1′2

]
.

(4.43)

Similarly, for higher length L the overlap is a sum of δ-functions over the permutations of
the quantum numbers (Y1, . . . , YL), each associated with the corresponding product of R
according to (4.36). The scalar product reads

〈ΨL

(
Y′
)
,ΨL (Y)〉 = 1

ρ (Y)L!
∑
π

Rπ (Y)⊗ Ṙπ (Y)Pπ
L∏
j=1

δ
(
Yj − Yπ(j)

)
, (4.44)

where
Pπ = P1π(1)′ ⊗ P2π(2)′ ⊗ · · · ⊗ PLπ(L)′ , (4.45)

and the compact notation ρ(Y) stands for

ρ(Y1, . . . , YL) =
L∏
j=1

(nj + 1)
2π(2L+1)

L∏
k 6=j

µ(Yj , Yk) , (4.46)

and defines the measure over the space of separated variables Yj , i.e. the Hilbert space
structure in (4.16). Hence, the spectral transformation U of (4.13) is extended straight-
forwardly from the homogeneous case of [32] to the present one as an isometry between
Hilbert spaces V and Ṽ

U : Φ(x1, . . . ,xL) 7→ (UΦ)(Y) =
ˆ
d4x1 · · ·d4xLΨ(x|Y)∗Φ(x) = 〈Ψ(Y),Φ〉V ,

U−1 : Φ̃(Y1, . . . ,YL) 7→
(
U−1Φ̃

)
(x) =

∞∑
n1,...,nL=0

ˆ
dν1 · · ·dνLρ(Y)Φ̃(Y)Ψ(x|Y) = 〈Φ̃,Ψ(x)〉Ṽ .

(4.47)

The properties (4.33) and (4.38) generalize the analogues ones proved in [27] for the homo-
geneous model ∆i = ∆j , and their proofs follows the very same steps. Alternatively, (4.33)
and (4.38) can be recovered as a special case of the more general algebraic relations holding
for a spinning model, treated in the section 4.4. The only difference respect to the homoge-
neous model lies in the normalization coefficients rk(Y ) and in the spectrum of the transfer
matrix, since in the present case both depend on the scaling behaviour of the sites ∆k.
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4.3.1 Spinning charges

The generic conserved charge of the twisted chain with fixed boundaries is generated by the
transfer matrix (3.8) whose auxiliary space transforms in the representation with non-zero
spins (`a, ˙̀

a) 6= (0, 0). In this case, (4.9) does not define eigenfunctions of Qa,L(u) since the
exchange of the layer Λk(Y ) with the operator Qa,k(u) is not simple as in (4.5). Indeed,
the transfer matrix acts non-trivially on a layer’s excitation spinor indices, mixing them
with the ones of the auxiliary space. The equation (4.5) gets modified as follows (derived
in [27] for ∆i = ∆j)

Qa,k(u)Λk(Y ) = qa(Y )×R ˙̀
a,n

(
2+u+iν−∆a

2

)
Λk(Y )Qa,k(u)R`a,n

(
−u−iν−∆a

2

)
,

(4.48)

and by Qa,k(u) we denote the operator (3.9), obtained from Qk,a(u) by opening the auxil-
iary space trace over `a and ˙̀

a spinor indices between site k and site 1

Qa,k(u) = Tr`a ⊗ Tr ˙̀
a
Qa,k(u) . (4.49)

The function qa(Y ) is given by

qa(Y ) = π4
Γ
(
2− iν − u+ ∆a

2 + n− ˙̀
a

2

)
Γ
(
3 + iν + u− ∆a

2 + n− ˙̀
a

2

) (
3 + iν + u− ∆a

2 + n+ ˙̀
a

2

)×
×

Γ
(
u+ iν + ∆a

2 + n−`a
2

)
Γ
(
1− u− iν − ∆a

2 + n−`a
2

) (
1− u− iν − ∆a

2 + n+`a
2

)×
×

Γ
(
−u− ∆a

2 + `a
2

)
Γ
(
4 + u− ∆a

2 + ˙̀
a
2

)
Γ
(
u+ 2 + ∆a

2 + `a
2

)
Γ
(
−u− 2 + ∆a

2 + ˙̀
a
2

) ,
(4.50)

and for `a = ˙̀
a = 0 reduces to (4.32). The iteration of (4.48) and the trace over auxiliary

spinor indices delivers the action of Qa,k(u) over the functions (4.35)

Qa,L(u)Ψ(Y|x) = qa(Y1) · · · qa(YL)× t̄a,L...1(u|Y) Ψ(Y|x) ta,1...L(u|Y) , (4.51)

where
ta,1...L (u|Y) = Tr`a [Ra (u|Y1) Ra (u|Y2) · · ·Ra (u|YL)] ,
t̄a,L...1 (u|Y) = Tr ˙̀

a
[Rȧ (u|YL) · · ·Rȧ (u|Y2) Rȧ (u|Y1)] ,

(4.52)

and the R-matrices inside the traces in (4.52) are a compact notation for

Rȧ(u|Y ) = R ˙̀
a,n

(
2 + u+ iν − ∆a

2

)
, Ra(u|Y ) = R`a,n

(
−u− iν − ∆a

2

)
. (4.53)

The equation (4.52) defines the transfer matrices of two generalized SU(2) Heisenberg
magnet where the j-th site is in the (nj + 1) irreducible representation

Symn1

[
C2
]
⊗ · · · ⊗ Symnk

[
C2
]
. (4.54)

and the quantum number νj is the inhomogeneity parameter on the j-th site.
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In order to determine the eigenfunctions of the Qa,L(u) we need to pair each layer with
auxiliary spinors (4.22), and diagonalize the SU(2) transfer matrices acting on them. The
equation (4.51) can be rewritten — modulo normalization — as

Qa,L(u)〈αL|ΛL(YL)|βL〉 · · · 〈α2|Λ2(Y2)|β2〉〈α1|Λ1(Y1)|β1〉
= qa(Y1) · · · qa(YL)〈αL, . . . , α1|ta,L...1(u|Y) ΛL(YL) · · ·Λ1(Y1) ta,1...L(u|Y)|βL, . . . , β1〉 ,

(4.55)

The diagonalization of (4.52) can be achieved by Bethe ansatz technique, which ultimately
relies on the Yang-Baxter equation for the fused SU(2) matrices

R`a,`b(u− v) (Ra(u|Y1) · · ·Ra(u|YL)) (Rb(v|Y1) · · ·Rb(v|YL))
= (Rb(v|Y1) · · ·Rb(v|YL)) (Ra(u|Y1) · · ·Ra(u|YL)) R`a,`b(u− v) ,

(4.56)

and therefore

[ta,1...L (u|Y) , tb,1...L (v|Y)] = 0 ,
[
ta,L...1 (u|Y) , tb,L...1 (v|Y)

]
= 0 . (4.57)

Since commuting operators (4.57) share a basis of eigenfunctions, it is enough to solve
the spectral problem for t(a)

1...L(u|Y) in the fundamental representation `a = 1, that is
by the choice of a spin- 1

2 auxiliary space in the spin chain. This latter class of transfer
matrices includes several known models: when all the excitations have the same spin
number n1 = · · · = nL = 2s we recover the transfer matrix of the XXXs Heiseberg
model [39], while for nj = 2s′ and ni 6=j = 2s we recover the magnet with an impurity of the
Kondo problem [40, 41]. Here we deal with the general inhomogeneous case ni 6= nj , whose
solution has been studied by O. Castro Alvaredo and J. Maillet in [42] via the algebraic
Bethe ansatz [33, 43].

The eigenvectors and eigenvalues of the transfer matrix ta,1,...,L(u|Y) depend on a set
of Bethe roots {w1, . . . , wM}, complex numbers that solve a set of finite difference equations

L∏
k=1

wk − iνk −
nj−1

2 i

wk − iνk + nj+1
2 i

=
M∏
k=1

wk − wj + i

wk − wj − i
, j = 1, . . . ,M . (4.58)

Each eigenvector is the (on-shell) Bethe state corresponding to a set of Bethe roots, ac-
cording to the recipe of quantum inverse scattering method [33]. For a state

|w〉 = |w1, w2, . . . , wM 〉 ∈ Symn1

[
C2
]
⊗ · · · ⊗ SymnL

[
C2
]
, (4.59)

the spectral equation reads

ta,1...,L(u|Y)|w1, . . . wL〉 = τa(u|Y, w1, . . . , wM )|w1, . . . wL〉 , (4.60)

and the expression with `a = 1 is an adaptation from (2.16) of [42]

τ`a=1(u|Y,w1, . . . ,wM ) =
M∏
j=1

wj+u+ ∆a
2 +i

wj+u+ ∆a
2

+
L∏
k=1

u+ ∆a
2 −iνk+ nj−1

2 i

u+ ∆a
2 −iνk−

nj+1
2 i

M∏
j=1

wj+u+ ∆a
2

wj+u+ ∆a
2 −i

.

(4.61)

– 27 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
4

The Bethe states for the transfer matrix t̄L...1(u|Y) and the formula for its eigenvalues
follow from (4.61), with the change of spectral parameter and inhomogeneities (4.53)

u→ 2−u, iνj→−iνj . (4.62)

For a choice of `a, ˙̀
a 6= 1 we the actual eigenvalue of the higher spin transfer matrices

ta,1...L(u|Y) and t̄a,L...1(u|Y). Its general expression was computed by [42], and for the
matrix ta,1...,L(u|Y) with M Bethe roots it reads

τ`a(u|Y,w1, . . . ,wM ) =
`a∑
r=1
P(`a)
r (u)

M∏
j=1

(
u+ ∆a

2 −iνj−i
`a+1

2

)(
u+ ∆a

2 −iνj−i
`a+1

2

)
(
u+ ∆a

2 −iνj−i
`a−r−1

2

)(
u+ ∆a

2 −iνj+i
`a+1−r

2

) ,
P(`a)
r (u) =

`a−1∏
h=r

(
u+ ∆a

2 −iνj+i
2h−`a+1

2

)
(
u+ ∆a

2 −iνj+i
2h−`a−`j−1

2

) , P(1)
r (u) = 1 .

