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1 Introduction

Holography, as embodied in the AdS/CFT correspondence [1–3], is a profound new discovery
about nature that is still poorly understood. The correspondence describes a duality between
a quantum gravitational theory in asymptotically AdS spacetime and a conformal field
theory in one fewer spatial dimensions. A question that has been surprisingly fruitful, goes
under the name “subregion duality”. Subregion duality asks what region of the bulk AdS
spacetime is dual to a subregion of the conformal field theory. Questions of this type have
lead to an appreciation that quantum error correction plays a role in holography [4–6], and
also to the notion of the holography of information [7–13], which adds to our understanding
of how information is coded into the bulk gravitational theory. Our goal in this paper is to
describe a simple setting in which these ideas can be probed and scrutinized.

We study the free O(N) vector model in 2 + 1 dimensions, described by the action

S =
∫
d3x

N∑
a=1

(1
2∂µφ

a∂µφa
)

(1.1)

This theory is holographically dual [14, 15] to higher spin gravity in AdS4 [16–18]. As usual
the single trace operators of the CFT give the single particle spectrum of the dual gravity.
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The single trace operators consist of a single primary of spin 0 and dimension ∆ = 1

O∆=1(t, ~x) =
N∑
a=1

φa(t, ~x)φa(t, ~x) (1.2)

and a tower of conserved higher spin currents, each of spin s and dimension ∆ = s+ 1

Js(t, ~x, α) = Jµ1µ2···µs(t, ~x)αµ1αµ2 · · ·αµs

=
N∑
a=1

s∑
k=0

(−1)k : (α · ∂)s−kφa(t, ~x) (α · ∂)kφa(t, ~x) :
k!(s− k)!Γ(k + 1

2)Γ(s− k + 1
2)

(1.3)

where αµ is a polarization tensor that we can take to be null. The three point functions
of these spinning primaries reproduce the detailed prediction of the cubic higher spin
gravity [19] at leading order in the gravitational coupling.

Bilocal holography [20–26], a constructive approach to holography, can be used to
construct the holographic dual to this free CFT. There are two basic ingredients that go
into bilocal holography, both of which have a transparent physical motivation:

1. Perform a change of variables in the path integral from the original field φa(t, ~x) to
a gauge invariant bilocal field σ(t, ~x1, ~x2). This change of field variable reorganizes
the dynamics so that the loop expansion parameter for the bilocal field theory is 1

N ,
matching expectations for the loop expansion of the dual holographic theory.

The bilocal field given by

σ(t, ~x1, ~x2) =
N∑
a=1

φa(t, ~x1)φa(t, ~x2) (1.4)

is the complete set of equal time O(N) invariant variables. Notice that this change of field
variables naturally leads to a higher dimensional theory: the original field φa(t, ~x) is defined
in a 2 + 1 dimensional spacetime, whereas the bilocal is defined in a 4 + 1 dimensional
spacetime. This change of field variables has an important consequence: the original field
φa(t, ~x) transforms in a short irreducible representation V 1

2 ,0
of the conformal group SO(2, 3)

constructed on top of a primary field of dimension ∆ = 1
2 and spin s = 0. In contrast

to this, the bilocal fields transform in the tensor product V 1
2 ,0
⊗ V 1

2 ,0
. The generators of

conformal transformations, obtained by using the standard co-product, are representations
of this tensor product. The tensor product reduces as follows [27]

V 1
2 ,0
⊗ V 1

2 ,0
= V1,0 ⊕

⊕
s=2,4,6,···

Vs+1,s (1.5)

Each term in the direct sum on the right hand side corresponds to a field in the higher spin
theory [16]. Quite independent of this observation, it is natural to interpret each term in
the direct sum as a distinct field. To develop this point of view we should change basis for
the Lie algebra of SO(2, 3). This motivates the second step in bilocal holography
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2. Performs a change of variables from the CFT bilocal coordinates (which label points
in a 1 + 4 dimensional spacetime) to coordinates for an AdS4×S1 (which is also a 1 + 4
dimensional spacetime). This change of coordinates takes us from a basis of generators
(denoted collectively as LA⊗) for SO(2, 3) naturally describing the l.h.s. of (1.5) to a
basis of generators (denoted collectively as LA⊕) naturally describing the r.h.s.

This second point is highly non-trivial and is discussed in detail in the original works [21, 25],
as well as in appendix A. The compact space S1 which has made an appearance, turns
out to be a nice way to organize the complete set of fields in higher spin gravity, very
much in harmony with the ideas in [20]. We do not know a proof that the change of basis
required by (1.5) can always be accomplished with a change of coordinates, but for the
case of lightcone quantization [21] this is straight forward to demonstrate as reviewed in
appendix A. In a light front quantization equal x+ slices are used to define the Hilbert
space. The light cone coordinates are given by x± = x1 ± x0 = x1 ± t. The coordinate
x2, which is transverse to the light cone will simply be denoted as x in what follows. The
relevant bilocal is given by

σ(x+, x−1 , x1, x
−
2 , x2) =

N∑
a=1

φa(x+, x−1 , x1)φa(x+, x−2 , x2) (1.6)

These two steps completely determine the bilocal field theory. For another approach, related
to bilocal holography, see [28].

This construction of bilocal field theory is entirely motivated from the CFT and has not
taken as input, any information from the dual higher spin gravity. It is interesting to ask
if the bilocal field theory reproduces any features of the dual gravitational description. In
section 2, following [21, 25], we verify that the CFT equations of motion for the elementary
field φa imply equations for the bilocal that reproduce the bulk equations of motion for
the complete set of fields of higher spin gravity, and that the complete set of single trace
CFT primaries are recovered from the boundary value of the bilocal field. This proves
that bilocal holography, without any input from the dual higher spin gravity, achieves the
desired bulk reconstruction. Using this bulk reconstruction we are able to tackle the central
question of which subregion of the bulk spacetime (if any) is dual to a given subregion of the
conformal field theory? This is the subject of section 3. The subregion of the boundary CFT
is obtained by restricting the coordinate x transverse to the lightcone, to an interval. Using
bilocal fields living on this interval, we can reconstruct the bulk fields within a region of the
bulk bounded by an extremal surface. On the face of it, this appears to mesh nicely with
ideas that have appeared in the entanglement wedge reconstruction [29–32]. Entanglement
wedge reconstruction tells us what part of the bulk is encoded in a given subregion of the
boundary: only bulk operators lying in the entanglement wedge of the boundary subregion
can be reconstructed. However, using the values of the fields that have been reconstructed,
it is not possible to distinguish bulk fields with different spins. To distinguish different spin
components, even the reconstruction of fields at a single bulk point requires the complete
boundary region. There is no redundancy in how bulk information is coded into the boundary.
At the level of the complete CFT Hilbert space and the complete bulk AdS Hilbert space,
AdS/CFT is a one-to-one mapping between the states of the two Hilbert spaces.
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This is puzzling since recent insights [4–6] appear to have demonstrated and then
exploited the fact that there is a certain redundancy in the bulk reconstruction. An important
ingredient in the quantum error correction approach to holography is the code subspace. The
code subspace is a construction that allows the description of effective field theory around a
given classical background. Any low energy observer does not have access to infinite energy
and they can act with, at most, a finite number of fields in the theory. These limitations
can be built in as cutoffs, on both the momentum and the occupation number. In this way
the Hilbert space which a low energy observer accesses can be constructed by acting on the
relevant background state with a set of effective fields. This formulation of effective field
theory is state dependent [33] since it requires a reference state. The resulting description is
closely related to the construction of the little Hilbert space of states around black hole states
given in [33, 34], or equivalently, it is the code subspace of [4]. For an explicit construction of
the code subspace starting from an LLM reference state, see [35]. In section 4 we consider how
restricting to a finite energy code subspace affects our bulk reconstruction. It is only after
restricting the complete bulk AdS Hilbert space to the code subspace that reconstruction of
local bulk operators using a subregion of the boundary is possible. In this case only a finite
number of modes are excited, bulk information is encoded redundantly on the boundary and
the quantum error correction picture emerges. The illustrative examples considered in [4]
find a concrete realization in the bilocal holography description. Further, we find a natural
emergence of the bit thread description of entanglement entropy developed in [36–38]. We
are also able to demonstrate entanglement wedge reconstruction using bilocal holography.

