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1 Introduction

Holographic duality is likely a generic property of quantum gravity [1, 2]. While convincing
examples of the duality are known [3], the duality remains ill-understood. Understanding
holographic duality in detail could imply resolving the information paradox, or finding a
unitary quantization of gravity in de Sitter space-time. Thus, there is promise in under-
standing holographic dualities in greater depth. For instance, one can enlarge the class of
examples of holographic dualities, or attempt to understand those examples that we know
in more detail.

The holographic string theory backgrounds that are most easily exactly quantized in
the inverse curvature expansion in the bulk may be the three-dimensional anti-de Sitter
backgrounds with Neveu-Schwarz-Neveu-Schwarz flux. The world sheet model is a Wess-
Zumino-Witten model on the universal cover of the non-compact group SL(2,R), and as
such may be exactly solvable. Indeed, a lot of progress has been made in explicitly solving
the theory (see e.g. [4–6]). Moreover, in the presence of extended supersymmetry, the
boundary conformal field theory can be twisted to give rise to a topological conformal
field theory. It is a reasonable goal to attempt to prove the holographic duality between
the topologically twisted bulk theory and the topological conformal field theory on the
boundary in this setting [7].

String theories in three-dimensional anti-de Sitter space with NS-NS flux admit N = 2
superconformal symmetry when they are of the form AdS3 × S1 × Y where Y is a N = 2
world sheet superconformal field theory [8]. We determine the full spectrum of spacetime
chiral primaries in these backgrounds in section 2. We compute structure constants of the
space-time chiral ring in section 3. Our technique is to compute the space-time operator
products directly, using world sheet techniques. The underlying motivation is to perform
the calculation in the bulk in a spirit that will eventually allow for topological twisting.
The reward we reap is that the calculation becomes simple and since it is only based on
the necessary properties of the N = 2 superconformal background, it is generally valid.
We thus extend calculations performed in backgrounds with N = 4 superconformal sym-
metry [9, 10] that provided powerful checks of the holographic correspondence. The N = 2
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superconformal backgrounds are less constrained and could exhibit a richer set of structure
constants. We discuss our results and conclude in section 4. In a set of appendices we sum-
marize many details regarding the worldsheet conformal field theory on the AdS3×S1×Y
background, and in particular, lay bare some generic properties of N = 2 superconformal
world sheet theories.

2 The space-time chiral primaries

In this section, we classify the spectrum of space-time chiral primary fields in AdS3 back-
grounds withN = 2 spacetime superconformal symmetry. The classification extends results
obtained in various approaches in references [11–14] among others. The chiral primaries
form a basis for the chiral ring [15], a topological and non-trivial observable of the extended
superconformal field theory.

2.1 The extended superconformal backgrounds

We study a class of string theory backgrounds with spacetime N = 2 superconformal sym-
metry. When these backgrounds carry only NS-NS flux and can be described by a world
sheet conformal field theory, they were argued to take the form AdS3×S1×Y [8] where the
factor Y corresponds to a world sheet theory with N = 2 world sheet conformal symmetry.1

The extended spacetime supersymmetry forces the presence of a U(1)R symmetry that in
turn is geometrically incarnated as a circle factor in the spacetime. These backgrounds
provide a large class of theories in which to study holography with extended supersym-
metry and thus provide a fertile testing ground for attempting to prove a topologically
twisted version of the correspondence between quantum gravity in anti-de Sitter space and
conformal field theory [7].

The world sheet central charge of the AdS3×S1×Y theory is critical when it satisfies

ctot = 3 + 6
k

+ 1 + 4× 1
2 + cY = 15 . (2.1)

We have included four world sheet fermion partners for the AdS3×S1 bosons. The level k
is equal to the square of the AdS3 cosmological constant length scale divided by α′ (which
in turn equals 2π times the fundamental string tension). We conclude that the critical
world sheet model contains a factor theory Y with central charge

cY = 9− 6
k
. (2.2)

We take the radius of the circle equal to R =
√
kα′ which equals the radius of curvature of

the AdS3 space-time.

1It is clear that one can also allow orbifolds thereof and that there may be further wiggle room (e.g. by
demanding only chiral N = 2 symmetry). Still, the AdS3 × S1 geometry is a natural geometric realization
of extended superconformal symmetry.
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2.2 The spectrum

We work in the Neveu-Schwarz-Ramond formalism on the world sheet and in a first instance
ignore light-cone oscillator degrees of freedom. We consider vertex operators that factorize
according to the spacetime factors. The world sheet conformal dimension L0, the circle left
momentum pL, the space-time energy H and the space-time R-charge Qst are given by the
expressions — see e.g. [14] for the detailed background –:

L0 = −h (h− 1)
k

− w (h+ r)− (k + 2)w2

4 + 1
2 (f + a)2 + p2

L

2 + hY +N , (2.3)

pL = n′

R
+ w′R

α′
= n′√

2k
+

√
k

2w
′ = 1√

2k
(
n′ + kw′

)
(2.4)

H = h+ r + k + 2
2 w + f + a (2.5)

Qst =
√

2kpL (2.6)

The quantum numbers appearing in these equations are as follows. First of all, we put
a = 0 for the world sheet NS sector and a = −1

2 in the Ramond sector. The quantum
numbers (h, r, w) arise from the sl(2,R) world sheet theory and h is the world sheet sl(2,R)
spin, w parameterizes the spectral flow and r measures an elliptic sl(2,R) spin component.
We restrict to discrete representations of sl(2,R) and will set r = 0 — see [14] for a
detailed justification. The super ghosts cancel one of the two pairs of fermions and the
quantum number f corresponds to the fermion number arising from the remaining pair of
fermions in the AdS3 × S1 sector — one takes them to lie in the spatial AdS3 directions.
The quantum numbers (n′, w′) are the momentum and winding along the circle direction.
The conformal dimension of the operator arising from the compact conformal field theory
Y is denoted hY and N is the oscillator contribution to the conformal dimension. The
momentum pL is determined in terms of the momentum and winding along the circle S1.
The spacetime energy H is the J3

0 time translation eigenvalue in the (supersymmetric)
AdS3 theory while the spacetime R-charge is proportional to the left-moving momentum
along the S1. Similar formulas hold in the right-moving sector. The space-time spectrum
is determined by solving on-shell constraints (among others on L0) in the Hilbert space of
the world sheet conformal field theories.

2.3 The spacetime chiral primaries

Our goal is to classify the single fundamental string states that are spacetime chiral pri-
maries. These states satisfy the equality [15]:

2H = Qst . (2.7)

As physical states, they are subject to the on-shell condition L0 = 1
2 . In a first step,

we show that the space-time chiral primary equation (2.7) and the world sheet on-shell
condition can be rendered independent of the spectral flow parameter w by shifting the
world sheet fermion number f = f ′−w, or in other words, by applying spectral flow to the
fermion sector as well. Firstly, the chiral primary condition (2.7) allows us to write the left
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circle momentum pL entirely in terms of the AdS3 quantum numbers. Substituting this
into the equation for the world sheet conformal dimension we obtain

L0 = h(1 + 2a+ 2f ′)
k

+ (k + 2)
2k (f ′ + a)2 + hY +N . (2.8)

We see that indeed, the condition is independent of the spectral flow parameter w.
Spacetime chiral primaries can arise from both the world sheet Ramond and NS sectors

and we discuss each of these in turn. For simplicity, we work chirally — the physical
spectrum is obtained by suitably combining left and right moving world sheet excitations
in a modular invariant, GSO projected theory.

2.3.1 The Ramond sector

In the Ramond sector we set the parameter a = −1/2. Substituting this into the world
sheet conformal dimension L0 (2.8) we find that it is minimized for fermion number f ′ = 0.
We attain the minimum:

L0 = k + 2
8k + hY +N . (2.9)

In the Ramond sector of the theory Y , the conformal dimension is bounded from below:

hY ≥
cY
24 = 3

8 −
1
4k . (2.10)

For a space-time chiral primary state, we therefore find that the world sheet conformal
dimension satisfies L0 ≥ 1/2. The physical state condition L0 = 1/2 is satisfied when there
are no oscillator excitations and only for Ramond ground states of the theory Y .

There are two more constraints to be satisfied involving the spacetime and world sheet
R-charges. The first is that the spacetime R-charge is given by the momentum and winding
on the circle. Combining this with the spacetime chiral primary condition we find:

2H = 2h− 1 + kw = Qst = n′ + kw′ , (2.11)

where we recall that w is the spectral flow number and (n′, w′) are the momentum and
winding on the circle. The constraint can be rewritten in the form

2h− 1 = n′ + k(w′ − w) , (2.12)

which states that the combination of spin 2h−1 is an integer plus an integer multiple of k.
For discrete states in AdS3 the spins are constrained to lie in the interval 2h−1 ∈ (0, k]. We
conclude that there are only a finite number of spins h allowed. The last constraint in the
classification problem of space-time chiral primaries in the world sheet Ramond sector is to
implement the world sheet GSO projection. We discuss this constraint in subsection 2.4.2.

2.3.2 The Neveu-Schwarz sector

In the NS sector we set a = 0 and the world sheet conformal dimension takes the form

L0 = (2f ′ + 1)h
k

+ k + 2
2k (f ′)2 + hY +N . (2.13)

Extremizing with respect to the fermion number f ′ (while ignoring the mild implicit GSO
dependence of the dimension hY on f ′), we find that the fermion number f ′ takes the
values 0 or −1.
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Case 1. For the case f ′ = 0 we obtain the world sheet operator dimension L0 = h
k + hY .

The on-shell value is still L0 = 1/2. Using the constraint on the allowed range of the spin h
we obtain a bound on the conformal dimension hY of the operator factor in the theory Y :2

0 ≤ hY ≤
1
2 −

1
2k . (2.14)

Furthermore, we need to implement the GSO constraint:

qws = 1− 2hY + qY ∈ odd integers . (2.15)

By combining the GSO constraint with the bound on the dimension hY we find that for
a fixed world sheet R-charge qY only one dimension hY can solve the GSO constraint
(because the range of 2hY is smaller than one). The unitarity of the N = 2 superconformal
theory on Y implies the inequality 2hY ≥ |qY |. For positive world sheet R-charge, qY ≥ 0,
there are only the primaries satisfying 2hY = qY + 2Z that can therefore solve the GSO
constraint. Moreover, if the charge qY is positive, then by the constraint on 2hY , which is
less than one, we must have 2hY = qY . We conclude that world sheet chiral primaries are
the only states that satisfy the constraint in case the world sheet R-charge in the theory
Y is positive.

For negative R-charge, we have 2hY ≥ −qY , or −2hY ≤ qY . We conclude that:
−qY ≤ 1− 1/k in order for 2hY to exist. We therefore have the constraint

0 ≥ qY ≥ −1 + 1/k . (2.16)

We add the bound on 1− 2hY and on qY to find that:

− 1 + 2/k ≤ 1− 2hY + qY < 1 + 1/k . (2.17)

For this to be an odd integer, we need 2hY = qY which implies that both are zero in
a unitary theory Y . Thus, this is the identity operator in the unitary conformal field
theory Y . It also falls into the previous category, with positive R-charge. Therefore, there
are no extra space-time chiral primaries in this category. The only solutions to all the
constraints that can give rise to a spacetime chiral primary is a world sheet chiral primary
with conformal dimension hY in the range (2.14).

Case 2. For the case f ′ = −1 we find L0 = 1
2 + 1−h

k +hY = 1
2 for the on-shell constraint.

Solving this constraint and using the range of spins h, we find the same range (2.14) for
the conformal dimension:

0 ≤ hY ≤
1
2 −

1
2k (2.18)

The GSO constraint in this case is given by

qws = −1 + 2hY + qY ∈ odd integers . (2.19)
2The bound on the spin h gives a weaker lower bound. Unitarity of the Y -theory implies that hY ≥ 0.
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We proceed as before and observe that for a given charge qY there is only a single value
of hY that can solve the GSO constraint. Using the unitarity bound of the theory Y , let
us discuss the two cases of positive and negative R-charge. For qY ≤ 0 only primaries
satisfying 2hY = −qY + 2Z can solve the GSO constraint. Given the constraint on 2hY ,
we must therefore have a primary with 2hY = −qY . Thus only world sheet anti-chiral
primaries satisfy all the constraints in this case. For qY ≥ 0 we have the unitarity constraint
2hY ≥ qY . The bound on hY thus implies a bound on qY :

0 ≤ qY ≤ 1− 1
k
. (2.20)

Adding this to the bound on 2hY we obtain

− 1 ≤ −1 + 2hY + qY ≤ 1− 2
k
. (2.21)

This is the same combination that occurs in the expression of the world sheet R-charge and
for this to be an odd integer we must have 2hY +qY = 0. In conjunction with the unitarity
bound for qY ≥ 0, the only possibility is that both the dimension and the R-charge vanish.
Thus, in the second case, only the anti-chiral primaries in the world sheet theory Y give
rise to space-time chiral primaries.

Finally, let us point out that there is a strong upper bound on the conformal dimension
of an operator in the theory Y that can feature in a space-time chiral primary. The upper
bound on its conformal dimension is

hY ≤
1
2 −

1
2k , (2.22)

and the upper bound on the absolute value of its world sheet R-charge is therefore |qY | ≤
1 − 1/k. Note that it is smaller than one. Yet, the central charge of the theory Y is
cY = 9 − 6/k and therefore the bound is considerably stronger than the unitarity bound
within the world sheet theory Y .