(4.63)

Finally, the eigenfunctions of the model (3.8) — for general auxiliary space and spinless
physical spaces — are labeled by the rapidity and spin of the layer excitations Yj , and also
by M, M̄ Bethe roots wj and w̄j

Ψ(Y,w, w̄|x) = 〈w̄1, . . . , w̄M̄ |ΛL(YL) · · ·Λ1(Y1)|w1, . . . , wM 〉 . (4.64)

and therefore depend at most on of 2L quantum numbers, namley {νk, nk} plus the two
sets of Bethe roots {w1, . . . , wM} and {w̄1, . . . w̄M̄}. The eigenvalue corresponding to (4.64)
follows from (4.51)

τa,1...,L(u|Y,w) τ̄∗a,L...,1(u|Y, w̄)
L∏
k=1

qa,k(u) (4.65)

The property (4.33) for the exchange of the excitations Yk+1, Yk between adjacent layers
implies

Ψ(Y,w, w̄|x) = 〈w̄|R(Yk−1, Yk)ΛL(YL) · · ·Λk+1(Yk)Λk(Yk+1) · · ·Λ1(Y1)R(Yk+1, Yk)|w〉 ,
(4.66)

mapping one-to-one the Bethe states |w〉 of the transfer matrix
ta,1...k,k+1...L(u| . . . Yk, Yk+1 . . . ) to those of the model with swapped spins and inhomo-
geneities between sites k, k + 1. The map between the two models is established via the
Yang-Baxter equation as follows

R(Yk+1, Yk)ta,1...k,k+1...L(u|Y) = ta,1...k+1,k...L(u|Y1 . . . Yk+1, Yk . . . YL)R(Yk+1, Yk) ,
(4.67)

and leaves the eigenvalues unchanged. The very same considerations hold for the transfer
matrix t̄a,L...,1(u|Y) acting on the left vectors 〈w̄| and re-shuffled by R(Yk, Yk+1). Because
of the pairing of layer operators with Bethe states in (4.64), the overlap of eigenfunc-
tions reads

〈ΨL(Y′,w′, w̄′),ΨL(Y,w, w̄)〉 = 1
ρ(Y)L!

∑
π

〈w̄|〈w′|Rπ(Y)⊗ Ṙπ(Y)Pπ|w〉|w̄′〉 . (4.68)
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The eigenfunctions (4.64) are related to (4.35) by the pairing of the spinor indices of
excitations with the left/right Bethe vectors, therefore we may use the notation of auxiliary
spinors (4.22) and write

Ψ(Y,w, w̄) = 〈w̄|Ψ(Y)|w〉 . (4.69)

Let’s analyze the overlap in the space of spin vectors. First, the operator Pπ is charachter-
ized by its action on decomposable tensors |α1, . . . , αL〉 = |α1〉 ⊗ · · · ⊗ |αL〉

Pπ|α1, . . . , αL〉 ⊗ |α′1, . . . , α′L〉 = |α′π(1), . . . , α
′
π(L)〉 ⊗ |απ(1), . . . , απ(L)〉 , (4.70)

which is well defined because nj = n′π(j) by virtue of δ(Yj − Y ′π(j)) (in the r.h.s. of (4.68)).
Secondly, the action of Rπ(Y)-matrices maps the Bethe states to the chain with permuted
sites, reshuffling the sites according to (4.67)

ta,1′...L′(u|Y′) Rπ(Y′) = Rπ(Y′) ta,π(1′)...π(L′)(u|Y ′π(1) . . . Y
′
π(L)) ,

t̄a,L...1(u|Y) Rπ(Y) = Rπ(Y) t̄a,π(L)...π(1)(u|Yπ(L) . . . Yπ(1)) ,
(4.71)

that is the states

〈w′|〈w̄|Rπ(Y)⊗ Ṙπ(Y) = 〈w̄|Rπ(Y)⊗ 〈w′|Ṙπ(Y) , (4.72)

are the Bethe states of roots w̄ and w′ belonging respectively to the (dual of) spaces

Symnπ(1)

[
C2
]
⊗ · · · ⊗ Symnπ(L)

[
C2
]
, and Symn′

π(1)

[
C2
]
⊗ · · · ⊗ Symn′

π(L)

[
C2
]
, (4.73)

and for every permutation π the paring reduces to two spin-chain scalar products

〈w̄|〈w′|Rπ(Y)⊗ Ṙπ(Y)Pπ|w〉|w̄′〉 = 〈w′|w〉〈w̄|w̄′〉 . (4.74)

The resulting expression reads [44]

〈w̄|w̄′〉〈w′|w〉 = δM,M ′δM̄,M̄ ′
detH (w,w′)∏M

i 6=j (wi − wj)
(
w′i − w′j

) detH (w̄, w̄′)∏M̄
i 6=j (w̄i − w̄j) (w̄′i − w̄′j)

,

(4.75)

with the M ×M matrix H(w,w′)

H
(
w,w′

)
i,j = i

wi − w′j

 M∏
k 6=i

(
wk − w′j + i

)
+

L∏
h=1

wh + iνh −
nj+1

2 i

wh + iνh + nj−1
2 i

M∏
k 6=i

(
wk − w′j + i

) .
(4.76)

The measure (4.46) can be cast in the form of a Vandermonde determinant (see section 2.2
of [45])

ρ(Y) =
2L∏
k 6=h

(ξk − ξh) ; ξ2h+1 = 1
2 + Yh , ξ2h = Y ∗h −

1
2 , (4.77)

thus the scalar product of eigenfunctions (4.64) is a product of determinants — i.e. a de-
terminant. The eigenfunctions (4.64) are a basis of eigenfunctions common to any transfer
matrix (3.8) with spinless particles (∆k, 0, 0). The eigenvalues depend on the choice of
auxiliary space representation (∆a, `a, ˙̀

a) in an explicit fashion, and the degeneracy of the
spectrum respect to SO(4) is removed as the eigenvalues depend on the Bethe roots.
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0

xj
a a

xi

y
b b

η

η

b2 b1 b3 b2

a2 a3 a3
a1

b3
b3

2-Δi

-u+Δi /2 u+Δi /2

2-Δ1 2-Δ2

2-Δ  +iν3

iν iν Δ  -iν2 Δ  -iν1

Figure 19. Left: diagram of the integral kernel R(n)
u (xi, xj |y)bḃ

aȧ . The dashed line starting in xi and
ending in xj carries n-symmetric spinor indices. The green/red dashed lines carry spinor indices
of the particles of the chain. Right: diagram corresponding to the kernel of the layer operator
Λ3(Y |η, η̄)b,ḃ

a,ȧ . The various operators R(n)
i,i+1(u) are convoluted in the n-symmetric spinor indices,

as represented by the continuous grey dashed line starting.

4.4 Spinning inhomogeneous model

In the most general setup the k-th particle of the chain transforms in a unitary representa-
tions with non-zero spins (`k, ˙̀

k) 6= (0, 0). The spectral problem of transfer matrices with
spinless auxiliary space `a = ˙̀

a = 0 can be solved by separation of variables similarly to
the scalar case of section 4.3. For the sake of applications to Feynman integrals, this class
of transfer matrices includes the graph-building operator for the most general topology of
planar graphs of the fishnet theory (1.3), that is a mix of hexagonal “honeycomb” and
squared “fishnet” as that of figure 2.

The definition of layer operators is generalized to the case of spinning particles by
the substitution of the operator Rij(u) with a spinning version. We adopt the notation of
explicit SU(2) indices for the chain’s spinning particles, while we leave them implicit for
the excitation carried by the layers

Λk(Y |η, η̄)b,ḃ
a,ȧ = Λk(Y )b1...bk,ḃ1...ḃk

a1...ak,ȧ1...ȧk
ηbk η̄ḃ1

, (4.78)

Λk(Y )b,ḃ
a,ȧ = Λk(Y )b1...bk,ḃ1...ḃk

a1...ak,ȧ1...ȧk

= δḃ1
ȧ1

[
R(n)

12

(
∆1

2 −iν
)]b1ḃ1

a1ȧ2

· · ·
[
R(n)
k−1k

(
∆k−1

2 −iν
)]bk−1ḃk

ak−1ȧk

· [xk−x0]n[xk−x0]bk
ak

(xk−x0)2(2−∆k+iν) ,

(4.79)

where the operators R(n)
12 (u) are defined by their integral kernel

R(n)
ij (u)bḃ

aȧ Φ(xi,xj)bḃ =
ˆ
d4yR(n)

u (xi,xj |y)bḃ
aȧ Φ(y,xj)bḃ

R(n)
u (xi,xj |y)

=
[
(x1−y)(y−x2)

]n [x1−x2
]`i R ˙̀

j ,`i
(∆i−2)Rn,`i

(
−u−∆i

2

)
[x2−y]`i [(x2−x1)(x1−y)] ˙̀

j

(xi−xj)2(2−∆i)(xi−y)2
(
−u+ ∆i

2

)
(y−xj)

2
(
u+ ∆i

2

) ,

(4.80)

represented in figure 19 together with their product (4.78). The remarkable proper-
ties (4.33) and (4.38) of operators Λk(Y ) hold in the spinning case with some modification,
but the proof of [27] — despite its logic and steps are still valid — deserves to be general-
ized explicitly as the structure of layers (4.78) involves also R-matrices between physical
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spaces and excitations. We dedicate to such properties the sections 4.5 and 4.6. In the next
paragraphs we rather focus on the proof of the SoV equation (4.5) and the computation of
the spectrum. The operators (4.78) solve the separation of variables condition, that reads

