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ABSTRACT: Using the second law of local thermodynamics and the first-order Palatini for-
malism, we formulate relativistic spin hydrodynamics for quantum field theories with Dirac
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scription. Spin hydrodynamics in our approach contains only three non-hydrodynamic
modes corresponding to a spin vector, whose relaxation time is controlled by a new trans-
port coefficient: the rotational viscosity. We study linear response theory and observe an
interesting mode mixing phenomenon between the transverse shear and the spin density
modes. We propose several field-theoretical ways to compute the spin relaxation time
and the rotational viscosity, via the Green-Kubo formula based on retarded correlation

functions.
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1 Introduction

Spin in the non-relativistic limit, where the spin-orbit coupling is suppressed, becomes an
approximately conserved quantity (good quantum number). This is the case for the heavy
quarks in QCD (e.g., charm quark); the resulting heavy-quark symmetry shows up as the
degeneracy in the spectrum of particular hadrons [1-5]. Another familiar realization is a
certain class of condensed matter systems (e.g., magnetic materials), which has motivated
recent development of the hydrodynamic theory describing transport phenomena of spin,
leading to a fruitful research area known as spintronics (see ref. [6] for a review). On the
other hand, spin in relativistic systems is not a conserved quantity even approximately —
It is only a part of the total angular momentum, and is not conserved due to the spin-orbit
coupling inherent in relativistic dynamics, whose corresponding transport theory has not
been formulated until recently.

However, the recent experimental observation of spin polarization of hadrons in rel-
ativistic heavy-ion collisions [7-10] strongly motivates the development of the theory de-
scribing spin transport in relativistic plasma, in particular, the quark-gluon plasma (QGP).
This motivation has led to several theoretical studies of relativistic hydrodynamics with
spin polarization, based on the second law of thermodynamics [11-15], equilibrium par-
tition functions [15], quantum kinetic theory of relativistic fermions [16-25], holographic
approach for strongly-coupled plasma [26-28], effective Lagrangian approach [29-32], and



quantum statistical density operators [33-37] (see also refs. [38—40] and references therein
for a review). These works have shed light on different aspects of relativistic hydrodynamics
including spin degrees of freedom, often referred to as (relativistic) spin hydrodynamics.

Spin angular momentum in the hydrodynamic regime of long time and distance scales
is in general not a conserved quantity, due to exchanges with orbital angular momentum via
spin-orbit coupling. However, the total angular momentum is conserved. As a result, an
equilibrium state is characterized by a corresponding thermodynamic parameter [41] — the
thermodynamic conjugate to the total angular momentum, which we refer to as the angular
momentum “chemical” potential. In the absence of torsion, this chemical potential is equal
to the thermal fluid vorticity [33, 34], see appendix A. In a globally rotating (torsion-
free) equilibrium, the angular momentum chemical potential, i.e. the thermal vorticity, is
constant in space. Since there is only one angular momentum chemical potential for the
conserved total angular momentum, both spin and orbital angular momenta in equilibrium
must be determined uniquely by that angular momentum chemical potential. That is, the
spin polarization in equilibrium is fixed by the thermal vorticity, and their relation is one
of the equilibrium thermodynamic properties.

On the other hand, since the system has a finite microscopic correlation length, the
state of a local fluid element and its time evolution can only experience the local envi-
ronment, and hence should be determined by the local thermal vorticity as well as other
local thermodynamic parameters such as temperature and chemical potentials of conserved
charges. This means that the fluid element in off-equilibrium relaxes to “local” equilibrium,
with the thermal vorticity as one of the parameters characterizing local thermodynamic
equilibrium.! In other words, spin polarization in the strict regime of hydrodynamics based
on local equilibrium is not an independent variable, but is slaved to the conventional hy-
drodynamic variable of fluid velocity. Any deviation of spin polarization from its local
equilibrium value is a non-hydrodynamic mode, which relaxes to zero with a finite relax-
ation rate that is determined by microscopic dynamics of the theory [19-21, 42, 43|, similar
to any other non-hydrodynamic modes. In a theory where the relaxation rate of spin po-
larization is much slower than other non-hydrodynamic modes, one can have two distinct
hydrodynamic descriptions of spin polarization, depending on the time scale of interest
compared to the relaxation time of spin polarization.

When the relevant time scale is much longer than the spin relaxation time, the spin is
in local equilibrium with the thermal vorticity, and is not an independent degree of free-
dom. The system is described in a strict sense by hydrodynamics [44]. The true novelty
of spin hydrodynamics in this regime is two-fold [13]: 1) the spin, or equivalently the fluid
vorticity, affects the local thermodynamic laws used in hydrodynamics, as a second order
gradient correction to the first law of thermodynamics, 2) the energy-momentum tensor
has an anti-symmetric part which is proportional to the rate of change of the spin tensor,

We note that the term “local equilibrium” has been used in literature in different contexts. Here, we
use it to specify the local state where the strict hydrodynamic description can apply. In refs. [35, 36, 40],
however, the same term was used to refer to the state in which local entropy density is maximized with fixed
local densities of conserved quantities, where the angular momentum “chemical” potential is not necessarily
equal to the local thermal vorticity.



