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1 Introduction

The effective gravitational action for a given matter system coupled to gravity is defined
in terms of the matter partition functions Zmat[g] computed in a fixed metric g on a given
manifoldM as

exp
(
− Sgrav[g, ĝ]

)
= Zmat[g]
Zmat[ĝ] . (1.1)

By this definition, the effective gravitational action necessarily depends on two different
metrics. We may consider ĝ as a reference metric, and in particular in two dimensions we
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may assume that g and ĝ are related by a conformal factor as g = e2σ ĝ. The definition (1.1)
implies that Sgrav satisfies a cocycle identity

Sgrav[g1, g2] + Sgrav[g2, g3] = Sgrav[g1, g3] . (1.2)

The best-known example is the effective gravitational action for conformal matter coupled
to 2D gravity which is the Liouville action [1]

SL[g, ĝ] ≡ SL[ĝ, σ] =
∫

d2x
√
ĝ
(
σ∆0σ +R0σ

)
, g = e2σ ĝ , (1.3)

and
Sgrav[g, ĝ] = − c

24πSL[g, ĝ] , (1.4)

c being the central charge of the conformal matter system. Another, even simpler example
of a gravitational action satisfying this cocycle identity is the “cosmological constant action”

Sc[g, ĝ] = µ0

∫
d2x(√g −

√
ĝ) = µ0(A−A0) . (1.5)

In general, this action must also be present as a counterterm to renormalize the divergences
that are present in (1.1), in addition to SL.

Two-dimensional gravitational actions other than the Liouville or cosmological con-
stant actions can be constructed and have been studied in the mathematical literature,
like the Mabuchi and Aubin-Yau actions [2–5]. These latter functionals involve not only
the conformal factor σ but also the Kähler potential φ and do admit generalizations to
higher-dimensional Kähler manifolds. In the mathematical literature they appear in re-
lation with the characterization of constant scalar curvature metrics [5]. Their rôles as
two-dimensional gravitational actions in the sense of (1.1) have been highlighted in [6]. In
particuler, ref. [6] has initiated the study of the metric dependence of the partition function
of non-conformal matter like a massive scalar field and shown that the gravitational action
defined by (1.1) contains these Mabuchi and Aubin-Yau actions as first-order corrections
(first order in m2A where m is the mass and A the area of the Riemann surface) to the
Liouville action. The partition function of quantum gravity at fixed area, with a gravita-
tional action being a combination of the Liouville and Mabuchi actions, has been studied
at one loop in [7] and at two and three loops in [8]. The effective gravitational action1 for
such massive scalar fields including higher-order corrections in m2 has been studied in [9],
and on manifolds with boundaries in [10]. A rigourous mathematical construction of the
functional integral based on the coupling of the Liouville and Mabuchi actions has since
been obtained in ref [11] by means of probabilistic tools. Further properties of the Mabuchi
action were studied in [12, 13].

References [6, 9, 10] all studied the effective gravitational action of a two-dimensional
massive scalar field, and a natural question to ask was what happens for two-dimensional
massive fermions. As we will briefly discuss below, the most interesting case corresponds
to a massive “Majorana” fermion.2 While this seemed to be a simple generalisation of the

1Note that at present we call Sgrav[g, ĝ] what was called Sgrav[ĝ, g] in refs [6, 8–10].
2This is a 2D fermion with a Majorana-type mass term. Classically, at the level of the Dirac equation,

one can impose a Majorana condition, but the eigenfunctions of the corresponding (purely imaginary) Dirac
operator D necessarily are complex. One might argue whether it is then appropriate to talk about Majorana
fermions in the quantum theory. However, we can obtain the partition function in terms of the eigenvalues
of the (real) squared operator D2 whose eigenfunctions can all be chosen to be real.
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case of the scalar field, it actually turned out to be technically quite more involved. It is
the purpose of the present paper to study this effective gravitational action for massive
fermions. Much as for the scalar case, the renormalised Green’s functions at coinciding
points play an important role. At present it will be useful to study both, the Green’s
function of the massive Dirac operator D and the Green’s function of the squared operator
D2. The study of these operators and the associated (local) zeta-functions and (local)
heat kernels will occupy a major part of these notes. The order m2 terms of the effective
gravitational action can then be expressed as an integral over the manifold of these Green’s
functions at coinciding points. A detailed knowledge of their zero-modes (for zero mass) is
required to perform the small-mass expansion correctly. In this paper we will then restrict
to spherical topology where the Dirac operator has no zero-mode (even for zero mass) and
we can reliably obtain the small mass expansion up to and including the order m2 terms.
Besides the leading Liouville term, at order m2 we get a cosmological constant action, and a
local

∫ √
ĝ σe2σ term characteristic of the Mabuchi action, as well as some further non-local

terms involving the Green’s functions. Despite some effort, we could not express the latter
in terms of purely local quantities like the conformal factor σ and the Kähler potential.
Similar non-local terms also appeared in the scalar case at order m4 and it seems that in
the present fermionic case they already are unavoidable at order m2. We plan to return
to the case of general topology with a detailed account of the role of the zero-modes in a
future publication.

This paper is organised as follows. In the next section we introduce the relevant
differential operators: massive Dirac operator D, its square D2, and the scalar and spinoral
Laplacians. We discuss their eigenvalue problems (with a specific look at the example of
the torus) and how the eigenvalues transform under conformal changes of the metric. In
section 3 we define the gravitational action precisely in terms of these eigenvalues and how
it is related to the corresponding zeta-functions. In section 4 we embark on a detailed study
of the different Green’s functions, local zeta-functions and local heat kernels, and how they
vary under conformal changes of the metric. So far, all our discussion is valid for all 2D
topologies. All this is put together in section 5 to obtain the effective gravitational action.
The first two subsection are still for general topology, but then we specify to spherical
topology to be able to do the small m-expansion and identify the order m2 contributions
to the effective action, and in particular display the Mabuchi-type action.

2 The Dirac operator

2.1 Flat space: γ-matrices and Dirac operator

In D=2 Euclidean dimensions, µ = 1, 2, we choose two hermitian γ-matrices. We can
choose them to be both real, i.e. σx and σz. Thus

γ1 = σx , γ2 = σz . (2.1)

The chirality matrix then is

γ∗ = iγ1γ2 = σy ⇒ γ†∗ = γ∗ , γT∗ = γ∗∗ = −γ∗ , (2.2)
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and, of course, γ∗ anticommutes with γµ. The generator of “Lorentz” transformations,
i.e. of SO(2) is i

4 [γ1, γ2] = γ∗ and the representation of a finite rotation by an angle α
on a spinor ψ is given by the real matrix D(α) = eiαγ∗/2. One easily shows that ψ∗,
γ∗ψ and ∂/ψ all transform3 exactly as ψ. Hence it makes sense to impose the Majorana
condition ψ∗ = ψ.

For anticommuting Majorana spinors a mass term like
∫
ψ†mψ =

∫
mψTψ vanishes.

We can, however, introduce a non-vanishing, real mass-term as
∫
ψ†mγ∗ψ, so that the

action reads
S =

∫
ψ†(i∂/+mγ∗)ψ . (2.3)

The corresponding Dirac operator

D = i∂/+mγ∗ (2.4)

is hermitian and squares to D2 = −∂µ∂µ + m2 which incorporates the correct Euclidean
continuation of the mass-shell condition pµpµ + m2 = 0. For (complex) Dirac spinors one
might also contemplate an ordinary mass term with action S =

∫
ψ†(i∂/ + m)ψ. However,

the square of the corresponding Dirac operator (i∂/+m)2 = −∂µ∂µ +m2 + 2im∂/ does not
correspond to anything simple or physical. (It is (i∂/ −m)(i∂/ + m) that instead gives the
mass-shell condition.) For this reason, we will focus on the action (2.3) and corresponding
Dirac operator (2.4).

Note that the Dirac operator (2.4) is a purely imaginary hermitian differential operator
and hence (i∂/+mγ∗)ψ = 0 admits real solutions ψ. However, the corresponding eigenvalue
problem

(i∂/+mγ∗)ψn = λnψn (2.5)

clearly cannot admit real solutions ψn (since λn are real) and on must take the ψn to be
complex. Taking the complex conjugate of (2.5), we see that ψ∗n also is an eigenfunction
but with eigenvalue −λn. If we let

ψn = 1√
2

(χn + iφn) , (2.6)

then taking the real and imaginary part of (2.5) one gets

(i∂/+mγ∗)χn = iλnφn , (i∂/+mγ∗)φn = −iλnχn , (2.7)

and
(i∂/+mγ∗)2χn = λ2

nχn , (i∂/+mγ∗)2φn = λ2
nφn . (2.8)

2.2 Curved space: γ-matrices, Dirac operator and spinorial Laplacian

The above Dirac-matrices (to be denoted γa) and Dirac operator are those in flat space.
In curved space we have γµ = Eµa γ

a and the spinorial covariant derivative is

∇µ = ∂µ −
i

2ω
ab
µ

i

4[γa, γb] = ∂µ + 1
4ω

ab
µ γ

ab = ∂µ −
i

2ω
12
µ γ∗ . (2.9)

3The precise statement for ∂/ψ is, of course: if ψ′(x′) = D(α)ψ(x) then γµ ∂
∂x′µψ

′(x′) = D(α)γν ∂
∂xν

ψ(x).
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We let
ωµ ≡ 2ω12

µ ⇒ ∇µ = ∂µ −
i

4ωµγ∗ . (2.10)

More generally when acting on a spinorial object that also carries vector indices, one has
∇µ = ∂µ − i

4ωµγ∗ + Γµ. To avoid confusion we call ∇sp
µ the spinor covariant derivative

defined in (2.9), (2.10):
∇sp
µ = ∂µ −

i

4ωµγ∗ . (2.11)

Note that since γ∗ = σy is purely imaginary, ∇sp
µ is a real (anti-hermitian) differential

operator. Next we define
∇/ = γµ∇sp

µ = γaEµa ∇sp
µ . (2.12)

It is important to note that ∇/ψ transforms as ψ and hence ∇/∇/ψ = γµ∇sp
µ γ

ν∇sp
ν ψ. How-

ever, this is not γµγν∇sp
µ ∇sp

ν ψ. Instead one has ∇µγa = ωabµ γ
b and ∇µγν = Eνa∇µγa =

Eνaω
ab
µ γ

b = −γaωabµ Eνb . But using 0 = ∇µEνa = ∂µE
ν
a + ΓνµρEρa + ωabE

ν
b we get consistently

∇µγν = ∂µγ
ν + Γνµργρ . (2.13)

One can then consistently show that ∇µ∇/ψ = ∇sp
µ ∇/ψ and

∇/∇/ψ ≡ (γµ∇µ)(γν∇ν)ψ = γµγν∇µ∇νψ = γµγν
(
∇sp
µ ∇sp

ν − Γρµν∇sp
ρ

)
ψ . (2.14)

This is as if ∇µγν vanishes, but as we have seen above this is not the case. What one really
has is

[∇µ, γν ] = 0 , i.e. ∇µ(γν . . .) = γν∇µ . . . . (2.15)

Next, using γµγν = gµν + γµν and ∇µ∇νψ −∇ν∇µψ = 1
4R

ab
µνγ

abψ we get

∇/∇/ψ = gµν∇µ∇νψ + 1
8γ

cdRabcdγ
abψ . (2.16)

In two dimensions γcdRabcdγab simplifies to −2R where R is the scalar Ricci curvature. Thus

∇/∇/ψ = gµν∇µ∇νψ −
1
4Rψ =

(
∆sp −

1
4R

)
ψ , (2.17)

where we have introduced the spinorial Lapacian:

∆spψ = gµν∇µ∇νψ = gµν
(
∇sp
µ ∇sp

ν − Γρµν∇sp
ρ

)
ψ . (2.18)

Note that ∇sp
µ is a 2 × 2-matrix differential operator, and so is this spinorial Laplacian.