Qa,k(u)c,ċ
a,ȧ Λk(Y |η, η̄)b,ḃ

c,ċ = qa,k(u, Y ) Λk(Y |η, η̄)c,ċ
a,ȧ Qa,k−1(u)b,ḃ

c,ċ , (4.81)

where a = (a1, . . . , ak), b = (b1, . . . ,bk−1), and repeated spinor indices are contracted.
In a more explicit fashion we can write

Qa,k(u)c1...ck,ċ1...ċk
a1...ak,ȧ1...ȧk

Λk(Y |η, η̄)b1...bk−1,ḃ1...ḃk−1
c1......ck,ċ1......ċk

= qa,k(u, Y ) Λk(Y |η, η̄)c1...ck−1,ċ1...ċk−1
a1......ak,ȧ1......ȧk

Qa,k−1(u)b1...bk−1,ḃ1...ḃk−1
c1...ck−1,ċ1...ċk−1

.
(4.82)

The proof of (4.81) follows from a few application of the star-triangle duality (2.26) and
is split into two parts according to the factorization of the transfer matrix Qa(u) =
Qa−(u)Qa+(u) of figure 9. The action of Qa+(u) on a layer operator is showed in fig-
ure 20, while the action of Qa−(u) on what results is illustrated in figure 21. The function
qa,k(u, Y ) is defined as

qa,k(u, Y ) =
Γ
(
−u− ∆a

2 + `k
2

)
Γ
(
4− u− ∆a

2 + `k
2

)
Γ
(
u+ 2 + ∆a

2 + `k
2

)
Γ
(
−u− 2 + ∆a

2 + `k
2

)×
× π4

Γ
(
−2− u+ ∆a

2 − iν + n
2

)
Γ
(
u+ ∆a

2 + iν + n
2

)
Γ
(
u+ 4− ∆a

2 + iν + n
2

)
Γ
(
2− u− ∆a

2 − iν + n
2

) .
(4.83)

The spectrum of the transfer matrix Qa,k(u) is symmetric with respect to any permutation
of quantum numbers (Y1, . . . , YL). The dependence of (4.83) on the site k of the chain is
factorized respect to the dependence over the Yj of the layer, and can be stripped out and
included into the transfer matrix normalization.

4.5 Exchange symmetry

The layer operators (4.78) satisfy a simple algebra respect to the exchange of two quantum
numbers Y = (n, ν) and Y ′ = (n′, ν ′) between two consecutive operators Λk+1(Y )Λk(Y ′).
If we use the shorthand notation for R-matrices between excitations and physical particles

R(0, Y ′) ≡ Rn′, ˙̀1(−iν ′) , R(Y,−2i) ≡ Rn, ˙̀1(iν − 2) , (4.84)

the compact form of the exchange of two adjacent excitations reads

Λk(Y ) ·Λk−1(Y ′) = rk(Y ′)
rk(Y ) × R̂1(Y ′, Y )Λk(Y ′) ·Λk−1(Y )R(Y, Y ′) , (4.85)

where the coefficients rk(Y ) = rk(n, ν) extending the definition (4.34) by the introduction
of physical space spins `1, ˙̀

k

rk(n, ν) =
Γ
(
iν −∆k + n− ˙̀

k
2

)
Γ
(
iν −∆k − 1 + n− ˙̀

k
2

) (
iν −∆k − 1 + n+ ˙̀

k
2

) Γ
(
iν + n−`1

2

)
Γ
(
2− iν + n−`1

2

) . (4.86)
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Figure 20. Up left: diagram representation of Qa+(u)Λk(Y ). Up right: transformation of trian-
gles into star integrals in the layer Λk, and identification of x0 points. Middle left: star-triangle
integration of the rightmost blob. Middle right: the interchange relation I of figure 6 moves the
vertical black line from right to left in the diagram. Down left: the triangle with basis the vertical
black line is replaced by a star integral. Down right: result of the integration of the leftmost blob.

The matrix R̂1 is a product of three R-matrices accounting for the exchange of excitations
across the left component (`1, 0) of the particle in site 1

R̂1(Y, Y ′) ≡

(
1− iν ′ + n′−`1

2

)
(
1− iν ′ + n′+`1

2

)
(
iν − 1 + n−`1

2

)
(
iν − 1 + n+`1

2

) [R(0, Y ′)t1R(Y ′, Y )R(Y,−2i)t1
]t1

,

(4.87)
and t1 denotes the transposition in the space of dotted spinors ˙̀1. The equation (4.87)
can be eventually re-written with the order of R-matrices reshuffled via the Yang-Baxter
equation and crossing symmetry:

R(0, Y )t1R(Y ′, Y )R(Y ′,−2i)t1 = R(Y ′,−2i)t1R(Y ′, Y )R(0, Y )t1 . (4.88)

Being based on the star-triangle identity (2.26) and the interchange relation II of fig-
ure 6, the proof of (4.85) can be delivered — avoiding tedious computations — in the
diagrammatic form of figure 22. The definition of an eigenfunction with a convenient
normalization is

Ψ(Y|x,η, η̄) = ΛL(YL, ηL, η̄1) · · ·Λ2(Y2, η2, η̄L−1)Λ1(Y1, η1, η̄L)
L∏
k=1

rk(Yk)k−1 . (4.89)

– 32 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
4

1 2

1' 2'
R R

0

R

3

0

1 2

1' 2'
R R

3

0R
R

R R

R R

0

R1' 2' 0R

1 2 3

0

0

1 2 3

1' 2'

Figure 21. Up left: Qa−(u) is applied to the first row of triangles of the down-right picture in
figure 20; the horizontal edges of triangles get canceled. Up right: identification of x0 points and
(amputated) star-triangle integration of the leftmost blob. Down left: twice the application of the
interchange relation I of figure 6 moves the vertical black line from x11′ to x30, with the effect of
adding horizontal edges to form two rows of triangles. Down right: the upper row of triangles in
down-right of figure 20 is glued back, obtaining the diagram of Λk(Y )Q′a,k−1(u), and completing
the proof of (4.81).

00

0

0
a2 a2 a3 a3a1 a4 a4a1

b3 b1 b4 b2

b2

b1

b3

b4

0 0

0

0

Figure 22. Proof of the exchange relation (4.85). Up left: diagram of the l.h.s. of (4.85).
Up right: triangles in the layer Λk−1 are rewritten as star integrals and two vertical lines
[xx]n′R(Y, Y ′)R(Y ′, Y ) = 1 are added on the left of the diagram. Down left: thrice the appli-
cation of the interchange relation (I) of figure 6 moves the vertical lines from left to right — and
the last interchange make the lines disappear due to amputation of the left-most vertex. Down
right: the upper layer star integrals are replaced by triangles, obtaining the diagram of the r.h.s. of
equation (4.85).
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Rn'l(iν'-u)

Rnn'(iν'-iν)

Figure 23. Left: scheme of the exchange relation (4.85): interchanging the two layers of quantum
numbers (n, ν) and (n′, ν′) determines a mixing of spinor indices via the R-matrices as showed on
the r.h.s. of the equal. Right: scattering picture of the spinor mixing, happening on the left and
on the right of the two layers respectively: the two mirror magnons associated with the two layer
scatter between each-other and also with a physical spinning particle. The scattering is integrable
as a consequence of the Yang-Baxter property (2.10).

The formula (4.85) spells the exchange of two adjacent quantum numbers as a conjugation
of the layers by a few R-matrices

Ψ(x|Y1, . . . , Yk+1, Yk, . . . , YL) = R̂k(Yk, Yk+1)Ψ(x|Y1, . . . , Yk, Yk+1, . . . , YL) R(Yk+1, Yk) .
(4.90)

Since any permutation can be decomposed in elementary exchanges between adjacent ele-
ments Yk, Yk+1, it follows from that the only effect of a permutation of the set (Y1, . . . , YL)
in the eigenfunctions is a rotation in the SU(2) indices of the symmetric spinors carried
by the layers’ excitations. The action of a transfer matrix Qa,L(u) with spinless auxiliary
space is insensitive to the spinorial indices of layers, therefore the formula (4.90) agrees
with the invariance of the spectrum respect to permutations of quantum numbers.

In addition to the mixing of indices between the n- and n′-fold symmetric spinors of
the two layers, the permutation of quantum numbers in the present case involves a mixing
of spinors indices between layers and physical spaces of the chain, and we need to check
that the order of the exchanges leading to the same permutation is irrelevant. This fact is
a consequence of the YBE (2.15) and unitarity (2.16) and of the analogues properties for
the matrix R̂k (proof in appendix F)

R̂k(Y, Y ′)R̂k(Y ′, Y ) = 1 ,

R̂k(Y, Y ′)R̂k+1(Y, Y ′′)R̂k(Y ′, Y ′′) = R̂k+1(Y ′, Y ′′)R̂k(Y, Y ′′)R̂k+1(Y, Y ′) .
(4.91)

Let us analyze (4.85): as for a model of zero-spins particles, the exchange of layers spinors
gives the corresponding matrix R(Y, Y ′) which accounts for the exchange of the two layer
excitations. Such an exchange requires the layer spinors to scatter through the right com-
ponent of the physical particle in site x1, adding to the picture the matrices R(Y ′,−2i)t1
and R(0, Y )t1 , schematically showed in figure 23. The transposition in the physical space
is due to the fact that such scattering is of type particle-antiparticle, i.e. opposite ori-
entation of the physical (blue, black) and layer (green) arrows in figure 23 (left). The
ratio rk(Y )/rk(Y ′) correctly reproduces the normalization of the eigenfunction after the
exchange Y ↔ Y ′. The formula (4.90) establish the general rule for any permutation of
the quantum numbers (Y1, . . . , YL) in the eigenfunctions of the model. The Yang-Baxter
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property (2.15) and the parity (2.16) of the matrix R(Y, Y ′) = Rnn′(iν − iν ′) guarantee
that it is well defines a representation of the symmetric group of the L quantum numbers
Yj . Such a simple behaviour is identical for any choice of the physical space V of the spin
chain, and reproduces (4.33) for the spin-less particles.