Another puzzle which catalyzed significant progress is the monogamy problem: modes
just inside and modes just outside the horizon of a black hole must be entangled for a
smooth horizon geometry. Further, the Page curve demonstrates that modes just outside
the horizon are entangled with modes far from the hole. This is already a paradox because
the monogamy of entanglement forbids entanglement between the modes just outside the
horizon and both modes just inside the horizon and modes far from the hole. One plausible
resolution to this paradox, called the holography of information, claims that in fact the
modes inside the black hole are not distinct degrees of freedom from the modes far from
the black hole. What is the mechanism for such an identification? This holographic nature
of the gravitational degrees of freedom only plays a role at late times when the state is a
complicated state with many degrees of freedom at many different locations in spacetime
(the emitted Hawking radiation) excited. We argue that bilocal holography offers a natural
mechanism for the holography of information: very complicated states in the gravity have
more degrees of freedom excited than there are independent degrees of freedom in the CFT.
This implies that there are relations between the gravitational degrees of freedom. These
are the analog of trace relations for matrix theories, except that here the relations are
between degrees of freedom at different locations in the bulk AdS spacetime. We explain in
particular, in section 5, that these relations naturally relate degrees of freedom localized at
the boundary to degrees of freedom deep in the bulk AdS. For ideas along these lines see
also [28, 39, 40]. We present our conclusions and discuss our results in section 6.

Finally, note that bilocal holography is a special case of collective field theory [41, 42].
The goal of collective field theory was always to change to invariant variables in order to
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obtain a loop expansion in 1
N . This is a powerful insight which goes well beyond vector

models. In particular, we should expect an analogous construction for N = 4 super Yang-
Mills theory. The key obstacle is that there is not yet a manageable description for the
invariant variables for matrix theories. We will comment more on this possibility in section 6.

2 Bilocal bulk reconstruction

In this section we review bilocal holography as developed in [20–26]. The main novelty in
our discussion is a mixed position space/momentum space description, which will be useful
when we discuss subregion duality in later sections. Apart from this new representation,
this section is a review of material developed in [20–26]. The key goal of this section is to
explain how bilocal holography solves the bulk reconstruction problem.

The problem of reconstructing bulk fields from bilocal operators in the field theory has
been considered in [43–45]. See also the construction of bulk operators in [46] which employs
a modular Hamiltonian that is a special case of the bilocal operators studied in [44, 45].

A general formalism for changing to invariant variables in field theory, known as
collective field theory, has been developed in [41, 42]. We use these general results in what
follows. The change to bilocal variables is accomplished using the chain rule

πa(t, ~x) = −i δ

δφa(t, ~x)

= −i
∫
d2y

∫
d2z

δσ(t, ~z, ~y)
δφa(t, ~x)

δ

δσ(t, ~z, ~y)

=
∫
d2y

∫
d2z

δσ(t, ~z, ~y)
δφa(t, ~x) Π(t, ~z, ~y) (2.1)

After changing to the bilocal variables (1.4) the CFT Hamiltonian

H =
∫
d2x

N∑
a=1

(
−1

2
δ

δφa(~x)
δ

δφa(~x) + 1
2
~∇φa · ~∇φa

)
(2.2)

becomes

H = 2Tr(ΠσΠ) + 1
2

∫
d2x

(
−~∇x · ~∇xσ(x, y)

) ∣∣∣
x=y

+ N2

8 Tr(σ−1)− N

2 Tr(σ−1)
∫
dxδ(0) + 1

2Tr(σ−1)
(∫

dxδ(0)
)2

(2.3)

where we are using a natural bilocal notation. In this notation, for example,

Tr(ΠσΠ) =
∫
d2x

∫
d2y

∫
d2z Π(t, ~x, ~y)σ(t, ~y, ~z)Π(t, ~z, ~x) (2.4)

The second line in (2.3) arises from a non-trivial Jacobian resulting from the change of
variables. The Jacobian, which is a non-linear contribution, generates an infinite sequence
of interaction vertices even for the free vector model. The last two terms in (2.3) are counter
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terms that cancel divergences that appear when the 1
N expansion is carried out. The second

and third terms of (2.3) define an effective potential

V = 1
2

∫
d2x

(
−~∇x · ~∇xσ(x, y)

) ∣∣∣
x=y

+ N2

8 Tr(σ−1) (2.5)

This potential plays an important role when the 1
N expansion is developed. We start by

determining the “classical” large N configuration σ0 by solving

δV

δσ(t, ~x, ~y)

∣∣∣
σ=σ0

= 0 (2.6)

We then expand about the leading solution as

σ(t, ~x, ~y) = σ0(t, ~x, ~y) + 1√
N
η(t, ~x, ~y)

Π(t, ~x, ~y) =
√
Nπ(t, ~x, ~y) (2.7)

It is the fluctuations η(t, ~x, ~y) and π(t, ~x, ~y) which are identified with bulk AdS fields. They
are a set of conjugate variables and obey the equal time commutation relation

[η(t, ~x, ~y), π(t, ~x′, ~y′)] = iδ(~x− ~x′)δ(~y − ~y′) (2.8)

This commutation relation is exact. We know that the bilocal collective field theory will
reproduce the CFT correlators to all orders in the 1/N expansion, since we have simply
performed a change of variables. This has been confirmed in detail in [47, 48], by generating
the loop expansion for the bilocal field theory and showing that it reproduces the 1/N
expansion of the original vector model. The non-trivial thing about the change of variables
is that the loop expansion in the original variables is an expansion in ~, whereas the loop
expansion in the bilocal variables is an expansion in 1/N .

The discussion above has been general. Now we specialize to light front quantization.
The fluctuation around the bilocal field (1.6) is denoted η(x+, x−1 , x1, x

−
2 , x2). Bulk AdS

fields are identified with the fluctuation η(x+, x−1 , x1, x
−
2 , x2). To spell out this mapping

between bulk and boundary fields, we provide (i) a coordinate transformation between the
coordinates of the bilocal field, and coordinates for the bulk AdS4×S1 spacetime and (ii) an
explicit mapping between the fluctuation η(x+, x−1 , x1, x

−
2 , x2) and the bulk AdS4×S1 field

Φ(X+, X−, X, Z, θ). As mentioned in the introduction, this mapping is determined by the
requirement that the basis for the Lie algebra is transformed from the direct product basis
appearing on the l.h.s. of (1.5) to the direct sum basis appearing on the right hand side
of (1.5). In this section we simply state the resulting map. The reader wanting the details
can find them in appendix A.

The coordinate transform between bilocal coordinates and those of AdS4×S1 is conve-
niently developed in a mixed position space/momentum space representation, obtained by
Fourier transforming with respect to x−1 and x−2 . The bilocal field is now a function of x+

as well as p+
1 , x1, p

+
2 and x2. The bulk AdS spacetime has Poincare coordinates X0, X1, X2

and Z. Move to light cone coordinates X± = X0±X1 and use the notation X ≡ X2. After
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Fourier transforming with respect to X−, the AdS coordinates are X+, P+, X, Z. There is
also an angle θ, which is a coordinate for S1. The coordinate transformation relating the
CFT coordinates x+, p+

1 , x1, p
+
2 , x2 to the AdS4×S1 coordinates X+, P+, X, Z, θ identifies

x+ = X+ and

x1 = X + Z tan
(
θ

2

)
x2 = X − Z cot

(
θ

2

)
p+

1 = P+ cos2
(
θ

2

)
p+

2 = P+ sin2
(
θ

2

)
(2.9)

The inverse transformation is

X = p+
1 x1 + p+

2 x2

p+
1 + p+

2
Z =

√
p+

1 p
+
2 (x1 − x2)

p+
1 + p+

2

P+ = p+
1 + p+

2 θ = 2 tan−1


√√√√p+

2
p+

1

 (2.10)

This map is non-trivial and it plays an important role in bilocal holography. As we explain
in appendix A, it is determined by CFT kinematics.

