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1 Introduction

As it is well known, the gravitational bremsstrahlung radiation, emitted from a generic
gravitational scattering, has a simple general expression in the leading-order (LO) zero-
frequency limit (ZFL) derived many decades ago [1–8]. Nevertheless in the recent years
the interest to soft theorems has come back with several new results about sub- and sub-
sub-leading terms beyond the soft leading expression [9–16]. Indeed, many recent works
were dedicated on several possible preservation and violation cases of universality (of soft
theorems) [17–26] as well as to the connection of soft theorems with the Bondi-Metzner-Van
der Burg-Sachs (BMS) symmetry group of asymptotically-flat space-time metric [27–32].

Certainly, nowadays these theoretical issues, that may appear in Weinberg’s paper
as academic, are now revitalized by the direct observations of Gravitational Waves from
Black Hole (BH) and Neutron star mergings [33]. Indeed recently it was suggested that the
gravitational memory effect related to soft theorems and BMS may be tested from future
gravitational waves experiments [34]. On the other hand, the analysis of gravitational
radiation in soft regime can also be important for the detection of quantum gravity effects
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such possible α′ corrections on radiation energy flux predicted by string theory in BH
mergings dubbed string memory effect [35–38].

For these reasons, it is interesting to explore the possibility of using new tools developed
from soft theorems and scattering amplitudes to extend the dEGW /dω results beyond
the leading ZFL order, i.e. to the Next-to-leading order (NLO). Recent progresses of
this program have been shown with different approaches, but substantial agreements of
results [39–43].

On the other hand, ZFL radiation analysis can be compared with other results from the
prospective of bremsstrahlung emission in high energy gravitational scatterings. In particular,
a old standing program still in progress explores aspects of gravitational scattering at the
transplanckian energy limit [44–54] (e.g. see also [55–57] for recent updates in the subject).
This can lead to important insights on the information paradox in energy regimes where the
BH should be generated [58–61] and should evaporate in form of Hawking radiation [62].
On the other hand, this can also scrutinize string theory predictions from finite size of
scattering vertices and tidal excitations [44, 47, 63] as well as possible modifications of
gravity at short-distance and generalized uncertainty principle (GUP) [64, 65].

Let us consider a generic process from IN → OUT, including virtual and real soft
graviton effects. Let us denote the S-matrix of such a process as1

S(0) → S = exp
(
d3q√

2ω

(
λ∗qa
†
q − λqaq

))
S(0) , (1.1)

where aq, a†q are destruction and creation operators for soft gravitons of momenta q and
maximal cutoff energy Λ � E — with E the characteristic energy scale of the collision
process — and λq is a process-dependent function of q. Such an exponential operator
applied on the bare S-matrix S0 corresponds to a coherent state operator and soft gravitons
are in a coherent vacuum state.

The energy spectrum of soft graviton emitted by a generic IN → OUT process is
related to the eq. (1.1) as follows

dE

d3q

GW

= ~
2 |λq|

2 , (1.2)

where λq depends from the specific IN→ OUT scattering.
In general such an expression can be expanded in powers of q and, integrating on the

momenta solid angle, one can obtain a dEGW /dω with a leading term going in the ZFL
ω → 0 as dEGW0 /dω ∼ ω−2.

Nevertheless, a universal factorized expression for the sub-leading graviton emission is
not known and it takes the form of a differential operator acting on the bare amplitudes.
Indeed the subleading soft current depends by the total angular momentum operators acting
on the bare S-matrix.

The main purpose of this paper is to compute the sub-leading order of the dEGW /dω
spectrum. A first step towards it was done by Bianchi, Veneziano and one of the author of

1Let us also remark that in our paper we will focus on the 3 + 1 space-time dimensional case.
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this paper [41], considering high energy ultra-relativistic scattering of spin-less particles.
Our aim is to extend the previous Addazi-Bianchi-Veneziano (ABV) analysis to the case of
generic scatterings of massive particles and bodies, including non-relativistic regimes and
having in mind the possible application of it for soft GW emission from BH mergings.

As a warm up let us consider the first three leading orders of soft graviton emissions
with universal behavior

MN+1 (pi; q) =
√

8πG
N∑
i=1

[
pihpi
qpi

+ pihJiq

qpi
− qJihJiq

2qpi

]
MN (pi) +O(q2)

≡(S0 + S1 + S2)MN (pi)
(1.3)

whereMN+1 ≡MN+1(pi; q) denotes a generic (N+1)-particle on-shell scattering amplitude
including an external graviton with momentum qµ and polarization hµν .

The qµ and hµν , defined above, satisfy

q2 =0 , hµν =hνµ , qµhµν = 0 . (1.4)

The leading, subleading and sub-subleading soft factors are given by

S0 ≡
√

8πG
N∑
i=1

pihpi
qpi

, S1 =
√

8πG
N∑
i=1

pihJiq

qpi
, S2 = −

√
8πG

N∑
i=1

qJihJiq

2qpi
(1.5)

and Jµνi ≡ p
µ
i ∂

ν
i −pνi ∂

µ
i +Sµνi denotes the total angular momentum of the i-th ‘hard’ particle.

The expression eq. (1.3) is gauge invariant under the rank-2 tensor shift

hµν → hµν + qµζν + qνζµ , (1.6)

following from the conservation of momentum and angular momentum.
The three soft terms can be related by the respective first three terms of the q-

expansion of λq. This allows to compute the gravitational energy spectrum dEGW /dω after
the integration over the emission direction. As we will see, such an operation involves
not-trivial vector and tensor integrals that we perform in full generality.

The plan of the paper is the following. In section 2 we will briefly review Weinberg’s
derivation of the leading B-factor and dEGW /dω. In section 3, we will show a complete
computation of the sub-leading emission of soft radiation, in the case of massive particle
collisions, after a review of the previous ABV result. In section 4 & 5, we will show a new
surprising result: in case of 2→ 2 elastic scattering all sub-leading effects exactly vanish for
generic particle/body collision. In section 6, we analyze the case of 2→ 2 inelastic collision:
we find an exact non-zero result which is, in full generality, complicated, but it has simpler
expressions in certain kinematic regimes.