More precisely, we have a piece proportional to the identity matrix and involving the scalar
Laplacian, and a piece proporional to γ∗:

∆spψ =
(

∆scalar −
1
16ω

µωµ

)
ψ − i

4 γ∗
(
(∇µωµ) + 2ωµ∂µ

)
ψ . (2.19)

Finally, we define the purely imaginary, hermitian Dirac operator as the curved-space
generalisation of (2.4):

D = i∇/+mγ∗ . (2.20)
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Then
D2 = −∇/∇/+m2 = −∆sp + 1

4R+m2 . (2.21)

Again, as in flat space, the eigenvalue problem of D

Dψn ≡ (i∇/+mγ∗)ψn = λnψn , (2.22)

(n ≥ 0) cannot admit real solutions, and ψ∗n is eigenfunction with eigenvalue −λn:

Dψ∗n = −λnψ∗n . (2.23)

For all λn 6= 0, within any couple (ψn, ψ∗n) we decide to call ψn the eigenfunction with the
positive eigenvalue. With this convention we always have

λn ≥ 0 . (2.24)

Again we let
ψn = 1√

2
(χn + iφn) , (2.25)

and get
Dχn = iλnφn , Dφn = −iλnχn , (2.26)

while, of course

D2χn = Λnχn , D2φn = Λnφn , D2ψn = Λnψn , Λn = λ2
n . (2.27)

The natural inner product is

(Ψ1,Ψ2) =
∫

d2x
√
gΨ†1Ψ2 . (2.28)

With respect to this inner product i∇/ and D are hermitian operators and hence the ψn
corresponding to different λn are orthogonal. Similarly, for the ψ∗n. Also all ψ∗n are or-
thogonal to all ψk (as long as λn 6= 0). This, together with the normalisation conditions is
equivalent to

(χn, χk) = δnk , (φn, φk) = δnk , (χn, φk) = 0 (λn 6= 0) . (2.29)

Remarks: let us make a few obvious remarks. Note that the eigenfunctions of D (the
ψn and ψ∗n) are automatically eigenfunctions of D2, but the converse is not necessarily true
as is examplified by the χn and φn. What is true is that within any eigenspace of D2 with
eigenvalue Λn = λ2

n one can find linear combinations (corresponding precisely to the ψn
and ψ∗n) that are eigenfunctions of D with eigenvalues +λn and −λn.

Since ∇sp
µ commutes with γ∗, it is clear that ∇/ anticommutes with γ∗. Then, for m 6= 0,

D has no simple (anti)commutation relation with γ∗ and we cannot have eigenfunctions of
D of definite chirality (i.e. being also eigenfunctions of γ∗). For m = 0, D anticommutes
with γ∗, so that γ∗ψn is eigenfunction of D with eigenvalue −λn. Thus for λn 6= 0, ψn and
γ∗ψn necessarily are orthogonal. For λn = 0, however, one can always choose a basis of

– 6 –
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definite chirality eigenfunctions.4 As is well known, the difference of positive and negative
chirality zero-modes of D is called its index.

For D2 the situation is simpler: it is clear from (2.19) and (2.21) that D2 commutes
with γ∗, and one can then take the eigenfunctions of D2 to have definite chirality. From the
discussion of the previous paragraph it is then clear that in general these definite chirality
eigenfunctions of D2 are not eigenfunctions of D.

Finally, one has

λ2
n −m2 = (ψn, (D2 −m2)ψn) = (ψn, (i∇/)2ψn) = (i∇/ψn, i∇/ψn) ≥ 0 . (2.30)

We see that λ2
n > m2, unless i∇/ψn = 0 in which case λ2

n = m2. In any case, for m 6= 0 we
have λ2

n > 0 and there are no zero-modes of D. Similarly, we have

(ψn, (−∆sp)ψn) = −
∫

d2x
√
g ψ∗ng

µν∇µ∇νψn =
∫

d2x
√
g(∇sp

µ ψn)∗gµν∇sp
ν ψn ≡ a2 ≥ 0 .

(2.31)
It follows from (2.21) that if we choose a constant curvature metric R = R̄, we have

λ2
n −m2 = a2 + 1

4R̄ , (2.32)

so that on the sphere with R > 0 we have λ2
n > m2 for all n, i.e. there are no zero-modes

even for m = 0.

2.3 The example of the flat torus

It is useful to have at least one specific example of fermionic eigenfunctions. The simplest
case is the flat torus with each of its periods being 2π. Of course, being flat, we will not
be able to appreciate any effects of curvature. As is well known, for fermions we may
consider different spin structures, i.e. periodic or anti-periodic boundary conditions around
one or the other circle of the torus, leading to four different spin structures. Here we will
only investigate the doubly periodic boundary conditions, the other spin structures can
be treated in complete analogy. Note that it is only for the doubly periodic boundary
conditions that the zero-modes are present.

The relevant Dirac operator then is the one given in (2.22), i.e.

D = i∂/+mγ∗ = iσx∂1 + iσz∂2 + σym = i

(
∂2 ∂1 −m

∂1 +m −∂2

)
. (2.33)

We have D2 = −(∂2
1 + ∂2

2) +m2 so that D2ψn = λ2
nψn yields

λ2
n ≡ λ2

~n = n2
1 + n2

2 +m2 , ψn ∼ ein1x1+in2x2
. (2.34)

The complex eigenfunctions of the Dirac operator D then are

ψ~n(x1, x2) =
(
a

b

)
ein1x1+in2x2

, (2.35)

4If ψ0,i already has definite chirality, nothing is to be done. If not, then (1 ± γ∗)ψ0,i/2 are both non-
vanishing and have definite chirality ±1.
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where a and b of course also depend on the integers n1 and n2 but not on x1 and x2.
We denote by λ~n the positive square root of λ2

~n: λ~n = +
√
n2

1 + n2
2 +m2. Then Dψn =

λnψn gives

− (n1 + im)b = (λ~n + n2)a , −(n1 − im)a = (λ~n − n2)b . (2.36)

This is easily solved, up to a common normalisation, which we choose such that∫
d2xψ†~nψ~n = 1:

ψ~n(~x) = 1
2π
√

2λ~n(λ~n + n2)

(
n1 + im

−λ~n − n2

)
ein1x1+in2x2

. (2.37)

Of course, since λ~n only depends on n2
1 + n2

2, ψ~n and ψ−~n have the same eigenvalue λ~n.
One also easily checks that

ψ∗~n = ψ−~n
∣∣
λ~n→−λ~n

, (2.38)

which confirms that ψ∗~n is indeed an eigenfunction of D with eigenvalue −λ~n. Thus the
complete set of eigenfunctions is the set of all ψ~n and all ψ∗~n. Note the degeneracy of the
eigenvalues. For non-zero n1 and n2, ±n1 and ±n2 all yield the same λ~n, and thus the
eigenvalues of D are (at least) four-fold degenerate. (In the present example where both
circles have the same radius, there is a further degeneracy under the exchange of n1 and
n2.) Since for D2, ψn and ψ∗n correspond to the same eigenvalue Λn = λ2

n, generically the
eigenvalues of D2 are (at least) eight-fold degenerate.

Note that for m 6= 0 there are no zero-modes, while for m = 0 the zero-modes cor-
respond to n1 = n2 = 0. However, the form of (2.37) is not directly useful as it is
indeterminate in this case. We may instead first take to n1 = n2 = 0 and then consider
the limit m→ 0 which gives the two zero-modes

ψ~0 = −1
2π
√

2

(
−i
1

)
, ψ∗~0 = −1

2π
√

2

(
i

1

)
. (2.39)

Note that they happen to be eigenmodes of γ∗:

γ∗ψ~0 = ψ~0 , γ∗ψ
∗
~0 = −ψ~0 . (2.40)

For the other spin structures, the n corresponding to a circle with anti-periodic bound-
ary conditions are half-integer and, obviously, then there are no zero-modes even for m = 0.

