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1 Introduction

Solitons ubiquitously appear in nature from nonlinear media, water, condensed matter
to particle physics, dense stars, and the universe, see e.g. refs. [1, 2]. Among solitons,
topological solitons are topologically protected stable excitations carrying topological
charges, see e.g. refs. [3, 4]. Topological charges are usually integer numbers since they take
values in certain homotopy groups which are isomorphic to integers, Z, or to a discrete
group like Zo.

However, fractionally quantized topological charges may also exist for a variety of
reasons. An example of a fractional topological charge was first found in the context of
vortices. The so-called Feynman-Onsager’s quantization condition makes the circulation
of superfluids or magnetic flux of superconductors quantized integers due to the single-
valuedness of the wave function, or more mathematically due to fact that they belong to
the first homotopy group ;. Nevertheless, fractionally quantized vortices are ubiquitously
allowed in diverse condensed matter systems with multiple components, such as the A
phase of superfluid 3He [5, 6], the uniaxially disordered superfluid *He [7, 8], unconventional
superconductors [9-14], multicomponent superconductors [15-26], spinor Bose-Einstein
condensates (BECs) [27-34], multicomponent BECs [35-47], 3 P, neutron superfluids [48, 49],
exciton-polariton condensates [50, 51], and nonlinear optics [52-54]. In high-energy physics,
examples can be found in quantum chromodynamics at high density [55—62], two-Higgs
doublet models which are an important and intensely studied part of physics beyond the
Standard Model of elementary particles [63—65], and supersymmetric gauge theories [66-76].

Nonlinear sigma (NLo) models admit lumps in d = 2 + 1 or sigma model instantons in
d=2+0 (or d =1+ 1) dimensions, characterized by the second homotopy group ma [77].
The gauged CP! model (or O(3) model) admits fractionally quantized lumps [78-81]; a
single lump is decomposed into two fractional lumps which are simultaneously gauged
vortices with vortex winding numbers that sum to zero. Furthermore, the gauged CPN~1
model, with the maximal torus action U(1)V~! gauged, admits 1/N quantized fractional
lumps [78-81], and a single lump is decomposed into N of 1/N fractional lumps which
are simultaneously U(1)V~! gauged vortices with vortex winding numbers that sum to



zero. However, no explicit numerical solutions have been constructed for N > 2 yet and
although their fractionality is understood, the interactions between their constituents could
be complicated. Similarly, in the baby Skyrme model, which is the CP' model with an easy-
plane potential and the baby Skyrme term, a single baby Skyrmion splits into two fractional
Skyrmions with global vortex winding numbers that sum to zero [82-84]. In this case, these
fractional Skyrmions form a molecule of a certain size determined by the competition of a
long-range attraction and a short-range repulsion.! Such fractional Skyrmions also appear
in chiral magnets described by the CP! model with the Dzyaloshinskii-Moriya term and an
easy-plane potential [87], and are sometimes called merons. A generalization to Skyrmions
in d = 3 4+ 1 characterized by the third homotopy group, ms, is also known; in this case, a
single Skyrmion is decomposed into two fractional Skyrmions with global monopole charges
that sum to zero, forming a molecule [88].

The examples described above possess a fractionalization mechanism that is due
to the introduction of a suitable potential term. There are also other mechanisms of
fractionalization of topological charges. One mechanism is to introduce a twisted boundary
condition along a compactified direction. A single SU(N) Yang-Mills instanton on R3 x S*
with a twisted boundary condition along S' is decomposed into N fractional instantons
with induced monopole charges that sum to zero [89], while a single CPY~! NLo model
instanton (Skyrmion instanton in the SU(NV) principal chiral model) on R! x S (R? x S1)
with a twisted boundary condition along S' is decomposed into N fractional instantons
with induced domain wall (global vortex) charges that sum to zero [90-95] ([96]). Another
mechanism is to introduce a suitable modification of the kinetic term. The so-called
modified XY model, consisting of a half(1/N)-periodic nearest-neighbor interaction term
in addition to the usual nearest-neighbor interaction term, admits a molecule of two (N)
half(1/N)-quantized vortices [97-99].