We will now explain the role of the coordinate θ, which parametrizes an S1. This extra
coordinate collects the complete set of four dimensional higher spin fields into a single five
dimensional field. The AdS4 higher spin fields with spin 2s, denoted as Φ2s(X+, X−, X, Z),
are obtained by developing Φ(X+, X−, X, Z, θ) in an expansion as follows

Φ(X+, X−, X, Z, θ) =
∞∑
s=0

cos(2sθ) Φ2s(X+, X−, X, Z) (2.11)

We are now ready so state the mapping between bulk and boundary fields. The map
between bilocal fields of the CFT and the higher spin bulk fields happens on a single time
(x+) slice

Φ
(
X+, X−, X, Z, θ

)
=
∫ ∞
−∞

dx−1

∫ ∞
−∞

dx−2 2πi sin θδ′
(
X− − x−1 cos2 θ

2 − x
−
2 sin2 θ

2

)
× η

(
X+, x−1 , X + Z tan θ2 , x

−
2 , X − Z cot θ2

)
(2.12)

where the prime on the delta function denotes a derivative with respect to X−. We can
rewrite this map in terms of the Fourier transformed bilocal

η

(
X+, x−1 , X + Z tan θ2 , x

−
2 , X − Z cot θ2

)
=
∫
dp+

1
2π

∫
dp+

2
2π e−ip

+
1 x

−
1 −ip

+
2 x

−
2

× η
(
X+, p+

1 , X + Z tan θ2 , p
+
2 , X − Z cot θ2

)
(2.13)
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to obtain

Φ
(
X+,X−,X,Z,θ

)
=
∫ ∞
−∞

dp+
1

2π

∫ ∞
−∞

dp+
2

2π (2π)2(p+
1 +p+

2 )sinθe−i(p
+
1 +p+

2 )X−

×δ
(
p+

2 cos2 θ

2−p
+
1 sin2 θ

2

)
η

(
X+,p+

1 ,X+Z tan θ2 ,p
+
2 ,X−Z cot θ2

)
(2.14)

This is an off shell mapping between CFT fields and bulk AdS fields. This interpretation is
a simple consequence of the fact that the original integration variables for the path integral
are the CFT fields φa, while after the change of variables we integrate over the bilocals. A
simple rewriting gives

Φ(X+, p+, X, Z, θ) = 2πp+ sin θ η
(
X+, p+ cos2 θ

2 , X + Z tan θ2 , p
+ sin2 θ

2 , X − Z cot θ2

)
(2.15)

The basic result proved in appendix A, says

LA⊕Φ(X+,p+,X,Z,θ) = 2πp+ sinθ LA⊗η
(
X+,p+ cos2 θ

2 ,X+Z tan θ2 ,p
+ sin2 θ

2 ,X−Z cot θ2

)
(2.16)

where the notation for the generators of the conformal group, LA⊗ and LA⊕ was defined in
point 2 in the introduction.

Both the change of coordinates (2.9) and the operator mapping (2.14) are motivated
entirely from the CFT. Consequently, evidence that bilocal holography solves the bulk
reconstruction problem is tremendously compelling. The usual approach to reconstruc-
tion [49–51] constructs the bulk operators by perturbatively solving the bulk equations of
motion, understood as operator equations in the CFT, using the extrapolate dictionary [52]
to set boundary conditions. We will now argue that, upon using the bilocal map, the CFT
equations of motion imply the bulk equations of motion. Further, the complete set of
single trace primaries in the CFT are recovered in the Z → 0 limit from the bulk AdS field
Φ(X+, X−, X, Z, θ).

The CFT equation of motion is the equation of motion for a free massless scalar(
∂

∂x+
∂

∂x−
+ ∂2

∂x2

)
φa(x+, x−, x) = 0 (2.17)

This holds at the full quantum level, inside correlation functions, up to contact terms as
usual. After Fourier transforming to momentum space

φa(x+, p+, x) =
∫
dp+

2π e−ip
+x−

φa(x+, x−, x) (2.18)

the equation of motion is written as

i
∂

∂x+φ
a(x+, p+, x) = 1

p+
∂2

∂x2φ
a(x+, p+, x) (2.19)
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Consequently, the leading large N bilocal equation of motion, again up to contact terms, is

i
∂

∂x+σ(x+, p+
1 , x1, p

+
2 , x2) =

(
1
p+

1

∂2

∂x2
1

+ 1
p+

2

∂2

∂x2
2

)
σ(x+, p+

1 , x1, p
+
2 , x2) (2.20)

Since this equation is linear, it must be obeyed by both σ0 and η. Consequently, we have

i
∂

∂x+ η(x+, p+
1 , x1, p

+
2 , x2) =

(
1
p+

1

∂2

∂x2
1

+ 1
p+

2

∂2

∂x2
2

)
η(x+, p+

1 , x1, p
+
2 , x2) (2.21)

Now, using (2.9) and (2.10) to change coordinates, it is a simple application of the chain
rule to prove that

i
∂

∂x+ η

(
x+, p+

1 , X + Z tan θ2 , p
+
2 , X − Z cot θ2

)
= 1
p+

1 + p+
2

(
∂2

∂X2 + ∂2

∂Z2

)
η

(
x+, p+

1 , X + Z tan θ2 , p
+
2 , X − Z cot θ2

)
(2.22)

Using the above CFT equation of motion, it is simple to see that

∂

∂X+
∂

∂X−
Φ
(
X+,X−,X,Z,θ

)
=−

∫ ∞
−∞

dp+
1

∫ ∞
−∞

dp+
2 sinθ(p+

1 +p+
2 )e−i(p

+
1 +p+

2 )X−

×δ
(
p+

2 cos2 θ

2−p
+
1 sin2 θ

2

)(
∂2

∂X2 + ∂2

∂Z2

)
η

(
x+, p+

1 ,X+Z tan θ2 , p
+
2 ,X−Z cot θ2

)

=−
(
∂2

∂X2 + ∂2

∂Z2

)
Φ
(
X+,X−,X,Z,θ

)
(2.23)

so that (
∂

∂X+
∂

∂X−
+ ∂2

∂X2 + ∂2

∂Z2

)
Φ
(
X+, X−, X, Z, θ

)
= 0 (2.24)

This is the equation of motion obtained for an arbitrary symmetric higher spin field in light
cone gauge in AdS4 [53].

To complete the demonstration of bulk reconstruction, we must show that the complete
set of single trace primaries can be obtained from the boundary behavior Z → 0 of the bulk
fields Φ2s

(
X+, X−, X, Z

)
. A simple computation gives

Φ2s
(
X+,X−,X,Z

)∣∣∣
Z=0

= 2
π

∫ π

0
dθ cos(2sθ)Φ

(
X+,X−,X,0,θ

)
=
∫ π

0
dθ cos(2sθ)

∫ ∞
−∞

dp+
1

2π

∫ ∞
−∞

dp+
2

2π 8π(p+
1 +p+

2 )sinθe−i(p
+
1 +p+

2 )X−

×δ
(
p+

2 cos2 θ

2−p
+
1 sin2 θ

2

)
η
(
X+,p+

1 ,X,p
+
2 ,X

)
(2.25)
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Using the delta function to perform the integral over θ, we find

Φ2s
(
X+, X−, X, 0

)
=
∫ ∞
−∞

dp+
1

2π

∫ ∞
−∞

dp+
2

2π cos

4s arctan

√√√√p+
2
p+

1

 16πe−i(p
+
1 +p+

2 )X−

η
(
X+, p+

1 , X, p
+
2 , X

)
= 16π

∫ ∞
−∞

dp+
1

2π e−ip
+
1 X

−
φa(X+, p+

1 , X)×

∫ ∞
−∞

dp+
2

2π e−ip
+
2 X

−
φa(X+, p+

2 , X) cos

4s arctan

√√√√p+
2
p+

1

 (2.26)

Now, we note that

(p+
1 +p+

2 )s cos

2sarctan

√√√√p+
2
p+

1

= Γ
(1

2

)
s!Γ

(
s+ 1

2

) s∑
k=0

(−1)k(p+
1 )s−k(p+

2 )k

Γ
(
s−k+ 1

2

)(
Γ
(
k+ 1

2

)
k!(s−k)!