4.6 Scalar product

In this section we work out the overlap between eigenfunctions (4.89). First, we recall
that the eigenfunctions transform under a unitary irreps of the conformal group which can
belong to the principal series or to the complementary series — the second describing real
scaling dimensions ∆ ∈ [0, 4], relevant for applications to Feynman integrals. Here we’ll
limit ourselves to the principal series ∆ = 2 + iν and the results for the complementary
series can be recovered a posteriori by an analytic continuation of ν to the imaginary strip
[−2i, 2i].

4.6.1 L > 1

For the model of L > 1 particles the computation of the overlap of eigenfunctions (4.89) is
based on the algebra satisfied by a layer operator Λk(Y ) with the conjugate Λ̄k(Y ′). The
conjugate operator is defined respect to the scalar product (2.3) and with an additional shift
in the quantum number ν → ν + i2, as established for L = 1 eigenfunctions. The diagram
of the kernel defining the conjugate layer operator is given in the first row of figure 25
together with the convolution Λ̄k+1(Y ′)Λk+1(Y ). The remarkable property (4.38), valid
for particles of spins zero, continues to hold for the chain of spinning particles with an
additional mixing of spinor indices between physical space and layer excitation

Λ̄k+1(Y ′) ·Λk+1(Y ) = π4

µ(Y, Y ′)rk(Y )r̄k(Y ′)×

× 〈η′k|ηk〉`k〈η̄′1|η̄1〉
˙̀1
[
R̂(Y ′, Y )t′Λk(Y ) · Λ̄k(Y ′)t

′R(Y, Y ′)t′
]t′

,

(4.92)

where t′ is the transposition in the indices of excitation Y ′ and r̄k(Y ) is defined as complex
conjugate with shift ν → ν+2i according to the prescription for Λ̄k(Y ). The proof of (4.92)
is delivered with diagrams in figure 25, using the star-triangle duality and the consequent
interchange relation II of figure 6. The formula (4.92) strongly resembles (4.33) for models
of spinless particles: the physical space spinors η, η̄ get factored out of the convolution, and
the only generalization sits in the depedandence of rk factors on the spins of the k-th of
the spin chain. By means of (4.92) the overlap of length-L eigenfunctions is reduced to the
overlap of functions of length L − 1, and this iteration eventually maps the computation
to the product of L overlaps of length-one functions (4.27). For example, for a length-two
eigenfunction

〈Ψ2(Y ′1 , Y ′2),Ψ2(Y1, Y2)〉 = 2π10

µ(Y1, Y2)(n1 + 1)(n2 + 1)〈η
′
1|η1〉`1〈η̄2|η̄′2〉`2〈η̄1|η̄′1〉

˙̀1〈η′2|η2〉
˙̀2×

×
[
δ(Y1 − Y ′1)δ(Y2 − Y ′2)P11′P22′ + δ(Y1 − Y ′2)δ(Y2 − Y ′1)R̂(Y2, Y1)⊗ Ṙ(Y1, Y2)P1′2P12′

]
,

(4.93)
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Figure 24. Left: general scheme of the overlap Λ̄k+1(Y ′)Λk+1(Y ). The two layers get exchanged,
i.e. and two excitations Y, Y ′ cross each other exchanging their order, while the layers reduce their
length by one. The re-ordering of Y, Y ′ requires the excitations to cross with the right (green)
component of site-2. Right: the exchange of order of two excitations corresponds to the appearence
of an R-matrix.
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Figure 25. Up left: diagrams of layer operators Λ̄3(Y ′) and Λ3(Y ). Up right: in the convolution
Λ̄3(Y ′)Λ3(Y ) the basis of triangles cancel each other. The first dotted and last undotted physical
spinors are contracted and factored out as 〈η̄1|η̄′1〉

˙̀1 and 〈η′3|η3〉`3 . Down left: result of the inte-
gration by (amputated) star-triangle identity in the first and last black dots, respectively. Down
center: the application of the interchange relation II of figure 6 delivers as a result the convolution
Λ2(Y )Λ̄2(Y ′) together with a mixing of the layers spinor indices by the R-matrices on the left and
on the right of the diagram. Down right: explicit factorization of the results in Λ2(Y ) and Λ̄2(Y ′)
plus spinor mixing.
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where we recall that R̂(Y, Y ′) is defined in (F.2), with the obvious reduction R̂(Y, Y ′) =
R(Y, Y ′) for the spinless site `1 = 0. Similarly, for higher length L the overlap is a sum of
δ-functions over the permutations of the quantum numbers (Y1, . . . , YL), each associated
with the corresponding products of matrices R or R̂. The scalar product reads

〈ΨL(Y′),ΨL(Y)〉 = 1
ρ(Y)L!

∑
π

R̂π(Y)⊗ Ṙπ(Y)Pπ(i)

L∏
j=1

δ(Yj − Yπ(j))〈η̄j |η̄′j〉`j 〈η̄j |η̄′j〉
˙̀
j ,

(4.94)
where

Pπ = P1π(1)′P2π(2)′ · · ·PLπ(L)′ . (4.95)

5 Scattering of mirror excitations

The eigenfunctions of the transfer matrices Qa,L(u) presented in the last section reveal the
features of wave-functions of a multi-particle state in a (1 + 1)d integrable model. The
quantum numbers Yj define the excited modes of the mirror channel of the fishnet — i.e.
of the conformal spin chain with fixed boundaries. In this respect, the properties (4.33)–
(4.92) express the exchange of excitations by an appropriate “scattering” matrix R(Y, Y ′),
that satsifies YBE, unitarity and a crossing equation (2.17), and they are reminiscent
of a Zamolodchikov-Faddeev algebra [46–48] with creation/annihilation operators Λ̄k(Y ),
Λk(Y ). In this section we propose a scattering interpretation for the general spinning
fishnet lattice, its eigenfunctions and — ultimately — for the star-triangle identity (2.26).

5.1 Star-Triangle as a scattering process

We claim that general 4d star-triangle relation (2.26) describes the (1 + 1)d scattering
of particles propagating in the radial direction of R4, and with an internal symmetry
SO(4) ∼ SU(2) × SU(2). Accordingly, the particles wave-functions live on the manifold
R× S3 and, and are defined by a momentum p(ν) = 2ν and by a degree-n irreducible (i.e.
symmetric and traceless) tensor of SO(4)

fν,n(y, x̂) = eiνyCn(x̂) , Cn(x̂) = x̂µ1 · · · x̂µnt(µ1...µn) , y ∈ R , x̂ ∈ S3 . (5.1)

The quantum number ν is the rapidity of the excitation; given its simple relation with the
momentum we will use the latter word to refer to the rapidity in the rest of the section.6
We can express the symmetric tensor with SU(2) spinors |β〉 in the representation 2 and
〈α| in the representation 2̄, thanks to the Clifford algebra of matrices σµ, σ̄ν (see (A.5))

C(µ1...µL)
n (x̂) = 〈α|σµ1 |β〉 · · · 〈α|σµL |β〉 =⇒ Cn(x̂) = 〈α|x|β〉n . (5.2)

The wave-function can be rewritten also without auxiliary spinors α, β in favour of the
notation of symmetric indices (2.6)

fν,n(y, x̂) = [x]ne−2iνy , (5.3)
6In contrast to that, for the well-known models of 2d massive scattering the rapidity is related to

the momentum and energy of the particle via hyperbolic functions p(ν) = m sinh(ν) , E(ν) = m cosh(ν),
e.g. [48].
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Figure 26. Left: the diagram of the overlap (5.8) of two wavefunctions of momenta v, u and
bound-state index n+1 and,m+1. The point at∞ can be restored by a conformal transformation,
and the diagram takes the form of a star integral. The latter is computed by star-triangle identity.
Right: by a choice of displacement z = (1, 0, 0, 0) the triangle reduces to the Rn,m(iv − iu) (and a
dynamical factor an,m(u, v). We regard this matrix as the result of a scattering process, and specify
the s- and t-channels.

and they can be regarded as propagating along the radial direction of R4, that amounts to
the transformation

(y, x̂)→ (r = ey, x̂) ∈ R4 =⇒ fν,n(y, x̂)→ [x]n
r2iν , (5.4)

and the conjugate wave-function in the canonical coordinates of R4 is given, as the 4d
measure is d4x = drr3dΩ and the change of variable dy = dr/r, by

f∗ν,n(y, x̂)→ [x̄]n
r2(2−iν) . (5.5)

We can already make two observations. First, the functions written as (5.4) are of the same
type as (4.19), that is for L = 1. Secondly, the rule for complex conjugation (5.5) — i.e.
the conjugation as radial plane waves — matches with the prescription found in section 4.2
for eigenfunctions’ orthogonality.