In this paper, we explore molecules of fractional Skyrmions in a (2 + 1)-dimensional
CPN~! baby Skyrme model. We find that fractional Skyrmions with 1/N topological
charges appear as the minimum constituents and they constitute molecules. In particular,
when there are two or more molecules, they form very nontrivial bound states as real
molecules of atoms. The Lagrangian density that we consider is given by

M? K2
L= =-0m"0"n" = Fapen®8,nb0,n°)% — V, (1.1)
where M and k are real coupling constants, V' is a potential term, f,,. are the structure
constants of SU(N) given by fupe = —2Tr (Aq [Ap, Ac]) With SU(IV) generators A, subject
to the normalization Tr(A,\p) = 204p. Here, the fields n® (a = 1,2,..., N2 — 1) satisfy the
following N? constraints

2(N -1 N
nn® = ANV —1) ), n® = ————dgen’n’, (1.2)

N 2(N — 2)

The CP! model can be formulated as an Abelian-Higgs model with two complex scalars, in which lumps
are replaced by semilocal vortices [85]. An easy-plane potential, in this case, splits the semilocal vortex into a
molecule of two fractional vortices with global vortex charges that sum to zero. This provides a stabilization
mechanism of the semilocal vortex which is unstable in the type-II region of parameter space [86].



where dgp. = iTr (Aa{ s, Ae}), which imply the third-order Casimir identity, dgp.n®nn¢ =
4(N —1)(N —2)/N?2. The first term in eq. (1.1) is the Lagrangian density of the CPN~!
NLo model, also known as the (CPY~1) Dirichlet term.

The second term of eq. (1.1) is a Skyrme term introduced as a stabilizer against shrinkage
of soliton configurations, and is given by the square of the topological current.?3 This
term can be viewed as the CPN =1 counterpart of the Skyrme term in the SU(N)/U(1)N~!
Skyrme-Faddeev model [105, 106], and also a relativistic, SU(3) generalization of the so-
called chiral-chiral interaction [107] in the continuum limit. This term has also been used
to stabilize a higher-dimensional soliton solution in ref. [108].

As for potential terms for (2 + 1)-dimensional CPY~! models,* a generalization of the
easy-axis anisotropic potential, which appears for example in the multi-layered Josephson
junction [113, 114], has been studied in refs. [115-121]. Here, we consider instead a
generalization of the easy-plane anisotropy term [82], also known as the XY-type of potential,

of the form
1

V=Y <nl(l+2))2’ (1.3)
=1

where p? is a positive constant. This potential is a potential for the field components
corresponding to the maximal Abelian torus U(1)V~! ¢ SU(N). When N = 2, eq. (1.3) is
just the easy-plane anisotropy term, which generates molecules of half Skyrmions [82-84].
For N = 2,3, this potential (accompanying the Dirichlet term) appears in a system of
BECs with pseudospin-(N — 1)/2, or in a mixture of IV species of bosons [122]. We expect
that for all N > 1, the potential emerges from such a pseudospin system. This potential is
thus a simple and motivated potential giving rise to fractional Skyrmion molecules, but
modifications of such type of potential may also possibly give rise to fractional Skyrmions.
In this paper, we numerically construct molecules of fractional Skyrmions with 1 < @ <4
in the N = 3 case, where each constituent possesses a topological charge 1/3. For Q =1,
we obtain a stable solution that is a bound state of three fractional Skyrmions forming
a triangle, as well as an unstable solution that is a chain of fractional Skyrmions. For
@ = 2, we find a stable solution whose energy density is Zg axially symmetric, as well as
two unstable solutions composed of fractional Skyrmions that take the shape of a hexagon
and a chain, respectively. Moreover, we obtain a metastable state which can be regarded
either as a bound state of two ) = 1 stable solutions or as a parallelogram of two @) =1
chains. For (Q = 3, we find a stable solution of diamond shape, three metastable states, and
two unstable solutions. In the ) = 4 case, we show only a stable solution and a metastable
solution, whose energy is quite close to that of the stable solution. In this large topological
charge sector, we expect that there exist many metastable and unstable solutions, and we

will not attempt to find all of them here.

Different types of Skyrme terms have been studied in refs. [100-103]. These Skyrme terms have a rich
mathematical structure but are somewhat intricate. Therefore, for simplicity, we will concentrate on the
Skyrme term of eq. (1.1).