)
(2.27)

which implies that

∂s

∂X−s
Φs(X+;X−,X,0) = 16πΓ

(1
2

)
s!Γ

(
s+ 1

2

) s∑
k=0

(−1)k∂s−k− φa(X+,X−,X)∂k−φa(X+,X−,X)
Γ
(
s−k+ 1

2

)
Γ
(
k+ 1

2

)
k!(s−k)!

(2.28)

We have recovered the conserved higher spin current of spin s, given in (1.3). For s = 0 we
simply obtain the ∆ = 1 scalar of spin zero. This gives a primary state from each single
trace conformal multiplet. The complete set of states in the multiplet can be obtained by
acting with generators of the conformal algebra. This demonstrates that the complete set
of single trace primaries is obtained from the boundary behavior Z → 0 of the bulk fields
Φ2s

(
X+, X−, X, Z

)
.

The equation of motion for the original CFT field (2.19), when applied to a bilocal field
within a correlator, naturally gives rise to contact terms that encode corrections that are
subleading at large N . After changing variables to the bilocal field, the subleading terms are
generated by an infinite sequence of vertices that arise upon expanding the Jacobian about
the leading configuration. These interactions should be reproduced by a fully gauge fixed
version of Vasilliev’s higher spin theory [16–18]. This seems hard to test explicitly, given
the complexity of Vasiliev theory. However we know that the vertices generated by the
Jacobian are exactly the interactions needed to reproduce the correlators of the CFT, to all
orders in 1

N , because correctly changing integration variables in the path integral does not
change the value of correlation functions. Assuming the vector model/higher spin duality,
this is evidence that the 1

N correction to the bilocal equations of motion will agree with
the higher order corrections to the higher spin equations of motion, extending agreement
beyond the leading order at large N . In this sense, the reconstruction of bilocal holography
goes well beyond that of [49–51] which is perturbative by construction. This completes our
demonstration that bilocal holography, without any input from the dual higher spin gravity,
achieves the correct bulk reconstruction.
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3 Subregion duality

Which subregion of the CFT (if any) is dual to a given subregion of the bulk spacetime?
This deceptively simple question has motivated enormous progress: it lead to the discovery
that there is some arbitrariness in the mapping between the CFT and the dual AdS theory,
elegantly described as the statement that the bulk-to-boundary map in AdS/CFT defines a
quantum error correcting code [4–6]. This discovery was an important ingredient needed
to answer the question posed by subregion duality [30–32, 54]: the bulk region encoded in
an arbitrary boundary region R is the entanglement wedge of R [55]. The entanglement
wedge of boundary region R is the bulk region located in a single time slice, bounded by R
itself and its Ryu-Takayanagi (RT) surface [56, 57], which is the minimal area bulk surface
anchored to the boundary of R. Entanglement wedge reconstruction [29–32, 54, 59–62]
provides a boundary operator acting only on the boundary subregion R for each bulk
operator acting on the entanglement wedge of R. In this section using bilocal holography,
we consider the subregion duality problem. We focus on the subregion defined by restricting
x to an interval. Bilocal fields restricted to this interval correspond to bulk fields within
the entanglement wedge of the interval. These bulks fields are a linear combination of
AdS4 fields, with arbitrary even integer spin. As we explain in detail, to distinguish the
different spin components, even the reconstruction of fields at a single bulk point requires
the complete boundary region. Consequently, using the values of the fields that have been
reconstructed, it is not possible to distinguish bulk fields with different spins. At the level
of the complete CFT Hilbert space and the complete bulk AdS Hilbert space, AdS/CFT is
a one-to-one mapping between the states of the two Hilbert spaces. There is no redundancy
in how bulk information is coded into the boundary. In the next section we reconsider the
subregion duality problem, after properly accounting for the limitations faced by any low
energy observer. In this case the map provided by bilocal holography does indeed define a
quantum error correcting code.

Our strategy entails considering localized CFT excitations and determining where they
map to in the dual bulk spacetime. Given the form of the bilocal map, it is most instructive
to consider bilocal excitations at time x+, with the first excitation localized at (x1, p

+
1 ) and

the second at (x2, p
+
2 ). The two excitations in the bilocal are described as wavepackets,

tightly peaked at x1 and x2 along the spatial direction x transverse to the light cone, but
because they have a definite value for p+, completely smeared along the x− direction. The
map (2.9)–(2.10) mixes spacetime coordinates and momenta, so its not entirely obvious
where the CFT excitations are located in the bulk. Note the easily verified identity(

X − x1 + x2
2

)2
+ Z2 =

(
x1 − x2

2

)2
(3.1)

which is a direct consequence of the map (2.10). This identity implies the excitation sits
on a semicircle in the X,Z plane, in the bulk. The semicircle has radius (x1 − x2)/2 and
center at X = (x1 + x2)/2 and Z = 0. To locate the excitation on this semicircle, we can
specify an angle θ as follows

tan θ = Z

X − x1+x2
2

=
2
√
p+

1 p
+
2

p+
1 − p

+
2

(3.2)
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Figure 1. The bilocal describing a pair of excitations localized at (x1, p
+
1 ) and (x2, p

+
2 ) correspond

to a bulk excitation localized at (X,Z) as shown. The bilocal CFT excitation (two red circles) maps
into a bulk excitation on the semicircle above. This figure lives on a constant x+ = X+ slice. The
angle θ is related to p+

1 and p+
2 according to (3.2).

where the last equality is easily obtained from the map (2.10). Using double angle trigono-
metric identities it is simple to verify that the angle θ we have just defined is the angle θ
appearing in the map.

If we study excitations confined to a strip subregion of the CFT, defined by x+ = 0,
−∞ ≤ x− ≤ ∞ and −L ≤ x ≤ L then the corresponding bulk excitations can be located at
any θ,X−, but are confined to the semicircle

X2 + Z2 ≤ L2 −∞ ≤ X− ≤ ∞ 0 ≤ θ ≤ π (3.3)

of the (X,Z) plane and are at X+ = 0. The semicircle bounding the region in which the
bulk excitations are located has an attractive interpretation. The metric of AdS4, written
using lightcone coordinates on the Poincare patch, is given by

ds2 = dX+dX− + dX2 + dZ2

Z2 (3.4)

The induced metric on a constant X+ slice is thus given by

ds2 = dX2 + dZ2

Z2 (3.5)

Now consider a region ER of the (X,Z) plane stretching from the boundary at Z = 0 to a
curve Z = Z(X). The area of this region is given by

A =
∫
dX

√
Z ′ 2 + 1
Z

Z ′ = dZ

dX
(3.6)

Minimizing the area we find1

dZ

dX
=
√
R2 − Z2

Z
(3.7)

which is solved by X2 +Z2 = R2. This demonstrates that bulk excitations are restricted to
region ER bounded by the boundary of AdS and an extremal surface. Thus, ER is nothing
but the entanglement wedge!

1Instead of minimizing this area functional, we have used the usual trick of writing down the conserved
quantity implied by the fact that A is independent of X. We have set the conserved quantity equal to R−1

which is constant. This is why we obtain a first order equation.
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The above result suggests that we are recovering the entanglement wedge reconstruction.
This conclusion is however, too hasty: recall that the bulk field Φ(X+, X−, X, Z, θ) defined
in the bilocal map is a mixture of fields of any even spin. The bulk fields reconstructed
from the CFT subregion do not allow us to distinguish these different spin components. To
obtain fields of a definite spin we need to compute the integral∫ π

0
dθ Φ(X+, X−, X, Z, θ) cos(2sθ) (3.8)

As θ → 0 we must have x1+x2
2 → −∞ and to get θ = π we must have x1+x2

2 →∞. Thus,
as θ ranges from 0 to π, x ranges over the entire boundary.

In conclusion, even to reconstruct the complete set of higher spin fields at just a single
point in the bulk, we require the entire boundary. This is not unexpected: since AdS/CFT
is an isomorphism between two theories, it is highly unlikely that a given subregion of the
CFT is dual to a given subregion of the bulk spacetime. Within bilocal holography, we see
explicitly that this is not the case: AdS/CFT provides only a global map between bulk and
boundary states.