The wave-functions (5.3) carry n-fold symmetric left/right spinor indices in the nu-
merator [x]ȧa, hence they can be paired with auxiliary spinor variables in 〈α| ⊗ |β〉 ∈
Sym∗n ⊗ Symn; under complex conjugation the spinors get exchanged and the momentum
ν flips the sign

〈α|x|β〉n

r2(iν) =
(〈β|x̄|α〉n
r2(−iν)

)∗
. (5.6)

Therefore, each wave function can be regarded as having a left component of spin (n, 0)
with momentum ν, and a dual right component (0, n) with momentum −ν. The overlap
between two wave functions with momentum ν and ν ′ located at different points on R×S3,
say x and x − z is nothing but an amputated form of the star-triangle identity (2.26) for
` = 0 (see figure 36 of appendix B)

〈fm,u, eiz·p̂fn,v〉 =
ˆ
d4y

[y]m
(y)2(2−iu)

[z− y]n
(z − y)2(iv) = an,m(v, u) [z]Rn,n′(i(u− v))[z]

(z)2(i(v−u)) . (5.7)

With the pairing (5.6), we can read out clearly the spinor structure in the last formula
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fn,v(x)→ 〈α|fn,v(x)|β〉 , fm,u(x)→ 〈α′|fm,u(x)|β′〉 ,

〈〈α′|fu,m|β′〉, eiz·p̂〈α|fv,n|β〉〉 ∝
〈α[z]|〈β′|Rm,n(i(v − u))|β〉|[z]α′〉

(z)2(i(u−v)) ,
(5.8)

and reads as an integrable scattering between the two incoming left component |β〉 ⊗
[z̄]|α〉 with momenta ν, ν ′ into two outcoming left components 〈α[z]⊗ 〈β′| with exchanged
momenta (see figure 26). The SU(2) matrices [z] , [z̄] rotate the spinors as a result of the
displacement eiz·p̂, that is also responsible for the rescaling (z2)iν′−iν . For the choice of a
displacement only in first component zµ = (z, 0, 0, 0) the spins are not rotated, indeed

z = ẑµσµ = σ0 = 1 , (5.9)

and furthermore setting z = 1, the r.h.s. of (5.8) is reduced to the product of an R-matrix
element between two left symmetric spinors in (n + 1) ⊗ (m + 1) with momenta v, u and
two right ones in the conjugated representation, with a dynamical pre-factor

an,m(iv − iu)an,0(2− iv)a0,m(iu)× 〈α|〈β′|Rn,m(iv − iu)|β〉|α′〉 . (5.10)

The simple result (5.10) for the overlap of excitations at the points (0, 0, 0, 0) and (1, 0, 0, 0)
allows to interpret the spin numbers n/2 as bound-state indices a = n+ 1 of the particles
on the radial direction, because of the poles in the momenta of an,m(iv − iu), in line with
the language of [20].

The logic of the last observation can be repeated also for ` 6= 0 in the star-triangle (2.26),
that is for 3 incoming left spinors and 3 outcoming right spinors of symmetric degreesm, l, n.
In this case we deal with a scattering of particles with momenta u, v, w and bound-state
indices a = n+ 1, b = m+ 1, c = l+ 1. Assuming the scattering to be factorized, we expect
the S-matrix to be

Rl,m(iw − iu)Rn,m(iu− iv)Rl,n(iw − iv) . (5.11)

We represent this process in figure 27 and read out from the picture the momenta to inject
in the star-triangle relation. If we look at figure 27 from left towards right, we see the s-
channel for particles u, v, therefore a scattering matrix Rnm(iu− iv). The third particle w
scatters with the other two in the t-channel, thus the s-channel exchanged momenta u−w
and w − v, are analytically continued to w − u + i and v − w + i (see [49] and references
therein). The spinor indices contractions are fixed by the arrows in figure 27, and the full
expression of the scattering is

[
Rtl
l,m(iu− iw − 1)Rn,m(iu− iv)Rtl

l,n(iv − iw − 1)
]tl

, (5.12)

and can be cast into the form (5.11) (with additional charge conjugation and crossing
factor), by the crossing equation (2.17). The (amputated) star-triangle is in fact an overlap
of four wave-functions, in analogy to (5.8), with displacement z between the two couples
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s-channel {u,v}
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(v,n)

(i+w,l)

(-u-2i,m)

0 z

0 z

(-w-i,l)

1+iv-iw

Figure 27. Left: scattering of three particles (left-components) of momenta {u, v, w} and spins
{m/2, n/2, l/2}. The direction of arrows fixes the order of R-matrices in the product, that is
equal to (5.12). Right: diagram of the overlap of eigenfunctions with a displacement z, (5.13).
Here we distinguish SU(2) matrices of type [x] and [x̄] by the use of a bar. In the up picture
barred/unbarred lines are paired, as it can be read out of (5.13). Downstairs we depict the result
of charge-conjugation in the spinor space Syml, bringing the diagram in the form of a (amputated)
star-triangle, where any two paired dashed lines are always of type bar/unbar (r.h.s. of (5.13)).

of functions

〈fm,ufl,−3i−w, e
iz·p̂fn,vfl,−i−w〉 =

ˆ
d4y

[y]m[y]l
(y)2(1+i(w−u))

[z− y]l[z− y]n
(z − y)2(i(v−w)+1)

= [σ2]l
(ˆ

d4y
[y]m[z− y]l

(y)2(1+i(w−u))
[y]l[z− y]n

(z − y)2(i(v−w)+1)

)tl
[σ2]l .

(5.13)

The expression in the r.h.s. between brackets is amputated star-triangle figure 36 of ap-
pendix B, with momenta v and −i− w in one leg, conjugate momenta 2− u and w + i in
the other, and external points 0 and z. As already observed for two excitations, a displace-
ment z = (1, 0, 0, 0) does not lead to any dependence over z in the r.h.s. of the (amputated)
star-triangle, and (5.13) is equal to

anm(iu−iv)anl(iv−iw−1)alm(iw−1−iu)×
×[σ2]lRtl

l,m(iu−iw−1)Rn,m(iu−iv)Rtl
l,n(iv−iw−1)[σ2]l

= anm(iu−iv)anl(iv−iw−1)alm(iw−1−iu)
rlm(iu−iw)rln(iw−iv) ×Rl,m(iw−iu)Rn,m(iu−iv)Rl,n(iw−iv) .

(5.14)

The result (5.14) is conformally equivalent to the more general overlap

〈fm,ufl,−3i−we
ix32·p̂fn,v, fm,ue

ix12·p̂fn,vfl,−w−i〉

=
ˆ
d4y

[x3 − y]l[x3 − y]m
(x3 − y)2(i(w−u)+1)

[y− x2]m[y− x1]n
(y − x2)2(i(u−v))

[y− x1]l[x2 − y]n
(y − x1)2(i(v−w)+1) ,

(5.15)
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1+i(u-w)
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R(iv-iw-1) R(iw-iu-1)

i(u-v)

1+i(v-w)

2-iu+iv

=1+iw-iu 1-iv+iw

0 z

8

0 z

Figure 28. Star-triangle computation of the overlap. The integral inside the brackets in the
r.h.s. (5.14) is conformally equivalent to a star-integral, via a map that restores the point at ∞. A
choice of vertices of the star (0, 0, 0, 0), (1, 0, 0, 0), (∞, 0, 0, 0) eliminates any space-time dependence
in the triangle, replacing the dashed lines [x] with the identity in the space of spinors.

which is related to the star-triangle identity of figure 28 (for more details, see the ap-
pendix B) by a charge conjugation in the l-fold symmetric spinors, just as in (5.13)

[σ2]l
(ˆ

d4y
[x1 − y]l[x3 − y]m
(x3 − y)2(i(w−u)+1)

[y− x2]m[y− x1]n
(y − x2)2(i(u−v))

[y− x3]l[x2 − y]n
(y − x1)2(i(v−w)+1)

)tl
[σ2]l . (5.16)

Sending the points on the line by means of a conformal change of coordinates, x3 →
(∞, 0, 0, 0), x1 → (0, 0, 0, 0) and x2 → (1, 0, 0, 0), all the SU(2) matrices of type [xij] , [xij]
that would rotate spinors in the r.h.s. of the star-triangle (2.26) are reduced to the identity,
and the denominators in the r.h.s. disappear, leaving behind the result (5.14). In prac-
tice, the required conformal transform can be realized by conjugation of both sides of the
star-triangle with conformal propagators, as it can be read from the comparison between
figure 35 and figure 37 in the appendix B.

The scattering picture for the general star-triangle duality can be applied to the in-
terpretation of the equivalent identities obtained moving R-matrices from the r.h.s. to
the l.h.s. of the equation, or for the more involved scattering processes of the interchange
relations of figure 6.

5.2 Mirror excitations on the lattice

Having established the identification of the triangle of (2.26) with the scattering of (1+1)d
particles, we apply this picture to the transfer matrix Qa,L(u) and to the layer operators
Λk(Y ), as well as to the interpretation of their algebra (4.33), (4.85), (4.38), (4.92). The
transfer matrix Qa,k(u) is the graph bulding of a square lattice of spinning conformal prop-
agators; according to (4.19) the propagators are wave-functions of radial excitations and
the lattice, and as they cross into vertices they give rise to a scattering process between
auxiliary space excitations with physical space particles. The auxiliary space excitation
(∆a, `a, ˙̀

a) is split into left/right components with momentum (∆a − 2)/2 and spins `a/2
and ˙̀

a/2 respectively (grey and blue in figure 29). Each physical space (∆k, `k, ˙̀
k) con-

tributes with left/right components as well; the momentum 2 − ∆k is carried by on the
left (undotted) mode, while the right (dotted) ones have momentum 0 (red and green lines
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Figure 29. Square lattice build by the transfer matrix Qa,3(u) and its scattering interpretation.
Colours of the dashes lines [x] and [x] correspond to the colour of the lines in the scattering picture.
The scattering matrix R is represented by black blobs.

0 08

1 2 3

8

1 2 3

Figure 30. Layer operator Λ3(Y ) in the Feynman diagram notation, after an inversion that restores
the point at∞, and its picture as a scattering between the chain’s modes and the mirror excitation.
Left/right modes of the chain move towards 0 and ∞ respectively. Black blobs denote scatterings,
i.e. R-matrices.

respectively in figure 29).7 Auxiliary excitations traverse the lattice and scatter with phys-
ical ones, among left-left and right-right ones as in the right panel of figure 29. A similar
picture holds for the layer operators Λk(Y ): each layer is associated with an excitation Y of
momentum ν and bound state index n+ 1, propagating from∞ to 0 along the layer. Since
the layer’s kernels are composed of triangles of the type in r.h.s. of (2.26), the scattering
picture is straightforwardly illustrated by figure 30. According to figure 30, in the general
inhomogeneous and spinning model, the mirror excitation carried by a layer scatters with
the left modes of physical space (red lines), that move from x1, . . . , xk towards xµ = 0,
while it is transparent to the right modes that point towards ∞ (green lines). In the sim-
plified setup of a homogeneous chain with ∆k = 1 and spinless particles `k = ˙̀

k = 0, there
is no scattering between mirror excitations and chain’s particles. Such a choice coincide
with the bi-scalar fishnet reduction of the lattice, and therefore describes the mirror ex-
citations of the theory (1.2). The (1 + 1)d scattering picture for the graph-builder of the
lattice (figure 29) and for the layer operators (figure 30), can be extended to the equa-
tion (4.5). In general, the moves of lines in the Feynman diagrams by star-triangle and
interchange identities, become moves (crossing/uncrossing) of particle trajectories in the
scattering picture, as explained in figure 31.