3CP? soliton configurations can also be stabilized by the Dzyaloshinskii-Moriya type interaction [104].

4In 3+ 1-dimensional spacetime, the so-called V-shape potential has also been used to construct compact
Q-solitons [109-112].



This paper is organized as follows. In the next section, we introduce the mathematical
structure of the model in detail. In section 3, we show numerical solutions of molecules of
fractional Skyrmions and discuss their properties. Finally, section 4 concludes the paper
with a short discussion.

2 The model

In this paper, we investigate static solutions of the CP? baby Skyrme type model (1.1) with
the potential (1.3). It follows that the energy of the model is given by E = FEy+ E4+ Ey with

M2
E2 = T/d%(‘)inaaina, (2.1)

2
E4 = %/dzx(fabcnaainb(‘)jnc)Q, (2.2)

2 [ o N 10+2)\ 2
Eo:,u/dxz<n ), (2.3)
=1

where the subscript ¢ of E; (i = 2,4,0) indicates the number of derivatives that the func-
tional contains. Since the total energy includes both terms with higher and with lower
order of derivatives than the spatial dimensions (i.e. the Skyrme term and the potential,
respectively), we can clearly evade Derrick’s no-go theorem, and Derrick’s scaling argument
tells us that the solutions should satisfy the scaling relation, E;/Ey = 1.

Let us discuss the (continuous) symmetries of the model. For this purpose, it is
convenient to parametrize the field as

N -1

nt =/ Sy Ir (/\aU)\Ng_lUT), (2.4)

where U € U(N). When the potential is absent, i.e. y? = 0, the energy is invariant
under the global U(N) transformation U — gU with g € U(N), which is equivalent to
n® — (n®/2)Tr(AagApg’). This symmetry is broken by the potential to U(1)", which is the
diagonal subgroup of U(NN). In addition, the entire energy functional possesses the hidden
local symmetry given by U — Uh with h € SU(N — 1) x U(2) commuting with Ay2_1,
which keeps n® intact.

We are in particular interested in finite energy static solutions. In order for the static
energy to be finite, the fields n® must decay to constant values at spatial infinity (especially
for a = 3,8,..., N2 — 1, n® must vanish at spatial infinity). This condition effectively
compactifies physical space, R?, to the 2-sphere, i.e. R? U {00} ~ S?, and therefore a
static configuration with finite energy corresponds to a map from S? to CPY~1. Such
configurations are characterized by the topological charge

1 .
Q= o /d2x Ejkfabcnaajnbaknc, (2.5)

which is an element of the second homotopy group 72(CPY~!) = Z 5 Q. In this paper,
we study fractional Skyrmions, but they always appear as molecules possessing a total
topological charge being an integer.
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Figure 1. Toric diagram of CP?.

The fields n* enable us to interpret the physical meaning of the components in the
Lagrangian or energy functional. However, they do not appear to be the best option for
constructing solutions because of their complicated nonlinear constraints given in eq. (1.2).
Thus, we introduce the homogeneous coordinates of CPN~1, {Z% Z°} (a = 1,2,...,N)
which satisfy the constraint 25:1 |Z%|? = 1. In terms of the homogeneous coordinates, n®
is given by

n® = Z'\, 2, (2.6)

with Z = (Z',72%,...,Z")T, where T stands for the transpose operation. It follows
that Z is an N-component complex unit vector, i.e., ZTZ = 1. One can show that
the above parametrization satisfies all the constraints of eq. (1.2) by using the identity
(Aa)ap(Aa)arpr = 2(8ap0arp — 0apdarp /IN). This parametrization is equivalent to eq. (2.4)
with U = (Y1,Ya,...,YN_1, Z), where Y, are vectors forming a complete basis in CV along
with Z. In terms of Z, the energy and the topological charge are given by

E = /d% oM*(D;Z)'D;Z + k*{(D;Z)'D;Z — (D; Z)' D; Z}* (2.7)
2412 2
+ 2 (2o -12°P) |
a<f
Q= —zi/d%; e¥(D;2) Dy 2, (2.8)
T

where D;Z = 0;,Z — (Z19;Z)Z. In the next section, we construct molecules of fractional
Skyrmions by optimizing the energy subject to the constraint Z7Z = 1.