4 Code subspace and quantum error correction

A crucial ingredient in proposals for the role of quantum error correction in holography and
entanglement wedge reconstruction, are that we restrict ourselves to the code subspace of
the full Hilbert space. The code subspace provides a correct description of effective field
theory around a given classical background. Any given observer can not access the complete
Hilbert space. For example, they can’t access infinite energy states and can only act with a
subset of all the fields in the theory. This is what the code subspace accounts for. The code
subspace is closely related to how the little Hilbert space of states, nearby a reference state,
is built in the work of Papadodimas and Raju [33, 34].

4.1 Quantum error correction

We will follow the prescription for the code subspace given in [4]. One starts by choosing
a finite set of local bulk operators ϕi(Xµ), realized in the CFT using the representation
provided by bilocal holography. The code subspace HC is the linear span of states of the form

|Ω〉, ϕi(Xµ)|Ω〉, ϕi(Xµ
1 )ϕj(Xµ

2 )|Ω〉, · · · (4.1)

|Ω〉 is the ground state of the system. The range of i, which determines the number of fields
we act with and the number of points where the operators are located, is bounded by a
fixed finite number.

Restricting to the code subspace has far reaching consequences. By assumption, at
any given bulk point, we have a linear combination of a finite number of AdS4 fields, with
known spins. To separate the components of a given spin we don’t need to use (3.8) so that
θ need not run continuously from 0 to π. Given a sum of a finite number of fields of known
spins, we can solve for each component given the sum at a finite number of θ’s. By choosing
different bilocal fields, we obtain distinct semicircles giving the value of the bulk field
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Figure 2. It is possible to choose distinct bilocals from the subregion R that correspond to different
semicircles passing through point P . The figure shows how to construct the value of the bulk
field at point P from the bilocal excitation corresponding to the red circles or from the bilocal
excitation corresponding to the green circles. This allows us to obtain the value of the bulk field
Φ(X+, X−, X, Z, θ) at P for a number of distinct θ.

Figure 3. The fields at point P can be reconstructed using bilocals taken from region A or region
B. It is however not possible to reconstruct the bulk fields at point P using bilocals from the
intersection A ∩ B. This is simply because point P lies outside of the region shaded gray, which
shows the bulk points that can be reconstructed from A ∩B.

Φ(X+, X−, X, Z, θ) for a sufficiently large number of values of θ. An example is shown in
figure 2. Consequently from a given subregionR of the CFT we can reconstruct the fields that
belong to the code subspace in the bulk region corresponding to the entanglement wedge ER.

The properties that motivated the quantum error correction formulation of holography
are now easy to demonstrate. To see how a single bulk operator corresponds to multiple
boundary operators, constructed using different subregions, consider figure 3. In subregion
A we reconstruct the values of Φ(X+, X−, X, Z, θ) at angles θi < π

2 , while in subregion B
we reconstruct at angles θi > π

2 . This demonstrates an ambiguity in the bulk reconstruction,
since the bulk field is coded into different subregions of the CFT.

From figure 4 it is clear the bulk field at the point P can not be reconstructed using
either of the subregions A or B. However, if bilocals from the union A ∪ B are used, we
can construct the bulk field at point P . The new bilocals, not present in either A or B,
are bilocals with one point in A and one in B. These bilocals are separated enough that
they reach deep enough into the bulk to reconstruct P ; they represent information that is
shared non-locally between the two boundary subregions.

4.2 Entanglement entropy and bit threads

Another observable, associated to a subregion A of the CFT, is the entanglement entropy
S(A). An important formula describing this observable is the RT formula, which states
that entanglement entropy of a region in the boundary CFT is determined by a geometric
extremization problem in the bulk [56, 57]. The RT formula states that the entropy of a

– 14 –



J
H
E
P
1
1
(
2
0
2
1
)
1
9
2

Figure 4. It is not possible to reconstruct the bulk operator at P if we restrict to either subregion
A or B. The reconstruction is however possible if bilocals from A ∪B are used.

spatial region A on the boundary CFT is given by

S(A) = 1
4GN

area(m(A)) (4.2)

where m(A) is a minimal hypersurface in the bulk, homologous to A. The RT formula
holds for a conformal field theory dual to a state represented by a classical spacetime with
a time-reflection symmetry. Since our bulk spacetime is time independent AdS4, we are
always within this regime of validity. Denote a Cauchy slice in the geometry by M. We
can ensure thatM is a compact manifold with a boundary by introducing a cutoff “near”
the conformal boundary. The CFT lives on the boundary ofM.

The Riemannian version of the max flow-min cut theorem can be used to rewrite
the RT formula in terms of the maximal flow of a vector field vµ, through any surface
homologous to A [36]. (See [37] for a nice discussion of the proof of the required theorem.)
The integral curves of any vector field are oriented and locally parallel. Following [38] it is
useful to generalize the notion of integral curves of a vector field, by dropping these two
conditions. This gives the concept of a bit thread: bit threads are unoriented curves, that
pass through a given neighborhood, at different angles and are even allowed to intersect. A
thread configuration is a set of unoriented curves onM, such that threads end only on the
boundary ofM and the thread density is nowhere larger than 1/4GN .

How should we think about bit threads? In what follows we argue that bit threads have
a natural interpretation within bilocal holography. The bilocal field creates gauge invariant
excitations, which are naturally entangled as a result of the sum over the color index

σ(x+, x−1 , x1, x
−
2 , x2)|0〉 =

N∑
a=1

φa(x+, x−1 , x1)φa(x+, x−2 , x2)|0〉 (4.3)

A gauge invariant pair of modes in the vacuum is naturally entangled in this way. The
entanglement entropy of subregion A receives contributions from entangled pairs, which
entangle a mode in A with a mode in its complement Ā. Consider a pair of modes which
are entangled, with one of the pair localized at position (x−1 , x1) in A and the other at
(x−2 , x2) in Ā. This entangled pair will have contributions from all possible p+

1 and p+
2 values.

Consequently, the bilocal map implies that the bulk degree of freedom is smeared over the
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Figure 5. We consider the subregion A of the boundary indicated by a green line. The entanglement
wedge of A is the area C which is shaded. A bilocal excitation, given be the two red points on the
boundary, is localized on the red semicircle in the bulk.

semicircle with center 1
2(x1 + x2) and radius 1

2(x1 − x2). In the bulk these entangled pairs
are represented by semicircles which end at the two modes being entangled. See figure 5 for
an illustration. The semicircles indicate where the corresponding bulk modes are smeared.
This is precisely what a bit thread is: the bit threads connecting A to Ā are manifestations
of the entanglement between A and Ā. We can visualize each bit thread as a “channel”
allowing a bit of (quantum) information to be communicated between different regions on
the spatial boundary. Recall that a thread configuration, by definition, is a set of unoriented
curves onM, such that threads end only on the boundary of M and the thread density
is nowhere larger than 1/4GN . The semicircles of the bilocal holography, which end on
points in the CFT clearly do end on the boundary of M. In addition, since the threads
end on degrees of freedom in the CFT, the density of the end points of threads is naturally
restricted by the holographic bound which dictates that the boundary theory has only one
bit of information per Planck area. This restriction on the endpoints might translate into a
maximum density for the packing of bit threads in the bulk, but we have not proved this.

The astute reader may be puzzled by the fact that our semicircles are rigid but bit
threads are known to be flabby.2 This follows because bit threads are used to count
entanglement entropy and the shape of the bit thread can be deformed without changing
the value of the entanglement entropy. The semi-circles which we identify as bit threads,
are determined by our map (2.10) which is determined by requiring that the conformal
symmetry generators of the boundary theory map correctly into the corresponding bulk
isometries. It is these extra conditions that make the semi-circle rigid. Our bit threads
quantify the entanglement entropy and they indicate where the boundary degrees of freedom
map to in the bulk. Notice that the semicircle bounding C can itself be interpreted as a bit
thread. This is the bit thread for the maximally wide bilocal living on the subregion A.
Since this is the widest bilocal, it probes deepest into the bulk and hence this bit thread
bounds the entanglement wedge.