A corollary. We observe a distinction between the range in which the cosmological
length scale is larger than the string scale, k ≥ 1, and in which it is smaller, k < 1. In the
latter case, we cannot obtain spacetime chiral primaries from the world sheet NS sector
for a unitary theory Y because of the bound (2.14). An application of this corollary is
that the space-time vacuum which lies in the NS sector is not among the normalizable
spacetime chiral primaries for k < 1. This is the telltale signature of the phase transition
from a thermal phase dominated by black holes at high energy to a phase governed by long
strings [16]. See also [11, 17–19] for further discussion of the physics at and beyond the
phase transition.

2.4 The covariant chiral primary vertex operators

So far we worked out the spectrum of spacetime chiral primaries in the absence of light cone
oscillator excitations. That method provides a rather direct access to the spectrum of phys-
ical excitations. For the purpose of computing the spacetime operator product expansions,
it is however useful to write the vertex operators for these states in a covariant form.

– 6 –
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2.4.1 The Neveu-Schwarz sector

The covariant vertex operators in the left moving Neveu-Schwarz sector in picture number
(−1) take the form [20, 21]:

O(−1) = c e−φ Omatter . (2.23)

The world sheet conformal dimension has the same expression as before, but we allow
for light cone bosonic and fermionic oscillator excitations. The conformal dimension of
the c ghost is −1, and the e−φ ghost excitation has dimension 1/2. Therefore the matter
operator of the unintegrated vertex operator remains of dimension 1/2. Light cone oscillator
excitations in the matter operator would only raise the world sheet conformal dimension
and are therefore incompatible with the space-time chiral primary constraint. We still need
to check whether our excitation is BRST closed, and whether there are excitations that are
BRST trivial. Given the light-cone analysis of spacetime chiral primaries, we suspect that
the BRST cohomology comprises of all the states we found previously and none other.

In order to check this, we need to compute the action of QBRST = 1/(2πi)
∮

(cT + γG)
on these states. The first term gives zero because of the on-shell constraint L0 = 1

2 (and the
absence of oscillators). The second term will only act when we have a non-trivial fermion
excitation, and from our results, this can only be the fermion ψ− in the transverse AdS3
directions that lowers the space-time conformal dimension. If such a fermion is present, the
condition for BRST closedness will be that the sl(2,R) lowering operator j−0 is zero on the
bosonic state, i.e. that it is a j3

0 lowest weight state. Our choice r = 0 for the j3
0 momentum

of the discrete sl(2,R) representations guarantees that this is indeed the case — it precisely
cements the choice of a lowest weight state in a discrete D+ representation [14]. Moreover,
in the compact theory Y , (anti-)chiral primaries are automatically annihilated by G+1/2
and therefore, indeed, all the covariant states that we identified are BRST closed.

To prove that none of these states is BRST exact, it is sufficient to recall that the BRST
charge does not change the space-time conformal dimension or charge, and therefore any
relevant seed would need to be a space-time chiral primary. We have just proven that those
are all BRST closed and therefore they cannot give rise to non-trivial BRST exact states.

We conclude that we have two classes of covariant NS sector states. The first class has
H = h+ kw

2 and in the left-moving sector it is given by the vertex operator:

O
a (−1)
NS1

= c e−φ Φw
h ψw ei

√
2
k

(h+ kw
2 )X V a

c.p. . (2.24)

The left-moving circle momentum is pL =
√

2
k (h+ kw

2 ) and the conformal dimension of the
chiral primary in the Y sector is determined from the on-shell condition to be

haY = 1
2 −

h

k
. (2.25)

We denote the chiral ring elements by V a
c.p. where a = 1, . . . dim(RY ), where RY is the

chiral ring of the N = 2 superconformal world sheet conformal field theory Y .
Finally, we make a few remarks about the spectrally flowed operators we have defined.

The spectral flow in the bosonic sl(2,R) sector is analyzed in [22]. The spacetime conformal
dimension associated to the flowed states is listed in equation (2.3). The spectral flow in
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the fermionic sector is described in detail in [23]. We have denoted the vacuum in this
spectrally flowed fermionic sector |0̃〉 as being created by the operator ψw. It corresponds
to the state

ψw ←→ |0̃〉 = 1
kw/2

ψ−−w+ 1
2
ψ−−w+ 3

2
· · ·ψ−− 1

2
|0〉 . (2.26)

It has world sheet fermion number −w and world sheet conformal dimension w2

2 . It has
zero spacetime R-charge and spacetime conformal dimension equal to −w.

The second class of NS sector states consists of states with space-time conformal di-
mension H = h+ kw

2 − 1 and the left-moving vertex operator takes the form

O
ā (−1)
NS2

= c e−φ Φw
h ψw+1 e

i
√

2
k

(h+ kw
2 −1)X V ā

a.c.p. . (2.27)

The momentum along the circle is determined in terms of the spacetime R-charge: pL =√
2
k (h+ kw

2 − 1). The world sheet conformal dimension of the anti-chiral primary state in
the sector Y is

hāY = h− 1
k

. (2.28)

We have denoted the anti-chiral primaries by V ā
a.c.p., where the index ā again labels world

sheet ring elements. We will assume that we have a left world sheet U(1)R conjugation
symmetry and that the left chiral ring is isomorphic to the left anti-chiral ring.

We have denoted by ψw+1 the single fermionic excitation on top of the ground
state (2.26):

ψw+1 ←→
1√
k
ψ−−w− 1

2
|0̃〉 = 1

k(w+1)/2ψ
−
−w− 1

2
ψ−−w+ 1

2
· · ·ψ−− 1

2
|0〉 . (2.29)

The world sheet and spacetime quantum numbers shift appropriately by the addition of
this extra fermion.

2.4.2 The Ramond sector

We perform a covariant analysis in the left-moving Ramond sector as well — it is to be
combined with a right-moving Ramond or Neveu-Schwarz sector. We consider the covariant
vertex operators in the (−1

2) picture:

O
(− 1

2 )
R = c e−

φ
2 Omatter (2.30)

where Omatter is of conformal dimension 5/8. The matter vertex operators that we identified
previously are again the pertinent ones, but we now take into account the contribution of the
fermionic zero modes in the light-cone directions to the world sheet conformal dimension.
We can for instance set the light cone fermion number to s0 = +1/2 (as in flat space
superstring theory [21]). Effectively, we are then looking for solutions of L0 = 5/8− 1/8 =
1/2, and our problem reduces to the one that we solved previously.

Again, we need to check how the BRST cohomology interfaces with our solution set.
The L0 constraint is once more taken care of while the fermionic part of the BRST operator
also annihilates the state because of the fact that we have solved the Dirac equation by
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picking signs of light cone momenta as well as s0 = 1/2 — see [21] as well as below. There
are no BRST exact states by the reasoning we described above.

We summarize our results for the covariant Ramond sector vertex operator in picture
(−1

2). The left-moving part of the matter vertex operator has conformal dimension H =
h+ kw

2 −
1
2 and takes the factorized form:

Omatter = Φw
h ei

√
2
k (h+ kw

2 −
1
2)X Pmatter . (2.31)

The momentum along the S1 direction is given by pL =
√

2
k (h + kw

2 −
1
2). Let us be a

bit more precise about the spin and internal fields that make up the operator Pmatter. We
refer to the discussion in [8] and appendix A for further details. The four fermions that
are the world sheet superpartners of the AdS3×S1 directions are paired up and bosonized
in order to write the vertex operators in the Ramond sector. We have

∂Ĥ1 = 2
k
ψ1ψ2 , ∂Ĥ0 = −i

√
2
k
ψ0ψ3 . (2.32)

The hatted bosons have been defined in equation (A.25) — appropriate cocycle factors
have been included. The remaining factor in the matter operator can then be written as:

Pmatter = e−i(
1
2 +w)Ĥ1e±

i
2 Ĥ0 Σā , (2.33)

where Σā are the Ramond ground state operators of the N = 2 superconformal theory Y .
The label ā runs over the Ramond ground states of the theory. As explained in [15, 24] it is
possible to realize the Ramond ground states either by acting with the chiral ring elements
on the Ramond ground state with the lowest R-charge or equivalently by acting with the
anti-chiral ring elements on the Ramond ground state with the highest R-charge. Thus,
the ground states can be labelled by either a or ā. Our choice of labelling the states by the
anti-chiral primaries anticipates calculations to come.

The on-shell condition requires us to impose that the world sheet N = 1 super current
mode G0 acting on the state is zero. The super current splits into three terms corresponding
to the factored AdS3 × S1 × Y model:

G = 2
k
ψAJA + i ψ0∂X +GY . (2.34)

When we act with the supercurrent on the vertex operator (2.31), the coefficient of the
simple pole is proportional to:

pLγ
0 + 2

k
γ3
(
h+ kw

2 −
1
2

)
=
√

2
k

(
h+ kw

2 −
1
2

)
γ0
(

1 +
√

2
k
γ0γ3

)
(2.35)

where the γµ matrices represent the fermion zero modes. The right hand side vanishes
only if the coefficient of the field Ĥ0 in the exponent of the vertex operator is 1

2 , as we
assumed previously. Finally we impose a GSO projection on the vertex operator. We write
the Ramond sector ground state as (see appendix B for details):

Σā = e
i

√
3
cY
qāRZ Πā , (2.36)
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where qāR is the R-charge of the Ramond ground state in the Y-theory. Here Z bosonizes
the U(1)R charge of the Y theory and we have separated out the factor that carries the
world sheet R-charge. The chiral GSO projection is equivalent to the condition of locality
with respect to the spacetime supersymmetry generators. Following [8] we choose a set
of space-time supersymmetry generators (see equation (C.5) in appendix C), whose world
sheet operators are given by:

e−
φ
2 S±r = e−

φ
2 e−ir(Ĥ1∓Ĥ0) e±i

X√
2k e±i

√
cY
12 Z , (2.37)

where r = ±1
2 . We use the standard free field operator product expansions

e−
φ
2 · e−

φ
2 ≈ e−φ

z
1
4

e−irĤ1 · e−i(
1
2 +w)Ĥ1 ≈ zr(w+ 1

2)e−i(r+
1
2 +w)Ĥ1

e±irĤ0 · e
i
2 Ĥ0 ≈ z±

r
2 ei(±r+

1
2)Ĥ0 (2.38)

e
±i X√

2k · e
i√
2k

(2h−1+kw)X ≈ z±
2h−1+kw

2k e
i√
2k

(2h−1+kw±1)X

e±i
√

cY
12 Z · e

i

√
3
cY
qāRZ ≈ z±

qā
R
2 e

i

√
3
cY

(qāR± cY6 )Z
,

to show that the locality of the operator product expansion amounts to the constraint:

− 1
2 + r (1± 1) + 2w

(
r ± 1

2

)
±
(2h− 1

k
+ qāR

)
∈ odd integers. (2.39)

Since r ± 1
2 is always an integer, multiplying by 2w always equals an even integer. Thus

the w-dependent term drops out from the oddness constraint. For both choices of signs
the dependence on the index r on the space-time supercharges trivializes as well and we
must satisfy:

1
2 + 2h− 1

k
+ qāR ∈ odd integers (2.40)

Thus locality with all four supercharges is ensured by satisfying the charge constraint (2.40).
The classification problem has been reduced to one that depends solely on the level k

and the nature of the world sheet conformal field theory Y . The number of solutions we
find will depend on the spectrum of world sheet R-charges qY . A general constraint on
that spectrum is that it is bounded by the central charge of the theory Y [15]:

− 3
2 + 1

k
≤ qāR ≤

3
2 −

1
k
. (2.41)

Given the equations (2.40), (2.41) and the bounds on the spin h, it becomes clear that the
world sheet R-charge qws can only take the value 1. For that value, we have:

qāR = 1
2 −

2h− 1
k

(2.42)

and we find the bound:
|qāR| ≤

1
2 (2.43)

on the world sheet Ramond sector R-charge.
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To summarize, the left moving Ramond vertex operator for physical states in the
covariant formalism, in which the charges are constrained by (2.40) is:

O
ā (− 1

2 )
R = c e−

φ
2 Φw

h ei
√

2
k (h+ kw

2 −
1
2)X e−i(

1
2 +w)Ĥ1 e

i
2 Ĥ0 Σā . (2.44)

Thus we determined the covariant vertex operators corresponding to the space-time chi-
ral primaries.