2.4 Conformal changes

We will consider conformal changes between a “reference” metric / vielbein and a confor-
mally rescaled metric / vielbein, related as

gµν = e2σ ĝµν , eaµ = eσ êaµ , Eµa = e−σÊµa , (2.41)

where the conformal factor σ depends on the space-coordinates. It follows from dea +
ωabeb = 0 (ea = eaµdxµ, ωab = ωabµ dxµ) that

ωabµ = ω̂abµ + (êaµÊbλ − êbµÊaλ)∂λσ . (2.42)

– 8 –
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This yields
∇sp
µ = ∇̂sp

µ −
i

2
(
ê1
µÊ

2λ − ê2
µÊ

1λ)∂λσ . (2.43)

Using γµ = Eµa γ
a = e−σγ̂µ, it is then a straightforward exercice to show

∇/ = e−σ
(
∇̂/+ 1

2 γ̂
λ∂λσ

)
= e−3σ/2 ∇̂/ eσ/2 . (2.44)

For an infinitesimal variation δσ of the conformal factor this yields

δ∇/ = −δσ∇/+ 1
2γ

λ∂λδσ ⇒ δD = −δσ(D −mγ∗) + i

2γ
λ∂λδσ . (2.45)

Next, for the Christoffel symbols one has

gµνΓρµν = e−2σ ĝµνΓ̂ρµν . (2.46)

To work out the variation of D2 one can then either use (2.44) or (2.43) together with (2.18)
and (2.46). In any case,

D2 −m2 = e−2σ
(
D2 −m2 + γ̂µν∂µσ∇̂sp

ν −
1
2(∆̂scalarσ) + 1

2 ĝ
µν(∂µσ)(∂νσ)

)
, (2.47)

or for an infinitesimal variation of σ:

δD2 = −2δσ(D2 −m2) + (∂µδσ)γµν∇sp
ν −

1
2(∆̂scalarδσ) . (2.48)

3 The gravitational action

We define the matter partition function for fermionic matter with action S =
∫
ψ†(i∇/ +

mγ∗)ψ on a two-dimensional manifold with metric g as

Zmat[g] =
∫
DΨ exp

(
−
∫

d2x
√
gΨ†DgΨ

)
, (3.1)

where we wrote Dg to insist that this is the Dirac operator D for the metric g (and
corresponding vielbein e and spin connection ω). One expands Ψ on a complete set of
eigenmodes of D:

Ψ(x) = 1
√
µ

(∑
n

(bnχn(x) + cnφn(x)) +
∑
i

diψ0,i(x)
)
, (3.2)

where the first sum does not include the zero modes ψ0,i. The eigenfunctions χn, φn and
ψ0,i are real, commuting functions, orthonormalized as discussed above. µ is an arbitrary
mass scale we introduce so that the anticommuting coefficients bn, cn, di are dimensionless.5

It follows that ∫
d2x
√
gΨ†DgΨ = 2i

∑
n

λn
µ
cnbn , (3.3)

5Indeed, from the normalisation condition of the eigenmodes one sees that the χn and φn have engineering
dimension one, i.e. χn ∼ φn ∼ µ, and since Ψ must have dimension 1

2 so that the action
∫

d2x
√
gΨ†DgΨ

is dimensionless, we see from (3.2) that bn, cn, di are indeed dimensionless.
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where of course only the non-zero modes contribute. The functional integral measure is
defined in terms of grassmann integrals over these coefficients bn and cn, so that

Zmat[g] =
∫ ∏

n

dbndcn exp
(
−2i

∑
n

λn
µ
cnbn

)
= N

∏
n

λn
µ
. (3.4)

(again, the product is only over all strictly positive eigenvalues λn.
The gravitational action was defined by (1.1), i.e. Sgrav[g, ĝ] = − ln Zmat[g]

Zmat[ĝ] , so that

Sgrav[g, ĝ] = − ln
∏
n

λn[g]
µ

+ ln
∏
n

λn[ĝ]
µ

. (3.5)

We may also rewrite this in terms of the determinant of D2. The operator D2 has eigen-
values λ2

n for the χn and λ2
n for the φn, so that

Det ′D2 =
(∏
n

λ2
n

)2
, (3.6)

and
Sgrav[g, ĝ] = −1

4 ln Det ′D2[g] + 1
4 ln Det ′D2[ĝ] . (3.7)

All these determinants and products of eigenvalues are, of course, ill-defined and have
to be regularised. We will use the standard tool of regularisation via the corresponding
zeta-functions. The zeta-function of the operator D2 is

ζ(s) = 2
∑
n

(λ2
n)−s , (3.8)

since every eigenvalue λ2
n > 0 occurs once with eigenfunction χn and once with φn. Also, the

sum obviously does not include any zero eigenvalue in case there are zero-modes. Standard
manipulations give for the derivative

ζ ′(0) = −2
∑
n

ln λ2
n ⇒ −2 ln

∏
n

λ2
n

µ2 = ζ ′(0) + lnµ2ζ(0) , (3.9)

It follows that the (regularised) gravitational action is

Sgrav[g, ĝ] = 1
4
(
ζ ′g(0) + lnµ2ζg(0)

)
− 1

4
(
ζ ′ĝ(0) + lnµ2ζĝ(0)

)
. (3.10)

We want to determine this gravitational action for gµν(x) = e2σ(x)(ĝ)µν(x). Our strat-
egy will be to first determine δSgrav for infinitesimal δσ and then “integrate” this variation
to obtain Sgrav[g, ĝ]. Obviously, the variation of the gravitational action is given in terms
of the variation of the zeta-function ζ(s) around s = 0. To obtain this, we need to study
the variations of the eigenvalues λn under a corresponding variation of the Dirac operator
D. This leads us to the study of the Green’s functions, local zeta functions and local heat
kernels and their variations which is the subject of the next section.
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4 Green’s functions, heat kernels and zeta-function

4.1 Definitions and basic relations

Throughout this section we assume that m 6= 0 so that there are no zero-modes of D. (We
could also include the case m = 0 if the manifold is a sphere.) Recall that we had defined
ψn and ψ∗n (and hence χn and φn) such that λn ≥ 0. Thus throughout this section we can
assume λn > 0.

To begin with, note that∑
n

(
χn(x)χ†n(y) + φn(x)φ†n(y)

)
=
∑
n

(
ψn(x)ψ†n(y) + ψ∗n(x)(ψ∗n)†(y)

)
= δ(x− y)

√
g

12×2 .

(4.1)

4.1.1 Local zeta-functions

Next, we define two local zeta-functions ζ+(s, x, y) and ζ−(s, x, y) as

ζ+(s, x, y) =
∑
n

λ−2s
n

(
χn(x)χ†n(y) + φn(x)φ†n(y)

)
,

ζ−(s, x, y) =
∑
n

λ−2s
n

(
χn(x)φ†n(y)− φn(x)χ†n(y)

)
, (4.2)

where x = (x1, x2) and y = (y1, y2) denote points on the manifold. Note that these local
zeta-functions are real 2× 2-matrices. They can also be rewritten in terms of the ψn and
ψ∗n as

ζ+(s, x, y) =
∑
n

λ−2s
n

(
ψn(x)ψ†n(y) + ψ∗n(x)(ψ∗n)†(y)

)
,

ζ−(s, x, y) = i
∑
n

λ−2s
n

(
ψn(x)ψ†n(y)− ψ∗n(x)(ψ∗n)†(y)

)
. (4.3)

Obviously, ζ†+(s, x, y) = ζ+(s, y, x) and ζ†−(s, x, y) = −ζ−(s, y, x).
The convergence properties of these zeta-functions depend essentially on the large-n

behaviour of the eigenvalues λ2
n. The latter, in turn, is dictated by the leading 2-derivative

term in D2 which, by (2.19), is the same as the one of the scalar Laplacian, and which
is the same as in flat space. It follows that, as usual, these zeta-functions are convergent
expressions for <s > 1 and are otherwise defined by analytical continuation.

Denoting the Dirac trace by trD , we have∫
d2x
√
g trD ζ+(s, x, x) =

∑
n

λ−2s
n

∫
d2x
√
g
(
χ†n(x)χn(x) + φ†n(x)φn(x)

)
= 2

∑
n

λ−2s
n ≡ ζ(s) ,∫

d2x
√
g trD ζ−(s, x, x) =

∑
n

λ−2s
n

∫
d2x
√
g
(
φ†n(x)χn(x)− χ†n(x)φn(x)

)
= 0 . (4.4)

Note (again) that 2
∑
n λ
−2s
n can be interpreted as

∑
Λ−sn where Λn is either λ2

n or (−λn)2,
so that ζ(s) is actually the zeta function of D2.
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4.1.2 Local heat kernels

We similarly define local heat kernels that are again 2× 2-matrices:

K+(t, x, y) =
∑
n

e−λ
2
nt
(
χn(x)χ†n(y) + φn(x)φ†n(y)

)
=
∑
n

e−λ
2
nt
(
ψn(x)ψ†n(y) + ψ∗n(x)(ψ∗n)†(y)

)
,

K−(t, x, y) =
∑
n

e−λ
2
nt
(
χn(x)φ†n(y)− φn(x)χ†n(y)

)
= i

∑
n

e−λ
2
nt
(
ψn(x)ψ†n(y)− ψ∗n(x)(ψ∗n)†(y)

)
, (4.5)

as well as

K(t, x, y) = 1
2K+(t, x, y)− i

2K−(t, x, y) =
∑
n

e−λ
2
ntψn(x)ψ†n(y) . (4.6)

Note that K± are real functions and thus constitute the real and imaginary parts of K. All
three, K+, K− and K satisfy ( d

dt +D2
x

)
K±(t, x, y) = 0 , (4.7)

where the subscript x on D2 indicates that the derivatives are with respect to x.
It is important to note that K+ contains the full sum of all eigenfunctions of D, namely

the ψn and the ψ∗n. Thus if one used a different basis for these eigenfunctions one would
get the same K+. Moreover, the ψn and the ψ∗n appear symmetrically. We can write
K+(t, x, y) = 〈x|

∑
λ2
n
e−λ

2
ntP (λ2

n) |y〉 where P (λ2
n) is the projector on the eigenspace of

D2 with eigenvalue λ2
n. This makes clear that one could use any basis of eigenfunctions

of D2. This also means that one should be able to obtain K+ uniquely by solving the
heat equation (4.7) for the operator D2 with the appropriately prescribed short-distance
singularity. However, this is not true for the imaginary part K− of K. We see from (4.5)
that the definition of K− is not simply a sum over all eigenfunctions of D, but that we
made a certain distinction between the eigenfunctions with λn > 0 and those with λn < 0.
Clearly, the operator D2 does not make this distinction, and hence, one cannot simply get
the K− by solving (4.7). However, one can write K− in terms of an auxiliary quantity we
call L(t, x, y) as

K−(t, x, y) = DxL(t, x, y) , (4.8)

where

L(t, x, y) = i
∑
n

e−λ
2
nt

λn

(
χn(x)χ†n(y) + φn(x)φ†n(y)

)
= i

∑
n

e−Λnt
√

Λn
(
ψn(x)ψ†n(y) + ψ∗n(x)(ψ∗n)†(y)

)
= 2i<

∑
n

e−Λnt
√

Λn
ψn(x)ψ†n(y) . (4.9)
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We see that L can now be constructed from the eigenfunctions and eigenvalues of D2 only.
Another property of K− concerns is matrix structure at coinciding points:

K−(t, x, x) ∼ γ∗ . (4.10)

Indeed, if we call an and bn the two complex components of ψn(x), then ψn(x)ψ†n(x) −
ψ∗n(x)(ψ∗n)†(x) = 2 Im(bna∗n) γ∗.