We introduce a tool to understand the geometrical aspects of the solutions. In the
idea of toric geometry, the manifold CPY~! is represented by an (N — 1)-simplex over
which an (N — 1)-torus TV ~1 is fibered [62, 123]. Each (N — 2)-simplex composing the
(N — 1)-simplex describes CPV~2, and therefore one of the T fibers shrink on those. At the
vertices of the (N — 1)-simplex, the whole 7V~! fiber shrinks. Figure 1 is an example of the
representation, known as the toric diagram, for CP2. On the inside of the triangle, there is
a T? fiber corresponding to the U(1)? action on the phase of the homogeneous coordinates



Z% — %2 7% modulo the trivial U(1) action, i.e., §; = 62 = 3. On the edges, one of the
|Z%|2 vanishes, and therefore a T* fiber shrinks. The fractional Skyrmions we study are
interpreted as global vortices whose cores locate where some corresponding fiber shrinks.
In addition, on the toric diagram for CP?, any straight line from a vertex to the opposite
edge represents a CP! submanifold. If a mapping of the value (n3,n%) of a configuration
onto the toric diagram describes a straight line, the configuration is a CP' embedding in
CP?. On the other hand, when the mapping is two-dimensional, the configuration is a full

map to CP2.

3 Numerical solutions

We numerically construct molecules of fractional Skyrmions with 1 < @ < 4. We restrict
ourselves to the N = 3 case but conjecture that the potential is sufficient for the model to
possess fractional Skyrmion molecules for all N > 2. We recognize Z as the fundamental
field and perform optimization of the energy under the constraint Z'Z = 1. Here, the
optimization is done by numerically solving the equations of motion

on® OF

_ Zo
OReZe éns wRe 0, 31
on B . -
OImZ dns w o

where w is a Lagrange multiplier. The functional derivative of E with respect to n®, §E/én®,

is written as

0B _ 0 _, OF
ons — ons " 0(0pn®)

2
K
= —M*9in* + o (20.F4 RS + 3F 0,5 ) + 244 (30.3m° + 6,.9n%), (3.2)
where £ denotes the energy density and
Fz‘j = fabcn“&nbajnc, R? = fabcnbajnc. (3.3)

Replacing spatial derivatives by their 4th-order finite difference approximations, we explore
the solutions of eq. (3.1) using a nonlinear conjugate gradients method, with the augmented
Lagrangian method.

To prepare initial configurations, we write

(1, u1,u9)”

= ) 3.4
VLTl + [l (3:4)

where u; and uy are complex scalar fields, or inhomogeneous coordinates of CP?. Finiteness
of the energy requires that both n® and n® vanish at spatial infinity, which corresponds
to |u1|? and |uzg|? both approaching unity. Guided by this condition, we employ initial
configurations of a single lump configuration with topological charge @ of the form

! 72

7(1' T Zy)Q, U = l1-——= (35)

=1
“ + (z +iy)Q’



Q@ label (shape) stability F By E, Ey E4/Ey QNum

1 triangle © 83.53 19.58 32.07 31.88 1.006 1.000
chain A 84.47 21.02 31.86 31.58 1.001 1.000

2 curly triangle © 163.11 36.09 63.59 63.43 1.002 2.000
hexagon A 163.14 36.56 63.35 63.24 1.002 2.000
parallelogram (O  164.28 37.01 63.80 63.47 1.005 2.000
chain A 167.28 40.80 63.76 62.72 1.017 2.000

3 3A (diamond) ®  243.20 51.71 95.80 95.69 1.001 3.000
3B (circle) O 243.59 54.21 94.73 94.65 1.000 3.000

3C O 243.74 52.19 95.86 95.69 1.002 3.000

3D O 245.05 54.02 95.68 95.35 1.003 3.000

3E A 246.41 56.55 95.03 94.83 1.002 3.000

3F (chain) A 248.91 59.47 95.26 94.18 1.011 2.999

4 4A ©  323.27 67.61 127.92 127.75 1.001 3.999
4B O 323.27 67.42 128.01 127.84 1.001 3.999

Table 1. The numerical values of the energy and topological charge of stable (®), metastable (O),
and unstable (A) solutions.