2.4.3 Zero winding vertex operators at a generic boundary point

In this subsection, we include the spacetime chiral primary operators into global sl(2,R)
multiplets. We use a variable x to keep track of the different states in one multiplet —
the variable has the intuitive interpretation of designating a point on the boundary of the
AdS3 manifold [4]. For simplicity, we concentrate on the operators that have spectral flow
number w = 0 from now on. To put the operators Φh of spin h at a generic point x, it
is useful to temporarily combine a discrete lowest weight representation with a discrete
highest weight representation plus a finite dimensional representation, and define the sl(2)
multiplet combination Φh(x)

Φh(x; z) =
∑
m∈Z

Φh,m,m̄(z)x−m−hx̄−m̄−h Φh,m,m̄(z, z̄) . (2.45)

Similarly, we combine the sl(2,R) adjoint fermions [4]

ψ(x; z) = −ψ+(z) + 2xψ3(z)− x2ψ−(z) . (2.46)

A primary field of spin s in the sl(2,R)k+2 model satisfies the operator product expansion
with the currents jA(z):

jA(z)Os(x; z) ≈ −D
A
xOs(x; z)
z − w

, (2.47)

where the differential operators representing sl(2,R) read

D−x = ∂x , D3
x = x

∂

∂x
+ s , D+

x = x2∂x + 2sx . (2.48)

The fields Φh(x; z) and ψ(x; z) have spins equal to h and −1 respectively. The affine sl(2,R)
currents also transform in the adjoint:

j(x; z) = −j+(z) + 2xj3(z)− x2j−(z) . (2.49)

We can form analogous combinations for the fermionic current ĵ(x; z) (see appendix A for
definitions and conventions) and the supersymmetric current J(x; z) = j(x; z)+ĵ(x; z). The
standard operator product expansions between the world sheet fields that we have summa-
rized in appendix A can then be compactly encoded in the operator product expansions:

j(x1; z)Φh(x2;w) ≈ 1
z − w

((x1 − x2)2∂x2 − 2h(x1 − x2))Φh(x2;w) (2.50)

ĵ(x1; z)ψ(x2;w) ≈ 1
z − w

((x1 − x2)2∂x2 + 2(x1 − x2))ψ(x2;w) (2.51)

ψ(x1; z1)ψ(x2; z2) ≈ k (x12)2

z12
. (2.52)
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In terms of these fields, one can write down the zero spectral flow left-moving vertex op-
erators in the NS sector. We choose a particular normalization whose utility will become
apparent:

O
a (−1)
NS1

(x; z) = 1√
k(2h− 1)

c e−φ Φh(x; z) ei
√

2
k
hX V a

c.p. , haY = 1
2 −

h

k
, (2.53)

O
ā (−1)
NS2

(x; z) = 1√
k
c e−φ Φh(x; z) ψ(x; z) ei

√
2
k

(h−1)X V ā
a.c.p. , hāY = h− 1

k
. (2.54)

In the Ramond-sector one analogously combines spin fields to form a primary field S(x)
such that it is of spin s = −1

2 :

S(x; z) = x e−
i
2 Ĥ1+ i

2 Ĥ0 + e
i
2 Ĥ1− i

2 Ĥ0 . (2.55)

To check that the vertex operator is BRST closed and transforms as claimed, it is useful
to use the ĵA currents expressed in terms of the bosons. Finally, we have the left-moving
Ramond sector vertex operator at a generic point x on the boundary:

O
ā (− 1

2 )
R (x; z) = 1√

k
c e−

φ
2 Φh(x; z) ei

√
2
k (h− 1

2)X S(x) Σā . (2.56)

2.5 A change of picture

It will likewise be useful to have the covariant vertex operators available in multiple pictures.
We derive the operators in this subsection. To find the zero picture operators in the NS
sector, we apply picture changing to the (−1) picture operators we have found. The latter
are schematically of the form:

O(−1) = c e−φ Omatter , (2.57)

where both the matter vertex operator Omatter and e−φ have dimension equal to 1/2. The
vertex operator Omatter is a superconformal primary of the N = 1 world sheet algebra. The
picture changing operator acts on the matter operator as [20, 21]:

O
(0)
matter(0) = G−1/2 ·Omatter(0) =

∮
0
dz G(z) Omatter(0) , (2.58)

where G−1/2 is a mode of the N = 1 world sheet supercurrent G. The calculation can again
be split into three terms corresponding to the factors AdS3×S1×Y — see equation (2.34).
It is useful to recall that we suppose N = 2 superconformal symmetry in the world sheet
theory Y and that we have the generic embedding of the N = 1 super current G into the
N = 2 superconformal algebra [21]:

GY = 1√
2

(
G+,Y +G−,Y

)
. (2.59)

Let’s implement these statements case by case.

2.5.1 The NS1 case: no fermion in the AdS factor

If there is no fermion ψ(x) present in the vertex operator, then picture changing leads to:

O
a (0)
NS1

= 1√
k (2h− 1)

(2
k
ψAD

A
x +GS

1+Y
−1/2 ·

)
Φh(x) ei

√
2
k
hX V a

c.p. . (2.60)
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2.5.2 The NS2 case: a fermion in the AdS factor

We next consider the NS2 case in which the vertex operator (2.54) has left-moving dimen-
sion H = h− 1. Acting with the picture changing operator we find:

O
ā (0)
NS2

= 1√
k

(
J(x) + 2

k
ψ(x)ψADA

x + ψ(x)GS1+Y ·
)
Φh(x) ei

√
2
k

(h−1)X V ā
a.c.p. . (2.61)

The second term in the parentheses can be simplified:

ψ (x)
(
ψAD

A
x

)
Φh (x)

=
(
−ψ++2xψ3−x2ψ−

)(1
2ψ
−D+

x + 1
2ψ

+D−x −ψ3D3
x

)
Φh (x)

=
[
ψ+ψ−

2
(
x2D−x −D+

x

)
+ψ3ψ+

(
xD−x −D3

x

)
+ψ3ψ−

(
xD+

x −x2D3
x

)]
Φh (x)

=−kh2 ĵ (x)Φh (x) . (2.62)

Substituting this into the expression (2.61) we find

O
ā (0)
NS2

= 1√
k

(
j (x) + (1− h) ĵ (x) + ψ (x)GS1+Y

−1/2 ·
)

Φh (x) ei
√

2
k

(h−1)X V ā
a.c.p. . (2.63)

2.5.3 Ramond sector vertex operators

It will be useful to know the Ramond vertex operators in the (−3
2) picture as well:

O
ā (− 3

2 )
R (x; z) = 2

(2h− 1) c e
− 3φ

2 Φh(x; z) ei
√

2
k (h− 1

2)X S̃(x) Σā , (2.64)

where
S̃(x; z) = −x e−

i
2 Ĥ1− i

2 Ĥ0 + e
i
2 Ĥ1+ i

2 Ĥ0 . (2.65)

Acting with the picture changing operator on this operator, we indeed obtain the Ra-
mond operator (2.56) in the (−1

2) picture. The operator S̃ has opposite chirality from the
operator S.

In summary, we have determined the full spectrum of chiral primaries in space-time.
We have described all the relevant covariant vertex operators. For those that are in the
zero spectral flow sector, we have provided additional detail. A summary of the latter
vertex operators is provided in table 1.

3 Chiral ring structure constants

Our goal in this section is to compute structure constants of the spacetime N = 2 su-
perconformal chiral ring, involving operators which are in the world sheet sector of zero
spectral flow. We will derive a space-time operator product expansion from a world sheet
operator product expansion. The advantage of this method is that it only involves data
that survives a topological twist of the theory. In particular, we bypass the calculation
of the physical three-point functions and two-point functions both in the space-time and
on the world sheet. Our method simplifies calculations in the literature for N = 4 su-
perconformal theories. We also extend them to the class of N = 2 theories which exhibit
qualitatively new features.
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Vertex Operator Dimension H

O
a (−1)
NS1

1√
k(2h−1) c e

−φ Φh(x) ei
√

2
k
hX V a

c.p. h

O
a (0)
NS1

1√
k(2h−1) ( 2

kψAD
A
x +GS

1+Y
−1/2 ·)Φh(x) ei

√
2
k
hX V a

c.p. h

O
ā (−1)
NS2

1√
k
c e−φ Φh(x) ψ(x) ei

√
2
k

(h−1)X V ā
a.c.p. h− 1

O
ā (0)
NS2

1√
k

(
j(x) + (1− h)ĵ(x) + ψ(x)GS1+Y

−1/2 ·
)
Φh(x) ei

√
2
k

(h−1)X V ā
a.c.p. h− 1

O
ā (− 1

2 )
R

1√
k
c e−

φ
2 Φh(x) ei

√
2
k

(h− 1
2 )XS(x) Σā h− 1

2

O
ā (− 3

2 )
R

2
(2h−1) c e

− 3φ
2 Φh(x) ei

√
2
k

(h− 1
2 )X S̃(x)Σā h− 1

2

Table 1. The world sheet vertex operators representing space-time chiral primaries and their space-
time left-moving conformal dimension, in the subsector with spectral flow number equal to zero.

3.1 Pictures and products

In the NS sector we have determined covariant vertex operators in the (−1) as well as the
(0) pictures. We wish to calculate the space-time chiral ring. Since the picture number
adds in the product of operators, we can multiply an integrated zero picture vertex operator
into a fixed (−1) picture vertex operator and obtain once more a (−1) picture operator.
Multiplying two vertex operators in the Ramond sector with picture number (−1

2) leads
to an NS operator with picture number minus one. In the R-NS mixed operator product
expansions we take the Ramond and NS operators in their canonical pictures to generate
a Ramond sector operator in the (−3

2) picture.
The product of two space-time chiral primary operators inserted at boundary points

x1 and x2 is regular as a function of the space-time distance x1−x2 between the operators.
The structure constants of the chiral ring arise from the zeroth order term in x1 − x2. For
example, starting with two operators of the type NS2 we obtain

lim
x1→x2

∫
d2z1O

ā (0)
NS2

(x1, x̄1; z1, z̄1)Ob̄ (−1)
NS2

(x2, x̄2; z2, z̄2) = A2ā 2b̄
2c̄O

c̄ (−1)
NS2

(x2, x̄2; z2, z̄2)

+O(x1 − x2, x̄1 − x̄2) , (3.1)

where A denotes the space-time structure constant for the product under consideration
and we have for now only written down one (out of two possible) term(s) on the right hand
side. We imagine that this calculation takes place inside a perturbative string correlation
function. We assume throughout that the operator product in space-time arises from the
region in which the world sheet vertex operators are close to each other. See e.g. [4, 25] for
discussions of these points in more generic contexts.

We make one more preliminary remark. We note that we have a graded ring. The
Neveu-Schwarz sector vertex operators are even while Ramond sector vertex operators are
odd. This leads to a space-time fermion number grading of the space-time ring.
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3.2 The NS2-NS2 to NS2 structure constants

In the following subsections, we write out our laundry list of structure constants. We start
out with the structure constants obtained by colliding the NS2 operators and giving rise
to another NS2 operator as in equation (3.1). We have Hi = hi − 1 for all three operators
involved in the operator product expansion. For a while, we focus our attention on the
world sheet holomorphic sector. An important ingredient in our calculation is the operator
product expansion between the zero and minus one picture operators:

1√
k

∫
d2z

(
j(x1;z)+(1−h1)ĵ(x1;z)+ψ(x1;z)GS1+Y

−1/2 ·
)

Φh1(x1;z)ei
√

2
k

(h1−1)X(z)V ā
a.c.p.(z)

× 1√
k
c e−φ ψ(x2;w) Φh2(x2;w) ei

√
2
k

(h2−1)X(w) V b̄
a.c.p.(w) . (3.2)

The first operator is inserted at the world sheet point z while the second operator is inserted
at w. Before we proceed, let us make a remark about world sheet operator dimensions.
Consider the NS-sector operators at ghost number −1. They are of the form O

(−1)
NS =

c e−φO
(−1)
matter. The total operator has dimension zero. The operator O(−1)

matter has dimension
one half. Taking into account the dimension of the fermion operator this leads to the
conclusion that the combination

W ā
i (xi; z) = Φhi(xi; z) ei

√
2
k

(hi−1)X V ā
a.c.p.(z) , (3.3)

has dimension zero. Similarly, in O(0)
matter, the combination W ā

i has dimension zero as well
since the total operator has dimension one which equals the dimension of the current.3

This will play a role in simplifying our analysis. Moreover, world sheet fermion number
conservation will imply important selection rules on our calculations — we will exploit
them in due course.

We have only shown the left moving contribution to the operator product and we need
to specify the choice of vertex operators in the right moving sector as well. For simplicity,
we concentrate on the chiral-chiral ring in space-time, such that we can work with the
same type of vertex operators for the space-time right-movers. One can still have either
of the classes of states NSi with i = 1, 2 for the right moving sector. We choose the NS2
states also in the right moving sector. From the form of the ghost number zero operator
in (3.2) we see that there are three independent calculations to be done; schematically the
complete contribution to the operator product expansion therefore includes a sum of terms
that arises from the product of left and right moving contributions:

(T1 + T2 + T3)
(
T̃1 + T̃2 + T̃3

)
. (3.4)

We shall evaluate each of these three terms in turn working in the left moving sector first.