2 Soft gravitational radiation from leading order: short review

The soft theorem up to leading order is universal and the dominant behavior reads

|MN+1(pi; q)|2 = 8πG
∑
s=±2

∣∣∣∣∣
N∑
i=1

pih
spi

qpi

∣∣∣∣∣
2

|MN (pi)|2 , (2.1)
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where notation is defined in the introduction above. The polarization tensor hs satisfies
h−sµν = (hsµν)∗ and after tedious but straightforward manipulations one can obtain that the
sum on the spins of the hh 4-tensor corresponds to∑

s=±2
hsµνh

−s
ρσ = Πµν,ρσ = 1

2(πµρπνσ + πµσπνρ − πµνπρσ) , (2.2)

where
πµν = ηµν − qµq̄ν − qν q̄µ , q̄2 = 0 and q̄q = 1 . (2.3)

Weinberg’s B-factor can be obtained after the integration over the momentum of the
soft graviton in the final state q = |q|(−1, ~n):

B0 =
∫

d3q

2|q|(2π)3 |MN+1|2

which corresponds to the number density as follows

dN0
dω

= dB0
dω

=
∫
d3qδ(|q| − ω)

2|q|(2π)3 |MN+1|2 (2.4)

and the energy spectrum of the gravitational wave is then

dEGW
0
dω

= ~ω
dN0
dω

. (2.5)

To evaluate the soft factor in eq. (2.1), one first needs to compute the polarization sum
and the result reads as

∑
i,j

pµi p
ν
i

qpi
Πµν,ρσ

pρjp
σ
j

qpj
=
∑
i,j

(pipj)2 − 1
2p

2
i p

2
j

qpiqpj
=
∑
i,j

(pipj)2 − 1
2m

2
im

2
j

qpiqpj
. (2.6)

The evaluation of the integral in the B-factor

I =
∫

d3q

|q|qpiqpj
(2.7)

leads to the well know result

I = − ln Λ
λ

(
2π

βijpipj

)
ln 1 + βij

1− βij
, (2.8)

where we have used λ and Λ to denote the IR cutoff scale and the upper limit for the validity
of the leading soft behavior respectively. Finally, one obtains the well-known Weinberg
B-factor [2, 41, 66]:

B0 =− 8πG
2(2π)3

∑
i,j

(pipj)2 − 1
2m

2
im

2
j

EiEj
ln Λ
λ

2πEiEj
βijpipj

ln 1 + βij
1− βij

=− G

2π ln Λ
λ

∑
i,j

(pipj)(1 + β2
ij)

βij
ln 1 + βij

1− βij
.

(2.9)
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3 Soft gravitational radiation from sub-leading order

The sub-leading contribution to the GW spectrum comes from the interference between S0
and S1 of eq. (1.3)

B1 = 8πG
∫

d3q

2|q|(2π)3

∑
i,j

∑
s=±2

(pihspi)
(
pjh

(−s)Jjq
)

qpiqpj
+ (i↔ j)

 . (3.1)

Now, contrary to Winberg’s B0, the sub-leading factor B1 involves the presence of the
angular momentum operator though as acting on the S-matrix.

3.1 Massless case: a review of the ABV result

In this section, we will review the previous ABV result as an introduction to the main
results of our paper.

Let us consider the case in which the ‘hard’ particles are massless: the sum over
helicities of the emitted soft gravitons is

∑
i,j

pµi p
ν
i p
ρ
j (Jjq)σ

qpiqpj
Πµν,ρσ + (i↔ j) =

∑
i,j

(pipj) (piJjq)
qpiqpj

+ (i↔ j)

=
∑
i,j

pipj
qpiqpj

[piJjq + pjJiq] .
(3.2)

Thus, B1 factor can be rewritten in a simplified form as

B1 = 8πG
∫

d3q

2|q|(2π)3

∑
i,j

pipj
qpiqpj

[
pi
−→
J j + pj

←−
J i

]
q , (3.3)

where ←−J i and
−→
J j act onMN and its complex conjugateM∗N respectively.

The four-vector integral that we need to evaluate for our purposes is

Iµij =
∫

d3q

2|q|(2π)3
pipjq

µ

qpiqpj
=
∫

d4q

(2π)3 δ+
(
q2
) pipjqµ
qpiqpj

, (3.4)

where we have defined δ+(q2) ≡ δ(q2)Θ(−q0) and we used∫ ∞
−∞

dq0δ(q2)Θ(−q0) = 1
2|q| , (3.5)

where the Heaviside step function constrains the energy to be positive.
When one considers the angel between ~q and ~pi going to zero, apparent collinear

divergences appear in the integral eq. (3.4). This can be explicitly seen as qpi = |q|Ei(−1 +
cos θqi) ∼ |q|Eiθ2

qi as θqi → 0 while sin θqidθqi inside the phase space integral d3q goes like
θqidθqi, thus the θqi-integral becomes d ln θqi which is divergent for θqi → 0 as well as for
θqj . However, we would expect that gravity is not an interaction plagued by collinear
divergences. Thus, in order to avoid these apparent divergences, ABV [41] introduced the
following ij-sum zero-equivalent shift terms as follows

Iµij → Ĩµij =
∫

d4q

(2π)3 δ+(q2)
[(pipj)qµ − (qpj)pµi − (qpi)pµj ]

(piq)(pjq)
, (3.6)
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the shift terms in eq. (3.6) vanish after summing over i and j thanks to momentum and
angular momentum conservations.

The four-vector integral eq. (3.6) can be rewritten in a Lorentz contravariant form
as follows

Kµ
ij(P,Λ) =

∫
d4q

(2π)3

δ+(q2)δ
(
qP
Λ2 + 1

)
(qpi)(qpj)

[(pipj)q − (qpj)pi − (qpi)pj ]µ , (3.7)

where P is an arbitrary four vector and Λ is a constant with the dimension of energy.
In a generic n→ m process, P can be identified as the total momentum of n incoming

(or m outgoing) particles and thus we can choose it as P = (ECM, 0). With this choice,
Λ2 =

√
s~ω0 where s = −P 2 = E2

CM is the Mandelstam variable of the corresponding
channel and ω0 is the center-of-mass frequency at which we wish to compute the energy
spectrum. Then the Dirac-Delta can be rewritten as

δ

(
qP

Λ2 + 1
)

= δ

(
1− ω

ω0

)
.

The Lorentz-invariant (graviton number) spectrum dB1/dω0 is then given by

dB1
dω0

= 8πG
∑
i,j

Kµ
ij(P, ω0)
ω0

[pi
−→
J j + pj

←−
J i]µ . (3.8)

With Lorentz covariance, Kµ
ij can be expanded as

Kµ
ij(pipj) = KP (s)Pµ +Ki(Ppi)pµi +Kj(Ppj)pµj , (3.9)

since Kµ
ij is orthogonal to both pi and pj , Kµ

ij can be rewritten in the form

Kµ
ij = K[(pipj)Pµ − (Ppj)pµi − (Ppi)pµj ] ≡ K(pipj)Qµij , (3.10)

where we have defined K ≡ KP
pipj

and a new vector

Qµij ≡ P
µ − Ppj

pipj
pµi −

Ppi
pipj

pµj . (3.11)

The main integrals involved in eq. (3.8) are∫
d3q

|q|
δ(ω − ω0)(pipj)(qP )

qpiqpj
= −(pipj)

√
s

EiEj
J = 2π

√
s

βij
ln 1 + βij

1− βij
, (3.12)

and∫
d3q

|q|
δ(ω − ω0)

(
Ppi
qpi

+ Ppj
qpj

)
=
√
s (Li + Lj)

= −2π
√
s

(
1
|~vi|

ln 1− |~vi|
1 + |~vi|

+ 1
|~vj |

ln 1− |~vj |
1 + |~vj |

)
.