In fact, the latter describes the passage of a mirror excitation across a row of square
lattice, at a price of energy qa,k(u, Y ). We repeat the steps of the computation of the
spectrum — for a spinless auxiliary space `a = ˙̀

a = 0 — in figure 32: the mirror excitation
(grey line) is pulled down across the central part of the square lattice moving across the
physical particles and scattering with them. The first right and the last left spinors in

7This way the physical momenta are split is essential to integrability for an inhomogeneous model, and
corresponds to the condition (2.37). In fact, for a homogeneous model the momentum can be split in any
other way.
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(w,l)

(v,n)

(u,m)

(u,m)
(w,l)

=

-1

=   =

(v,n)

(u,m) (w,l)

(v,n)

R

R

(w,l)

(v,n)

(u,m)

Figure 31. Left: the star-triangle identity of figure 28 is represented as a move of the lattice:
the overlap of three wave-functions displaced between three points is equal to the particles crossing
each-other and scattering (black blob = (dynamical factor) × R-matrix). Right: the lattice move
corresponding to the star-triangle of figure 5. In this case two overlapping wave-functions (red,blue
lines) are already scattered through each-other. After crossing the trajectories (as in the left panel),
the two scattering matrices between red-blue lines cancel because of opposite transferred momentum
R(p)R(−p) = 1.

08

0

8 0 8 0
0

Figure 32. The mirror excitation (grey line) is injected in the squared-lattice (green/red lines) by
the layer operator of figure 30. The excitation is pulled down through the layer, scattering with its
modes and factoring out the first right (green) component and the last left (red) component. The
lattice size is reduced by one unit.

Figure 33. Left: scattering picture of the convolution of two layer operators Λ3(Y )Λ2(Y ′). The
grey and blue lines are the mirror excitations propagating across the lattice of left/right movers
(red/green lines). Right: the two excitations are exchanged polling them across each other. This
moves implies the appearance of a scattering matrix — black blob — each time two lines get to
cross or its disappearance when they uncross.

physical space are just pulled down together with the mirror excitation. The central left
and right movers (red/green lines) are moved across each other, producing a correspondent
scattering matrix. In the last step, we re-form the setup of the layer operator, but with
one unit of length less, namely pushing out of the lattice the first right spinor and the last
left spinor. The price of the moves/scattering in the lattice amounts to qa,3(u, Y ) as it can
be read out of the star-triangle scattering. In a similar fashion one can prove (4.85) for
the product of two layer operators Λk+1(Y ′)Λk(Y ) via the scattering picture, according
to figure 33. The same technique can be applied to the overlap of layers Λ̄k(Y ′)Λk(Y ),
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Figure 34. Scattering of two conjugated mirror excitation across each other in the lattice, as
it occurs in the overlap of layers Λ̄k(Y ′)Λk(Y ), corresponding to the first panel. Blue and grey
excitation are pulled down- and up-stairs respectively, giving rise to scattering (black blobs) among
each other and with the left/right components of the chain’s sites (red/green lines). The last panel
is the scattering picture of the r.h.s. of (4.92).

in order to derive the algebra (4.92). In this case, as one of the operators is adjoint, the
two excitations move in opposite directions, which leads to transposition in one of the two
spaces of the scattering matrix R(Y, Y ′)t′ . Pulling the two excitations across each other,
we eventually recover two layers of length diminished by one, where one right and one left
mode are singled out of the lattice, with the additional scattering matrices of the r.h.s.
of (4.92) resulting from the moves. In conclusion of the section, we shall mention that
the mirror-mirror S-matrix for the scattering of the two mirror excitations Y and Y ′ can
be read out of the r.h.s. of (4.85): the undotted indices are mixed by R(Y ′, Y ) from the
left, while the dotted indices are mixed from the right by R(Y, Y ′) = R(Y ′, Y )†. Finally,
accounting for the dynamical factors an,n′(iν − iν ′) and an,n′(iν ′ − iν) associated to the
two R-matrices, the scattering process amounts to

Sn,n′(iν − iν ′) = S(Y, Y ′)×R(Y, Y ′)⊗ Ṙ(Y, Y ′) (5.17)

with

S(Y, Y ′) = an,n′(iν − iν ′)/an′,n(iν ′ − iν)

=
Γ
(
1 + iν − iν ′ + n−n′

2

)
Γ
(
iν − iν ′ + n−n′

2

)
Γ
(
1 + iν ′ − iν + n−n′

2

)
Γ
(
iν ′ − iν + n−n′

2

)
(
1 + iν − iν ′ + n+n′

2

)
(
1 + iν ′ − iν + n+n′

2

) , (5.18)
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and inherits unitarity, YBE and crossing property (2.17) by the components R. The S-
matrix defined in (5.17) reproduces the part depending on the exchange momentum ν−ν ′ of
(2.32) in [20]. The missing phase of type φn(ν)/φn′(ν ′) can be fixed by crossing symmetry.
The matrix part of (5.17) is actually the spinor representation of the Yangian R-matrix
of SO(4) fused in the symmetric representations of irreducible tensors of rank n and n′ as
made explicit out by equations (4.19) and (4.22) of [27].

6 Conclusions

In this paper we put the base for a direct derivation of the hexagonalization techniques of
the n-point functions of in the conformal Fishnet theories. In fact, we have exhaustively
discussed the construction of the eigenfunctions of the mirror channel of the spinning and
inhomogeneous Fishnet lattice. The reductions of this general model describe Feynman
integrals on the disk in the various, particular, realizations of CFTs of the fishnet type.
Our derivation successfully extends the iterative logic of [35, 50], and the properties of
the wave-functions of the lattice excitations are mapped to those of their building blocks
— the layer operators defined in various degrees of generality in section 4. The latter
play the role of creation/annihilation operators of the fishnet’s mirror excitations, showing
the emergence of a scattering of mirror-excitations from the Feynman integrals, as noted
by [34] for the bi-scalar theory in any space-time dimension [14]. With these observations,
we formulated a scattering interpretation for the integral star-triangle identities standing
at the basis of our calculations, propedeutic to the next chapter of the series [22]. A
compelling problem to study in the future would be the application of the spin-chain tools
developed here to a systematic regularization of Fishnet integrals, needed to handle the
divergencies arising at wrapping order in the hexagon computation of structure constants
of the theory [20]. All the results are presented in detail and constitute the handbook for
computing more overlaps of functions of many excitations, necessary to derive the hexagon
form factors.

The fishnet integrals on the disk have already attracted the focus of research about the
integrability of higher-dimension field theory, in two main directions we shall mention. The
first, is the Yangian symmetry of such diagrams [51, 52], which is also applied to bootstrap
techniques for their actual computation [53, 54]. The second reason is that reduction of
specific n-point function to 4-point functions — named Basso-Dixon integrals — reveal
the remarkable property of the fishnets as a theory of ladder integrals (and determinant
thereof) [37, 45], furnishing at the same time valuable data-points for the bootstrap of
4-point functions in the supersymmetric N = 4 SYM [55–57].

In our work, the spectral equation of the transfer matrix of the fishnet lattice has
been solved by quantum separation of variables (SoV) [58, 59]. In fact, we extended
to the general setup of inhomogeneous and spinning fishnet the results obtained by the
author and S. Derkachov in [32]. The approach to quantum integrability by separation of
variables (SoV) for higher rank and non-compact spin chains — as the SO(1, 5) magnet of
this paper — is an compelling topic that lead to recent progresses in multiple directions,
for instance [60–62]. In this respect it remains an open problem the SoV of the fishnet’s
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direct channel, i.e. of the conformal chain with periodic boundaries that describes the
dilation spectrum of local operators in the field theory. Moreover, recent results are aiming
towards an application of the SoV to the computation of higher-point correlators [63, 64];
the present series of papers belongs with full rights to this approach.

In conclusion, beside the main target of this series, we express the hope that our
derivations may lead to:

1. a derivation of the SoV for the model with periodic boundaries, borrowing the logic
of the SL(n,C), n = 2, 3 results [35, 65] to the conformal group in 4d;

2. the explicit computation of Feynman integrals with higher-loops and number of exter-
nal legs, via methods of conformal spin chain, and its application to the bootstrap of
higher-point supersymmetric correlators (see for instance [66]), even in the 3d ABJM
theory [67];

3. the origin of quantum integrability in the undeformed N = 4 SYM theory, by the
observation that analogue properties in the fishnets emerge from the simple content of
Feynman diagrams. Further progress in this direction would amount to the extension
of the spin-chain techniques to the generalized fishnet described in [10] by Feynman
integrals with a dynamical lattice topology, hinting to “a regular dynamical lattice
structures for the planar Feynman diagrams of N = 4 SYM theory “[68].
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A Left/right SU(2) spinors

The left/right spinors are two-component complex vectors ua, vȧ ∈ C2, for a, ȧ = 1, 2. The
spinors ua and vȧ are rotated by the standard SU(2) matrices

ua 7→M b
aub , vȧ 7→M ḃ

ȧvḃ , M †M = MM † = 1 . (A.1)

The action SO(4) on left/right spinors is realized via the identification SO(4) ∼ SU(2) ×
SU(2). Given a matrix Λνµ ∈ SO(4), we recall that it is realized in terms of Lie algebra
generators Jµν as

Λ(ω) = exp
(
iωαβJ

αβ
)
, ωαβ = −ωβα ,

[Jµν , Jαβ ] = δναJµβ − δµαJνβ − δµβJνα + δνβJµα . (A.2)
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The action of SO(4) on the left/right spinors is defined by the transformation property of
the euclidean σ-matrices, defined in terms of the standard σk as