3.2.1 The first term

We begin with the first term that includes the bosonic AdS3 current j(x; z). We need to
evaluate the operator product:

1
k
j(x1; z)W ā

1 (x1; z) c(w) e−φ(w) ψ(x2;w) W b̄
2 (x2;w) . (3.5)

3A similar reasoning holds in the R-sector.
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The fermion, the ghost and the superghosts go along for the ride and we see that if any
space-time chiral primary appears in this operator product at all, it would be an NS2 vertex
operator. The only non-trivial factor is the (holomorphic) operator product expansion
of the operator (j W ā

1 )(x1; z) with W2(x2;w), which we denote by t1. We deal with an
operator product expansion of composite operators of the form (BC)(z) with A(w), where
we identify A(w) = W b̄

2 (x2;w), (BC)(z) = (j W ā
1 )(x1; z). What we shall rather do is

calculate the operator product expansion of A(z) with (BC)(w) given by the generalized
Wick theorem for interacting fields [26]:

A(z)(BC)(w) ≈ 1
2πi

∮
w

dy

y − w

(
A(z)B(y) C(w) +B(y) A(z)C(w)

)
. (3.6)

To obtain the required operator product expansion we then interchange z ↔ w, and Taylor
expand the fields that are evaluated at z around the point w. We thus first compute:

t1 = 1
2πik

∮
w

dy

y−w

(
W b̄

2 (x2;z)j(x1;y) W ā
1 (x1;w)+j(x1;y) W b̄

2 (x2;z)W ā
1 (x1;w)

)
, (3.7)

We use the basic ΦΦ as well as the jΦ operator product expansions, which are given in
the appendix (equations (A.47) and (A.37)). Combining these with the operator product
expansion in the circle direction and using the definition of the world sheet chiral ring of
the Y -theory,

V ā
a.c.p.(z)V b̄

a.c.p.(w) ≈ Rāb̄c̄V c̄
a.c.p.(w) , (3.8)

one can write down the relevant WW and Wj operator product expansions:

W b̄
2 (x2; z)W ā

1 (x1;w) ≈
∫
dh (w − z)

−h(h−1)
k

+ (h1+h2−2)2
k

+hYc (x1 − x2)h−h1−h2 Ch1,h2
hRāb̄c̄

Φh (x2;w) ei
√

2
k

(h1+h2−2)X V c̄
a.c.p. (w) (3.9)

W b̄
2 (x2; z) j (x1; y) ≈ − 1

z − y

(
(x2 − x1)2 ∂x1 − 2h2 (x1 − x2)

)
W b̄

2 (x2; z)

+
(
(x2 − x1)2 ∂x1 − 2h2 (x1 − x2)

)
∂zW

b̄
2 (x2; z) (3.10)

In the second operator product we have expanded the W2 operator at z. We omit the term
proportional to the derivative of the operator as that is a world sheet descendant and we
know that it cannot lead to a spacetime chiral primary. Substituting into the generalized
Wick theorem (3.6) leads to the result:

t1 ≈
1

2πi k

∮
w

dy

y − w

[
− 1
z − y

(
(x1 − x2)2∂x2 − 2h2(x1 − x2)

)
W b̄

2 (x2; z)W ā
1 (x1;w)

+
∫
dh

(x1 − x2)h−h1−h2Ch1h2
hRāb̄c̄

(w − z)
h(h−1)

k
− (h1+h2−2)2

k
−hYc

ei
√

2
k

(h1+h2−2)X V c̄
a.c.p.(w)j(x1; y)Φh(x2;w)

]
.

(3.11)
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Substituting the basic operator product expansions once again we find

t1 ≈
1

2πi k

∮
w

dy

y − w

[
− 1
z − y

(
(x1 − x2)2∂x2 − 2h2(x1 − x2)

)
(3.12)

∫
dh

(x1 − x2)h−h1−h2Ch1h2
hRāb̄c̄

(z − w)
h(h−1)

k
− (h1+h2−2)2

k
−hYc

ei
√

2
k

(h1+h2−2)XV c̄
a.c.p.(w)Φh(x2;w)

+
∫
dh

(x1 − x2)h−h1−h2Ch1h2
hRāb̄c̄

(w − z)
h(h−1)

k
− (h1+h2−2)2

k
−hYc (y − w)

ei
√

2
k

(h1+h2−2)X V c̄
a.c.p.(w)

×
(
(x1 − x2)2∂x2 − 2h(x1 − x2)

)
Φh(x2;w)

+
∫
dh

(x1 − x2)h−h1−h2Ch1h2
hRāb̄c̄

(w − z)
h(h−1)

k
− (h1+h2−2)2

k
−hYc

ei
√

2
k

(h1+h2−2)X V c̄
a.c.p.(w) : j1(w)Φh(x2;w) :

]
.

By evaluating the integral over y, we see that the second term vanishes. The last term does
not give rise to a space-time chiral primary, and so we are left with the first term only:

t1 ≈
1

2πi k

∮
w

dy

y − w

[
− 1
z − y

(
(x1 − x2)2∂x2 − 2h2(x1 − x2)

)
∫
dh

(x1 − x2)h−h1−h2Ch1h2
jRāb̄c̄

(z − w)
h(h−1)

k
− (h1+h2−2)2

k
−hYc

ei
√

2
k

(h1+h2−2)XV c̄
a.c.p.(w)Φh(x2;w)

]
(3.13)

The y-integral simply sets y = w. To proceed further we must include the contribution
from the right-movers. An important point is that there is only a single, common integral
over the sl(2,R) spin h. Reverting to our notation for the operator product in (3.4) we
obtain

T1 T̃1 ≈
1
k2

∫
dh

|z − w|2+2h(h−1)
k
−2 (h1+h2−2)2

k
−2hYc

Ch1h2
hRāb̄c̄e

i
√

2
k

(h1+h2−2)X V c̄
a.c.p.(w, w̄)

∣∣∣((x1 − x2)2∂x2 − 2h2(x1 − x2))
∣∣∣2 |x1 − x2|2h−2h1−2h2Φh(x2;w, w̄) (3.14)

The structure constants Ch1h2
h and Rāb̄c̄ now include the contribution from the right

movers as well.4 We use once more the fact that we are calculating the spacetime chiral
ring. Spacetime R-charge conservation and unitarity imply [15] that the right hand side
of equation (3.14) should be independent of the boundary distance x1 − x2. This picks
out the value h = h3 = h1 + h2 − 1 as the one on which to concentrate. The world sheet
conformal dimension hcY of the operator V c is fixed by world sheet R-charge conservation
to be

hcY = haY + hbY = h1 + h2 − 2
k

= h3 − 1
k

. (3.15)

In the second equality we have used the relation between the dimension hY and the sl(2,R)
spin for the NS2,a vertex operators. Combining this with the momentum along the S1 direc-
tion we see that this leads to the propagation of an on-shell state that again corresponds to

4To avoid clutter, we do not write out the in principle necessary zoo of indices.
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a spacetime chiral primary. This is consistent with the general discussion of deriving space-
time operator product expansions from world sheet operator product expansions in [25] in
which the dominant contribution to the z-integral arises from on-shell states. To recapit-
ulate, precisely at the value of h = h3 = h1 + h2 − 1, the state (whose vertex operator
includes the V c̄

a.c.p., Φh and the S1 vertex operator with momentum pL = h3− 1) turns out
to be on-shell and this leads to a pole in the h-integral. The contribution of this state is
extracted by taking the residue in the h-integral5

Resh=h3
1

|z|2+f(h) = 1
f ′(h3)δ

2(z, z̄) , (3.16)

where, in our case we have f ′(h3) = (2h3 − 1)/k = (2h1 + 2h2 − 3)/k. Performing the
h-integral we obtain

T1 T̃1 ≈
Ch2,h1

h1+h2−1Rāb̄c̄
k(2h1 + 2h2 − 3)

∣∣∣(x1 − x2)2∂x2 − 2h2(x1 − x2)
∣∣∣2|x1 − x2|−2 Φh1+h2−1(w, w̄)

ei
√

2
k

(h1+h2−2)X V c̄(w, w̄)δ(2)(z − w)

≈ Rāb̄c
k(2h1 + 2h2 − 3)(1− 2h2)2W c̄

h1+h2−1(w, w̄)δ(2)(z − w) . (3.17)

In the second line we have made use of the fact that Ch2,h1
h1+h2−1 = 1 (see equation (A.51)).

This takes care of the first out of nine terms. Given this analysis, the rest of the calculation
can be understood swiftly.

3.2.2 The second term

We consider the contribution from the second term in (3.2) involving the fermion current ĵ:

1
k

(1− h1)ĵ(x1; z)W ā
1 (x1; z) · c(w) e−φ(w) ψ(x2;w) W b̄

2 (x2;w) . (3.18)

The non-trivial operator product expansion involves ĵ(x1; z) with the fermion ψ(x2;w) and
the operators W ā

1 (x1; z) and W b̄
2 (x2; z). We neglect the (x1 − x2)∂x2ψ(x2;w) term on the

right hand side as it does not lead to a chiral ring element. The rest of the analysis parallels
the one we already did in detail in the previous subsection. Once again, we have to pair
with the right movers and we obtain the result:

T2T̃2 ≈
Rāb̄c̄

k(2h1 + 2h2 − 3) (2− 2h1)2 W c̄
h1+h2−1(w, w̄)δ(2)(z − w) . (3.19)

3.2.3 The result

The third term T3 in (3.2) involves the action of the supercharge GS1+Y
− 1

2
in the compact

directions. Such a term cannot lead to NS2 operators because of world sheet fermion
number conservation — we shall discuss the action of this operator in subsection 3.8.

5Note that we evaluate a pole that is associated to the |z − w| dependence and it therefore differs from
the poles in the structure constants, or the poles in the |x1 − x2| dependence evaluated in [27].
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Here, we combine the two contributions (T1 + T2) from the left and right movers. Each
factor of T1 or T̃1 leads to a factor (1−2h2) while each factor of T2 or T̃2 leads to the factor
(2− 2h1). Taking appropriate linear combinations leads us to:

(T1 + T2)
(
T̃1 + T̃2

)
≈ (2h1 + 2h2 − 3)Rāb̄c̄

1
k
W c̄
h1+h2−1(w, w̄)δ(2)(z − w) . (3.20)

Integrating over z and recalling the other factor operators as well as the R-charge conser-
vation equation h3 = h1 + h2 − 1, we find the structure constant:

A2ā 2b̄
2c̄ = (2h3 − 1) Rāb̄c̄ . (3.21)

We iterate the fact that we have chosen the NSā2 vertex operators on both the left and
right moving sector to derive this structure constant. This structure constant agrees with
the structure constant computed in [9] for models with N = 4 superconformal symmetry.
The simple dependence of the structure constant on the space-time spin suggests both an
interpretation in terms of a symmetric orbifold, as well as a possible non-renormalization
theorem for this structure constant. Indeed, we found here that universal features known
for the N = 4 models extend to this structure constant in all N = 2 superconformal
backgrounds under consideration. In the following, we study to what extent these features
persist for other structure constants.

3.3 The NS2-NS1 operator product expansion

Next, we consider the operator product expansion involving NS sector operators of type 1
and 2. We opt to have the NS2 operator in the (0)-picture and wish to evaluate the on-shell
space-time chiral primary contribution to:

1√
k

∫
d2z

(
j(x1;z)+(1−h1)ĵ(x1;z)+ψ(x1;z)GS1+Y

−1/2 ·
)

Φh1(x1;z)ei
√

2
k

(h1−1)X(z)V ā
a.c.p.(z)

× 1√
k (2h2−1)

c e−φ Φh2(x2;w) ei
√

2
k
h2X(w) V b

c.p.(w) , (3.22)

when the integrated vertex operator approaches the fixed operator. The calculation is a
simpler counterpart to the one in the previous subsection, so we shall be brief. We denote
operator combinations as

W ā
1 (x1; z) = Φh1(x1; z)ei

√
2
k

(h1−1)X(z)V ā
a.c.p.(z) (3.23)

U b2(x2;w) = Φh2(x2;w) ei
√

2
k
h2X(w) V b

c.p.(w) . (3.24)

The operator W ā
1 has world sheet dimension 0 while the operator Ua2 has dimension equal

to 1
2 . The fermionic current as well as the N = 1 creation operator GS1+Y

−1/2 appearing in
the picture (0) operator do not lead to a spacetime chiral primary. We concentrate on the
action of the bosonic current operator and consider the operator product expansion:

1
k (2h2 − 1)

(
j W ā

1

)
(x1; z) · U b2(x2;w) . (3.25)
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We again use the formula (3.6) by first exchanging z ↔ w and then computing the operator
product expansion

1
2πi k(2h2 − 1)

∮
w

dy

y − w

(
U b2(x2; z) j(x1; y) W ā

1 (x1;w) + j(x1; y) U b2(x2; z)W ā
1 (x1;w)

)
.