As a final piece of evidence in favor of our interpretation, the paper [58] constructs
explicit examples of flows vµ for a number of geometries including empty AdS. The fact

2We thank the anonymous referee for remarks which motivated this discussion.
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that the family of integral curves is given by a two parameter family of semicircles is in
harmony with our interpretation.3

This bit thread perspective gives an attractive and intuitive interpretation to the RT
formula. As an example of the utility of the bit thread perspective [36, 38] recall that given
a disjoint spatial region A of the boundary CFT, the minimal hypersurface homologous to
A will not always vary continuously even as A is varied continuously. Bit threads do vary
continuously as a function of A. It is satisfying to see the accord between bit threads and
how a gauge invariant entangled pair is represented in the bulk using bilocal holography.

4.3 Entanglement wedge reconstruction

We end this section considering the problem of entanglement wedge reconstruction, within
bilocal holography, in the empty AdS geometry. The problem is to construct any bulk
operator Φa supported in the entanglement wedge a of A from boundary observables OA,
living on the subregion A of the CFT. Building on earlier work [29] showing the equality
of bulk and boundary relative entropies a rather precise and elegant characterization of
entanglement wedge reconstruction was developed in [31]. For an arbitrary state, we restrict
to a subregion by tracing over the complement to this subregion. Given the equality of bulk
and boundary relative entropies, a natural way forwards is to phrase entanglement wedge
reconstruction as a universal recovery channel that undoes the effect of the partial trace.
It is non-trivial [31] to prove that there is a universal recovery channel that can recover
from the noise introduced by restricting from the entire bulk to subregion a. In the case of
bilocal holography, things are simpler, as a consequence of the fact that the map from CFT
bilocals η(x+, p+

1 , x1, p
+
2 , x2) to bulk fields Φ(X+, X−, X, Z, θ) given in (2.14) is so simple.

A short computation shows

η(x+,p+
1 ,x1,p

+
2 ,x2) =

∫ ∞
−∞

dx−
ei(p

+
1 +p+

2 )x−

2
√
p+

1 p
+
2

×Φ

x+,x−,
p+

1 x1+p+
2 x2

p+
1 +p+

2
,

√
p+

1 p
+
2 (x1−x2)

p+
1 +p+

2
,2tan−1

√√√√p+
2
p+

1

 (4.4)

Now, by convention take x1 > x2. If we set

α = p+
1

p+
1 + p+

2
β = p+

2
p+

1 + p+
2

(4.5)

then we have α+ β = 1 and 0 ≤ α, β ≤ 1. The Z =
√
αβ(x1 − x2) coordinate is zero when

either α = 0 or β = 0, and it takes a maximum value of 1
2(x1 − x2) at α = 1

2 = β. The
X = αx1 + βx2 coordinate ranges from x2 when β = 1 and α = 0, to x1 when α = 0 and
β = 1. This proves that a bilocal with points x1, x2 inside A is reconstructed using bulk
fields within a.

3Our geometry obtained by setting x+ = constant is naturally related to the case of AdS3 of [58].
Choosing an entangling regions given by an interval is then naturally related to the sphere discussion of
section 2.1.1 of [58].
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5 Non-localities from large N

The modes across the horizon of a black hole must be entangled if the horizon geometry is
to be smooth. Further, for old black holes the Page curve implies that modes just outside
the hole must be entangled with modes that were emitted earlier and are now far from
the hole. Given that entanglement is monogamous, this represents a paradox [63–65] (see
also [66]). Three possible resolutions to this paradox are

1. Fuzzballs [67–70].

2. Firewalls [63–65].

3. Holography of information [34].

According to the fuzzball picture of black hole microstates, spacetime ends in stringy theory
sources just before the horizon is reached, so that there are no modes inside the horizon. For a
nice illustration see figure 1 of [69]. The second proposal relaxes entanglement between modes
just inside and outside the hole, at the cost of large energy densities at the horizon, i.e. a wall
of fire. The third proposal resolves the paradox by identifying modes inside the hole with
the radiation modes in the distant region, far from the hole. In this section we explain how
bilocal holography provides a mechanism to realize the holography of information scenario.

According to the quantum error correcting framework for holography, bulk information
is coded into boundary degrees of freedom, in a redundant way. Could this redundancy
explain why degrees of freedom inside the black hole are identified with degrees of freedom
of the radiation far from the hole? Probably not. The redundancy in the quantum error
correcting description arises both because information about the bulk is encoded non-locally
into the boundary and because we are focusing on a subspace, the code subspace, that a low
energy observer has access to. The holography of information is a property of the full unitary
evolution in a black hole background, using the complete Hilbert and not the code subspace.
To understand the holography of information, one has to explain non-local redundancies
present in the complete bulk Hilbert space. Where do these non-localities come from?

The central hypothesis of bilocal holography is that a gauge fixed version of the
gravitational dual is obtained by a change to gauge invariant variables in the CFT. We
will argue that the CFT does not have enough independent degrees of freedom to produce
a local field theory in higher dimensions, so that the holographic theory necessarily has
non-local redundancies. We will show that these redundancies imply identifications between
degrees of freedom at the boundary and degrees of freedom that can be arbitrarily deep
in the AdS bulk, which is very reminiscent of the holography of information. Both the
CFT and the higher dimensional gravitational theory have an infinite number of degrees
of freedom, making a comparison difficult. To make the discussion well defined, discretize
space (x−, x)→ (x−i , xi) to obtain a lattice with L sites. The original fields φa(x+, x−i , xi)
give at most NL independent4 degrees of freedom, while the bilocal σ(x+, x−i , xi, y

−
j , yj)

gives L2 degrees of freedom. For L > N not all the degrees of freedom in the bilocal can
4Gauge invariance will reduce the number of physical degrees of freedom to less than NL so this upper

bound is strict.
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be independent. These redundancies will show up in complicated states, with more than
∼ 2N modes excited to produce the state. Clearly, this is a finite N effect. An example of
a complicated state is the state of an old black hole, which has an atmosphere of excited
quanta produced by Hawking radiation.

We can describe these redundancies in enough detail to see that they imply identifications
between degrees of freedom deep in the bulk and degrees of freedom located close to the
boundary. To simplify the discussion, switch to the mixed position/momentum description,
evaluate all bilocals at the same momentum p+

1 = p+
2 = p+ and discretize the spatial

coordinate transverse to the light cone σ(x+, p+, xi, p
+, yj). The simplest case is when

N = 1. In this case it is clear that

σ(x+,p+,x1,p
+,y1)σ(x+,p+,x2,p

+,y2) =σ(x+,p+,x1,p
+,y2)σ(x+,p+,x2,p

+,y1) (5.1)

This constraint between the bilocal degrees of freedom can be written as

detM = 0 M =
[
σ(x+, p+, x1, p

+, y1) σ(x+, p+, x1, p
+, y2)

σ(x+, p+, x2, p
+, y1) σ(x+, p+, x2, p

+, y2)

]
(5.2)

which simply expresses the fact that the 2× 2 matrix M has rank 1. In the general case
where we have N components, this constraint can be written as detM = 0 where

M =


σ(x+,p+,x1,p

+,y1) σ(x+,p+,x1,p
+,y2) · · · σ(x+,p+,x1,p

+,yN+1)
σ(x+,p+,x2,p

+,y1) σ(x+,p+,x2,p
+,y2) · · · σ(x+,p+,x2,p

+,yN+1)
...

... . . . ...
σ(x+,p+,xN+1,p

+,y1) σ(x+,p+,xN+1,p
+,y2) · · · σ(x+,p+,xN+1,p

+,yN+1)

 (5.3)

expressing the fact that the N + 1×N + 1 dimensional matrix M has rank at most N .
We can study the above constraint for some interesting choices of the points xi and

yi. N = 2 is already an instructive example. Choose four points xi and yi for i = 1, 2
clustered in a small region and two more points for i = 3, close to each other, but well
separated from the first four points. The constraint, written diagrammatically, is shown
in figure 6. The bulk operator corresponding to each bilocal is located on the semicircle
shown. Since all light cone momenta are equal θ = π and each bulk operator is located on
the semicircle at the point which is deepest in the bulk. The first two diagrams in figure 6
correspond to three operators located near the boundary. Choosing the points x1, x2, y1, y2
to be arbitrarily close to each other, and choosing the points x3, y3 to be arbitrarily close
to each other, these operators are arbitrarily close to the boundary. The remaining four
diagrams correspond to two operators located deep in the bulk and an operator located
near the boundary. Making the separation between location of the four points x1, x2, y1, y2
and the location of the two points x3, y3 arbitrarily large, the operators that explore the
bulk are arbitrarily deep in the bulk. This demonstrates non-local identifications between
degrees of freedom at the boundary and degrees of freedom arbitrarily deep in the AdS bulk.