The zeta-functions can be related to the heat kernels as usual by

ζ±(s, x, y) = 1
Γ(s)

∫ ∞
0

dt ts−1K±(t, x, y) . (4.11)

Since K vanishes exponentially for large t, any divergences of the integral occur from the
region t→ 0. Thus any singularities (poles) of the zeta-functions are related to the small-t
behaviour of the heat kernel. Furthermore, since 1

Γ(s) vanishes at s = 0,−1,−2, . . ., the fi-
nite values of the zeta-functions at s = 0,−1,−2, . . . are also determined by the divergences
of the integral due to the small-t behaviour of K. In turn, for K+ this small-t behaviour
can be determined in an asymptotic expansion from the differential equation (4.7), with
the leading behaviour being the same as in flat space, and the subleading terms being given
in terms of the local curvature and derivatives of the curvature. Of particular interest will
be the expansion at coinciding points x = y. In particular, one can show that6

trDK+(t, x, x) = 1
2πt

(
1−

(R(x)
12 +m2

)
t+O(t2)

)
. (4.12)

This determines
trD ζ+(0, x, x) = − 1

2π

(R(x)
12 +m2

)
. (4.13)

As far as the matrix structure of ζ−(s, x, x) is concerned, it follows from (4.10) that

ζ−(s, x, x) ∼ γ∗ . (4.14)

4.1.3 Green’s functions

The Green’s function S(x, y) of the Dirac operator D is a 2× 2-matrix solution of

DxS(x, y) = δ(x− y)
√
g

12×2 , (4.15)

while we denote G the (also 2× 2-matrix) Green’s function of D2:

D2
xG(x, y) = δ(x− y)

√
g

12×2 . (4.16)

6A simple way to understand this result is to note that the heat kernel for the scalar Laplacian is
1

4πt

(
1 + R

6 t + . . .), that the trace gives a factor 2, that the spinor Laplacian gives the same result to this
order, and that the additional R4 + m2 in D2 simply gives an extra e−(R/4+m2)t ' 1 − (R/4 + m2)t, to
this order.

– 13 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
5

In terms of the eigenfunctions and eigenvalues we have

S(x, y) = −i
∑
n

1
λn

(
χn(x)φ†n(y)− φn(x)χ†n(y)

)
,

G(x, y) =
∑
n

1
λ2
n

(
χn(x)χ†n(y) + φn(x)φ†n(y)

)
. (4.17)

They are indeed solutions of (4.15), resp. (4.16) as one sees using the completeness rela-
tion (4.1). It trivially follows from either (4.15) and (4.16), or from (4.17), that

S(x, y) = DxG(x, y) . (4.18)

Comparing with (4.2), one sees that7

S(x, y) = −i ζ−
(1

2 , x, y
)

, G(x, y) = ζ+(1, x, y) . (4.19)

It follows from the orthonormality of the χn and φn that∫
d2z

√
g(z)S(x, z)S(z, y) = G(x, y) . (4.20)

(This also follows from (4.18) and (4.15) upon integrating by parts.)
As is clear from (2.21) and (2.19), the matrix structure of D2 is 1(. . .) + γ∗(. . .),

implying that G must have the same structure:8

G(x, y) = G0(x, y) 1 +G∗(x, y) γ∗ . (4.21)

The matrix structure of S is somewhat less trivial, in particular for non-vanishing
mass. We have

D = iσxD1 + iσzD2 +mσy , (4.22)

(with D1 = Eµ1 ∂µ − 1
4E

µ
2ωµ and D2 = Eµ2 ∂µ + 1

4E
µ
1ωµ). We write

S = σxS1 + σzS2 + σyS∗ + 1S0 . (4.23)
7Note that this is consistent with the relations S = DG (4.18) and K− = DL (4.8). Indeed,

S(x, y) = −iζ−
(

1
2 , x, y

)
= −i

Γ( 1
2 )

∫ ∞
o

dtt−1/2K−(t, x, y)

= −i
Γ( 1

2 )

∫ ∞
o

dtt−1/2 DxL(t, x, y)

= Dx
1

Γ( 1
2 )

∑
n

∫ ∞
o

dtt−1/2 e
−Λnt
√

Λn

(
ψn(x)ψ†n(y) + ψ∗n(x)(ψ∗n)†(y)

)
= Dx

∑
n

1
Λn
(
ψn(x)ψ†n(y) + ψ∗n(x)(ψ∗n)†(y)

)
= DxG(x, y) .

8Note that G is related to ζ+ and K+ for which these arguments are correct, contrary to what was the
case for K−.
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Then (4.15) yields a system of 4 equations:

D1S2 −D2S1 +mS0 = 0 , iD1S1 + iD2S2 +mS∗ = δ
√
g
, (4.24)

D1S∗ −D2S0 + imS1 = 0 , D2S∗ +D1S0 + imS2 = 0 . (4.25)

For m = 0 the equations of the first line decouple from those of the second line. We may
then set S∗ = S0 = 0, so that only S1 and S2 are non-vanishing.9 In particular, we have

for m = 0 : trD S(x, y) = trD γ∗S(x, y) = 0 , (4.26)

where trD denotes the Dirac trace. Maybe more useful, for general m, is to combine (4.18)
and (4.21) which yields

S(x, y) = (i∇/xG0(x, y) +mG∗(x, y)) + γ∗
(
− i∇/xG∗(x, y) +mG0(x, y)

)
. (4.27)

It follows from this relation that

trD γ∗S(x, y) = m trDG(x, y) . (4.28)

4.2 Perturbation theory

We want to study how the eigenvalues λn (or λ2
n) change under conformal rescalings of the

metric. The variation of the Dirac operator D (or of D2) has been obtained in section 2.4,
see eqs (2.45) or (2.48).

Under D → D + δD we have λn → λn + δλn, as well as χn → χn + δχn and φn →
φn + δφn:

(D + δD)(χn + δχn) = i(λn + δλn)(φn + δφn) ⇒ δDχn +Dδχn = iδλnφn + iλnδφn .

(4.29)
Taking the inner product with φn and using the hermiticity of D one gets

δλn = −i(φn, δDχn) + λn
(
(χn, δχn)− (φn, δφn)

)
. (4.30)

Note that χn and φn are normalised with the metric g, while χn + δχn and φn + δφn are
normalised with eδσg. This implies

(χn, δχn) = −
∫

d2x
√
g δσ(x)χ†n(x)χn(x) , (4.31)

and similarly for (φn, δφn). Using also δD = iδ∇/, can then rewrite (4.30) as

δλn = (φn, δ∇/χn) + λn

∫
δσ
(
φ†nφn − χ†nχn

)
. (4.32)

9This is consistent with the relation S = DG which yields S∗ = mG0 and S0 = mG∗, as well as
S1 = iD1G0 +D2G∗ and S2 = −D1G∗ + iD2G0.
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(Obviously
∫
. . . stands for

∫
d2x
√
g . . ..) Next, using (2.45) for δ∇/, and integrating by parts,

(φn, δ∇/χn) = −
∫
δσφ†n∇/χn + 1

2

∫
∂λδσφ

†
nγ

λχn

= −
∫
δσ

(
φ†n∇/χn + 1

2(∇/φn)†χn + 1
2φn∇/χn

)
= −

∫
δσ

(
− iφ†n(D −mγ∗)χn + i

2
(
(D −mγ∗)φn

)†
χn −

i

2φ
†
n(D −mγ∗)χn

)
= −

∫
δσ

(3
2λnφ

†
nφn −

1
2λnχ

†
nχn + imφ†nγ∗χn

)
, (4.33)

so that finally

δλn = −
∫
δσ

(
λn
2 (φ†nφn + χ†nχn) + imφ†nγ∗χn

)
. (4.34)

This allows us to express the variation of ζ(s) as

δζ(s) = 2
∑
n

δλ−2s
n = − 4s

∑
n

δλn

λ2s+1
n

= 2s
∫
δσ
∑
n

( 1
λ2s
n

(φ†nφn + χ†nχn) + 2im 1
λ2s+1
n

φ†nγ∗χn

)
. (4.35)

Since φn, χn and iγ∗ are real, we have φ†niγ∗χn = (φ†niγ∗χn)† = χ†n(−i)γ∗φn, and we can
rewrite δζ(s) in terms of the local zeta-functions ζ+(s, x, x) and ζ−(s, x, x) as

δζ(s) = 2s
∫
δσ

(
trD ζ+(s, x, x) + im trD γ∗ζ−

(
s+ 1

2 , x, x
))

. (4.36)

For the derivative we obviously get

δζ ′(s) = 2
∫
δσ

(
trD ζ+(s, x, x) + im trD γ∗ζ−

(
s+ 1

2 , x, x
))

+2s
∫
δσ

(
trD ζ ′+(s, x, x) +m trD iγ∗ζ ′−

(
s+ 1

2 , x, x
))

. (4.37)

We want to evaluate both ζ and ζ ′ at s = 0. Now ζ+(0, x, x) is regular (cf e.g. (4.13), and
subsection 4.3) and10 so is ζ ′+(0, x, x). Thus

δζ(0) = 2m
∫
δσ lim

s→0
s trD iγ∗ζ−

(
s+ 1

2 , x, x
)
, (4.38)

δζ ′(0) = 2
∫
δσ trD ζ+(0, x, x)

+2m
∫
δσ lim

s→0

(
trD iγ∗ζ−

(
s+ 1

2 , x, x
)

+ s trD iγ∗ζ ′−
(
s+ 1

2 , x, x
))

.(4.39)

10If a meromorphic function is regular at a given point, then its derivative necessarily is also regular at
this point.
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4.3 Singularity structure of the local zeta-functions and the Green’s functions

As usual we first need to establish the small-t (and hence also short-distance) behaviours of
the heat kernels K±(t, x, y), from which the singularity structure of the ζ±(s, x, x) can be
deduced. Before trying to make general statements, it is useful to look at the very simple
example off the flat torus discussed in section 2.3.

4.3.1 The flat torus

From the explicit form of the normalised eigenfunctions ψ~n of D on the flat torus given
in (2.37) we find

K(t, x, y) =
∑
n1,n2

e−λ
2
~n
tψ~n(x)ψ†~n(y) (4.40)

= 1
8π2

∑
n1,n2

e−(n2
1+n2

2+m2)tein1(x1−y1)+in2(x2−y2) 1
λ~n

(
λ~n − n2 −n1 − im
−n1 + im λ~n + n2

)
.