σ0 = 1 , σk = iσk , σµ = σ†µ , (A.3)

and reads

Λµ
ν (σµ)ȧa = U ba (σµ)ḃb

(
V †
)ȧ
ḃ
, Λµ

ν (σ̄µ)aȧ = V ḃ
ȧ (σ̄µ)bḃ

(
U †
)a
b
. (A.4)

The matrices σ, σ̄ satisfy the Clifford algebra

σµσ̄ν + σνσ̄µ = 2δµν . (A.5)

Given the SO(4) group element defined by the parameters ω = {ωµν}, the matrices U, V
appearing in the formula (A.4) are defined as

U(ω) = exp(iωµνSµν) , V (ω) = exp(iωµν S̄µν) , (A.6)

for
Sµν = i

4 (σµσ̄ν − σνσ̄µ) , S̄µν = i

4 (σ̄µσν − σ̄νσµ) . (A.7)

Both matrices Sµν and S̄µν satisfy the so(4) algebra (A.2) and in addition are hermitian, so
that U and V are unitary 2×2 matrices. In agreement with (A.4) and with the transposition
rule σ2σµσ2 = σ̄tµ one can check

U † = U−1 = (σ̄2Uσ2)t , (σ̄2Sµνσ2)t = −Sµν , (A.8)

and the same properties with exchanged σ2, σ̄2 hold for V and S̄µν respectively. The
actions on left spinors and right spinors induced by SO(4) are defined by the M = U(ω)
andM = V (ω) respectively. The multiplication of left, right spinors by the matrix iσ2 = σ2
defines the complex conjugate representations

ua 7→ U(ω)baub =⇒ (iσ2u)a 7→ U∗(ω)ba(iσ2u)b ,

vȧ 7→ V (ω)ḃȧvḃ =⇒ (iσ2v)ȧ 7→ V ∗(ω)ḃȧ(iσ2v)ḃ .
(A.9)

The scalar product in the space of spinors C2 is the standard one on a complex linear space

〈w|u〉 = (wa)∗ua =
∑
a=1,2

(wa)∗ua , 〈z|v〉 = (zȧ)∗vȧ =
∑
a=1,2

(zȧ)∗vȧ , (A.10)

and it is invariant under the SO(4) left/right actions and respect to conjugation (A.9).
The generalization to symmetric spinors follows. We consider the generic element of

the symmetric subspace Sym`[C2] ⊂ (C2)⊗`

ua = u(a1,...,a`) = u(aπ(1),...,aπ(`)) , (A.11)

where π is a permutation of ` indices. The spinor ua is rotated by SU(2) in the rep-
resentation of spin `/2, i.e. the `-fold symmetric representation (`+ 1). Given a matrix
U ∈ SU(2), the action reads

[U ]ba ub ≡
1
`!
∑
π

Ub1
aπ(1)
· · ·Ub`

aπ(`)
u(b1...b`) . (A.12)
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Figure 35. Star-triangle identity (2.26) in the equivalent form obtained by the matrix R(u+ v) in
the star of figure 5 to the triangle by the identity R(u+ v)tRt(−u− v− 2) ∝ 1 explained in (F.5).
This form of the identity is applied, for instance, in the computation of eigenfunction overlaps of
sections 4.5, 4.6.

-u-v v+2

-u

R(u)
R(v) R(-u-v-2)

a a

Figure 36. Amputated star-triangle identity — also dubbed chain-rule identity in [21]. It is
obtained from the star-triangle in the form of figure 35 by a amputation of one leg of the star
integral, achieved by sending the top vertex of the star to∞ by a conformal inversion of coordinates
around it. On the r.h.s. the indices a are summed over, and stands for the product of matrices
R` ˙̀(v)R`m(−u − v − 2) in the space of `-fold symmetric spinors (red). This relation is applied
multiple times in section 4 for the computation of eigenvalues and especially in sections 4.5 and 4.6.

R(-u-v-2)

u+2

-u-v v+2

R(v)

R(u)

ml

l

Figure 37. Infinite dimensional representation of the finite dimensional product of R-matrices
Rtn
n`(u)Rm`(−u − v − 2)Rtn

nm(v), obtained adding lines in the l.h.s. and r.h.s. of the relation of
figure 35, so that the triangle simplifies and cancels. The latter product is equivalent to one side of
the Yang-Baxter equation for SU(2) symmetric representations, rewriting the transposed matrices
via crossing (2.17). Hence, this picture provides a Feynman diagram representation for the SU(2)
finite-dimensional YBE.

The analogue definition apply to the ˙̀-fold symmetric spinor vȧ. The rule for charge
conjugation follows from the symmetrization of (A.9)

ua 7→ [iσ2]ba ub , vȧ 7→ [iσ2]ḃȧ vḃ . (A.13)
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x3
x4

x2

x3
x4

x2

a

a'b'
2-b

2-a'

2-a

2-a-a'
=

Figure 38. Amputated interchange relation, obtained from (I) in figure 6 replacing the left
(grey/blu/red) triangle in both sides of the equality by its amputated form as in figure 36. The
amputation is achieved by sending the top left point to ∞ via conformal inversion around it. This
relation is applied in the proof of exchange symmetry of section 4.5.

B Amputated Star-triangle and interchange relation

C Factorization of R

We introduce here a factorization of the operator R̂(u) into the product of two “halves”
R12(u) = R−12(u)R+

12(u), that stands at the basis of the factorization of mirror transfer
matrices of figure 9:

R+
12(u) =

[x12] ˙̀1R ˙̀1`1(2−∆1)[x12]`1

x
2(∆1−2)
12

[p1] ˙̀2R ˙̀2 ˙̀1(u−∆−)[p1] ˙̀1

p̂
2(∆−−u)
1

[x12]`1R`1 ˙̀2(u+∆+)[x12] ˙̀2

x
−2(u+∆+)
12

,

(C.1)
and

R−12(u) =
R ˙̀1`2(u−∆+)[x12]`2

x
2(∆+−u)
12

[p2]`2R`2`1(u+ ∆−)[p2]`1

p̂
−2(u+∆−)
2

[x12]`1R`1 ˙̀1(∆1 − 2)[x12] ˙̀1

x
2(2−∆1)
12

.

(C.2)

D Identity operator

The identity operator on the space Va of the representation (∆, `, ˙̀) can be expressed
in terms of Feynman integrals as a convolution of two conformal propagators of type
[x]`[x] ˙̀(x2)−u, if their scaling dimensions u1 and u2 sum up to the dimension of space-
time d = 4. Let’s start from the trivial equation(
p̂2u[p]`R` ˙̀(u)[p] ˙̀)(

p̂2u[p]`R` ˙̀(u)[p] ˙̀)−1
=
(
p̂2u[p]`R` ˙̀(u)[p] ˙̀)(

p̂2(−u)[p] ˙̀R ˙̀̀ (−u)[p]`
)

=1`⊗1 ˙̀ ,

(D.1)
and going to the Fourier space we extend the integral representation given in (2.12) to the
spinning case [21]

ˆ
d4xeipx

[x]`[x] ˙̀

x2(u+2) = a` ˙̀(u) p̂2u [p]`R` ˙̀(u)[p] ˙̀
. (D.2)
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u+2-(Δ1-Δ2)/ 2
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R2-Δ1
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Figure 39. Left: the kernel of the general R-operator in diagram formalism. It can be factorized
into the product of two integral kernels R±. Center: integral kernel of the operator R−(u) Right:
integral kernel of the operator R+(u). When multiplied, the horizontal red/green lines in the
two triangular kernels simplify to the identity. Indeed, their power is opposite and the SU(2)
matrices in the numerators are the inverse of each other, and their product reads [x21′ ] ˙̀1R`1 ˙̀1(∆1−
2)[x21′ ]`1 [x21′ ]`1R`1 ˙̀1(2−∆1)[x21′ ] ˙̀1 = 1— see (2.16). Hence, the kernel of R(u) is reconstructed.

Thus, (D.1) becomes an identity of integral operators

1
a` ˙̀(u)a ˙̀̀ (−u)

ˆ
d4z

ˆ
d4w

[(x− z)(z−w)]ba [(x− z)(z−w)]ḋċ
(x− z)2(u+2)(z − w)2(−u+2) Φbḋ(w) = Φaċ(x) , (D.3)

for any function Φaċ(x) belonging to the space Va. Last formula defines a representation
of the Dirac’s δ as convolution of conformal propagators

δ(4)(x− y)δb
a δ

ḋ
ċ = 1

a` ˙̀(u− 2)a ˙̀̀ (2− u)

ˆ
d4z

[(x− z)(z− y)]ba [(x− z)(z− y)]ḋċ
(x− z)2(u)(z − w)2(4−u) , (D.4)

which one can regard to the well-known scalar formula for spinning particles `, ˙̀ 6= 0.

E Proof of (3.5)

The commutation relation [Qa(u),Qb(v)] = 0 holds as a consequence of the two following
properties of the kernel R̂12(x1, x2|y1, y2):
ˆ
d4x1d

4x2R̂12(x1, x2|y1, y2)(u) = C(u) R`1`2

(
u+ ∆2 −∆1

2

)
⊗R ˙̀1 ˙̀2

(
u+ ∆1 −∆2

2

)
,

(E.1)
and

R̂(x1,x2|x0,x0) =C(u)R`1`2

(
u+ ∆2−∆1

2

)
R ˙̀1 ˙̀2

(
u+ ∆1−∆2

2

)
δ(4)(x0−x1)δ(4)(x0−x2) ,

(E.2)
where

C(u) = a`1`2

(
u+ ∆1 −∆2

2

)
a ˙̀1 ˙̀2

(
u− ∆1 −∆2

2

) a ˙̀1`2

(
−u+ 2− ∆1+∆2

2

)
a ˙̀1`2

(
u+ 2− ∆1+∆2

2

) . (E.3)
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Figure 40. Graphical proof of (E.1).
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Figure 41. Graphical proof of (E.2), first part.