(3.13)
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In the massless limit, the above expressions has the form∫
d3q

|q|
δ(ω − ω0)(pipj)(qP )

qpiqpj
= 4π

√
s ln

(
− 2pipj
mimj

)
, (3.14)

and ∫
d3q

|q|
δ(ω − ω0)

(
Ppi
qpi

+ Ppj
qpj

)
= −4π

√
s ln mimj

4EiEj
. (3.15)

Contracting Kµ
ij with Pµ, we get from eq. (3.7):

KijP =
∫

d3q

2|q|(2π)3 δ

(
1− ω

ω0

)[(pipj)(Pq)
(qpi)(qpj)

−
(
Ppi
qpi

+ Ppj
qpj

)]

=− 4πω0
√
s

2(2π)3

[
ln
(
− 2pipj
mimj

)
+ ln

(
mimj

4EiEj

)]
= −ω0

√
s

4π2 ln
(
− pipj

2EiEj

) (3.16)

and from eq. (3.10):
KijP = K[(pipj)P 2 − 2(Ppj)(Ppi)] . (3.17)

K is then determined by equating eq. (3.16) and eq. (3.17)

K(pipj) = ω0
√
s

4π2s̃ij
ln
(
− pipj

2EiEj

)
, (3.18)

where we have introduced the quantity

s̃ij = −Q2
ij = s+ 2(Ppi)(Ppj)

pipj
. (3.19)

Substituting the above result into eq. (3.7) and renaming ω0 as ω, we have a sub-leading
factor as follows:

dB1
dω

=− 2G
√
s

π

∑
i,j

1
s̃ij

ln
(
− pipj

2EiEj

)
Qµij [pi

−→
J j + pj

←−
J i]µ

=− 2G
√
s

π

∑
i,j

(pipj)
s̃ij

ln
(
− pipj

2EiEj

)
Qµij [
−→
∂ j +

←−
∂ i]µ .

(3.20)

In [41], ABV showed that the sub-leading correction dB1/dω vanishes for a 2 → 2
process by direct computation in the Briet frame (see figure 1). We will show in the following
sections that the zero result is also re-obtained in the massive case. In next section, we will
derive a new B-factor for the massive case.

3.2 Massive case: a generalization of ABV result

In this section, we will generalize the above discussion to the massive case.
First, we notice that the polarization sum in the massive case has an additional term

and it reads as∑
i,j

pµi p
ν
i p
ρ
j (Jjq)σ

qpiqpj
Πµν,ρσ + (i↔ j)

=
∑
i,j

(pipj) (piJjq)− 1
2p

2
i (pjJjq)

qpiqpj
+ (i↔ j)

=
∑
i,j

pipj
qpiqpj

[piJjq + pjJiq]−
1
2

1
qpiqpj

[
p2
i (pjJjq) + p2

j (piJiq)
]
.

(3.21)
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Figure 1. 2→ 2 scattering in Breit frame.

Considering the polarization sum in eq. (3.1) with eq. (3.21), the sub-leading B-factor
becomes

B1 =8πG
∫

d3q

2|q|(2π)3

∑
i,j

{
pipjq

µ

qpiqpj

(
pi
−→
J j + pj

←−
J i

)
µ

−1
2

qµ

qpiqpj

[
p2
i

(
pj
−→
J j

)
µ

+ p2
j

(
pi
←−
J i

)
µ

]}
.

(3.22)

Then B1 can be rewritten in terms of the integral eq. (3.4) as follows

B1 = 8πG
∑
i,j

Iµij

{(
pi
−→
J j + pj

←−
J i

)
µ
− 1

2

[
p2
i

pipj

(
pj
−→
J j

)
µ

+
p2
j

pipj

(
pi
←−
J i

)
µ

]}
. (3.23)

Following the same procedure in section 3.1, one gets the number density spectrum

dB1
dω0

= −8πG
∑
i,j

Kµ
ij(P, ω0)
ω0

[
pi
−→
J j −

1
2
p2
i

pipj

(
pj
−→
J j

)
+ (i↔ j)

]
(3.24)

where Kµ
ij is given by

Kµ
ij(P, ω0) =

∫
d4q

(2π)3

δ+
(
q2) δ (1− ω

ω0

)
(qpi) (qpj)

[(pipj) q − (qpj) pi − (qpi) pj ]µ , (3.25)

and it can be written in the form

Kµ
ij = K

[
(pipj)Pµ − (Ppj) pµi − (Ppi) pµj

]
≡ K (pipj)Qµij . (3.26)

Contracting Kµ
ij with Pµ, with eq. (3.12) and eq. (3.14) and from eq. (3.25), one obtains

KijP =
∫

d3q

2|q|(2π)3 δ

(
1− ω

ω0

)[(pipj) (qP )
qpiqpj

−
(
Ppi
qpi

+ Ppj
qpj

)]

=− ω0
2(2π)3

[
2π
√
s

βij
ln 1 + βij

1− βij
+ 2π

√
s

(
1
|~vi|

ln 1− |~vi|
1 + |~vi|

+ 1
|~vj |

ln 1− |~vj |
1 + |~vj |

)]
,

and from eq. (3.26)
KijP = K

[
(pipj)P 2 − 2 (Ppj) (Ppi)

]
.

– 8 –
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Thus K is determined by

K(pipj) = ω0
√
s

8π2s̃ij

[
1
βij

ln 1 + βij
1− βij

+
(

1
|~vi|

ln 1− |~vi|
1 + |~vi|

+ 1
|~vj |

ln 1− |~vj |
1 + |~vj |

)]
. (3.27)

Substituting the above K-factor into eq. (3.24) gives

dB1
dω

=− G
√
s

π

∑
i,j

1
s̃ij

[
1
βij

ln 1 + βij
1− βij

+
(

1
|~vi|

ln 1− |~vi|
1 + |~vi|

+ 1
|~vj |

ln 1− |~vj |
1 + |~vj |

)]

×Qµij
[
pi
−→
J j + pj

←−
J i

]
µ
.