Note that in the real part the terms odd under n1 → −n1 or n2 → −n2 drop out of the
sum:

K+(t, x, y) = K(t, x, y) +K∗(t, x, y) = 1
4π2

∑
n1,n2

e−(n2
1+n2

2+m2)tein1(x1−y1)+in2(x2−y2) 12×2

= 1
4π2 e

−m2t θ3

(
ν = x1 − y1

2π

∣∣∣∣τ = i
t

π

)
θ3

(
ν = x2 − y2

2π

∣∣∣∣τ = i
t

π

)
12×2 . (4.41)

The well-known modular transformation of the Jacobi theta-function θ3

θ3(ν|τ) = 1√
−iτ

e−iπν
2/τθ3

(ν
τ

∣∣− 1
τ

)
(4.42)

allows us to immediately get the small-t behaviour of K+(t, x, y) as

K+(t, x, y) = 1
4πt exp

(
− (x1 − y1)2 + (x2 − y2)2

4t

)
e−m

2t 12×2
(
1 +O

(
e−π

2/t)) . (4.43)
The leading piece coincides, of course, with the well-known answer on R2.

On the other hand, the imaginary part of K(t, x, y) contains pieces proportional to σx,
σz and γ∗ = σy. As noted above, this imaginary part K− cannot be obtained from the
knowledge of D2, but one needs to know the eigenfunctions of D. However, as also noted,
K− is given by K−(t, x, y) = DxL(t, x, y) where the quantity L defined in (4.9) is much
simpler. At present it is given by 2i times the real part of the sum (4.40) with an extra
factor 1

λ~n
inserted. Then again the terms odd under n1 → n1 or n2 → −n2 drop out of the

sum and we get

L(t, x, y) = i

4π2 e
−m2t L(t, x− y) 12×2 , L(t, z) =

∑
n1,n2

1
λ~n
e−(n2

1+n2
2)tein1z1+in2z2

.

(4.44)
Below, we will explicitly evaluate this sum for small t.

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
5

Mostly, we only need the heat kernels at coinciding points, in which case again all terms
that are odd under n1 → −n1 or n2 → −n2 drop out, in the real and in the imaginary parts:

K(t, x, x) = 1
8π2

∑
n1,n2

e−(n2
1+n2

2+m2)t
(

1 + m

λ~n
γ∗

)
. (4.45)

The sum multiplying ∼ 1 was just computed exactly and can be read from (4.43). A more
generic way to obtain the small-t behaviour is by noting that it is determined by the large
eigenvalues, and for large eigenvalues the sums can be replaced by integrals:

1
8π2

∑
n1,n2

e−(n2
1+n2

2+m2)t ' e−m
2t

8π2

∫
dn1dn2 e

−(n2
1+n2

2)t = e−m
2t

8π2
π

t
= e−m

2t

8πt , (4.46)

which correctly reproduces the leading small-t behaviour. Similarly, for the sum multiplying
γ∗ in (4.45) we have

1
8π2

∑
n1,n2

e−(n2
1+n2

2+m2)t m

λ~n
' m

8π2

∫
dn1dn2

e−(n2
1+n2

2+m2)t√
n2

1 + n2
2 +m2

= m

8π

∫ ∞
0

dξ e
−(ξ+m2)t√
ξ +m2

= m

8π

∫ ∞
m2

dξ e
−ξt
√
ξ

= m

8π
√
t

∫ ∞
m2t

dξ e
−ξ
√
ξ

= m

4π
√
t

∫ ∞
m
√
t
dze−z2

= m

8
√
πt

(
1 +O(m

√
t)
)
. (4.47)

Thus, we find for the flat torus

K(t, x, x) ' 1
8πt 1 + m

8
√
πt

γ∗ + . . . , (4.48)

where the unwritten terms + . . . are finite as t→ 0. We identify

K+(t, x, x) = 1
4πt 1 + . . . , K−(t, x, x) = m

4
√
πt

iγ∗ + . . . . (4.49)

As discussed above, the small-t behaviours of K±(t, x, x) translate into possible poles of
the corresponding local zeta-functions ζ±(s, x, x):

ζ+(s, x, x) ∼s→1
1

4π(s− 1) + finite , ζ+(0, x, x) = finite× 1 ,

ζ−(s, x, x) ∼s→1/2
miγ∗

4π(s− 1
2)

+ finite . (4.50)

Let us come back to the evaluation of the small-t asymptotics of K−(t, x, y). To do
so we look at the small-t asymptotics of L(t, x, y). We let xi − yi = zi ≡ zi and write

– 18 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
5

|z| =
√
z2

1 + z2
2 . For small t, the sum L(t, z) is again dominated by the large eigenvalues

and we replace the sum over n1, n2 by an integral:

L(t, z) '
∫

dn1dn2
1
λ~n

e−(n2
1+n2

2)tein1z1+in2z2
. (4.51)

First, if |z| = 0, we get for small t (cf (4.46))

L(t, z = 0) '
∫

dn1dn2
e−t(n

2
1+n2

2)√
n2

1 + n2
2

= 2π
∫ ∞

0
dnn e

−tn2

n
= π

√
π

t
. (4.52)

More generally, we have in terms of the Bessel function of the first kind J0

L(t, z) '
∫ ∞

0
dn n
λ~n
e−n

2t
∫ 2π

0
dθein|z| cos θ

= 2π
∫ ∞

0
dn n
λ~n
e−n

2tJ0(n|z|)

= 2π√
t

∫ ∞
0

dξ ξ√
ξ2 +m2t

e−ξ
2
J0

(
ξ
|z|√
t

)
' 2π√

t

∫ ∞
0

dξ e−ξ2
J0

(
ξ
|z|√
t

)
. (4.53)

For z = 0 one just gets back π
√

π
t . So let us assume now that z 6= 0. The last integral

can be found e.g. in Erdelyi et al. (Bateman manuscript project, higher transcendental
function, vol 2, section 7.7.3, eq 23) so that

L(t, z) ' π3/2
√
t
e−|z|

2/(8t)I0

( |z|2
8t

)
, |z| 6= 0 , (4.54)

where I0 is the modified Bessel function of the first kind. Its asymptotic for large argument
is I0(a) ∼ ea√

2πa so that finally

L(t, z) ' π3/2
√
t

√
4t
π|z|2

= 2π
|z|

, |z| 6= 0 . (4.55)

Alternatively, one can perform the two integrations in the reverse order. Then (within the
same approximation n

λ~n
' 1 +O(m2t)) we have

L(t, z) '
∫ ∞

0
dne−n2t

∫ 2π

0
dθ ein|z| cos θ

=
∫ 2π

0
dθ
∫ ∞

0
dn e−n2tein|z| cos θ

= 1
2

∫ 2π

0
dθ
∫ ∞
−∞

dne−n2tein|z| cos θ

= 1
2

∫ 2π

0
dθ e−|z|2 cos2 θ/(4t)

∫ ∞
−∞

dne−t(n−i|z| cos θ/(2t))2

= 1
2

√
π

t

∫ 2π

0
dθ e−|z|2 cos2 θ/(4t)

= 1
2

√
π

t

∫ 2π

0
dθ e−|z|2 sin2 θ/(4t) . (4.56)
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This is valid whether |z| vanishes or not. If |z| = 0, the θ-integral is simply 2π and one
gets back (4.52). If |z| 6= 0 and t→ 0, the θ-integral is dominated by the two saddle-points
where sin θ vanishes:

L(t, z) '
√
π

t

∫ π/2

−π/2
dθ e−|z|2θ2/(4t)

'
√
π

t

∫ ∞
−∞

dθ e−|z|2θ2/(4t) =
√
π

t

√
4πt
|z|2

= 2π
|z|

, |z| 6= 0 , (4.57)

in agreement with (4.55). However, we need an expression that still allows us to take both
limits, |z| → 0 and t → 0. Note that the first expression in (4.57) indeed still is valid
wether |z| = 0 or not. Thus

L(t, z) '
√
π

t

∫ π/2

−π/2
dθ e−|z|2θ2/(4t) , |z| = 0 or |z| 6= 0 . (4.58)

We conclude
L(t, x, y) 't→0

i

4π
√
πt

12×2

∫ π/2

−π/2
dθ e−`2(x,y) θ2/(4t) , (4.59)

where at present `2(x, y) = |x− y|2.

4.3.2 General statements

It must be possible to make general statements about the leading small-t behaviour of
K+ based on the general form of D2, just as in the bosonic case where the leading term
in the asymptotic expansion of K(t, x, y) always is 1

4πt exp
(
− `2(x, y)/(4t)

)
due to the 2-

derivative part of the Laplacian being always gµν∂µ∂ν . (Here `(x, y) is the geodesic distance
between x and y.) Indeed, as discussed above, we may obtain K+(t, x, y) solely from the
differential equation (4.7), but not K−(t, x, y).

For K+(t, x, y) we expect, just as for G(x, y), a piece ∼ 1 and a piece ∼ γ∗. The
leading small-t singularity will be contained in the piece ∼ 1 and is universal, so that:

trDK+(t, x, y) ∼t→0
1

2πt e
−`2(x,y)/(4t) , (4.60)

as well as at coinciding points x = y

trDK+(t, x, x) ∼t→0
1

2πt
(
1 + a1(x)t+ a2(x)t2 + . . .

)
. (4.61)

For K−(t, x, y) = DxL(t, x, y) we expect that the leading small-t singularity of L is
again generic and hence given by (4.59), so that

K−(t, x, y) ∼t→0
i

4π
√
πt

∫ π/2

−π/2
dθ
(
i∇/x +mγ∗

)
e−`

2(x,y) θ2/(4t) . (4.62)

It follows that

trD iγ∗K−(t, x, y) ∼t→0 −
m

2π
√
πt

∫ π/2

−π/2
dθ e−`2(x,y) θ2/(4t) , (4.63)
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and at coinciding points

trD iγ∗K−(t, x, x) ∼t→0 −
m

2
√
πt

(
1 + b1(x)t+ b2(x)t2 + . . .

)
. (4.64)

The zeta-functions ζ± are then obtained by the integral transform (4.11) and the small
t-asymptotics of the K± translate into possible singularities of the ζ±. Below we will study
the singularities of the ζ±(s, x, y) for x 6= y. Here we just note that at coinciding points
one has

trD ζ+(s, x, x) = 1
2π(s− 1) + trD ζreg

+ (s, x, x) + C+ +O(s− 1) , (4.65)

while trDiγ∗ζ−(s, x, x) has poles at s = 1
2 ,−

1
2 ,−

3
2 , . . .. In particular, for s→ 1

2 we have

trD iγ∗ζ−(s, x, x) ∼s→1/2 −
m

2π(s− 1
2)

+ trD iγ∗ζreg
− (1

2 , x, x) + C− , (4.66)

The exact values of the constants C± depend on the exact definitions of ζreg
± given below.