(3.26)

To carry out the indicated contractions we peruse the basic ΦΦ and the jΦ operator product
expansions in the AdS3 sector. In addition we also need the operator product expansion in
the circle direction and the chiral-anti-chiral operator product expansion in the Y -theory.
In the first instance, we assume that the sum of the R-charges of the Y -vertex operators add
up to a positive number. In such a scenario we have (see formula (B.26) in the appendix)

V b
c.p.(z)V ā

a.c.p.(w) ≈ Dbā
c

(z − w)qbY
V c
c.p.(w) , (3.27)

where the tensor Dbā
c = gbd̄ Rāēd̄ gcē is expressed in terms of the chiral ring coefficients

R and the Zamolodchikov metric g of the theory Y — see appendix B. The conformal
dimension of the world sheet chiral primary V c

c.p. is half of its R-charge, which in turn is
the sum of the R-charges of the operators that are multiplied:

qcY = qāY + qbY = −2hāY + 2hbY

= −1 + 2
k

(h1 + h2 − 1) . (3.28)

The basic operator product expansions that are needed to calculate the product are:

U b2(x2; z)W ā
1 (x1;w) ≈

∫
dh

(x1 − x2)h−h1−h2

(w − z)
1
2 +h(h−1)

k
− (h1+h2−1)2

k
−hcY

Ch1,h2
hDbā

c

Φh(x2;w) ei
√

2
k

(h1+h2−1)X V c
c.p.(w) (3.29)

U b2(x2; z) j(x1; y) ≈ − 1
z − y

((x2 − x1)2∂x1 − 2h2(x1 − x2))U b2(x2; z)

+
(
(x2 − x1)2∂x1 − 2h2(x1 − x2)

)
∂zU

b
2(x2; z) . (3.30)

From here onward the calculation closely parallels the calculation of the term t1 in the
NS2-NS2 operator product in subsection 3.2.1. We have expanded the U b2 field near the
point z. Once more, the world sheet derivative of that field will not lead to a spacetime
chiral ring element and we omit this term in the subsequent analysis. For a non-trivial
on-shell spacetime chiral ring element to be generated in this sector, we need the spin
h = h3 = h1 + h2 − 1. Precisely for this value of the spin h, we see from equation (3.28)
and the left-moving momentum along the circle that we have a propagating on-shell state.
Taking into account the contribution from the right-movers, we again evaluate the residue
at the on-shell value for the integrand as a function of the spin h and obtain:

1
k2(2h2 − 1)2

k Ch2,h1
h1+h2−1 Dbā

c

2h3 − 1 (2h2 − 1)2 U ch1+h2−1(w, w̄)δ(2)(z − w) . (3.31)
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We once more use the value of the structure constant Ch2h1
h1+h2−1 = 1 and absorb a

factor of
(√
k (2h3 − 1)

)−2 to obtain the correctly normalized closed string NS1 operator.
We thereby obtain the structure constant:

A2ā 1b
1c = (2h3 − 1) gbd̄ Rāēd̄ gcē . (3.32)

Let us also show that the product of an NS2 operator with an NS1 operator can not
give rise to an NS2 operator. We have already analyzed the bosonic and fermionic currents
appearing in the zero picture operator in (3.22). It remains to consider the GS1+Y term:
the S1 term in the N = 1 supercurrent will not contribute since the fermion associated to
the tangent space to the circle is absent from the list of spacetime chiral primaries. The
GY term will also not contribute to the operator product expansion. This follows from
the identity

〈(G+
−1/2V

ā
a.c.p.)(z1)V b

c.p.(z2)V c
c.p.(z3)〉 = 0 . (3.33)

This is a consequence of pulling off the G+ supercurrent across the sphere.6 The identity
implies that one cannot produce an anti-chiral primary in the operator product expansion
of (G+

−1/2Va.c.p.)(z1) and Vc.p.(z2). Thus, we have proven the vanishing

A1ā 2b
2c̄ = 0 . (3.34)

3.4 The NS1-NS1 operator product expansion

We turn to the remaining operator product expansion in the NS sector involving two
operators of type 1. Up to normalization factors we have the operator product:∫

d2z

(2
k
ψAD

A
x1 +GS

1+Y
−1/2 ·

)
Φh1(x1; z) ei

√
2
k
h1X V a

c.p.(z) (3.35)

× c e−φ Φh2(x2;w) ei
√

2
k
h2X(w) V b

c.p.(w) . (3.36)

The first term can only potentially give rise to an NS2 vertex operator in the minus one
picture as it has an AdS3 fermion. However, note that the resulting vertex operator in the
(−1) picture will necessarily have a chiral primary in the Y sector and such an operator is
not in the list of chiral primaries. Therefore, we find that

A1a 1b
2c̄ = 0 . (3.37)

Let us similarly consider the second term in (3.35); this can potentially give rise to a
NS1 vertex operator in the minus one picture. As before, the term GS

1 does not contribute.
We therefore focus on the GY term. In the Y sector, we have an operator product that is
determined by the three-point function:

〈(G−−1/2V
a
c.p.)(z1)V b

c.p.(z2)V c̄
a.c.p.(z3)〉 = 0 . (3.38)

6An alternative in our context is to argue that due to the bound on the world sheet R-charge of the
anti-chiral primaries that can appear in our space-time chiral primaries, a non-zero correlator (3.33) would
violate R-charge conservation.
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By utilizing the superconformal Ward identity one can indeed show that this correlation
function vanishes.7 Therefore we have the vanishing N = 2 chiral ring structure constant:

A1a 1b
1c = 0 . (3.39)

The tallying reader realizes that in the NS sector, there is one remaining structure constant
to compute in which NS2 operators produce a NS1 operator. We will discuss this possibility
in subsection 3.8.

3.5 The NS2-R operator product expansion

We turn to operator product expansions involving one NS sector and one Ramond sector
vertex operator. We use the integrated Ramond vertex operator in the (−1

2) picture and
the unintegrated NS2 operator in the (−1) picture. The result is an unintegrated Ramond
sector operator in the (−3

2) picture. We study the operator product:

1√
k

∫
d2z e−

φ
2 Φh1(x1; z) S(x1; z) ei

√
2
k (h1− 1

2)X(z) Σā

× 1√
k
c e−φ Φh2(x2;w) ψ(x2;w) ei

√
2
k

(h2−1)X(w) V b̄
a.c.p.(w) . (3.40)

In addition to the operator product expansions between the AdS3 operators Φhi and the
operator product expansions in the circle sector, we use the expansions:

e−
φ(z)

2 · e−φ(w) ≈ e−
3φ(w)

2

(z − w)
1
2

(3.41)

1√
k
ψ(x1; z)S(x2;w) ≈ 2(x1 − x2) S̃(x2;w)

(z − w)
1
2

(3.42)

V b̄
a.c.p.(z)Σā (w) ≈ Rb̄āc̄ Σc̄(w)

(z − w)hb̄Y
. (3.43)

In the last operator product we use the fact that hb̄Y = h2−1
k . We once again add the

right moving contribution and proceed as before. In the limit x1 → x2, we find that the
leading non-zero contribution arises from the spin h = h3 = h1 + h2 − 1. This precisely
leads to a spacetime chiral primary generated by a world sheet Ramond sector operator in
the (−3

2) picture. The contribution by this on-shell state is obtained from the residue in
the h-integral and leads to a δ-function that localizes the z-integral. We obtain the closed
string vertex operator:

4Ch1,h2
h1+h2−1Rb̄āc

(2h3−1) c c̄ e−
3φ
2 −

3φ̃
2 Φh1+h2−1(x2;w,w̄)ei(h1+h2− 3

2)X(w,w̄) S̃(x2;w,w̄) Σa(w,w̄) .

(3.44)
By keeping track of the normalization of the (−3

2 ,−
3
2) picture operator (see (2.64)) and

using Ch1+h2−1
h1h2

= 1, we obtain the structure constant

B2ā b̄
c̄ = (2h3 − 1)Rb̄āc̄ . (3.45)

7See e.g. [28] for the detailed derivation.
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If we consider the operator product expansion of the Ramond operator with the NS1 vertex
operator we do not find a space-time chiral ring element in the (−3

2)-picture as the spin
field retains its chirality. We conclude that this structure constant is zero:

B1a b
c = 0 . (3.46)

3.6 The R-R operator product expansion

Finally, we evaluate the operator product expansion involving one integrated Ramond
vertex operator with picture number (−1

2) and an unintegrated Ramond vertex operator
with picture number (−1

2). The left moving contribution is given by

1√
k

∫
d2z e−

φ
2 Φh1(x1; z) S(x1; z) ei

√
2
k (h1− 1

2)X(z) Σā(z)

× 1√
k
c e−

φ
2 Φh2(x2;w) S(x2;w) ei

√
2
k (h2− 1

2)X(w) Σb̄(w) . (3.47)

The bosonic ghost is transcribed trivially while the operator product expansions in the
bosonic AdS3 × S1 sectors are the same as before. The new operator product expansions
involved in this calculation are

e−
φ(z)

2 e−
φ(w)

2 ≈ e−φ(w)

(z − w)
1
4

(3.48)

S(x1; z)S(x2;w) ≈ − x1 − x2

(z − w)
1
2

(3.49)

Σā(z)Σb̄(w) ≈
Rāb̄c̄M

c̄
cV

c
c.p.

(z − w)hcY −
cY
12
. (3.50)

Here M c̄
c is the real structure associated to the N = 2 superconformal theory on Y [24].

In a second step, we include once more the contribution of the right-movers and in the
x1 → x2 limit the leading non-zero term picks out the spin j = h1 + h2 − 1 in the Φ-Φ
operator product expansion. Regarding the operator product expansion in the Y -sector we
see that, provided that the R-charges of the Ramond ground states add up to a positive
real number, we obtain a world sheet chiral primary whose conformal dimension is half
of its R-charge (which in turn is determined by the sum of the R-charges of the Ramond
ground states). Proceeding as before, we obtain the operator product expansion coefficient

Cāb̄1c = (2h3 − 1) Rāb̄c̄M c̄
c . (3.51)

It is clear from the derivation that it is impossible to obtain an AdS3 fermion on the right
hand side. Thus the structure constant associated to the R-R to NS2 operator product is
zero, Cāb̄2c̄ = 0.

3.7 The structure constants from topological data

Let us collect the results we have computed and simplify them by redefining the class of
NS1 operators using the Zamolodchikov metric:

O
(−1)
ā,NS1

= gāb O
b (−1)
NS1

. (3.52)
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In a more condensed notation, the non-vanishing structure constants of the spacetime chiral
ring computed so far are:

NS2
ā ×NS2

b̄ −→ (2h3 − 1) Rāb̄c̄ NS2
c̄ (3.53)

NS2
ā ×NS1b̄ −→ (2h3 − 1) Rāc̄b̄ NS1c̄ (3.54)

NS2
ā × Rab̄ −→ (2h3 − 1) Rāb̄c̄ Rac̄ (3.55)

Raā × Rab̄ −→ (2h3 − 1) Rāb̄c̄ ηc̄d̄ NS1d̄ , (3.56)

where h3 = h1 + h2 − 1 and Raā denotes the Ramond sector operators. We have defined
the topological metric ηc̄d̄ = M c̄

c g
cd̄ which is the two point function of world sheet chiral

primaries in the twisted topological theory Y [24]. We conclude that these four classes of
structure constants are entirely captured by the world sheet anti-chiral ring of theory Y .

Finally, we recall that our notation is compact. For instance, in equation (3.53),
when we consider a space-time (c, c) ring element, we can combine left- and right moving
operators, and would find the index structure:

NS2
āL,āR ×NS2

b̄L,b̄R −→ (2h3 − 1) RāLb̄L c̄L RāRb̄R c̄R NS2
c̄Lc̄R , (3.57)

where the ring structure constants correspond to the (a, a) world sheet ring and the indices
need to be chosen such that the left-right world sheet vertex operator occurs in the chosen
modular invariant string spectrum. This is but one example of how to unpack our compact
notation in equations (3.53) to (3.56).

3.8 The NS2-NS2 to NS1 structure constants

We are ready to study the odd duckling left over from the NS2-NS2 operator product
expansion. The NS2-NS2 into NS1 structure constant is the only case in which we have
to compute the action of the supercurrent on the operators in the theory Y in order
to compute the space-time chiral ring relation. Therefore, in this case, the space-time
structure constant depends not only on the quantum numbers and world sheet chiral ring
operators, but also on the three-point function of a world sheet superconformal descendant.
To compute the structure constant, we consider explicit models. A first model is the
counterpart to the N = 4 superconformal model AdS3 × S3 — we consider the T-dual
background AdS3 × S1 ×MM ×M4 where the minimal model MM has central charge
cMM = 3−6/k and M4 represents a central charge six world sheet conformal field theory.8

We then generalize our analysis to models AdS3×S1×
∏3
i=1MMi where the three minimal

model levels satisfy
∑3
i=1 k

−1
i = k−1 for criticality.

8For simplicity we ignore orbifold identifications.
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3.8.1 The N = 4 model revisited

The calculation of the structure constant proceeds as in previous subsections. We begin
with the operator product

1√
k

∫
d2zΦh1(x1; z)ei

√
2
k

(h1−1)X(z) ψ(x1; z)
(
GY−1/2 · V

ā
a.c.p.

)
(z)

× 1√
k
c e−φ ψ(x2;w) Φh2(x2;w) ei

√
2
k

(h2−1)X(w) V b̄
a.c.p.(w) . (3.58)

The ghost and superghost factors, the bosonic factors and the AdS3 fermions all have
operator products that we have already encountered. We focus on the new operator product
that arises in the Y -sector. We consider a theory Y = MM ×M4 where M4 is geometrical
and therefore M4 = K3 or M4 = T 4. These theories have no (anti)-chiral primary of
dimension smaller than one half, and therefore only the minimal model theory provides
non-trivial operators in the vertex operators describing space-time chiral primaries.