(3.28)

Considering that

Qµij

[
pi
−→
J j + pj

←−
J i

]
µ

= (pipj)Qµij
(←−
∂ i +

−→
∂ j
)
µ

+ Ppi
pipj

p2
j

(−→
∂ jpi

)
+ Ppj
pipj

p2
i

(←−
∂ ipj

)
,

we finally obtain the new general subleading B-factor for the massive case

dB1
dω

=− G
√
s

π

∑
i,j

1
s̃ij

[
1
βij

ln 1 + βij
1− βij

+
(

1
|~vi|

ln 1− |~vi|
1 + |~vi|

+ 1
|~vj |

ln 1− |~vj |
1 + |~vj |

)]

×
[
(pipj)Qµij

(←−
∂ i +

−→
∂ j
)
µ

+ Ppi
pipj

p2
j

(−→
∂ jpi

)
+ Ppj
pipj

p2
i

(←−
∂ ipj

)]
.

(3.29)

4 Test in two-body elastic scattering

In this section, we use the result (3.29) to study a two-body elastic collision. The kinematics
for this process is similar to the one shown in figure 1 with the difference that here we
consider all the ‘hard’ particles to be massive and with the same mass m. Thus the
energy-momentum conservation condition becomes E2 = p2 + k2 +m2 and the Mandelstam
variables satisfy the relation: s+ t+ u = 4m2. The contribution from the (i, j)-pair takes
the form

dB
(i,j)
1
dω

= ηiηj
G

π

1− ~vi · ~vj
1 + ~vi · ~vj

[
1
βij

ln 1 + βij
1− βij

+ 2E√
p2 + k2 ln E −

√
p2 + k2

E +
√
p2 + k2

]

×
{
E2[δµ0 (1 + ~vi · ~vj) + δµr (~vi + ~vj)r]

(←−
∂ i +

−→
∂ j
)
µ

− m2

1− ~vi · ~vj

[
(δµ0 + δµr (~vi)r)

(−→
∂ j
)
µ

+ (δµ0 + δµr (~vj)r)
(←−
∂ i
)
µ

]}
,

(4.1)

where βij and |~vi| are given by

|~vi| =

√
p2 + k2

E2 and βij ≡
√

1− m4

(pi · pj)2 .
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First considering the case i, j = 1, 2 and i, j = 3, 4, a direct computation gives

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

= 2G
π

[
E2 + p2 + k2

2E
√
p2 + k2 ln E

2 + p2 + k2 + 2E
√
p2 + k2

E2 + p2 + k2 − 2E
√
p2 + k2 + 2E√

p2 + k2 ln E −
√
p2 + k2

E +
√
p2 + k2

]
×
{

(p2 + k2)
←→
∂ E + E

(
p
←→
∂ p + k

←→
∂ k

)}
,

and

dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

=− 2G
π

[
E2 + p2 + k2

2E
√
p2 + k2 ln E

2 + p2 + k2 + 2E
√
p2 + k2

E2 + p2 + k2 − 2E
√
p2 + k2 + 2E√

p2 + k2 ln E −
√
p2 + k2

E +
√
p2 + k2

]

×
{

(p2 + k2)
←→
∂ E + E

(
p
←→
∂ p + k

←→
∂ k

)}
.

Thus, we obtain
dB

(1,2)
1
dω

+ dB
(2,1)
1
dω

+ dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

= 0 (4.2)

which means that the contributions from (1,2) and (3,4) cancel with each other.
For i, j = 1, 3, after a long but straightforward computation, one finds

dB
(1,3)
1
dω

=−G
π

E2 +p2−k2

E2−p2 +k2

[
E2 +p2−k2

2p
√
E2−k2

ln E
2 +p2−k2 +2p

√
E2−k2

E2 +p2−k2−2p
√
E2−k2

+ 2E√
p2 +k2 ln E−

√
p2 +k2

E+
√
p2 +k2

]{
E2
[
E2−p2 +k2

E2

(←−
∂ E−

−→
∂ E

)
+ 2k
E

(←−
∂ k−

−→
∂ k
)]

− E2m2

E2 +p2−k2

[(
−
−→
∂ E +

←−
∂ E

)
+ p

E

(−→
∂ p−

←−
∂ p
)

+ k

E

(
−
−→
∂ k+

←−
∂ k
)]}

=− dB
(3,1)
1
dω

.

Once again, the total contribution from (1, 3)-pair vanishes. We have also checked that the
same happens for the other pairs: (1,4), (2,3), (2,4), proving that dB1/dω = 0 is also valid
in the case of massive two-body collisions with all particles having the same mass.

5 Gravitational elastic scattering

In this section, we apply the new sub-leading differential B-factor obtained in previous
sections to the case of a gravitational elastic scattering.

Indeed, from a classical prospective this can correspond to the case of a test light body
elastically deflected but not captured by a Black Hole of mass M .
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Figure 2. Feynman’s diagram of gravitational elastic scattering φ1(p1)φ2(p2) → φ1(p3)φ2(p4),
where φ1,2 are two scalar fields (dashed lines), the curly line represent the propagator of the graviton
field and p1,2,3,4 are the four-momenta of in and out states respectively.

For the case in which the test body has a mass m�M , the differential B-factor has an
asymptotic expression in the limit of m→ 0 (see appendix A for detail derivation) as follows

dB1
dω
∼ GM

π

(
6 + 2

3
P 2

M2

)(
~pf
←→
∂ ~pf

− ~pi
←→
∂ ~pi

)
, (5.1)

where P = |~p|, M is the mass of the black hole, ~pi, ~pf are initial and final momenta in
the CM frame. Then the soft sub-leading radiation in ZFL can be obtained applying the
differential B-factor in eq. (5.1) on the amplitude of gravitational 2→ 2 elastic scattering

M∗dB1
dω
M , (5.2)

where the partial derivatives with left (right) arrow act on M∗ (M).
From field theory prospective, let us start from the Einstein-Hilbert action coupled to

two scalar fields φ1 and φ2

S =
∫
d4x
√
−g

[ 1
16πGR−

1
2∂

µφ1∂µφ1 −
1
2M

2φ2
1 −

1
2∂

νφ2∂νφ2 −
1
2m

2φ2
2

]
. (5.3)

Indeed, for the moment, as an illustrative example, we consider spin-less field grav-
itational scatterings (see figure 2). The amplitude for this classical tree-level diagram
is [67]