It follows

lim
s→0

(
trDiγ∗ζ−

(
s+ 1

2 , x, x
)

+ s trDiγ∗ζ ′−
(
s+ 1

2 , x, x
))

= trDiγ∗ζreg
−

(1
2 , x, x

)
+ C− .

(4.67)

4.3.3 Singularities of the Green’s functions

The short-distance singularity of the Green’s function G(x, y) is dictated by the term with
the most derivatives in D2, which is the −gµν∂µ∂ν in −∆spinor. Thus the short-distance
singularity is the same as in the bosonic case, except for the additional identity matrix:

G(x, y) ∼x→y −
1

4π lnµ2`2(x, y) 12×2 + regular . (4.68)

The fermionic Green’s function S(x, y) is related to G(x, y) by S(x, y) = DxG(x, y)
and it follows that the short-distance singularity of S is given by

S(x, y) ∼x→y −
1

4π
(
i∇/x +mγ∗

)
lnµ2`2(x, y) 12×2 + regular . (4.69)

There is a leading singularity ∼ − i
4π

∂/`2

`2 as well as subleading singularities ∼ lnµ2`2.

4.4 Renormalised Green’s functions

For the Green’s function G of D2, we may define a regularized Green’s function Greg(x, y)
by subtracting the short-distance singularity (4.68)

Greg(x, y) = G(x, y) + 1
4π lnµ2`2(x, y) 12×2 . (4.70)

The so-called renormalized Green’s function at coinciding points GR then is simply de-
fined as

GR(y) = lim
x→y

Greg(x, y) . (4.71)
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In complete analogy, we define Sreg(x, y) and SR(y):

Sreg(x, y) = S(x, y) + 1
4π
(
i∇/x +mγ∗

)
lnµ2`2(x, y) 12×2 (4.72)

and
SR(y) = lim

x→y
Sreg(x, y) . (4.73)

In particular, multiplying (4.72) with γ∗ and taking the trace yields

trD γ∗Sreg(x, y) = trD γ∗S(x, y) + m

2π lnµ2`2(x, y) . (4.74)

We now want to study how these regularised Green’s functions are related to regularised
zeta-functions. For G the story is much the same as in the purely bosonic case. Since the
leading small-t behaviour of the heat-kernel K+(t, x, y) is 1

4πte
−`2(x,y)/(4t) 12×2, we define a

regularised zeta-function as

ζreg
+ (s, x, y) = 1

Γ(s)

∫ ∞
1/µ2

dt ts−1K+(t, x, y)

= ζ+(s, x, y)− 1
Γ(s)

∫ 1/µ2

0
dt ts−1 e

−`2(x,y)/(4t)

4πt 12×2

= ζ+(s, x, y)− (µ2)1−s

4πΓ(s)

∫ ∞
1

du
u
u1−se−µ

2u `2(x,y)/4 12×2

= ζ+(s, x, y)− (µ2)1−s

4πΓ(s) Es
(
µ2`2(x, y)

4

)
12×2 , (4.75)

where Es is the exponential integral function defined as

Es(x) =
∫ ∞

1
duu−se−xu . (4.76)

Its asymptotic expansions are well known and, in particular, for s = 1 and x → y, i.e.
`(x, y)→ 0, we have

E1

(
µ2`2

4

)
∼`→0 −γ − ln µ

2`2

4 +O
(
m2`2

)
, (4.77)

Thus, possible singularities in (4.75) can occur for s → 1 and/or x → y and come from
the region of the integral where t → 0. Because we cut off this region, this ζreg

+ clearly
must be free of singularities. Indeed, if we first set s = 1 and then let x → y, using
E1(z) = −γ − ln z +O(z), we find

ζreg
+ (1, x, y) = ζ+(1, x, y)− 1

4πE1

(
µ2`2(x, y)

4

)
12×2

= G(x, y)− 1
4πE1

(
µ2`2(x, y)

4

)
12×2

∼x→y G(x, y) +
( 1

4π ln µ
2`2(x, y)

4 + γ

4π

)
12×2 +O(µ2`2)

= GR(y) + γ − ln 4
4π 12×2 +O(µ2`2) , (4.78)
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i.e.
GR(x) = ζreg

+ (1, x, x)− γ − ln 4
4π 12×2 . (4.79)

On the other hand, if we first let x = y, we get instead (for <s > 1)

ζreg
+ (s, x, x) = ζ+(s, x, x)− (µ2)1−s

4πΓ(s)

∫ 1

0

dv
v
vs−1 12×2

= ζ+(s, x, x)− (µ2)1−s

4πΓ(s)
12×2
s− 1

∼s→1 ζ+(s, x, x)− 12×2
(4π) (s− 1) −

C+
2 12×2 , (4.80)

where
C+ = 1

2π
(
γ − lnµ2) (4.81)

One defines Gζ(x) as

Gζ(x) = lim
s→1

(
(µ2)s−1ζ+(s, x, x)− 12×2

(4π) (s− 1)

)
, (4.82)

so that
Gζ(x) = ζreg

+ (1, x, x) + γ

4π 12×2 . (4.83)

Comparing (4.79) and (4.83) we find

Gζ(x) = GR(x) + γ − ln 2
2π 12×2 . (4.84)

Similarly, the Green’s function S(x, y) of the Dirac operator D equals −iζ−(1
2 , x, y).

Thus, obviously the latter is singular as x → y. On the other hand we may consider
ζ−(s, x, x) which is regular as long as s 6= 1

2 but which has a pole at s = 1
2 . As for G and

ζ+, we now want to define a regularized ζreg
− (s, x, y) by removing the singular part, so that

it is regular at s = 1
2 and x = y:

ζreg
− (s, x, y) = 1

Γ(s)

∫ ∞
1/µ2

dt ts−1K−(t, x, y) = ζ−(s, x, y)− 1
Γ(s)

∫ 1/µ2

0
dt ts−1ksmall

− (t, x, y) ,

(4.85)
where ksmall

− (t, x, y) is meant to be just the leading small-t asymptotics of K−(t, x, y). Upon
multiplying with iγ∗, taking the trace and using (4.63) we get

trD iγ∗ζreg
− (s, x, y) = trD iγ∗ζ−(s, x, y) + 1

Γ(s)
m

2π3/2

∫ π/2

−π/2
dθ
∫ 1/µ2

0
dt ts−3/2 e−`

2θ2/(4t)

= trD iγ∗ζ−(s, x, y) + 1
Γ(s)

mµ1−2s

2π3/2

∫ π/2

−π/2
dθ
∫ ∞

1
duu−1/2−s e−µ

2`2θ2 u/4

= trD iγ∗ζ−(s, x, y) + mµ1−2s

2π3/2Γ(s)

∫ π/2

−π/2
Es+1/2

(
µ2`2

4 θ2
)
, (4.86)
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where Es was defined in (4.76). We can now set s = 1
2 and let x → y, i.e. `(x, y) → 0.

Using again the asymptotics (4.77)(with `2 → `2θ2), and doing the θ-integral, we get (recall
ζ−(1

2 , x, y) = iS(x, y))

trD iγ∗ζreg
− (1

2 , x, y) = − trD γ∗S(x, y)− m

2π

(
γ + lnµ2`2(x, y) + 2 ln π4 − 2

)
. (4.87)

If we now let x→ y and use (4.74) and (4.73) we find

− trD iγ∗ζreg
− (1

2 , x, x) = trD γ∗SR(x) + m

2π

(
γ + 2 ln π4 − 2

)
. (4.88)

If instead in the first line of (4.86) we first let x = y and then s→ 1
2 , we get11

trD iγ∗ζreg
− (s, x, x) = trD iγ∗ζ−(s, x, x) + 1

Γ(s)
m

2π1/2
µ1−2s

s− 1
2

∼s→1/2 trD iγ∗ζ−(s, x, x) + m

2π(s− 1
2)
− C− , (4.89)

where
C− = m

2π
(

lnµ2 − ln 4− γ
)
. (4.90)

In analogy with Gζ(x) we could try to define Sζ(x) in terms of ζ−(s, x, x) by subtracting
its pole at s = 1

2 . Since we only have given the relations for the traces with γ∗ we restrict
to this case:

trD γ∗Sζ(x) = lim
s→ 1

2

(
− (µ2)s−1/2 trD iγ∗ζ−(s, x, x)− m

2π(s− 1
2)

)
, (4.91)

so that
trD γ∗Sζ(x) = − trD iγ∗ζreg

−

(1
2 , x, x

)
+ m

2π (γ + ln 4) . (4.92)

Comparing (4.92) and (4.88) we conclude

trD γ∗Sζ(x) = trD γ∗SR(x) + m

π

(
γ + ln π2 − 1

)
. (4.93)

5 The variation of the gravitational action

5.1 Expression in terms of Sζ or SR

Recall our formula (3.10) for the gravitational action in terms of ζ(0) and ζ ′(0). Their
variations under infinitesimal conformal rescalings with δσ(x) have been worked out above
and are given in (4.38) and (4.39). Combining (4.38) with (4.66) we get (writing again
explicitly the √g = e2σ√ĝ and using A =

∫ √
g)

δζ(0) = −m
2

π

∫ √
gδσ = −m

2

2π δ
∫ √

g = −m
2

2π δA , (5.1)

11We have Γ(s) = Γ( 1
2 )
(
1+ψ( 1

2 )(s− 1
2 )
)
with ψ( 1

2 ) = −2 ln 2−γ. Thus 1
Γ(s) = 1√

π

(
1+
(
2 ln 2+γ)(s− 1

2 )
)
.
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while combining (4.39) with (4.13) and (4.67) we get

δζ ′(0) = −
∫ √

gδσ

( R
12π + m2

π

)
+ 2m

∫ √
gδσ

(
trD iγ∗ζreg

−

(1
2 , x, x

)
+ C−

)
. (5.2)

Thus

δSgrav = 1
4δζ

′(0) + 1
4 lnµ2 δζ(0) (5.3)

= −m
2

8π
(
1 + γ + 2 ln 2

)
δA− 1

48π

∫ √
gδσR+ m

2

∫ √
gδσ trD iγ∗ζreg

−

(1
2 , x, x

)
.