where r1 and ry are nonzero real constants. In order to check the stability of solutions
obtained using the initial configuration (3.5) and to construct metastable solutions that
cannot be obtained when we use eq. (3.5), we also conduct simulations employing initial
configurations with @ separated integer Skyrmion states

1) M

Q
ry ek
up =1+ . ;
kz::l:c—ak—i-z(y—bk)

(2
(2) 1912)

Q
T, €
U2:1+§ k . )
= e —ak+i(y — be)

where r,(gj ) )
configurations (3.5) and (3.6) are both holomorphic functions, they are BPS solutions of
the CP? NLo model, i.e. in the K = u = 0 case.

We performed numerical simulations with 2012 lattice sites for Q = 1,2 and 3012 lattice

are positive constants, and 0,(5 , ar and bg are real constants. Since the initial

sites for Q = 3,4, fixing the lattice spacing to A = 0.2 and the coupling constants as
(M?, k2, ui?) = (1,16, 10). We show the energy and topological charge of the solutions we
obtain in table 1. As shown in the table, the numerical values of the topological charge of the
solutions, QnNum, are close to their desired integer values, and the Derrick scaling relation,
i.e. B4/FEy =1, is satisfied very well too. We show the energy distribution, the norm of the
homogeneous coordinates, and a scatter plot of (n3,n%) on the toric diagram of the Q = 1
solutions in figure 2. The solutions with () = 2 are similarly given in figure 3, and for the
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Figure 4. The energy density (left) and toric diagram (right) of the solutions with @ = 3 and Q = 4.

@ = 3 and @ = 4 solutions, we show only the energy densities and the toric diagrams in
figure 4, due to a large number of solutions. The topological charge distribution is similar to
that of the energy, so we do not present it to avoid redundancy. We will adopt the following
nomenclature for describing the stability of the solutions, based on quantum mechanical
language: stable solutions are the global minima of the energy functional in solution space;
metastable are local minima and unstable solutions have at least one run-away direction
where the solution classically can fall into a lower-energy state. In the following, we discuss
the properties of the solutions with each topological charge in order.

For @ = 1, we find molecules of three fractional Skyrmions of the same size, forming an
equilateral triangle, as the stable state. In addition, unlike the CP' case [83] there exists
an unstable configuration, a chain of fractional Skyrmions. For both solutions, the dots in
the toric diagram in figure 3 scatter like a trefoil, and hence the solutions are genuine CP?
configurations. The symmetry of the trefoils comes from the congruency of the norm of the
homogeneous coordinates: the trefoil for the triangle solution has Zs symmetry because all
|Z%|? are congruent to each other; on the other hand, that of the chain is not Zg but Zs
symmetric, because |Z1|? is not congruent to both |Z2|? and |Z3|?. As expected from the
discussion of the toric diagram, one can observe in figure 2 that the position of Skyrmions,
i.e., the energy peaks coincide with the zeros of the homogeneous coordinates, in the same
way as the positions of fractional vortices in multicomponent BECs correspond to zeros of
the condensate wave functions [45-47, 84].

For Q = 2, we obtain several molecules of six fractional Skyrmions as (meta)stable
or unstable configurations. Among them, the lowest energy configuration is the curly
triangle. The second-lowest is the hexagon, which finally decays into the curly triangle
configuration after a large number of iterations and so is unstable. The energy density of the
hexagon has literally Zg axial symmetry, which stems from the mirror symmetry of |Z%|?
and the congruence relation on the norm of the homogeneous coordinates. The norm of the
homogeneous coordinates of the curly triangle type are also congruent with each other, and



the congruency provides the Zs symmetry of its energy density. In addition to these two
configurations, we have a metastable solution that is a parallelogram state and an unstable
solution, i.e. a chain of Skyrmions. Their energy density is Zy axially symmetric. One can
regard the parallelogram state as a bound state of two () = 1 triangles or as a parallelogram
of two @) = 1 chains. On the other hand, the ) = 2 chain is a linearly connected state of
two Q = 1 chains. We can observe from figure 3 that two Skyrmions, corresponding to zeros
in the same component |Z%|2, repel each other, and those in different components attract.