M = 16πG
q2

(
M2m2 − 2 (p1 · p2)2 − (p1 · p2) q2

)
, (5.4)

where p1, p2 (p3, p4) are incoming (outgoing) momenta, p2
1 = p2

4 = −m2, p2
2 = p2

3 = −M2

and the momentum transfer is q = p1 + p4 = −(p2 + p3). With the kinematics discussed in
appendix A, the amplitude in the center of mass frame becomes

M = 8πG
(P 2 + kk′ − pp′)

[
M2m2 − 2P

(
M + P + P 2

2M

)(
P

(
M + P 2

2M

)
− kk′ + pp′

)]

∼ 8πG
(P 2 + kk′ − pp′)

[
M2m2 − 2P (M + P )

(
MP − kk′ + pp′

)]
. (5.5)
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The derivatives of this amplitude give

−→
∂ pM = 8πG

(P 2 + kk′ − pp′)2 p
′
(
M2m2 − 2P 2(M + P )2

)
=M∗

←−
∂ p ,

−→
∂ kM = 8πG

(P 2 + kk′ − pp′)2k
′
(
2P 2(M + P )2 −M2m2

)
=M∗

←−
∂ k ,

−→
∂ p′M = 8πG

(P 2 + kk′ − pp′)2 p
(
M2m2 − 2P 2(M + P )2

)
=M∗

←−
∂ p′ ,

−→
∂ k′M = 8πG

(P 2 + kk′ − pp′)2k
(
2P 2(M + P )2 −M2m2

)
=M∗

←−
∂ k′ .

(5.6)

Then it is easy to check that

p
[(
M∗
←−
∂ p
)
M+M∗

(−→
∂ pM

)]
− p′

[(
M∗
←−
∂ p′

)
M+M∗

(−→
∂ p′M

)]
= 0 ,

k
[(
M∗
←−
∂ k
)
M+M∗

(−→
∂ kM

)]
− k′

[(
M∗
←−
∂ k′

)
M+M∗

(−→
∂ k′M

)]
= 0 ,

which implies
M
(
p′
←→
∂ p′ + k′

←→
∂ k′ − p

←→
∂ p − k

←→
∂ k

)
M∗ = 0 . (5.7)

Thus once again, we get a vanishing result

M∗dB1
dω
M = 0 , (5.8)

even if the differential B-factor is non-zero. Furthermore, in appendix B, we find that
eq. (5.8) is still re-obtained in the case of massive m test particle.

6 Inelastic scattering

Here, we will show that dB1/dω gives a finite non-zero result in the 2→ 2 inelastic scattering
case. Indeed, in the case of test particle deflected by a BH, it is reasonable to consider the
elastic scattering regime only for small deflection angles. In case of harder deflections we
would expect that inelastic channels would be opened.

Following similar discussion as appendix A, but this time take

p2 + k2 = P 2 6= P ′2 = p′2 + k′2 (6.1)

with eq. (3.29), we can get the contributions from different particle pairs. As shown in
appendix C, however, the result is a long expression.

Nevertheless, in the non-relativistic regime, performing a Taylor series expansion up to
the second order of O(P/M) and O(P ′/M ′), the six contributions simplify to

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

∼ GM
π

(
−2+ 1

3
P 2

M2

)(
P
←→
∂ P +p

←→
∂ p+k

←→
∂ k

)
,

dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

∼ GM
′

π

(
2− 1

3
P ′2

M ′2

)(
P ′
←→
∂ P ′ +p′

←→
∂ p′ +k′

←→
∂ k′

)
,
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dB
(2,4)
1
dω

+ dB
(4,2)
1
dω

∼ GM
′

π

(
−2+ 1

3
P ′2

M ′2

)(
P
←→
∂ P +p

←→
∂ p+k

←→
∂ k

)
,

dB
(1,3)
1
dω

+ dB
(3,1)
1
dω

∼ GM
π

(
−2+ 1

3
P 2

M2

)(
−P ′
←→
∂ P ′−p′

←→
∂ p′−k′

←→
∂ k′

)
,

dB
(1,4)
1
dω

+ dB
(4,1)
1
dω

∼ G
π

[
−2− 2

3

(
P 2

M2 + P ′2

M ′2

)](
pM ′
←→
∂ p+kM ′

←→
∂ k−p′M

←→
∂ p′−k′M

←→
∂ k′

)
,

dB
(2,3)
1
dω

+ dB
(3,2)
1
dω

= 2G
π

PP ′−(pp′−kk′)
PP ′+(pp′−kk′) ln

[
PP ′−(pp′−kk′)

2PP ′
]{[

PP ′+(pp′−kk′)
]

×
(←→
∂ P−

←→
∂ P ′

)
+
(
pP ′+p′P

)(←→
∂ p−

←→
∂ p′

)
+
(
kP ′−k′P

)(←→
∂ k+

←→
∂ k′

)}
.

Summing the single contributions, we find that the total sub-leading B-fractor for the
inelastic scattering is dominated by the following leading term:

dB1
dω

=
[
GM

π

(
2− 1

3
P 2

M2

)
+ GM ′

π

(
2− 1

3
P ′2

M ′2

)](
P ′
←→
∂ P ′ − P

←→
∂ P + p′

←→
∂ p′

−p
←→
∂ p + k′

←→
∂ k′ − k

←→
∂ k

)
+ G

π

[
− 2− 2

3

(
P 2

M2 + P ′2

M ′2

)]

×
[
M ′

(
p
←→
∂ p + k

←→
∂ k

)
−M

(
p′
←→
∂ p′ − k′

←→
∂ k′

)]
.

(6.2)

7 Conclusions and remarks

In this paper, we computed the sub-leading order expansion of the gravitational radiation
energy spectrum dEGW /dω in the ZFL for a generic multi-body or multi-particle collision.
Our result can be applied on both massless and massive fundamental/composite particle
scatterings with every spin as well as to bodies such as Black Holes.

As an application, we considered the case of sub-leading soft emission from a gravita-
tional elastic scattering. From the point of view of BH physics, it can be the case of a test
body deflected, but not captured, by a BH.

Surprisingly, we obtain that all sub-leading terms of the energy radiation spectrum,
emitted from an elastic collision, exactly cancel each others, in both massless and massive
particle collisions. On the other hand, for inelastic 2→ 2 scatterings, we obtain a general
and complicated non-zero analytic result which may be applied in the case of GW soft
emission from BH gravitational inelastic scatterings. It may certainly be an attractive
possibility to relate our result on searches of BMS gravitational memory effects from GW
physics. In this sense, our results may be applied in BH mergings seen as a gravitational
BH capture inelastic scattering process. On the other hand, violations of universality of
our results from loop radiative corrections would be expected from previous analysis as
mentioned in the introduction above.
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Another intriguing possibility is to consider footprints of string theory effects on leading
and sub-leading gravitational radiation from α′ corrections and Regge poles that may
survive with a polynomial decay in radius, dubbed string memory effect [35].