Our conventions for the minimal model are those of [29].9 The super parafermion
fields are ψj,n,s where j is the su(2) spin, n is a spin component and s denotes the fermion
number. The world sheet conformal dimension and U(1)R-charge of the parafermions are
given by

h(j, n, s) = j(j + 1)
k

− n2

4k + s2

8 , q(j, n, s) = s

2 −
n

k
. (3.59)

The anti-chiral primaries that appear in (3.58) correspond to the fields ψj,2j,0. The su(2)
spin of the colliding operators are related to the AdS3 spin hi by the relation ji = hi − 1.
From the operator product it is clear that in the Y sector we need the coupling between
the descendant of an anti-chiral field and an anti-chiral primary field. For an NS1 operator
to appear as a result, the fusion should give rise to a chiral primary field. The relevant
operator product is given by

(G+
−1/2ψj1,2j1,0)(z)ψj2,2j2,0(w) ≈ Csu(2)

j1j2

k
2−j̃3−1

(z − w)
j̃3−j1−j2

k
+ 1

2

ψ k
2−j̃3−1,−2j̃3+k,2(w) + . . . . (3.60)

In the parafermion variables a chiral primary corresponds to the field ψj,−2j,0. However
there is an equivalence relation ψj,n,s ≡ ψk/2−j−1,n+k,s+2 which allows us to identify the
state on the right hand side of (3.60) as a chiral primary ψj̃3,−2j̃3,0. The action of the
operator G+

−1/2 on the anti-chiral primary is to augment the s quantum number by two.
Moreover, by R-charge conservation we obtain

1− 2j1 + 2j2
k

= 2j̃3
k
. (3.61)

We define the spin j3 = k/2 − j̃3 − 1 in terms of which we find the simpler relation
j3 = j1 + j2− 1. Furthermore, the conformal dimension of the chiral primary field in terms
of the new variable is given by

hc.p. = 1
2 −

j3 + 1
k

= 1
2 −

j1 + j2
k

. (3.62)

9However, we work with a supersymmetric level k = kbos + 2.
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To summarize: from all possible fusions, we pick the one labelled by the spin j̃3 as it leads
to a chiral primary in the minimal model, which is crucial to obtain an NS1 operator on
the right hand side. The parafermion structure constant reduces to an su(2) Wess-Zumino-
Witten model structure constant [31]. The relevant su(2) structure constant is recorded
in equation (A.53) in appendix A. Given the fusion in the compact sector, we proceed as
before and take the limit x1 → x2. The leading non-zero contribution arises when the
intermediate AdS3 spin equals h3 = h1 + h2− 2 = j1 + j2, where we have used the relation
between the spins in the AdS3 and the compact sectors. Comparing with equation (3.62)
and using the momentum along the S1 direction we see that we have obtained a propagating
on-shell state that corresponds to a spacetime chiral primary of the type NS1 (2.24).

We perform a similar analysis for the right-movers and execute the h-integral as before.
We obtain the structure constant [9]:

A1ā2ā
3c = (2h3 − 1)Ch1,h2

h1+h2−2Csu(2)
j1j2

j1+j2−1
. (3.63)

We note that since h3 = h1 + h2 − 2, unlike the previous cases, we encounter a non-trivial
structure constant (A.52) in the AdS3 sector. At the same time we also have a non-trivial
structure constant arising from the compact sector. As observed in [9] in the N = 4
supersymmetric models, a key point is that the AdS3 and su(2) structure constants cancel
up to a factor of ν−1, and we are left with the structure constant proportional to the spins,
namely 2h3 − 1. Of course, we obtain a non-zero structure constant only when the fusion
is allowed by the su(2) fusion rules [9].

3.8.2 A generalization

It would certainly be interesting to compute the NS2-NS2-NS1 structure constant for an
arbitrary choice of theory Y . To obtain the structure constant, we must evaluate the
correlator

〈G+,Y
−1/2 · V

a
a.c.p.(z1)V b

a.c.p.(z2)V c
a.c.p.(z3)〉 (3.64)

in theory Y . When we have a factorized theory Y , the G+,Y current is a sum of super
currents in the individual factors. Then we must have that the operators in all factors but
one are the identity operator. Otherwise world sheet R-charge conservation in the factor
not containing the G+

−1/2 term will set the structure constant to zero.
We shall settle for remarking how to compute the structure constant in an infinite but

restricted class of N = 2 theories. We choose the theory Y to be a product of three minimal
models at levels ki=1,2,3. This represents a large class of models since we can allow any
levels ki for the three minimal models as long as we choose k−1 =

∑3
i=1 k

−1
i . The operator

G+,Y
−1/2 in the theory Y becomes a sum of operators, each non-trivial in a given factor:

G+,Y
−1/2 = G+,MM1

−1/2 +G+,MM2
−1/2 +G+,MM3

−1/2 . (3.65)

As we argued, a set of chiral primary operators with non-zero structure constants must
correspond to the identity operators in all but one minimal model. We label the single

– 26 –



J
H
E
P
1
1
(
2
0
2
1
)
1
7
6

non-trivial minimal model factor that enters a particular calculation by an index l. The
on-shell constraints for the operators in the structure constant calculation read:

NS1 : j̃3
kl

= 1
2 −

h3
k

= 1
2 −

j3 + 1
kl

NS2 : j1,2
kl

= h1,2 − 1
k

. (3.66)

Space-time R-charge conservation still implies that h3 = h1 + h2 − 2 while world sheet
R-charge conservation enforces j3 = j1 + j2 − 1. The structure constant is computed as in
the previous subsection, and reads:

A1ā2ā
3c(l) = (2h3 − 1)Ch1,h2

h1+h2−2Csu(2)kl j1j2
j1+j2−1

. (3.67)

To evaluate the structure constant, we make an important observation. The structure
constant for the AdS3 model simplifies drastically and generically when the space-time
R-charge constraint is taken into account:10

Ch1,h2
h1+h2−2Csu(2)kl j1j2

j1+j2−1 = ν−1
γ
(

2h1−2
k

)
γ
(

2h2−2
k

)
γ
(

2h1+2h2−4
k

) ×
γ
(

2j1+2j2
kl

)
γ
(

2j1
kl

)
γ
(

2j2
kl

) = ν−1 .

(3.68)

Thus, for this large class of N = 2 models, we again find the same structure constant
after a still more intricate cancellation. It would be interesting to calculate these structure
constants for more general models Y or to prove that the cancellation we observed for our
class of models persists in all cases.

3.9 Additional observations on the structure constants

We saw that with a convenient normalization of the vertex operators, four of the structure
constants are proportional to 2h3 − 1 where hi are the world sheet spins of the operators
and h3 = h1 +h2−1. The dependence on the Y theory was through the structure constants
of its (anti-) chiral ring. This generalizes the structure constants in the literature [9] for
the N = 4 superconformal models to a large class of N = 2 superconformal models.
In particular, the previously computed chiral ring structure constants, e.g. in [9, 10, 23]
were computed in backgrounds which contain at least one S3 factor which geometrically
represents the R-symmetry of an N = 4 superconformal algebra. On the one hand, our
approach is based only on operator product expansions and thus simplifies the calculations;
on the other hand they are valid for all backgrounds containing an AdS3×S1 factor and are
therefore valid in a much larger class of models. Indeed, this is the reason why we had to
derive new results in the N = 2 superconformal world sheet theory in appendix B. Without
these new results in the worldsheet theory it would not have been possible to obtain the
spacetime operator product expansions in our larger class of models. We stress the fact
that we never needed to invoke a cancellation of poles in three-point function correlators,

10This is independent of whether 2hi − 1 is an integer.
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nor did we make use of the physical two-point functions. With respect to the treasure trove
of useful results for correlators of string theory in AdS3 [4, 5, 33–50], we make the following
remarks. Firstly, our results are efficient in concentrating on only those ingredients that are
necessary to compute space-time chiral ring structure constants. Secondly, we obtain the
explicit final result for the structure constants of the N = 2 superconformal field theories in
space-time for the first time. Previously, these results have been marshalled to compute the
chiral ring structure constants only for theories with a larger space-time symmetry group.

Introducing the number ni = 2hi − 1 + kwi, we see that the universal part of the
structure constant equals n1 + n2 − 1, which we recognize as a combinatorial structure
constant arising in symmetric orbifold conformal field theory, where the numbers ni have
the interpretation as the lengths of permutation cycles. This is described in [30] (and
combinatorially in e.g. [7]).

In the case of N = 4 space-time superconformal symmetry, a non-renormalization
theorem was proven that shows that the structure constants of the chiral ring are covariantly
constant on the moduli space [28]. This allows for a natural matching of structure constants
between a bulk NSNS string point and a symmetric orbifold conformal field theory [9, 10].
The non-renormalization theorem shows that in N = 4 theories, all marginal deformations
can be constructed from anti-chiral primaries, and in these directions, structure constants
of the chiral ring are covariantly constant [28]. The proof of the theorem makes use of the
full N = 4 algebra and therefore does not necessarily hold in backgrounds with a N = 2
superconformal symmetry.

Our results for N = 2 theories, for which in principle structure constants can depend
on marginal deformations built on space-time chiral primaries, beg the question of why
they seem similarly universal, after explicit calculation. Of course, there is a factorized
dependence on the world sheet chiral ring structure constants of the theory Y which can
vary under space-time marginal deformations, and relevant deformation in Y . The combi-
natorial prefactor n1 + n2 − 1 however, appears to be universal.

For the other structure constant we computed, we confirmed that in N = 4 theories, it
is proportional to n1 + n2 − 3, associated to different and interesting combinatorics in the
symmetric orbifold [30].11 Moreover, for a class of N = 2 superconformal models that arise
as a tensor product of minimal models, we showed that the same combinatorial prefactor
appears in the structure constant. This raises the question as to whether these properties
will continue to be true for a generic N = 2 model.

4 Conclusions

In this paper, we studied the bulk string theory background AdS3 × S1 × Y where Y
corresponds to a conformal field theory with N = 2 superconformal symmetry on the
world sheet. This is a class of string theory backgrounds dual to a space-time conformal
field theory with N = 2 superconformal symmetry. The background with Neveu-Schwarz-
Neveu-Schwarz flux is exactly solvable in the inverse string tension expansion and allows a
calculation of the spectrum and correlation functions exactly in the parameter α′ divided

11See also [7] for the relation to a co-product in the topological conformal field theory in the N = 4 context.
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by the radius of curvature squared. This is a large class of backgrounds with extended
supersymmetry and they therefore have a chiral ring. These backgrounds and observables
form a wonderful testing ground to attempt to prove a topological subsector of the anti-de
Sitter/conformal field theory correspondence.

Firstly, we fully determined the spectrum of space-time chiral primaries using the exact
world sheet description of the string propagating in AdS3 × S1 × Y . Our results classify
the space-time chiral primaries in terms of the chiral primaries, anti-chiral primaries, and
Ramond ground states of the N = 2 superconformal world sheet theory Y . An upper
bound on the world sheet R-charge of the operators that enter the calculation emerges.
It lays bare a close connection between the space-time chiral primaries and supersymme-
try preserving relevant deformations of theory Y . Secondly, we computed a subset of the
structure constants of the chiral primary ring. Our method of calculation consisted in
determining the leading order in the chiral operator product expansion by exploiting the
operator product of the corresponding world sheet vertex operators. The method concen-
trates on purely topological data in the space-time theory and gives rise to results that are
simple and universal. We applied the general method to all structure constants involving
operators with zero spectral flow.

We demonstrated that the space-time chiral ring structure constants involved the world
sheet chiral ring structure constants, the Zamolodchikov metric in the chiral sector as well as
the world sheet real structure that relates two canonical bases of Ramond ground states.
When expressed in terms of suitably chosen space-time chiral primaries, we could show
that a subset of space-time structure constants only depend on the topological data of the
theory Y . We also noted a dependence of a structure constant on a global superconformal
descendant. In the N = 4 supersymmetric setting, it was demonstrated that this structure
constant is tied to a co-product defined in terms of the central charge six factor of theory
Y . It is a definite challenge to extend this algebraic structure to the N = 2 setting.

There is a clear open problem at hand, which is to compute all possible structure
constants among the full set of chiral primaries, including all operators with non-zero
winding. It is tempting to speculate that the number ni = 2hi−1 appearing in the structure
constants will be generalized to ni = 2hi − 1 + kwi for operators including winding, but it
is important to demonstrate this explicitly.

If non-renormalization theorems exist for these backgrounds, they need to be proven.
They are obviously crucial in understanding the matching of structure constants at different
points in the moduli space, accessible in the bulk or boundary theory.

There is an intriguing global question to be answered. Clearly, the algebraic N = 2
structure of the theory Y , including its relevant deformations, structure constants and
Zamolodchikov metric enter the topological theory in spacetime. Can we express the space-
time chiral ring in terms of these world sheet structures? Our work gives a partial answer
to this question, but more work is needed to characterize the precise relation. The full
answer may invoke the topological-anti-topological structure of the theory Y , and may
involve a symmetric group Frobenius algebra. Finally, we can ask once more whether there
is a reformulation of the space-time theory that renders the calculation of these structure
constants even simpler by projecting onto space-time chiral primaries at every step.
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A The world sheet theory on AdS3 × S1

In this appendix, we gather data on the world sheet conformal field theories that are neces-
sary to perform the calculations in the bulk of the paper. The AdS3×S1×Y target space
gives rise to largely factorized world sheet conformal field theories. We discuss these in turn.