In the @ = 3 case, the stable solution is a configuration of diamond shape. Like the
() = 2 case, the most symmetric configuration, a molecule of nine fractional Skyrmions
sitting on a circle, has slightly higher energy than the lowest energy state, although this
state is not unstable but only metastable. Moreover, we find two further metastable and
two unstable states.

For @Q = 4, the situation becomes a bit different from the () = 3 case; a molecule of
fractional Skyrmions sitting on a circle does not appear as a metastable configuration; and
there appear two states, 4A (a parallelogram) and 4B (a trapezoid), whose total energies
are almost equal to one another.

As a generalization of the results shown above, it is natural to believe that in general,
the potential will allow for molecules of 3() fractional Skyrmions. In addition, we conjecture
that the potential (1.3) equips the model with solutions which are molecules of N @ factional
Skyrmions for N > 3.

4 Summary and discussion

In this paper, we have studied fractional Skyrmions in a CP? baby Skyrme model made of
the standard kinetic term, the Skyrme term generalized to CP? and a generalization of the
easy-plane potential. The formulation of the model in terms of homogeneous coordinates is
the most convenient for numerical calculations, whereas a corresponding inhomogeneous
coordinate representation proved useful for generating initial conditions. The solutions we
have found are all molecules of N@Q (with N = 3) fractional Skyrmions with each constituent
carrying 1/N of the topological charge Q. Furthermore, all the solutions are genuine CP?
solutions, which we have shown by generating scatter plots on the toric diagram of CP?
of the numerical solutions. For ) = 1, the stable solution is a triangular composition of
fractional Skyrmions, and the unstable solution is a chain that eventually will bend over
and collapse into the triangle. For Q = 2, the stable solution has Z3 symmetry, and we
have denoted it as the curly triangle solution. A parallelogram turns out to be a metastable
state, whereas a hexagon and a chain made of two Q = 1 chains are both unstable states.
We have also found stable, metastable, and unstable solutions for Q = 3, 4.

While we have studied configurations of only lower @) in this paper, those of higher )
remain as a future problem. In particular, revealing the structure at sufficiently large @, is
the most important problem. In the case of the CP! model, the ground state is a square
lattice for sufficiently large @ [82—-84]. This situation also occurs in chiral magnets with an
easy-plane potential [87]. We thus expect that in our case of the CP? model, the ground
state, for sufficiently large @, is a triangular lattice.

~10 -



A further natural continuation of this study would be to see if the 1/N fractional
Skyrmions persist for the CPY~! model with our generalization of the easy-plane potential,
as we have conjectured. In particular, it is interesting to determine whether the ground
states of () = 1 configurations are square, pentagon, hexagon, or more generally polygons
for N = 4,5,6 and so on. For sufficiently large @), what kind of ground state is realized
is a very interesting question to explore. Since a plane can be filled by tiling a square,
triangular, or hexagonal lattice, this may correspond to N = 2(4), 3, or 6, respectively. It
is, however, impossible for general N to fill a plane periodically. It is also interesting to
study fractional Skyrmions in the flag manifold NLo model [124-126] with a Skyrme term
and an easy-plane type potential. It would also be interesting to study generalizations of
the potential considered in this paper and classify which types of potentials give rise to
fractional solitons. We leave these issues for future studies.

The fractional Skyrmions studied here may very well exist also in systems directly
applicable to condensed matter physics. The most imminent and promising situation is
where the model is modified to use a generalization of the Dzyaloshinskii-Moriya term,
instead of the Skyrme term. Such a model is expected to be realizable in a mixture of NV
species of bosons with artificial gauge potentials [122].

Another direction is to investigate whether this model admits stable Hopfions in d = 3+1.
Since Hopfions are topologically unstable in CPY~! models due to w3(CPV~1) = 0 except
for N = 2, this is a highly nontrivial dynamical question. If they are stable in a certain
parameter region, they would be fractional Hopfion molecules, which generalize the fractional
Hopfions in the usual Faddeev-Skyrme model with a symmetry-breaking potential [127],
possibly of the form of closed fractional lump-strings linking each other.
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