Now, the terms ∼ δA are just the variation of a cosmological constant term and∫ √
gδσR = δSLiouville (5.4)

is the variation of the Liouville action. Note that the coefficient of δSLiouville in δSgrav is
exactly 1

2 the one that occurs in the gravitational action of a bosonic scalar matter field.
It is interesting to trace back how this coefficient occurs. For the bosonic scalar field and
scalar Laplacian, the heat kernel coefficient a1 is R6 . At present, a1 is R6 −

R
4 = −R12 . But

because we are dealing with fermions, the gravitational action has an overall minus sign, so
that in the end one gets a +R12 , i.e. exactly one half the bosonic result.12 We conclude that

δ

(
Sgrav + 1

48πSLiouville + m2

8π
(
1 + γ + 2 ln 2

)
A

)
= m

2

∫ √
g δσ trD iγ∗ζreg

−

(1
2 , x, x

)
. (5.5)

We may use (4.92) to re-express this variation as

δ

(
Sgrav + 1

48πSLiouville + m2

8π A
)

= −m2

∫ √
g δσ trD γ∗Sζ(x) , (5.6)

or instead using (4.88) as

δ

(
Sgrav + 1

48πSLiouville + m2

8π

(
2γ + 2 ln π2 − 1

)
A

)
= −m2

∫ √
g δσ trD γ∗SR(x) , (5.7)

It remains to characterise the right hand side of any of these last three equations and
express it as a total variation of some appropriate quantity. We will focus on the last form
which contains SR.

5.2 Conformal variations of the Green’s function S(x, y) and SR(x)

Recall that S(x, y) is the solution of DxS(x, y) ≡ (i∇/x + mγ∗)S(x, y) = δ(x − y)/√g, see
eq. (4.15). We want to determine the variation of S under a conformal rescaling. Consider
two metrics g and ĝ related by g = e2σ ĝ, cf (2.41). Then, of course √g = e2σ√ĝ and
from (2.44), ∇/ = e−3σ/2 ∇̂/ eσ/2. Thus

(i∇̂/x +mγ∗)Sĝ(x, y) = δ(x− y)√
ĝ

,

(
ie−3σ(x)/2 ∇̂/ eσ(x)/2 +mγ∗

)
Sg(x, y) = δ(x− y)√

ĝ
e−3σ(x)/2e−σ(y)/2 . (5.8)

12Of course, we also had the 1
4 multiplying the δζ′(0) and δζ(0) instead of a 1

2 in the bosonic case. But
this extra 1

2 is offset by a factor 2 coming from the Dirac traces.
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We see that, for m = 0, one simply has Sg(x, y) = e−σ(x)/2Sĝ(x, y)e−σ(y)/2. This motivates
us to define

Sg(x, y) = eσ(x)/2Sg(x, y)eσ(y)/2 , (5.9)

so that the statement for m = 0 simply is Sg = S ĝ. For non-vanishing m we may rewrite
the second equation (5.8) in terms of S as

i∇̂/Sg(x, y) +mγ∗e
σ(x)Sg(x, y) = δ(x− y)√

ĝ
. (5.10)

We let σ = δσ be infinitesimal and let Sg = S ĝ + δS so that (i∇̂/ + mγ∗)δS(x, y) =
−mγ∗δσ(x)S ĝ(x, y). But we may now consider ĝ as g and simply rewrite this as (relabelling
x→ z)

Dz δS(z, y) ≡ (i∇/+mγ∗)δS(z, y) = −mγ∗δσ(z)S(z, y) = −mγ∗δσ(z)S(z, y) , (5.11)

where in the last step we used that δσ is infinitesimal. We then multiply with S(x, z)
√
g(z)

from the left, integrate over z and get, using the hermiticity of Dz,

δS(x, y) = −m
∫

d2z
√
g S(x, z)γ∗δσ(z)S(z, y) , (5.12)

or

δS(x, y) + 1
2
(
δσ(x) + δσ(y)

)
S(x, y) = −m

∫
d2z
√
g S(x, z)γ∗δσ(z)S(z, y) , (5.13)

Since SR is obtained from S by subtracting the short-distance singularity Ssing, we
need the conformal transformation of the latter:

δSsing(x, y) = δ

(
− 1

4π
(
i∇/x +mγ∗

)
lnµ2`2(x, y) 12×2

)
= − 1

4π

(
iδ∇/x lnµ2`2(x, y) +

(
i∇/x +mγ∗

)δ`2(x, y)
`2(x, y)

)
12×2 . (5.14)

We will only need the trace of this expression multiplied by γ∗, so that only the term ∼ mγ∗
survives:

trD γ∗δSsing(x, y) = −m2π
δ`2(x, y)
`2(x, y) = −m2π

(
δσ(x) + δσ(y)

)
. (5.15)

Obviously then,

trD γ∗
(
δSsing(x, y)+ 1

2
(
δσ(x)+δσ(y)

)
Ssing(x, y)

)
=−m4π

(
2+lnµ2`2(x, y)

)(
δσ(x)+δσ(y)

)
.

(5.16)
Subtracting (5.16) from the trace with γ∗ of (5.13) we get

trD γ∗
(
δSreg(x, y) + 1

2
(
δσ(x) + δσ(y)

)
Sreg(x, y)

)
(5.17)

= −m
∫

d2z
√
g trD γ∗S(x, z)γ∗δσ(z)S(z, y) + m

4π
(
2 + lnµ2`2(x, y)

)(
δσ(x) + δσ(y)

)
.
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One can check that the singularity of the integral in the first line is logarithmic as x→ y,
and it is exactly cancelled by the one of the second line. In terms of SR this can be
restated as

e−σ(y) δ trD γ∗
(
eσ(y) SR(y)

)
= trD γ∗

(
δSR(y) + δσ(y)SR(y)

)
= m

π
δσ(y)−mF [y, δσ] ,

(5.18)
where we defined

F [y, δσ] = lim
x→y

(∫
d2z
√
g δσ(z) trD γ∗S(x, z)γ∗S(z, y)− δσ(y)

2π lnµ2`2(x, y)
)
. (5.19)

We may then rewrite the integral on the right-hand side of (5.7) as∫ √
g δσ trD γ∗SR =

∫ √
ĝ δ
(
eσ
)
eσ trD γ∗SR

= δ

∫ √
g trD γ∗SR −

∫ √
g e−σ δ

(
eσ trD γ∗SR

)
, (5.20)

where the integrand in last term is then given by (5.18). Thus (5.7) becomes

δ

(
Sgrav+ 1

48πSLiouville+m2

8π

(
2γ+2 ln π2−3

)
A+m

2

∫ √
g trD γ∗SR

)
=−m

2

2

∫ √
g F [y, δσ] .

(5.21)
Recall from (4.28) that trD γ∗S(x, y) = m trDG(x, y). This same relation obviously is also
valid for the corresponding singular parts that need to be subtracted to get Sreg and Greg.
Hence also trD γ∗Sreg(x, y) = m trDGreg(x, y), and in the coincidence limit:

trD γ∗SR = m trDGR . (5.22)

We may thus rewrite (5.21) as

δ

(
Sgrav + 1

48πSLiouville +m2

8π

(
2γ+2 ln π2 −3

)
A+m2

2

∫ √
g trDGR

)
=−m

2

2

∫ √
g F [y, δσ] .

(5.23)
Let us then study the properties of F [y, δσ]. Recall S = (i∇/+mγ∗)G and, from (4.21),

G = G0 1 + G∗γ∗. It follows that γ∗Sγ∗ = (−i∇/ + mγ∗)G, and taking also into account
trD γ∗ = trD γ∗∇/ = trD∇/ = 0, we get

trD γ∗S(x, z)γ∗S(z, y) = − trD i∇/xG(x, z) i∇/zG(z, y) +m2 trDG(x, z)G(z, y)
= − trD (i∇/x +mγ∗)G(x, z) (i∇/z +mγ∗)G(z, y)

+2m2 trDG(x, z)G(z, y)
= − trD S(x, z)S(z, y) + 2m2 trDG(x, z)G(z, y) , (5.24)

so that we can rewrite

F [y, δσ] = − lim
x→y

(∫
d2z
√
g δσ(z) trD S(x, z)S(z, y) + δσ(y)

2π lnµ2`2(x, y)
)

+2m2
∫

d2z
√
g δσ(z) trDG(y, z)G(z, y) , (5.25)
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where the integral of the last line is of course regular, so that we could set x = y. It will
be useful to define a similar quantity without the δσ as

H[y] = − lim
x→y

(∫
d2z
√
g trD S(x, z)S(z, y) + 1

2π lnµ2`2(x, y)
)

+2m2
∫

d2z
√
g trDG(y, z)G(z, y) . (5.26)

Using (4.20) we see that the term inside the bracket is just trDGreg(x, y) and thus

H[y] = − trDGR(y) + 2m2 trDG2(y, y) , (5.27)

where G2(x, y) = ζ+(2, x, y). We want to express F in terms of the variation of H, to
leading order in a small m-expansion.

5.3 The gravitational action on the sphere

In this subsection, we will restrict ourselves to the case where i∇/ has no zero-modes, so
that all eigenvalues λn are strictly positive, even for m = 0. This is the case, in particular,
for spherical topology, but also for the torus with a spin structure involving at least one
anti-periodic boundary condition. The important thing is that in all these cases there is
no zero-mode piece in the Green’s functions one would need to remove in the m→ 0 limit
and, hence, in a small mass expansion, we may consider all Green’s function to be of order
m0. This would not be the case in the presence of zero-modes of i∇/ where S would have
a piece ∼ 1

m and G a piece ∼ 1
m2 . Thus in our previous equation for F and H we may

already drop the terms ∼ m2GG, and we rewrite

eσ(y)H(y) = − lim
x→y

(∫
d2z

√
ĝ eσ(z) trD S(x, z)S(z, y) + eσ(y)

2π lnµ2`2(x, y)
)

+O(m2) ,

(5.28)
where S defined in (5.9) was such that δS = O(m), cf (5.12). It follows immediately that

δ
(
eσ(y)H(y)

)
= − lim

x→y

(∫
d2z

√
ĝ eσ(z) δσ(z) trD S(x, z)S(z, y) + eσ(y)

2π δσ(y) lnµ2`2(x, y)
)

− eσ(y)

π
δσ(y) +O(m)

= −eσ(y) lim
x→y

(∫
d2z
√
g δσ(z) trD S(x, z)S(z, y) + δσ(y)

2π lnµ2`2(x, y)
)

− eσ(y)

π
δσ(y) +O(m)

= eσ(y)
(
F [y, δσ]− δσ(y)