For general N the relations are more complicated, but the conclusion is unchanged. For
example, two of the diagrams participating in the constraint that arises from considering
N + 1 pairs of points are shown in figure 7. The first diagram is again associated with
degrees of freedom that are localized at the boundary whilst the second describes degrees
of freedom localized arbitrarily deep in the bulk.
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Figure 6. Constraints that arise when N = 2. Since we have set p+
1 = p+

2 , the map (2.10) implies
that θ = 2 tan−1

√
p+

2 /p
+
1 = π

2 . Thus each bilocal maps to the red point on the corresponding
semicircle, as shown.

Figure 7. Two of the diagrams participating in the constraint that arises for general N .

6 Conclusions

Bilocal holography gives an explicit mapping between the degrees of freedom of a CFT
and its gravitational dual. We have discussed the example of bilocal holography, relating
the free O(N) vector model and its dual higher spin gravity in AdS4 spacetime. The map
between degrees of freedom is one-to-one at large N and there is no ambiguity in the map.

To describe effective field theory relevant for a low energy observer, one introduces a
code subspace. The code subspace accounts for the fact that a low energy observer only
has access to a subspace of the full Hilbert space. There is a redundancy in how the states
of the code subspace are encoded in the CFT and in this way we can see how the quantum
error correction description of holography is recovered from bilocal holography. Further, by
inverting the operator mapping we prove entanglement wedge reconstruction. The bilocal
of the boundary theory maps into a line in the bulk with endpoints given by the bilocal
coordinates, in a way that is reminiscent of the bit threads description of entanglement.

At finite N bilocal holography predicts a genuine redundancy of the gravitational
degrees of freedom: complicated states in the gravity dual can have more degrees of freedom
excited than there are independent degrees of freedom in the CFT. In this case, there will
be relations between naively independent degrees of freedom in the gravitational theory.
We gave a rudimentary analysis of this issue and argued that the relations which appear
naturally relate degrees of freedom localized at the boundary with degrees of freedom deep
in the bulk of AdS. This has important implications for how information is coded into the
gravitational theory.

There are a number of ways in which the analysis presented in this paper can be extended.
A simple extension would be to repeat the analysis using the canonical map developed in [25].
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Another interesting extension would be to explore the Wilson-Fisher fixed point conformal
field theory. For results in this direction see [71]. A much more interesting analysis would
be to apply the ideas of bilocal holography (i.e. of collective field theory [41, 42]) to theories
of matrices. The number and type of gauge invariants that can be constructed is much
richer, but the ideas would be the same: one first changes to invariant variables and then
defines a coordinate transformation that will naturally adapt the generators to the direct
sum of representations that appear in a given multi-local gauge invariant.
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A Coordinate transformation

An important component of bilocal holography is the relation between the CFT and AdS
coordinates given in (2.9) and (2.10). This mapping of the coordinates is determined entirely
by the symmetries of the problem as we explain in this section. The basic idea is the
following: each scalar field φa(x) transforms in the short representation V∆,s of SO(2, 3)
constructed on the primary of dimension ∆ = 1

2 and spin s = 0. The bilocal transforms in
the tensor product V 1

2 ,0
⊗ V 1

2 ,0
, which is reducible

V 1
2 ,0
⊗ V 1

2 ,0
= V1,0 ⊕

⊕
s=2,4,6,···

Vs+1,s (A.1)

The original bilocal coordinates are the natural set of coordinates to describe the tensor
product on the l.h.s. of (A.1), while the AdS coordinates are natural to describe the r.h.s.

We will start with a trivial toy model to illustrate the idea and then verify the origin
of the transformation (2.9).

A.1 Motivational example

Consider the tensor product of two spin 1
2 -particles. This decomposes into the triplet and

the singlet
1
2 ⊗

1
2 = 1⊕ 0 (A.2)

In the basis natural for the l.h.s. of (A.2), we have the z component of spin (for example)
given by the standard co-product

Jz = ∆
(1

2σ
3
)

= 1
2σ

3 ⊗ 1 + 1⊗ 1
2σ

3 (A.3)
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where 1 is a 2× 2 identity matrix and σ3 is a Pauli matrix. In the basis natural for the
r.h.s. of (A.2), the z component of spin is given by

Jz = Jz1 ⊕ Jz0 (A.4)

where Jz1 is a 3× 3 matrix with eigenvalues equal to −1, 0, 1 and Jz0 is a 1× 1 matrix with
eigenvalue equal to 0. In moving from the basis which is natural for the l.h.s. of (A.2) to
the basis which is natural for the r.h.s., we see that the generators are transformed. We
will see exactly the same features in the vector model. The transformation between the
bases natural for the two sides of (A.2) is accomplished by the change of coordinates given
in (2.9) and (2.10).

A.2 Conformal transformations

The generators of conformal transformations for the bilocal σ(x+, x−1 , x1, x
−
2 , x2) are obtained

using the standard coproduct

∆(L) = L⊗ 1 + 1⊗ L (A.5)

where L is a generator acting on the field φa(x+, x−, x). This is the direct product
representation i.e. the analog of the l.h.s. of (A.2) and it is the representation naturally
derived from the CFT. A complete basis for so(2, 3) is

P+ = p+
1 +p+

2

P x = ∂

∂x1
+ ∂

∂x2

P−=− 1
2p+

1

∂2

∂x2
1
− 1

2p+
2

∂2

∂x2
2

J+−=x+P−+ ∂

∂p+
1
p+

1 + ∂

∂p+
2
p+

2

J+x =x+
(
∂

∂x1
+ ∂

∂x2

)
−x1p

+
1 −x2p

+
2

J−x =− ∂

∂p+
1

∂

∂x1
− ∂

∂p+
2

∂

∂x2
+ x1

2p+
1

∂2

∂x2
1

+ x2

2p+
2

∂2

∂x2
2

D=x+P−− ∂

∂p+
1
p+

1 −
∂

∂p+
2
p+

2 +x1
∂

∂x1
+x2

∂

∂x2
+1

K+ =−1
2

(
−2x+

(
∂

∂p+
1
p+

1 + ∂

∂p+
2
p+

2

)
+x2

1p
+
1 +x2

2p
+
2

)
+x+D

K−= 3
2

(
∂

∂p+
1

+ ∂

∂p+
2

)
+p+

1
∂2

∂p+ 2
1

+p+
2

∂2

∂p+ 2
2
−x1

∂

∂x1

∂

∂p+
1
−x2

∂

∂x2

∂

∂p+
2

+ x2
1

4p+
1

∂2

∂x2
1

+ x2
2

4p+
2

∂2

∂x2
2

Kx =−1
2

(
−2x+

(
∂

∂x1

∂

∂p+
1

+ ∂

∂x2

∂

∂p+
2

)
+x2

1
∂

∂x1
+x2

2
∂

∂x2

)

+x1

(
−x+ 1

2p+
1

∂2

∂x2
1
− ∂

∂p+
1
p+

1 +x1
∂

∂x1
+ 1

2

)
+x2

(
−x+ 1

2p+
2

∂2

∂x2
2
− ∂

∂p+
2
p+

2 +x2
∂

∂x2
+ 1

2

)
(A.6)
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The analog of the r.h.s. of (A.2) is provided by the generators for completely symmetric
tensor fields in light cone gauge in AdS, which have been worked out by Metsaev in [53].
Notice that this representation, since it is determined by the transformation of the bulk
fields, is the natural representation for the bulk gravitational description. We now want to
argue that the change of coordinates (2.9) followed by a simple similarity transform, takes
us from the above generators (natural for CFT) to those of [53] (natural for AdS). After
changing coordinates using (2.9), we obtain the following generators

P+ = p+

P x = ∂

∂x

P− = − 1
2p+

(
∂2

∂x2 + ∂2

∂z2

)