A.1 The supersymmetric AdS3 factor

We define the affine currents JA of a supersymmetric sl(2,R) WZW model at level k, with
operator product expansions:12

JA(z)JB(w) ≈ k

2
ηAB

(z − w)2 + iεABCηCDJ
D(w)

z − w
(A.1)

JA(z)ψB(w) ≈ iεABCηCDψ
D(w)

z − w
(A.2)

ψA(z)ψB(w) ≈ k

2
ηAB

z − w
, (A.3)

with ηAB = diag(1, 1,−1) and ε123 = 1. One can define a combination of currents jA such
that they form a bosonic sl(2,R) affine algebra at level k + 2:

jA = JA + i

k
εABCηBDηCEψ

DψE . (A.4)

The bosonic currents jA have regular operator product expansion with the fermions. The
three fermions ψA generate an sl(2,R) algebra at level −2. The algebra is generated by
the currents

ĵA = − i
k
εABCηBDηCEψ

DψE . (A.5)

In component form the currents read:

ĵ1 = 2i
k
ψ2ψ3 , ĵ2 = 2i

k
ψ3ψ1 , ĵ3 = −2i

k
ψ1ψ2 . (A.6)

The total current JA is then the sum of the bosonic and fermionic ones:

JA = jA + ĵA . (A.7)

We transform the fermions and the currents into a light cone (+,−, 3) basis by defining
the combinations

ψ± = ψ1 ± iψ2 , ĵ± = ĵ1 ± iĵ2 . (A.8)

Then the components are

ĵ+ = −2
k
ψ3ψ+, ĵ3 = 1

k
ψ+ψ−, ĵ− = 2

k
ψ3ψ−. (A.9)

In the new basis, the non-vanishing operator product expansions of the fermions read:

ψ+(z)ψ−(0) ≈ k

z
(A.10)

ψ3(z)ψ3(0) ≈ − k

2z . (A.11)

12We follow the notations and conventions of [8].
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The operator product expansions between the currents and the fermions take the form:

ĵ+(z)ψ+(0) ≈ O(z) , ĵ+(z)ψ3(0) ≈ −ψ
+(0)
z

, ĵ+(z)ψ−(0) ≈ −2ψ3(0)
z

ĵ3(z)ψ+(0) ≈ ψ+(0)
z

, ĵ3(z)ψ3(0) ≈ O(z) , ĵ3(z)ψ−(0) ≈ −ψ
−(0)
z

ĵ−(z)ψ+(0) ≈ 2ψ3(0)
z

, ĵ−(z)ψ3(0) ≈ ψ−(0)
z

, ĵ−(z)ψ−(0) ≈ O(z) . (A.12)

The metric on the tangent space in the (+,−, 3) basis is off-diagonal:

gAB =

0 1
2 0

1
2 0 0
0 0 −1

 . (A.13)

Thus we have ψ+ = 1
2ψ
− and ψ− = 1

2ψ
+, ψ3 = −ψ3 and similarly for the currents. The

stress tensor and its N = 1 superpartner for the supersymmetric AdS3 factor are

T = 1
k
jAjA −

1
k
ψAψA , G = 2

k

(
ψAjA + 2i

k
ψ1ψ2ψ3

)
. (A.14)

These are standard structures in N = 1 supersymmetric Wess-Zumino-Witten models.

A.2 The circle sector

In addition to the three world sheet fermions associated to the space tangent to the three-
dimensional anti-de Sitter space, we introduce a fermion ψ0 that is tangent to the circle S1.
Its bosonic partner J0 is the world sheet current that arises from translation invariances
along the circle associated to the space-time U(1)R charge. These world sheet fields have
the operator product expansions

J0(z)J0(w) ≈ 1
(z − w)2 (A.15)

ψ0(z)ψ0(w) ≈ 1
z − w

(A.16)

J0(z)ψ0(w) ≈ 0 . (A.17)

This factor world sheet conformal field theory is free.

A.2.1 Spacetime R-charge from the circle direction

We recall that the space-time N = 2 superalgebra includes a U(1)R current. The spacetime
R-charge operator which we denote by Q0, corresponds to the zero mode along the S1

direction [8]
Q0 =

√
2k
∮
J0 =

∮
e−ψψ0 . (A.18)

When we bosonize the current J0(z):

J0 = i∂X , (A.19)
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any vertex operator on the world sheet with spacetime R-charge Qst can be represented in
the form

VQst = e
i
Qst√

2k
X
. (A.20)

We make good use of this fact in the bulk of the paper.

A.2.2 The bosonization of four fermions

The four fermions can be paired up and it is useful to bosonize them in order to write down
vertex operators in the Ramond sector. We define bosons H0,1 through the formulas

∂H1 = −2
k
ψ1ψ2 , ∂H0 = −i

√
2
k
ψ0ψ3 . (A.21)

The bosons HI satisfy the operator product expansions

HI(z)HJ(w) ≈ −δIJ ln(z − w) for I, J = 0, 1 . (A.22)

The fermions are exponentials in the bosons:

1√
k
ψ± = 1√

k
(ψ1 ± iψ2) = e±iH1 (A.23)

1√
2
ψ0 ∓ 1√

k
ψ3 = e±iπN1e±iH0 , (A.24)

where we have included the cocycle factor that depends on the number operator N1 =
i
∮
∂H1. This factor ensures that the fermion vertex operators anti-commute appropriately.

Their presence invites us to define hatted scalars

Ĥ1 = H1 Ĥ0 = H0 + π N1 . (A.25)

In terms of the hatted scalars, the bosonization formulae simplify. The fermionic currents
ĵA can be written as:

ĵ3 = i ∂Ĥ1 , ĵ± = ±e±iĤ1(e−iĤ0 − e+iĤ0) . (A.26)

Thus, we have conveniently expressed essential ingredients in the AdS3×S1 conformal field
theories in terms of bosons only.

A.3 Operator products in the spin-field basis

In this section we list the operator product expansions between the spin fields and fermions
used in the main text. We define a column matrix Sα which spans the vector space of the
four-dimensional spin fields:

Sα ↔


e
i
2 Ĥ1+ i

2 Ĥ0

e−
i
2 Ĥ1+ i

2 Ĥ0

e+ i
2 Ĥ1− i

2 Ĥ0

e−
i
2 Ĥ1− i

2 Ĥ0

 . (A.27)
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The spin fields represent the Clifford algebra of the fermion zero modes:

1√
k
ψm(z)Sα(w) ≈

(γm)αβSβ

(z − w)
1
2
. (A.28)

The spin fields multiply to form the charge conjugation matrix C:

Sα(z)Sβ(w) ≈ Cαβ

(z − w)
1
2
. (A.29)

The so(3, 1) Clifford algebra
{γm, γn} = 2ηmn , (A.30)

with metric η = diag(+,+,−,+) is explicitly represented by

γ1 = σ1 ⊗ I2 , γ2 = σ2 ⊗ I2 , γ3 = −iσ3 ⊗ σ2 , γ4 = σ3 ⊗ σ1 , (A.31)

where σa are the usual Pauli matrices and I2 is the two by two identity matrix. The charge
conjugation matrix C satisfies

C γmC
−1 = −(γm)T (A.32)

where T denotes the transpose. The charge conjugation matrix in our representation is:

C = σ2 ⊗ σ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 . (A.33)

To obtain these results one needs to take care in choosing appropriate branch cuts for
the spin fields and their operator product expansions. For example, the leading term in
a spin field operator product ei

Ĥ
2 (z)e−i

Ĥ
2 (w) ≈ (z − w)−

1
4 e

i
2 (Ĥ(z)−Ĥ(w)) picks up a fourth

root of −1 when we exchange the positions of the operators. These roots must be chosen
consistently in order to reproduce the claimed operator expansions for the spin fields.

A.4 The operators and operator products in the sl(2,R) model

An affine primary field Φh(x; z) of spin h with respect to the sl(2,R) current algebra
satisfies the expansion:

jA(z)Φh(x; z) ≈ −D
A
x Φh(x; z)
z − w

, (A.34)

where the differential operators DA
x are defined as

D−x = ∂x , D3
x = x

∂

∂x
+ h , D+

x = x2∂x + 2hx . (A.35)

The differential operators DA
x represent the global sl(2,R) subalgebra. Using the variable

x is a handy way to parameterize states in sl(2,R) representations. For instance, it is
possible to form x dependent linear combinations of the currents, fermions and spin fields
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that render manifest their transformation properties under the sl(2,R) symmetry. One
defines [4]

j(x; z) = −j+(z) + 2xj3(z)− x2j+(z) . (A.36)

Using equation (A.34) one verifies that

j(x1; z)Φh(x2;w) ≈ 1
z − w

(
(x1 − x2)2∂x2 − 2h(x1 − x2)

)
Φh(x2;w) . (A.37)

A similar combination of currents can also be used to define ĵ(x; z) and J(x; z) for the
fermionic and supersymmetric currents respectively — indeed, they transform in the same
three-dimensional representation. The operator product expansion between the currents
can be rewritten as

J(x1, z)J(x2, w) ≈ k (x1 − x2)2

(z − w)2 + 1
z − w

(
(x1 − x2)2∂x2 + 2(x1 − x2)

)
J(x2, w) . (A.38)

The three fermions can similarly be combined:

ψ(x; z) = −ψ+(z) + 2xψ3(z)− x2ψ−(z) . (A.39)

Then, first of all one can verify the operator product expansion

ĵA(z)ψ(x; z) ≈ −D
A
x ψ(x; z)
z − w

, (A.40)

where the DA
x are as in (A.35) with h = −1. This shows that ψ(x) is an sl(2,R) primary

field with spin equal to −1. One can then rewrite the fermion operator product expansions:

ψ(x1; z1)ψ(x2; z2) ≈ k (x12)2

z12
(A.41)

ĵ(x1; z)ψ(x2, w) ≈ 1
z − w

(
(x1 − x2)2∂x2 + 2(x1 − x2)

)
ψ(x2, w) . (A.42)

For the spin fields, we define the linear combinations:

S(x; z) = x e−
i
2 Ĥ1+ i

2 Ĥ0 + e
i
2 Ĥ1− i

2 Ĥ0 (A.43)

S̃(x; z) = −x e−
i
2 Ĥ1− i

2 Ĥ0 + e
i
2 Ĥ1+ i

2 Ĥ0 . (A.44)

One can check that these transforms as spin h = −1
2 fields. The fields S and S̃ have opposite

four-dimensional chirality. Using the operator product expansions (A.28) and (A.29), one
derives the operator product expansions for the fields in the x-basis:

S(x1; z)S(x2;w) ≈ − x1 − x2

(z − w)
1
2

(A.45)

1√
k
ψ(x1; z)S(x2;w) ≈ 2(x1 − x2) S̃(x2;w)

(z − w)
1
2
. (A.46)
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A.4.1 The operator products of bosonic primary fields

The primary fields Φh satisfy the mutual operator product expansion — to avoid clutter
we are only presenting the holomorphic dependence on x1 − x2 and z − w:

Φh1(x1; z)Φh2(x2;w) ≈
∫
dh

(x1 − x2)h−h1−h2

(z − w)−
h1(h1−1)

k
−h2(h2−1)

k
+h(h−1)

k

Ch1h2
h Φh(x2;w) + . . .

(A.47)

The AdS3 structure constant Ch1h2
h3 is given by

Ch1h2
h3 = ν1−h1−h2−h3Υ(b)

Υ(b(h1+h2+h3)−b)
Υ(2bh1−b)Υ(2bh2−b)Υ(2bh3)

Υ(bh1+bh2−bh3)Υ(bh2+bh3−bh1)Υ(bh3+bh1−bh2)
(A.48)

where b2 = 1
k , ν is a constant, and γ(x) = Γ(x)

Γ(1−x) . The special function Υ introduced in [32]
satisfies special shift properties

Υ (x+ b) = b1−2bx γ (bx) Υ (x) , Υ
(
x+ 1

b

)
= b−1+ 2x

b γ

(
x

b

)
Υ (x) , (A.49)

whenever x lies outside the range 0 < Re(x) < b + 1
b . The structure constant is obtained

from the three point functions CH(h1, h2, h3) of the theory on Euclidean AdS3 derived
in [33] by the relation:

Ch1h2
h3 = CH(h1, h2, h3)

CH(1, h3, h3) . (A.50)

We will be interested in the form of the operator product expansion coefficient for two
particular cases:

Case 1. For h3 = h1 + h2 − 1 we find the structure constant

Ch1h2
h1+h2−1 = 1 . (A.51)

It is crucial that this is a universal constant independent of the spins of the primaries.

Case 2. For h3 = h1 + h2 − 2 we find the structure constant:

Ch1h2
h1+h2−2 = 1

νγ
(

1
k

) γ
(

(2h1−2)
k

)
γ
(

(2h2−2)
k

)
γ
(

2h3
k

) . (A.52)

This structure constant depends on the spins.

A.5 the operator product coefficients of su(2)

The operator product coefficients of su(2) at level k can be gleaned from [9] after a conve-
nient renormalization of the operators:

Csu(2)
j1j2

j3 = Nj1j2
j3P (j + 1)

3∏
i=1

P (j − 2ji)
P (2ji)

P (2j3)
P (2j3 + 1) . (A.53)
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Here the function P (s) is defined as a finite product:

P (s) =
s∏

n=1
γ

(
n

k

)
, (A.54)

with P (0) = 1, and j = j1 + j2 + j3. As noted in [9], whenever 2hi and h1 + h2 + h3
are integer valued, the structure constants (A.48) and (A.53) multiply into a constant
when ji = hi − 1. In the bulk of the paper, we encounter a further generalization of this
property. We also exploit the fact that the structure constants of the super parafermions
are essentially given by those of the su(2) Wess-Zumino-Witten model [31].