π

)
+O(m) . (5.29)

Thus ∫ √
gF +O(m) =

∫ √
ĝ eσδ

(
eσH

)
+ δA

2π

=
∫ √

ĝ e2σ(δσH + δH
)

+ δA

2π

= 1
2

∫ √
ĝ
(
δ
(
e2σH

)
+ e2σδH

)
+ δA

2π

= 1
2 δ

∫ √
gH + 1

2

∫ √
g δH + δA

2π . (5.30)
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Now to lowest order in m, by (5.27) we have simply H = − trDGR and thus∫ √
gF = −1

2 δ
∫ √

g trDGR −
1
2

∫ √
g δ trDGR + δA

2π +O(m) . (5.31)

Inserting this into eq. (5.23) for the gravitational action we get

δ

(
Sgrav + 1

48πSLiouville + m2

8π

(
2γ + 2 ln π2 − 1

)
A+ m2

4

∫ √
g trDGR

)
= m2

4

∫ √
g δ trDGR +O(m3) . (5.32)

By (4.84) we may replace GR = Gζ + 1
2π (ln 2− γ)12×2 so that

δ

(
Sgrav + 1

48πSLiouville + m2

8π
(
2 ln π − 1

)
A+ m2

4

∫ √
g trDGζ

)
= m2

4

∫ √
g δ trDGζ +O(m3) . (5.33)

Finally, we need δ trDGζ = δ trDGR, up to terms of order m. It follows from (4.71)
and (4.70) that

δGR(y) = lim
x→y

(
δG(x, y) + 12×2

4π
δ`2(x, y)
`2(x, y)

)
= lim

x→y
δG(x, y) + 12×2

2π δσ(y) , (5.34)

which shows that δG(x, y) must have a finite limit as x → y. To compute δG(x, y) it is
easiest to express G as

∫
SS and use that δS = O(m):

δG(x, y) = δ

∫
d2z

√
g(z)S(x, z)S(z, y)

= δ

∫
d2z

√
ĝ(z)eσ(z)−σ(x)/2−σ(y)/2S(x, z)S(z, y) (5.35)

=
∫

d2z
√
ĝ(z)eσ(z)−σ(x)/2−σ(y)/2S(x, z)S(z, y)

(
δσ(z)− δσ(x) + δσ(y)

2

)
+O(m) .

If we let x→ y, integrate over y and take the trace we get

d2y
√
g(y) δ trDG(y, y)

=
∫

d2y
√
ĝ(y)

∫
d2z

√
ĝ(z)eσ(z)+σ(y) trD S(y, z)S(z, y)

(
δσ(z)− δσ(y)

)
+O(m)

= 0 +O(m) . (5.36)

Note that it is only after taking the trace that the integrand is odd under exchange of y
and z. Thus ∫

d2y
√
g(y) δ trDGζ(y) =

∫
d2y

√
g(y) δ trDGR(y) = δA

2π . (5.37)

Inserting this into (5.32) or (5.33) yields

δ

(
Sgrav + 1

48πSLiouville + m2

4π
(

ln π − 1
)
A+ m2

4

∫ √
g trDGζ

)
= O(m3) , (5.38)
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which we can immediately integrate to get

Sgrav[g, ĝ] = − 1
48πSLiouville[g, ĝ] + m2

4π
(
1− ln π

)
(A−A0)

−m
2

4

∫ √
g trDGζ [g] + m2

4

∫ √
ĝ trDGζ [ĝ] +O(m3) . (5.39)

We see that the order m2 contribution to the effective gravitational action is entirely
determined by the integral over the sphere of the Green’s function at coinciding points, Gζ
or GR.

This result for the gravitational action looks very similar to the result one gets in the
bosonic case for a massive scalar field. However, the Liouville action has an extra factor
+1

2 that arose from a combination of a minus sign from the fermionic determinant and
another factor −1

2 as explained above. Of course, this 1
2 is just the central charge of the

fermionic CFT. The term ∼ m2 is again the integral of Gζ , but now with an additional
minus sign (fermions !), as well as 1

2 and the Dirac trace. But most importantly, Gζ is the
regularised Green’s function of D2 which is not simply the scalar Laplacian as one had for
the scalar field.

To go even further and determine Gζ [g] in terms of Gζ [ĝ], or equivalently GR[g] in
terms of GR[ĝ], we could try to “integrate” the infinitesimal conformal variation (5.35).
Above, in (5.36) we could take advantage of symmetry arguments which we are lacking at
present. Note that from (5.22) we also have the relation

m2 trDGζ = m2 trDGR + m2

π
(γ − ln 2) = m trD γ∗SR + m2

π
(γ − ln 2) . (5.40)

So instead of working with the variation of trDGζ (to orderm0) we can look at the variation
of trD γ∗SR (to orderm). But this will lead us back to the same type of expression as (5.35).

Instead we will use directly the equality of G and
∫
SS and use again that S is in-

dependent of the conformal factor, up to terms of order m (we write Gg(x, y) instead of
G[g](x, y), and similarly for S):

Gg(x, y) =
∫

d2z
√
g(z)Sg(x, z)Sg(z, y)

=
∫

d2z
√
ĝ(z)eσ(z)−σ(x)/2−σ(y)/2Sg(x, z)Sg(z, y)

=
∫

d2z
√
ĝ(z)eσ(z)−σ(x)/2−σ(y)/2S ĝ(x, z)S ĝ(z, y) +O(m) , (5.41)

so that (S ĝ = Sĝ)

Gg(x, y)−Gĝ(x, y) =
∫

d2z
√
ĝ(z)

(
eσ(z)−σ(x)/2−σ(y)/2−1

)
Sĝ(x, z)Sĝ(z, y)+O(m) . (5.42)

Note that since δG(x, y) has a finite limit as x → y, the same must be true for this finite
difference. As in (5.34) we let x→ y and add the piece ∼ σ and take the trace to get

trDGζ [g](y)− trDGζ [ĝ](y)

= trDGR[g](y)− trDGR[ĝ](y) (5.43)

=
∫

d2z
√
ĝ(z)

(
eσ(z)−σ(y) − 1

)
trD Sĝ(y, z)Sĝ(z, y) + σ(y)

π
+O(m) .
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Finally, we get for the terms multiplying −m2/4 in the second line of the gravitational
action (5.39)∫ √

g trDGζ [g]−
∫ √

ĝ trDGζ [ĝ]

= 1
π

∫ √
ĝ e2σ σ +

∫ √
ĝ
(
e2σ − 1

)
trDGζ [ĝ] (5.44)

+
∫
d2y

√
ĝ(y)

∫
d2z

√
ĝ(z)

(
eσ(y)+σ(z) − e2σ(y)

)
trD Sĝ(y, z)Sĝ(z, y) ,

and thus

Sgrav[g, ĝ] = − 1
48πSLiouville[g, ĝ] + m2

4π
(
1− ln π

)
(A−A0)− m2

4π

∫ √
ĝ e2σ σ

−m
2

4

∫ √
ĝ
(
e2σ − 1

)
trDGζ [ĝ] (5.45)

−m
2

4

∫
d2y

√
ĝ(y)

∫
d2z

√
ĝ(z)

(
eσ(y)+σ(z) − e2σ(y)

)
trD Sĝ(y, z)Sĝ(z, y) .

The last term of the first line is the characteristic term e2σσ of the Mabuchi action

SM[g, ĝ] = 4
A

∫ √
ĝ e2σ σ + . . . , (5.46)

Obviously, this term is local, contrary to the other terms that are also present in (5.44) and
constitute the second and third lines in (5.45), and that are non-local. Despite some effort,
we have not been able to reduce these terms to purely local expressions in terms of the
conformal factor σ or the Kähler potential only. Such non-local terms involving the Green’s
functions on the manifold also are present in the effective gravitational action for massive
scalars at higher orders in m, starting at m4. It seems that in the present case of massive
Majorana fermions, such non-local terms are already present at order m2. It is interesting
to note, that the Mabuchi action appears at present with a coefficient −m2A

16π while in the
case of the massive scalar field one exactly obtained the opposite coefficient +m2A

16π .

6 Discussion and outlook

In these notes, we have studied to some extent the effective gravitational action for massive
fermions in two dimensions. The appropriate mass term was a Majorana type mass term∫
ψ†mγ∗ψ, and the spectral analysis we performed was based on the Dirac operator D =

i∇/ + mγ∗ whose eigenfunctions necessarily are complex. What might have looked as a
simple generalisation of the massive scalar case, actually turned out to be technically
quite involved. We performed a detailed study of the corresponding Green’s functions,
local zeta-functions and local heat kernels of the Dirac operator D and of its square D2.
In particular we studied the variations of these quantities under infinitesimal conformal
rescalings of the metric, and then tried to “integrate” these infinitesimal variations to get
the finite effective gravitational action S[g, ĝ]. Our result was valid for non-vanishing mass
in which case there is no zero-mode which otherwise we would need to exclude from the
Green’s functions and zeta-functions. However, to get a proper small-mass expansion of
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the effective gravitational action one needs to deal with quantities that have a well-defined
limit as m→ 0. One should thus properly take into account the zero-modes of the massless
Dirac operator i∇/ and define Green’s functions, zeta-functions and heat kernels with these
zero-modes subtracted. Of course the number and properties of the zero-modes crucially
depend on the topology of the manifold. We will come back to this question in a separate
publication. Here, in our last section, we restricted ourselves to spherical topology, where
i∇/ has no zero mode and we could directly perform the small-mass expansion of all our
quantities. At order m0, the resulting effective gravitational action displays the well-known
Liouville action, correctly with a coefficient 1

2 times the one for a single scalar field, as well
as a cosmological constant action proportional to the area A of the manifold. At order m2

we found a local contribution involving the
∫ √

ĝ σe2σ term characteristic of the Mabuchi
action. This term appeared with the same coefficient as for a massive scalar field, but
with the opposite sign, as one might perhaps have expected. But we also found, at this
order m2, several non-local terms involving the Green’s functions and Green’s functions
at coinciding points on the manifold. Such non-local terms showed up in the scalar case
only at order m4, but it seems that in the fermionic case they are already unavoidable at
order m2.

Finally, let us note that the gravitational action for a massive Majorana fermion has
also been studied in a different approach long ago [14]. There, following the DDK ap-
proach [15, 16], the theory of a Majorana fermion with the mass term being gravitationally
dressed by the Liouville field has been explored to some extent. It would be interesting
to pursue this approach further and relate it to ours. We hope to come back to this in
the future.
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