J+− = x+P− −
(
− 1
p+ −

∂

∂p+

)
p+

J+x = −p+x+ x+ ∂

∂x

J−x =
(
− ∂

∂p+ −
1
p+

)
∂

∂x
− xP− + 1

p+

(
∂

∂θ
+ cot(θ)

)
∂

∂z

D = x+P− + x
∂

∂x
+ z

∂

∂z
+ p+

(
− ∂

∂p+ −
1
p+

)
K+ = −

(
x+
(
− 1
p+ −

∂

∂p+

)
+ 1

2(x2 + z2)
)
p+ + x+D

K− = −
(
x+
(
− 1
p+ −

∂

∂p+

)
+ 1

2(x2 + z2)
)
P− +

(
− 1
p+ −

∂

∂p+

)
D

+ 1
p+

(
x
∂

∂z
− z ∂

∂x

)(
∂

∂θ
+ cot θ

)
+ 1
p+

(
∂

∂θ
+ cot θ

)2

Kx = −x+
(
− 1
p+ −

∂

∂p+

)
∂

∂x
− 1

2(x2 + z2) ∂
∂x

+ xD +
(

cot θ + ∂

∂θ

)
z

− 1
p+

(
cot(θ) + ∂

∂θ

)
∂

∂z
x+ (A.7)

Now, rescaling each of the generators L as follows L → µL 1
µ where µ = 2πp+ sin θ, the

algebra is obviously unchanged. To understand why this similarity transform is required,
note that our map can be written as

Φ(X+, p+, X, Z, θ) = 2πp+ sin θ η
(
X+, p+ cos2 θ

2 , X + Z tan θ2 , p
+ sin2 θ

2 , X − Z cot θ2

)
= µ η

(
X+, p+ cos2 θ

2 , X + Z tan θ2 , p
+ sin2 θ

2 , X − Z cot θ2

)
(A.8)

The rescaling is required since

η̃ = Lη ⇒ µη̃ = µL
1
µ
µη ⇒ Φ̃ = µL

1
µ

Φ (A.9)
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so that if the generator acting on the bilocal η is L, then the generator acting on Φ = µη is
µL 1

µ . After the rescaling the generators become

P+ = p+

P x = ∂

∂x

P− = − 1
2p+

(
∂2

∂x2 + ∂2

∂z2

)

J+− = x+P− −
(
− ∂

∂p+

)
p+

J+x = −p+x+ x+ ∂

∂x

J−x =
(
− ∂

∂p+

)
∂

∂x
− xP− + 1

p+

(
∂

∂θ

)
∂

∂z

D = x+P− + x
∂

∂x
+ z

∂

∂z
+ p+

(
− ∂

∂p+

)
K+ = −

(
x+
(
− ∂

∂p+

)
+ 1

2(x2 + z2)
)
p+ + x+D

K− = −
(
x+
(
− ∂

∂p+

)
+ 1

2(x2 + z2)
)
P− +

(
− ∂

∂p+

)
D

+ 1
p+

(
x
∂

∂z
− z ∂

∂x

)(
∂

∂θ

)
+ 1
p+

(
∂

∂θ

)2

Kx = −x+
(
− ∂

∂p+

)
∂

∂x
− 1

2(x2 + z2) ∂
∂x

+ xD +
(
∂

∂θ

)
z

− 1
p+

(
∂

∂θ

)
∂

∂z
x+ (A.10)

A comparison with the expressions in section 3.8 of [53] shows complete agreement, for all
generators except for D, after identifying

∂+ ←→ p+ x− ←→ − ∂

∂p+

Mxz ←→ ∂

∂θ
M i− ←→ − 1

p+
∂

∂θ

∂

∂z

(A.11)

along with A = 0. The first two relations are simple consequences of the Fourier transform.
To understand the last two relations we need to interpret, for example, the operator Mxz.
Recall that the special conformal generators generate a local scaling and Lorentz rotation.
Consequently, it must be thatMxz is generating a rotation in the X,Z plane. It is clear from
figure 1 that the angle describing rotations in this plane is θ so that the above expression
for Mxz is indeed correct. The difference between the expression for D in (A.10) and that
in [53] is easily explained as follows: D in [53] acts on the field Φ(X+, X−, X, Z, θ) which
has dimension ∆ = 1. D in (A.10) acts on the field

Φ(X+, p+, X, Z, θ) =
∫
dX−eip

+X−Φ(X+, X−, X, Z, θ) (A.12)
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which has dimension ∆ = 0. The requirement that our change of coordinates implements
the passage from the direct product representation (natural for the CFT) to the direct sum
representation (natural for bulk AdS) determines the map (2.9) and (2.10).

B Other approaches

A work that is closely related to bilocal holography was given in [28]. The map proposed
in [28] intertwines a given bulk SO(2,3) representation labeled by dimension ∆ and spin J in
the bulk with the SO(2,3) representation of the bilocal. Since intertwining maps are unique,
this shows how the representation of SO(2,3) in the bulk and the bilocal representation in
the boundary determine the map of [28]. In this sense it is similar to the bilocal holography
map of [21] which maps the representation of the bilocal to all relevant bulk representations.

The map of [28] is written using the bulk to boundary propagator G∆,J (X,P ;W,DQ)
written in embedding space both for the CFT and the AdS, as well as conformal three point
functions 〈O 1

2
(P1)O 1

2
(P2)O∆̃,J (P,Q)〉. We refer the reader to the original paper for further

explanation of the notation. To understand the map of [28] we use two known facts:

1. Section 5.1 of [72] proves

[
Lbulk

∆,J ΦJ

]
(X,W ) =

∫
dP G∆,J (X,P ;W,DQ)

[
Lboundary

∆,J O∆,J
]

(P,Q) (B.1)

This says that the bulk-to-boundary map intertwines the bulk and boundary repre-
sentations.

2. Formula (3.2) of [73] proves

Lboundary
∆,J

(∫
dP1dP2〈O 1

2
(P1)O 1

2
(P2)O∆̃,J(P,Q)〉η(P1, P2)

)
∫
dP1dP2〈O 1

2
(P1)O 1

2
(P2)

[
Lboundary

∆,J O∆̃,J

]
(P,Q)〉η(P1, P2)

=
∫
dP1dP2〈O 1

2
(P1)O 1

2
(P2)O∆̃,J(P,Q)〉

[
Lbilocal η̃

]
(P1, P2) (B.2)

This says the three point function intertwines the representation ∆, J and the bilocal
representation.

It is useful to write the map of [28] as (η̃ is the shadow of η)

ΦJ (X,W ) =
16πdΓ2(d2 −

1
2)

Γ2(1
2)2N∆,Jλ∆,J

(
Γ(d−2

2 )
4π

d
2

)2 ∫
P.S.

d∆
2πi

∫
dP

J !
(
d
2 − 1

)
J

∫
dP1dP2

×G∆,J (X,P ;W,DQ) 〈O 1
2
(P1)O 1

2
(P2)O∆̃,J(P,Q)〉η̃(P1, P2) (B.3)

The map of [28] is an intertwining operator, intertwining a ∆, J representation of the
bulk SO(2,3) with the bilocal representation. This follows because the map of [28] is a
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composition of the map defined by the three point function with the map defined by the
bulk-to-boundary map. The proof is immediate using the above two results[
Lbulk

∆,J ΦJ

]
(X,W ) =

16πdΓ2(d2−
1
2)

Γ2(1
2)2N∆,Jλ∆,J

(
Γ(d−2

2 )
4π

d
2

)2 ∫
P.S.

d∆
2πi

∫
dP

J !
(
d
2−1

)
J

∫
dP1dP2

×G∆,J (X,P ;W,DQ)
[
Lboundary

∆,J 〈O 1
2
(P1)O 1

2
(P2)O∆̃,J(P,Q)〉

]
η̃(P1,P2)

=
16πdΓ2(d2−

1
2)

Γ2(1
2)2N∆,Jλ∆,J

(
Γ(d−2

2 )
4π

d
2

)2 ∫
P.S.

d∆
2πi

∫
dP

J !
(
d
2−1

)
J

∫
dP1dP2

×G∆,J (X,P ;W,DQ) 〈O 1
2
(P1)O 1

2
(P2)O∆̃,J(P,Q)〉

[
Lbilocal η̃

]
(P1,P2)

(B.4)
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