B Extended superconformal field theory

The conformal field theory Y is an N = (2, 2) superconformal field theory with central
charge cY = 9− 6/k. The left moving superconformal symmetry is generated by the stress
tensor T , the supercurrents G± and a U(1)R current JR. In this appendix we omit the
explicit Y indices that would denote the fact that symbols refer to the internal conformal
field theory Y alone. To set the stage, we begin with a brief review of (anti-)chiral rings
and Ramond ground states.

B.1 Chiral primaries, spectral flow and a real structure

Chiral and anti-chiral primary states are defined by the conditions [15]:

G+
− 1

2
V a
c.p. = 0 , G±

n+ 1
2
V a
c.p. = 0 , for n ≥ 0 (B.1)

G−− 1
2
V ā
a.c.p. = 0 , G±

n+ 1
2
V ā
a.c.p. = 0 , for n ≥ 0 . (B.2)

From the supersymmetry algebra and unitarity one can check that they satisfy the extremal
conditions ha = qa

2 and hā = − qā

2 respectively. These operators have regular operator
product expansions and one can define a chiral and anti-chiral ring [15]:

V a
c.p.(z)V b

c.p.(w) ≈ RabcV c
c.p.(w) , (B.3)

V ā
a.c.p.(z)V b̄

a.c.p.(w) ≈ Rāb̄c̄V c̄
a.c.p.(w) , (B.4)

where the ring structure constants Rabc and Rāb̄c̄ are related by complex conjugation
(namely the assumed Z2 symmetry that charge conjugates chiral into anti-chiral primaries).

In this section we write down the basic operator product expansions between chiral
primaries, anti-chiral primaries and Ramond ground states in the Y -theory. There are a
few important ingredients that enter the derivations. The first is the existence of spectral
flow in N = 2 theories. Spectral flow by an amount η acts on operators and shifts their
R-charges and conformal dimensions according to the formulae:

JR,0 → JR,0 + c

3η , Lm → Lm + ηJR,m + c

6η
2δm,0 . (B.5)

The JR,m and Lm are the modes of the R-current and stress tensor respectively. The NS
and Ramond sectors are related by spectral flow by an amount η = ±1

2 [15]. In particular,
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Ramond ground states are related by spectral flow by η = ±1
2 to (anti-)chiral primary

operators in the NS sector.
The second ingredient is the bosonization of the R-current in terms of a canonically

normalized scalar Z:
JR(z) =

√
c

3 i ∂Z . (B.6)

Thus, an operator with worldsheet R-charge q can be represented as the product

Oq = ei
√

3
c
q Z Õ , (B.7)

where the operator Õ has zero world sheet R-charge. We shall use this fact extensively.
An (anti-) chiral primary of charge qa (qā) can therefore be written in the product form:

V a
c.p. = ei

√
3
c
qaZΠa , V ā

a.c.p. = ei
√

3
c
qāZΠā . (B.8)

We assume that the operators Πa,Πā decouple from the U(1)R sector. Note that the unique
generalized volume operator of charge c

3 is purely in the U(1)R sector.
The third ingredient is a useful way to think of the connection between NS and Ramond

sectors of (2, 2) superconformal theories that is advanced in [24]. If we start with the lowest
R-charge Ramond ground state, we can generate all other ground states by acting on it
with the chiral ring:

Σa = V a
c.p. · Σ0

= ei
√

3
c (qa− c6)Z Πa , (B.9)

where we have used the fact that the Ramond ground state Σ0 = e−i
√

c
12Y is purely written

in terms of the U(1)R sector. In the final expression in (B.9) we also see how the Ramond
ground state is related to the chiral primary in the NS sector by spectral flow by half a
unit. Alternatively if we start with the highest R-charge Ramond sector ground state, we
generate all other ground states by acting with the anti-chiral ring:

Σā = V ā
a.c.p. · Σ̄0

= ei
√

3
c
(qā+ c

6 )Z Πā , (B.10)

where Σ̄0 = ei
√

c
12Z . This means that Ramond ground states can be canonically associated

to chiral ring elements (a) or to anti-chiral ring elements (ā).
The last ingredient is a relation between these two choices of basis of Ramond ground

states. They are related by a real structure, Ma
ā [24]:

Σa = Ma
ā Σā . (B.11)

The basis change Ma
ā carries R-charge equal to 2qa − c

3 . One can similarly define its
complex conjugate M ā

a which has R-charge −2qa + c
3 . The complex conjugate matrix

equals the inverse matrix:

Ma
āM

ā
b = δab . (B.12)
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Given the real structureM and the fact that the chiral and anti-chiral primaries are related
to the Ramond ground states by half a unit of spectral flow, we also obtain another basis
of (anti-)chiral primaries labelled by ā (a):

V a
a.c.p. = Flow by minus one unit(V a

c.p.) = Ma
āV

ā
a.c.p.

V ā
c.p. = Flow by one unit(V ā

a.c.p.) = M ā
aV

a
c.p. . (B.13)

These operators have charges ∓( c3 −qa) respectively. Given these ingredients, we are ready
to derive the necessary operator product expansions starting from the chiral ring relations.

B.2 Operator products and a metric

Our derivation of various terms in operator product expansions is based on the chiral
ring relation

V a
c.p.(z)V b

c.p.(w) ≈ RabcV c
c.p.(w) +O(z − w) . (B.14)

Firstly, we derive an analogue of the chiral ring relation in which we factor out the U(1)R
charge of the chiral primary operators. We use the form (B.8) of the chiral ring elements
and write the product of operators as:

ei
√

3
c
qaZΠa(z)ei

√
3
c
qbZΠb(w) ≈ (z − w)

3
c
qaqbei

√
3
c
(qaZ(z)+qbZ(w)Πa(z)Πb(w) . (B.15)

In order to be consistent with the ring relation (B.14) we identify

V c
c.p.(w) = ei

√
3
c (qa+qb)Z(w))Πc(w) . (B.16)

and reconstruct the leading term in the operator product expansion that the fields Πa

must satisfy:
Πa(z)Πb(w) ≈ (z − w)−

3
c
qaqb

(
RabcΠc(w) +O(z − w)

)
. (B.17)

We can think of the fields Πa as R-parafermions. Now that we have the Πa operator product
expansion, we more easily obtain the leading term in the operator product expansion of
the Ramond ground states:

Σa(z)Σb(w) ≈ ei
√

3
c
(qa− c6 )ZΠa(z)ei

√
3
c (qb− c6)ZΠb(z)

≈ (z − w)−
1
2 (qa+qb)+ c

12
(
ei
√

3
c

(
qa+qb− c3

)
ZRabcΠc(w) +O(z − w)

)
. (B.18)

We have assumed that the charges qa corresponds to the spectrum of R-charges of the
chiral primaries — they are therefore positive. We once more define the chiral primary
operator V c

c.p. as in (B.16) and compute:

Σa(z)Σb(w) ≈ (z − w)−
1
2(qa+qb)+ c

12
(
e−i
√

c
3Z Rabc V

c
c.p.(w) +O(z − w)

)
≈ (z − w)−

1
2(qa+qb)+ c

12
(
Rabc

[
M c

c̄V
c̄
a.c.p.

]
+O(z − w)

)
. (B.19)

In going from the first to the second line we observe that we have spectrally flowed a
chiral primary by minus one unit and this leads to the anti-chiral primary (B.13). We note
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that the dimension of the anti-chiral primary with the non-canonical labelling V c
a.c.p. is

given by c
6 −

qc

2 .
A second equation can similarly be found by starting out with Ramond ground states

labelled by anti-chiral primaries and performing the operator products:

Σā(z)Σb̄(w) ≈ (z − w)
1
2

(
qā+qb̄

)
+ c

12
(
Rāb̄c̄

[
M c̄

cV
c
c.p.

]
+O(z − w)

)
. (B.20)

We find a chiral primary obtained by unit spectral flow from an anti-chiral primary, as in
equation (B.13), and it has world sheet dimension c

6 + qc̄

2 .
We summarize that in the operator product of Ramond ground states one can get either

a chiral primary or an anti-chiral primary as the leading term depending on the R-charges
of the Ramond ground states involved. The relevant formulas are (B.19) and (B.20).

Since the Ramond ground state can be written as a (anti-)chiral ring element times
the states with lowest (highest) R-charge, it is straightforward to compute the leading
term in the operator product expansion between a (anti-)chiral primary and a Ramond
ground state:

V a
c.p.(z)Σb(w) ≈ ei

√
3
c
qaZΠa(z)ei

√
3
c
(qb− c6 )ZΠb(z)

≈ (z − w)−
qa

2 ei
√

3
c (qa+qb− c6)ZRabcΠc(w) + . . .

≈ RabcΣc(w)
(z − w)

qa

2
+ . . . (B.21)

Again, this holds whenever the structure constant is non-zero. Similarly we find that

V ā
a.c.p.(z)Σb̄(w) ≈ Rāb̄c̄Σc̄(w)

(z − w)−
qā

2

+ . . . (B.22)

Lastly we derive the operator products between the chiral and anti-chiral ring elements.
The two point function of a chiral and anti-chiral primary operator is defined to be

〈V a
c.p.(z)V b̄

a.c.p.(w)〉 = gab̄

(z − w)2ha , (B.23)

where gab̄ is the Zamolodchikov metric and we have chosen a basis in which it is diagonal in
the sense that qb̄ = −qa. In order to obtain the operator product coefficient of interest we
shall compute a three-point function in two different ways [28]. The three point function
of interest is given by

〈V a
c.p.V

b̄
a.c.p.V

c̄
a.c.p.〉 = Xab̄c̄

(za − zb)qb(zc − za)qc
. (B.24)

Here we have used the usual definition of the three point function and the charge conser-
vation equation qa = qb + qc. In the first manner of calculation, we use the chiral ring
relation and obtain

〈V a
c.p.V

b̄
a.c.p.V

c̄
a.c.p.〉 = Rb̄c̄d̄ 〈V

a
c.p.V

d̄
a.c.p.〉

= Rb̄c̄d̄ g
ad̄

(za − zc)2ha . (B.25)
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Thus we have fixed the structure constant to be Xabc̄ = Rb̄c̄d̄ g
ad̄. Equivalently we can use

the operator product expansion

V a
c.p.(za)V b̄

a.c.p.(zb) ≈
Dab̄

c

(za − zb)qb
V c
c.p.(za) (B.26)

and obtain

〈V a
c.p.V

b̄
a.c.p.V

c̄
a.c.p.〉 = Dab̄

c

(za − zb)qb
gcc̄

(za − zc)qc
. (B.27)

We therefore find — see also appendix E of [28] –:

Dab̄
c = gad̄ Rb̄ēd̄ gcē . (B.28)

We can write this equality as D = gRg−1 where we indicate with g the Zamolodchikov
metric with upper indices.

C The spacetime global superconformal algebra

The global N = 2 superconformal algebra is described by the commutation relations:

{G+
r ,G−s } = 2Lr+s + (r − s)Q0

[Lm,Ln] = (m− n)Lm+n

[Lm,G±r ] = (m2 − r)G
±
m+r

[Q0,G±r ] = ±G±r , (C.1)

for r, s = ±1
2 and m,n = 0,±1. Using the currents of the worldsheet theory it is possible

to write down integrated operators on the worldsheet that correspond to these global
generators [8]. The zero modes of the bosonic currents generate the isometries of the
target space. If we define

L0 = −
∮
J3 = −

∮
e−φψ3 , (C.2)

L± = −
∮

(J1 ± iJ2) =
∮
e−φ(ψ1 ± iψ2) , (C.3)

then these generators satisfy the global Virasoro algebra. The U(1)R charge in spacetime
was defined in equation (A.18)

Q0 =
√

2k
∮
J0 =

∮
e−ψψ0 . (C.4)

It therefore remains to write down the spacetime supercharges. In the (−1
2) picture they

read:
G±r =

∮
e−

1
2φ S±r , with r = ±1

2 . (C.5)

The operator φ is the bosonized superghost and the exponential has worldsheet conformal
dimension 3

8 . Thus the vertex operator S±r must have dimension equal to 5
8 . The key to
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writing down the vertex operators for the spacetime supercharges is to keep track of the
charges under the bosonic spacetime symmetries. In particular from the spacetime algebra
it is clear that the spacetime supercharges have ±1 charge under the spacetime R-current
Q0 and must therefore include the factor e±

i√
2k
X in their vertex operators. Similarly, their

Lorentz transformation properties fix their form to be

S±r = e−ir(H1∓H0)e
± i√

2k
XΣ± , with r = ±1

2 . (C.6)

The operator factors Σ± are purely in the Y -theory. By using the constraint that the
worldsheet dimension of S±r should be 5

8 we see that

∆(Σ±) = 3
8 −

1
4k = cY

24 . (C.7)

Thus we conclude that these must be Ramond ground states of the theory Y . A priori
there are many Ramond ground states in Y but, as shown in [8], the Ramond ground states
that appear in the spacetime supercharge are those with the highest or lowest worldsheet
R-charge ± cY

6 . These can be expressed purely in terms of the boson Z that captures the
world sheet U(1)R current direction:

S±r = e−ir(H1∓H0)e
± i√

2k
X
e±i
√

cY
12 Z . (C.8)

Using the free field operator products, one checks that the integrated vertex operators
Ln,G±r and Q0 indeed satisfy the spacetime N = 2 global supersymmetry algebra (C.1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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