The proof of (E.1) (showed in figure 40) is obtained by straightforward integration of the
points x1 and x2 by the amputated star-triangle identity (in detail in figure 36). Starting
from the kernel R̂(x1, x2|y1, y2) depicted on the left of the next figure, the chain integration
in x1 delivers a triangle, depicted in the center. Furthermore, the chain integration in x2
reduces the triangle to the edge y12. The power of y2

12 is in fact zero (picture on the right),
and in addition the numerators simplify via the identity [xx] = [xx] = 1. The only matrix
structure left behind are the matrices R`1`2 and R ˙̀1 ˙̀2 . Finally, collecting the coefficients
anm(u) produced by the two star-triangle integrations, according to (2.26), we recover the
expression (E.3) �.

The proof of (E.2) (showed in figures 41 and 42) is slighly more involved: we start
from the kernel, depicted on the left and we rewrite it according to the decomposition R̂±
in the product of two triangles (central picture), which are transformed into cubic vertices
by the star-triangle duality (right picture), and this point, we set y1 = y2 = x0 With such
identification of points, the kernel reduces as depicted on the left of next figure. As the
powers of the propagators convoluted in z1 sum up to d = 4, according to formula (D.3), the
result of the integration is the distribution δ(4)(x2−x0), leaving with the diagram depicted
in the centre. The latter is reduced to the one on the right by the simplification among
the lines z2−x0, depicted on the right. The final step consist in the integration in z2, that
via (D.3) produces δ(4)(x1−x0). The final result is a product of two δ-functions, appearing
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Figure 42. Graphical proof of (E.2), second part.

in the r.h.s. of (E.2), and the coefficients resulting from the application of star-triangle
dualities and of (D.3) is equal to C(u) in (E.3) �.

F Proof of (4.91)

The proof of the first relation

R̂k(Y, Y ′)R̂k(Y ′, Y ) = 1 , (F.1)

is a consequence of the definition

R̂k(Y, Y ′) ≡

(
1− iν ′ + n′−`k

2

)
(
1− iν ′ + n′+`k

2

)
(
iν − 1 + n−`k

2

)
(
iν − 1 + n+`k

2

) [R(0, Y ′)tkR(Y ′, Y )R(Y,−2i)tk
]tk

,

(F.2)
and of the properties of the SU(2) fused R-matrix. First, one can verify the general matrix
identity [

At212B13C
t2
23

]t2 [
A′
t2
12B

′
13C

′t2
23

]t2 =
[
At212B13C

t2
23A

′t2
12B

′
13C

′t2
23

]t2
, (F.3)

valid for matrices Aij acting on the tensor product of two generic linear spaces Vi⊗Vj , and
we apply it to the left hand side of (F.1)[

R(0, Y ′)tkR(Y ′, Y )R(Y,−2i)tk
]tk [R(0, Y )tkR(Y, Y ′)R(Y ′,−2i)tk

]tk
=
[
R(0, Y ′)tkR(Y ′, Y )R(Y,−2i)tkR(0, Y )tkR(Y, Y ′)R(Y ′,−2i)tk

]tk
.

(F.4)

Then, we use the crossing (2.17) and unitarity of R(u) and derive the following identity
for transposed R-matrices

Rtn
mn(u)Rtn

mn(−u− 2) = rmn(u)rmn(−u− 2)(σ2)⊗nRt
mn(−u− 1)Rt

mn(u+ 1)(σ2)⊗n

= rmn(u)rmn(−u− 2)1 =
(
−u− 1 + m+n

2
) (
u+ 1 + m+n

2
)(

−u− 1 + m−n
2
) (
−u− 1 + m−n

2
) 1 ,
(F.5)
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hence we apply it to the previous expression that simplifies drastically

[
R(0, Y ′)tkR(Y ′, Y )R(Y, Y ′)R(Y ′,−2i)tk

]tk (iν − 1 + `k+n
2

) (
1− iν + `k+n

2

)
(
iν − 1 + `k−n

2

) (
1− iν + `k−n

2

)
=
[
R(0, Y ′)tkR(Y ′,−2i)tk

]tk (iν − 1 + `k+n
2

) (
1− iν + `k+n

2

)
(
iν − 1 + `k−n

2

) (
1− iν + `k−n

2

)
=

(
iν − 1 + `k+n

2

) (
1− iν + `k+n

2

)
(
iν − 1 + `k−n

2

) (
1− iν + `k−n

2

)
(
1− iν ′ + `k+n′

2

) (
iν ′ − 1 + `k+n′

2

)
(
1− iν ′ + `k−n′

2

) (
iν ′ − 1 + `k−n′

2

)1 ,
(F.6)

and taking into account the normalization factor in (F.2), we recover the r.h.s. of (F.1) �.
The second identity in (4.91)

R̂k(Y, Y ′)R̂k+1(Y, Y ′′)R̂k(Y ′, Y ′′) = R̂k+1(Y ′, Y ′′)R̂k(Y, Y ′′)R̂k+1(Y, Y ′) , (F.7)

is a natural consequence of the YBE for R(u). In order to prove it, we rewrite the l.h.s.
of (F.7) — stripped of the normalization prefactors of (F.2) and under the sign of trans-
position tk and tk + 1 — using the property (F.3)

R(0,Y ′)tkR(Y ′,Y )R(Y,−2i)tkR(0,Y ′′)tk+1R(Y ′′,Y )R(Y,−2i)tk+1R(0,Y ′′)tkR(Y ′′,Y ′)R(Y ′,−2i)tk .
(F.8)

Secondly, we can move R(0, Y ′′)tk+1 and R(Y,−2i)tk+1 to the left and right of the expression
respectively, we use the Yang-Baxter equation to reshuffle the three central R-matrices and
finally we move R(0, Y ′′)tk and R(Y,−2i)tk to the left and right of the expression

R(0, Y ′′)tk+1R(0, Y ′)tkR(Y ′, Y )R(Y,−2i)tkR(Y ′′, Y )R(0, Y ′′)tkR(Y ′′, Y ′)R(Y ′,−2i)tkR(Y,−2i)tk+1

= R(0, Y ′′)tk+1R(0, Y ′)tkR(Y ′, Y )R(0, Y ′′)tkR(Y ′′, Y )R(Y,−2i)tkR(Y ′′, Y ′)R(Y ′,−2i)tkR(Y,−2i)tk+1

= R(0, Y ′′)tk+1R(0, Y ′)tkR(0, Y ′′)tkR(Y ′, Y )R(Y ′′, Y )R(Y ′′, Y ′)R(Y,−2i)tkR(Y ′,−2i)tkR(Y,−2i)tk+1 .

(F.9)

As third step, we recognize that the three central R-matrices carrying arguments Y, Y ′, Y ′′
satisfy the Yang-Baxter equation, so we can re-write the last expression as

R(0,Y ′′)tk+1R(0,Y ′)tkR(0,Y ′′)tkR(Y ′′,Y ′)R(Y ′′,Y )R(Y ′,Y )R(Y,−2i)tkR(Y ′,−2i)tkR(Y,−2i)tk+1 .

(F.10)

Let us select the five central R-matrices in the last expression and proceed with a few steps.
Namely, we insert the identity in the form of (F.5) between R(Y ′′, Y ′) and R(Y ′′, Y ) (the
symbol ∝ stands for the coefficient in (F.5) that in the next passages is neglected), and we
use twice the Yang-Baxter relation in the form (4.88)

R(0, Y ′′)tkR(Y ′′, Y ′)R(Y ′′, Y )R(Y ′, Y )R(Y,−2i)tk

∝ R(0, Y ′′)tkR(Y ′′, Y ′)R(Y ′,−2i)tkR(0, Y ′)tkR(Y ′′, Y )R(Y ′, Y )R(Y,−2i)tk

= R(Y ′,−2i)tkR(Y ′′, Y ′)R(0, Y ′′)tkR(Y ′′, Y )R(0, Y ′)tkR(Y ′, Y )R(Y,−2i)tk

= R(Y ′,−2i)tkR(Y ′′, Y ′)R(0, Y ′′)tkR(Y ′′, Y )R(Y,−2i)tkR(Y ′, Y )R(0, Y ′)tk .

(F.11)
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The matrices R(Y ′,−2i)tk and R(0, Y ′)tk get canceled once we insert back the last ex-
pression into the full one, and the cancelation produces twice the opposite of the neglected
factor between first and second row of (F.11), leading to

∝ R(0, Y ′′)tk+1R(Y ′′, Y ′)R(0, Y ′′)tkR(Y ′′, Y )R(Y,−2i)tkR(Y ′, Y )R(Y,−2i)tk+1 . (F.12)

At this point it is enough to insert again the identity in the form of (F.5) between R(Y ′′, Y ′)
and R(Y ′′, Y ), in the form R(Y ′,−2i)tk+1R(0, Y ′)tk+1 , producing the same neglected factor
that gets — all in all — canceled

R(0, Y ′′)tk+1R(Y ′′, Y ′)R(0, Y ′′)tkR(Y ′′, Y )R(Y,−2i)tkR(Y ′, Y )R(Y,−2i)tk+1

∝ R(0, Y ′′)tk+1R(Y ′′, Y ′)R(Y ′,−2i)tk+1R(0, Y ′)tk+1R(0, Y ′′)tkR(Y ′′, Y )R(Y,−2i)tk×
×R(Y ′, Y )R(Y,−2i)tk+1

= R(0, Y ′′)tk+1R(Y ′′, Y ′)R(Y ′,−2i)tk+1R(0, Y ′′)tkR(Y ′′, Y )R(Y,−2i)tk×
×R(0, Y ′)tk+1R(Y ′, Y )R(Y,−2i)tk+1 .

(F.13)
The last expression and the one we started from are — modulo the same normalization
and the transpositions tk, tk+1 — the l.h.s. and the r.h.s. of (F.7) �.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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