Finally, the very next step for ZFL program would be to compute sub-sub-leading
order on the dEGW /dω expansion in ω. In ref. [41] the case of massless particle high energy
collisions was considered — having in mind an application to transplanckian scattering
regimes. However a more general result is missing yet and it is beyond the purpose of
this paper.

A Gravitational elastic scattering I

In this appendix, we give a detail computation of the differential B-factor for the gravitational
elastic scattering process with the test particle being massless as discussed in section 4. In
the center of mass frame, the kinematical variables of this process are

p1 =
(
M + P 2

2M ,p, k, 0
)
,

p2 = (P,−p,−k, 0) ,
p3 = (−P, p′,−k′, 0) ,

p4 =
(
−M − P 2

2M ,−p′, k′, 0
)
,

(A.1)

where p, p′, k, k′ satisfy the realtion

p2 + k2 = P 2 = p′2 + k′2 .

Some properties relating eq. (3.29) are the following

P =p1 + p2 =
(
M + P + P 2

2M ,~0
)
,

s =− (p1 + p2)2 =
(
M + P + P 2

2M

)2

,

s̃ij =−
(
M + P + P 2

2M

)2 1 + ~vi · ~vj
1− ~vi · ~vj

,

Qµij =−
(
M + P + P 2

2M

)(
1 + ~vi · ~vj
1− ~vi · ~vj

,
~vi + ~vj

1− ~vi · ~vj

)
,

and the velocities are given by

~v1 = 1
M

(p, k, 0) , ~v2 = 1
P

(−p,−k, 0) , |~v1| =
P

M
, |~v2| =

P√
m2 + P 2

→ 1 ,

~v3 = 1
P

(−p′, k′, 0) , ~v4 = 1
M

(p′,−k′, 0) , |~v3| =
P√

m2 + P 2
→ 1 , |~v4| =

P

M
.
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Their are six (i, j)-pairs we need to take into consideration, namely: (1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4). After some tedious but straightforward computations, we obtain the
contributions from (1, 2) + (3, 4):

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

+ dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

= G

π

ln
(
M + P + P 2

2M
M

)2

+ M

P
ln M − P
M + P

M + P

M − P

(
P −M − P 2

2M

)

×
(
p′
←→
∂ p′ + k′

←→
∂ k′ − p

←→
∂ p − k

←→
∂ k

)
,

and from (1, 3) + (2, 4):

dB
(1,3)
1
dω

+ dB
(3,1)
1
dω

+ dB
(2,4)
1
dω

+ dB
(4,2)
1
dω

= G

π

PM + (pp′ − kk′)
PM − (pp′ − kk′)

ln

P
(
M + P 2

2M

)
+ pp′ − kk′

MP

2

+ M

P
ln M − P
M + P


×
{(

P

(
M + P 2

2M

)
+ (pp′ − kk′)

)[
(p− p′)(P +M)
PM + (pp′ − kk′)

(←→
∂ p +

←→
∂ p′

)

+ (k + k′)(P +M)
PM + (pp′ − kk′)

(←→
∂ k −

←→
∂ k′

) ]
+

P

[
P 2 −

(
M + P 2

2M

)2
]

P
(
M + P 2

2M

)
+ pp′ − kk′

×
(
p
←→
∂ p′ − k

←→
∂ k′ − p′

←→
∂ p + k′

←→
∂ k

)}
,

from (1, 4):

dB
(1,4)
1
dω

+ dB
(4,1)
1
dω

= G

π

[
M√

2
√
P 2 − (pp′ − kk′)

ln
1 +
√

2
√
P 2−(pp′−kk′)

M

1−
√

2
√
P 2−(pp′−kk′)

M

+ 2M
P

ln M − P
M + P

]
M

×
(
p
←→
∂ p − p′

←→
∂ p′ + k

←→
∂ k − k′

←→
∂ k′

)
,

and finally from (2, 3):

dB
(2,3)
1
dω

+ dB
(3,2)
1
dω

=G

π

P 2−(pp′−kk′)
P 2+(pp′−kk′) ln

[
P 2−(pp′−kk′)

2P 2

]2 [
P (p+p′)

(←→
∂ p−

←→
∂ p′

)
−P (k′−k)

(←→
∂ k+

←→
∂ k′

)]
.
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To get a compact and meaningful differential B-factor, we do the Taylor series expansion
up to the second order at P/M . Then the above results are simplified to

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

+ dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

∼ GM
π

(
2− 1

3
P 2

M2

)(
p′
←→
∂ p′ +k′

←→
∂ k′−p

←→
∂ p−k

←→
∂ k

)
,

dB
(1,3)
1
dω

+ dB
(3,1)
1
dω

+ dB
(2,4)
1
dω

+ dB
(4,2)
1
dω

∼ GM
π

(
−2+ 1

3
P 2

M2

)(
p
←→
∂ p−p′

←→
∂ p′ +k

←→
∂ k−k′

←→
∂ k′

)
,

and

dB
(1,4)
1
dω

+ dB
(4,1)
1
dω

= 2G
π

[
1 + M

P
ln

1− P
M

1 + P
M

]
M
(
p
←→
∂ p − p′

←→
∂ p′ + k

←→
∂ k − k′

←→
∂ k′

)

∼ 2G
π

[
− 1− 2

3
P 2

M2

]
M
(
p
←→
∂ p − p′

←→
∂ p′ + k

←→
∂ k − k′

←→
∂ k′

)
.

Summing up the above results, we find that the total differential B-factor: dB1/dω =∑i 6=j
i,j dB

(i,j)
1 /dω has a leading expression as

dB1
dω
∼ GM

π

(
6 + 2

3
P 2

M2

)(
p′
←→
∂ p′ + k′

←→
∂ k′ − p

←→
∂ p − k

←→
∂ k

)
= GM

π

(
6 + 2

3
P 2

M2

)(
~pf
←→
∂ ~pf

− ~pi
←→
∂ ~pi

)
,

where ~pi (~pf ) are momenta of initial (final) states and
←→
∂ ≡

←−
∂ +

−→
∂ .

B Gravitational elastic scattering II

Our goal in this appendix is to generalize the discussion in appendix A to the case in which
the test particle has mass m. The kinematics is similar to the previous case and reads

p1 =
(
M + P 2

2M ,p, k, 0
)
,

p2 = (
√
P 2 +m2,−p,−k, 0) ,

p3 = (−
√
P 2 +m2, p′,−k′, 0) ,

p4 =
(
−M − P 2

2M ,−p′, k′, 0
)
,

(B.1)

with p2 + k2 = P 2 = p′2 + k′2.
Again, let us consider the contributions from six pairs separately: first for (1, 2) + (3, 4),

considering that s̃12 = s̃34 and p1 · p2 = p3 · p4, we obtain

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

= − G
√
s

π

1
s̃12

[ 1
β12

ln 1 + β12
1− β12

+
( 1
|~v1|

ln 1− |~v1|
1 + |~v1|

+ 1
|~v2|

ln 1− |~v2|
1 + |~v2|

)]
×
[
(p1p2)Qµ12

(←→
∂ 1 +

←→
∂ 2
)
µ

+ Pp1
p1p2

p2
2
←→
∂ 2p1 + Pp2

p1p2
p2

1
←→
∂ 1p2

]
,
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and

dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

= − G
√
s

π

1
s̃34

[ 1
β34

ln 1 + β34
1− β34

+
( 1
|~v3|

ln 1− |~v3|
1 + |~v3|

+ 1
|~v4|

ln 1− |~v4|
1 + |~v4|

)]
×
[
(p3p4)Qµ34

(←→
∂ 3 +

←→
∂ 4
)
µ

+ Pp3
p3p4

p2
4
←→
∂ 4p3 + Pp4

p3p4
p2

3
←→
∂ 3p4

]
,

where the Qµ vectors are given by

Qµ12 = −
M + P 2

2M +
√
P 2 +m2

M
√
P 2 +m2 + P 2

(
M
√
P 2 +m2 − P 2, (

√
P 2 +m2 −M) (p, k, 0)

)
,

Qµ34 = −
M + P 2

2M +
√
P 2 +m2

M
√
P 2 +m2 + P 2

(
M
√
P 2 +m2 − P 2, (

√
P 2 +m2 −M)

(
p′,−k′, 0

))
.

Thus we have

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

+ dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

= − G
√
s

π

1
s̃12

[ 1
β12

ln 1 + β12
1− β12

+
( 1
|~v1|

ln 1− |~v1|
1 + |~v1|

+ 1
|~v2|

ln 1− |~v2|
1 + |~v2|

)]

×
{
Pp1
p1p2

m2
(
p
←→
∂ p + k

←→
∂ k − p′

←→
∂ p′ − k′

←→
∂ k′

)
+ Pp2
p1p2

P 2 −
(
M + P 2

2M

)2


×
(
p′
←→
∂ p′ + k′

←→
∂ k′ − p

←→
∂ p − k

←→
∂ k

)}
.

The combination: p′
←→
∂ p′ + k′

←→
∂ k′ − p

←→
∂ p − k

←→
∂ k factorized implies that M∗[(1, 2)+

(3, 4)]M = 0 (see eq. (5.7)).
Then for (1, 3) + (2, 4), similarly, considering that s̃13 = s̃24, p1 · p3 = p2 · p4, we obtain

dB
(1,3)
1
dω

+ dB
(3,1)
1
dω

+ dB
(2,4)
1
dω

+ dB
(4,2)
1
dω

= G
√
s

π

1
s̃13

[ 1
β13

ln 1+β13
1−β13

+
( 1
|~v1|

ln 1−|~v1|
1+ |~v1|

+ 1
|~v3|

ln 1−|~v3|
1+ |~v3|

)]

×
{
−(p1p3)

(
M+ P 2

2M +
√
P 2 +m2

)(√
P 2 +m2 +M

)
M
√
P 2 +m2−(kk′−pp′)

(
p
←→
∂ p−p′

←→
∂ p′ +k

←→
∂ k−k′

←→
∂ k′

−p′
←→
∂ p+p

←→
∂ p′ +k′

←→
∂ k−k

←→
∂ k′

)
+ Pp1
p1p3

m2
[
p′
←→
∂ p−p

←→
∂ p′ +k

←→
∂ k′−k′

←→
∂ k

]

+ Pp2
p1p3

P 2−
(
M+ P 2

2M

)2
(p←→∂ p′−p′

←→
∂ p+k′

←→
∂ k−k

←→
∂ k′

)}
.

Let us now note that all the three terms in the above expression contain the combination
p
←→
∂ p′ − p′

←→
∂ p + k′

←→
∂ k − k

←→
∂ k′ , which guarantees the cancellation after the application of
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the expression on the amplitudes

M∗
[
−p′
←→
∂ p + p

←→
∂ p′ + k′

←→
∂ k − k

←→
∂ k′

]
M

= 16πG
(
2P 2(M + P )2 −M2m2)
(P 2 + kk′ − pp′)2

(
p′2 − p2 + k′2 − k2

)
M = 0 ,

thusM∗ [(1, 3) + (2, 4)]M = 0.
Similarly, the final expression for the contribution from (2, 3)-pair is

dB
(2,3)
1
dω

+ dB
(3,2)
1
dω

= G
√
s

π

1
s̃23

[ 1
β23

ln 1 + β23
1− β23

+ 2
|~v2|

ln 1− |~v2|
1 + |~v2|

]{
−
(
M + P 2

2M +
√
P 2 +m2

)

×
√
P 2 +m2

(
p
←→
∂ p − p′

←→
∂ p′ + k

←→
∂ k − k′

←→
∂ k′ + p′

←→
∂ p − p

←→
∂ p′ − k′

←→
∂ k + k

←→
∂ k′

)
−

(√
P 2 +m2

) (
M + P 2

2M +
√
P 2 +m2

)
(P 2 +m2)− (pp′ − kk′) m2

(
p
←→
∂ p′ − p′

←→
∂ p + k′

←→
∂ k − k

←→
∂ k′

)}

and from (1, 4)-pair

dB
(1,4)
1
dω

+ dB
(4,1)
1
dω

=G

π

[ (
M+ P 2

2M

)2
−(pp′−kk′)√

(2M2+P 2+ P 4

4M2 )−(pp′−kk′)
√

(P 2+ P 4

4M2 )−(pp′−kk′)

×ln

(
M+ P 2

2M

)2
−(pp′−kk′)+

√
(2M2+P 2+ P 4

4M2 )−(pp′−kk′)
√

(P 2+ P 4

4M2 )−(pp′−kk′)(
M+ P 2

2M

)2
−(pp′−kk′)−

√
(2M2+P 2+ P 4

4M2 )−(pp′−kk′)
√

(P 2+ P 4

4M2 )−(pp′−kk′)

+2M
P

lnM−P
M+P

]{(M+ P 2

2M

)2

−(pp′−kk′)

( M

M2−(pp′−kk′)

)
×
(
p
←→
∂ p+k

←→
∂ k−p′

←→
∂ p′−k′

←→
∂ k′ +k

←→
∂ k′−p

←→
∂ p′ +p′

←→
∂ p−k′

←→
∂ k

)

+

(
M+ P 2

2M

)[
P 2−

(
M+ P 2

2M

)2
]

(
M+ P 2

2M

)2
−(pp′−kk′)

(
k
←→
∂ k′−p

←→
∂ p′ +p′

←→
∂ p−k′

←→
∂ k

)]}
.

Once again, these terms will give us a zero result after applying them to the amplitude.
In conclusion, we have generalizedM∗ dB1

dω M = 0 to all gravitational elastic scatterings.

C dB
(i,j)
1

dω
for the inelastic case

In this appendix we show the general results (before expansion) of the dB(i,j)
1 /dω factor for

the inelastic scattering discussed in section 6. Adopting the kinematics (6.1), one gets from
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eq. (3.29) contributions from six pairs respectively and the results read2

dB
(1,2)
1
dω

+ dB
(2,1)
1
dω

= G

π

ln
(
M + P 2

2M + P

M

)2

+ M

P
ln M − P
M + P

[(M + P 2

2M + P

)

×
(
P
←→
∂
M+ P 2

2M

+ P
←→
∂ P

)
+
(
P −M − P 2

2M

)
M + P

M − P

×
(
P
←→
∂
M+ P 2

2M

− p
←→
∂ p − k

←→
∂ k

)]
,

dB
(3,4)
1
dω

+ dB
(4,3)
1
dω

= G

π

ln
(
M ′ + P ′ + P ′2

2M
M ′

)2

+ M ′

P ′
ln M

′ − P ′

M ′ + P ′

[− (M ′ + P ′ + P ′2

2M ′

)

×
(
P ′
←→
∂ P ′ + P ′

←→
∂
M ′+ P ′2

2M′

)
−
(
P ′ −M ′ − P ′2

2M ′

)
M ′ + P ′

M ′ − P ′

×
(
P ′
←→
∂
M ′+ P ′2

2M′
− p′
←→
∂ p′ − k′

←→
∂ k′

)]
,

dB
(1,3)
1
dω

+ dB
(3,1)
1
dω

= G

π

P ′M + (pp′ − kk′)
P ′M − (pp′ − kk′)

[
ln

P ′
(
M + P 2

2M

)
+ pp′ − kk′

MP ′

2

+ M

P
ln M − P
M + P

]{[
P ′
(
M + P 2

2M

)
+ (pp′ − kk′)

(
P ′M − (pp′ − kk′)
P ′M + (pp′ − kk′)

×
(←→
∂
M+ P 2

2M

−
←→
∂ P ′

)
+ pP ′ − p′M
P ′M + (pp′ − kk′)

(←→
∂ p +

←→
∂ p′

)

+ k′M + kP ′

P ′M + (pp′ − kk′)
(←→
∂ k −

←→
∂ k′

) ]
−

P ′
[
P 2 −

(
M + P 2

2M

)2
]

P ′
(
M + P 2

2M

)
+ pp′ − kk′

×
(
−P ′
←→
∂
M+ P 2

2M

+ p′
←→
∂ p − k′

←→
∂ k

)}
,

dB
(2,4)
1
dω

+ dB
(4,2)
1
dω

=G

π

PM ′+(pp′−kk′)
PM ′−(pp′−kk′)

[
ln

P
(
M ′+ P ′2

2M ′

)
+pp′−kk′

M ′P

2

+M ′

P ′
lnM

′−P ′

M ′+P ′

]{[
P

(
M ′+ P ′2

2M ′

)
+(pp′−kk′)

][
PM ′−(pp′−kk′)
PM ′+(pp′−kk′)

×
(←→
∂ P−

←→
∂
M ′+ P ′2

2M′

)
− p′P−pM ′

PM ′+(pp′−kk′)
(←→
∂ p+

←→
∂ p′

)

+ (kM ′+k′P )
PM ′+(pp′−kk′)

(←→
∂ k−

←→
∂ k′

)]
+
P

[
P ′2−

(
M ′+ P ′2

2M ′

)2
]

P
(
M ′+ P ′2

2M ′

)
+pp′−kk′

×
(
−P
←→
∂
M ′+ P ′2

2M′
+p
←→
∂ p′−k

←→
∂ k′

)}
,

2The computation for the inelastic case is similar to those in appendix A and B (although much more
complicated), thus to avoid repeatability we only show the results in this appendix.
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dB
(1,4)
1
dω

+ dB
(4,1)
1
dω

=G

π

MM ′−(pp′−kk′)
MM ′+(pp′−kk′)

[ (
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)√[(

M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)

]2
−M2M ′2

×ln

(
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)+

√[(
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)

]2
−M2M ′2(

M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)−

√[(
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)

]2
−M2M ′2

+M

P
lnM−P
M+P +M ′

P ′
lnM

′−P ′

M ′+P ′

]{[(
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)

]

×
[
MM ′+(pp′−kk′)
MM ′−(pp′−kk′)

(←→
∂
M+ P 2

2M

−
←→
∂
M ′+ P ′2

2M′

)
+ pM ′+p′M
MM ′−(pp′−kk′)

(←→
∂ p−

←→
∂ p′

)

+ kM ′−k′M
MM ′−(pp′−kk′)

(←→
∂ k+

←→
∂ k′

)]
−

(
M+ P 2

2M

)[
P ′2−

(
M ′+ P ′2

2M ′

)2
]

(
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)

×
[(
M+ P 2

2M

)
←→
∂
M ′+ P ′2

2M′
+p
←→
∂ p′−k

←→
∂ k′

]
+

(
M ′+ P ′2

2M ′

)[
P 2−

(
M+ P 2

2M

)2
]

(
M+ P 2

2M

)(
M ′+ P ′2

2M ′

)
−(pp′−kk′)

×
[(

M ′+ P ′2

2M ′

)
←→
∂
M+ P 2

2M

+p′
←→
∂ p−k′

←→
∂ k

]}
,

dB
(2,3)
1
dω

+ dB
(3,2)
1
dω

= 2G
π

PP ′ − (pp′ − kk′)
PP ′ + (pp′ − kk′) ln

[
PP ′ − (pp′ − kk′)

2PP ′
]{ [

PP ′ + (pp′ − kk′)
] (←→

∂ P −
←→
∂ P ′

)

+
(
pP ′ + p′P

) (←→
∂ p −

←→
∂ p′

)
+
(
kP ′ − k′P

) (←→
∂ k +

←→
∂ k′

)}
.
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