i.e., the fluid vorticity. One can formulate spin hydrodynamics in this regime based on the
gradient expansion of thermal vorticity. In leading order it gives the ideal limit of spin
hydrodynamics with no production of entropy [13]|, which is in accord with the existence
of globally rotating equilibrium with a constant, but non-zero thermal vorticity. Interest-
ingly, this ideal spin hydrodynamics has been shown to be equivalent, by a pseudo-gauge
transformation [35, 36, 38, 40], to conventional hydrodynamics based on the symmetric
energy-momentum tensor with no spin degrees of freedom, with certain non-dissipative
second order transport coefficients involving fluid vorticity [13]. The equivalence provides
an important conceptual bridge between the two different formulations in the strict regime
of hydrodynamics.

On the other hand, in the regime where the time scale of interest is comparable
to or shorter than the spin relaxation time (but is still longer than relaxation time of
other non-hydrodynamic modes), one can include spin polarization as an additional in-
dependent dynamical mode [11] in an extended hydrodynamic framework generally called
Hydro+[45]. The essential feature of this extended framework is that spin polarization as
a non-hydrodynamic mode relaxes to its local equilibrium value, due to spin-orbit coupling
inherent in the microscopic relativistic theory [11, 21]. A new transport coefficient appears
in this regime, dictated by the second law of thermodynamics [11, 12, 14, 15]: the rotational
viscosity, which determines the characteristic time scale for spin relaxation. In the present
paper, we focus on this regime of spin hydrodynamics.

We address several important theoretical issues, founded upon the microscopic defini-
tion of the spin tensor in a background with torsion. First, the definition of spin current has
been unclear in some of the previous works. Although the canonical spin current of Dirac
fermions based on quantum field theory is totally anti-symmetric with respect to its three
Lorentz indices, that was often not assumed in previous works.? Therefore, it is desirable to
work with a microscopic definition of the spin-current operator from the underlying theory,
possessing the appropriate anti-symmetric property of the spin-current. Second, the regime
of applicability of relativistic spin hydrodynamics is rather subtle. A naive application of
derivative expansion is problematic, and the proper expansion scheme needs to be clari-
fied. Last but not least is the issue of how rapidly the spin density in a relativistic plasma
relaxes to its equilibrium — one of the most crucial information relevant to the ongoing
heavy-ion experiments. To answer this question, we need theoretical methods to evaluate
the spin relaxation rate in the microscopic theory. One approach is the quantum kinetic
theory with collisions [19-21, 42, 43]. In this work, we follow an alternative path that does
not rely on weak-coupling approximation and leads to the Green-Kubo formula based on
retarded correlation functions of spin observables, which is similar to those for other trans-
port coefficients [46-48], but also with important differences due to non-conservation of
spin density.> Our technique involves torsion which makes spin connection an independent
source for the spin current and facilitates derivation of Green-Kubo formulae.

20ne can perform a pseudo-gauge transformation to bring the spin current into a desired form, which
however changes the definition of the spin current.

3Ref. [37] has recently derived a Green-Kubo formula based on the statistical operator approach, which
has some overlap with our results.



Our approach is based on the combination of entropy-current analysis and linear re-
sponse theory. Our starting point is the Ward-Takahashi identity for the local Lorentz
symmetry in the underlying quantum field theory of Dirac fermions, such as QED and
QCD. The first-order formalism in the background geometry with torsion naturally leads
to a totally anti-symmetric spin current, which is not conserved due to spin-orbit coupling.
As a result of the total anti-symmetric nature of the spin current, our relativistic spin
hydrodynamics contains three non-hydrodynamic modes, corresponding to a spin vector
that is the generator of spatial rotations.

We then perform the entropy-current analysis in a general background with torsion,
which introduces a new transport coefficient, the rotational viscosity ns. The constitutive
relations we find in a general torsionful background allow us to derive the Green-Kubo
formula for the rotational viscosity, as well as other possible ways to compute it from the
underlying quantum field theory.

Furthermore, the constitutive relations tell us that the local equilibrium value of the
angular momentum chemical potential receives additional contributions coming from the
background torsion. We study the linear response theory of our extended hydrodynamics
with spin modes, and obtain the dispersion relations of dynamical modes. The relaxation
rate of the spin modes is shown to be given by I'y = 215/xs, where x; is the spin suscepti-
bility (see (4.4) for the definition).

We consider the frequency scale w 2> I's, where these spin modes are treated as inde-
pendent dynamical variables in our relativistic spin hydrodynamics. We also assume that
w < ', where I' is the relaxation rate of other non-hydrodynamic modes. This window
of scale, where our extended hydrodynamics with additional spin modes is justified, is
possible only when I'y is parametrically smaller than I' (see figure 1). For example, in a
weakly coupled quark-gluon plasma, when the mass M of fermions is much larger than the
temperature T, I'g is expected to be smaller than I' by additional powers of T'/M.

One of the interesting features we find in our linear response theory is the mixing
between the transverse shear mode and the spin mode, that can be seen in figure 1. This
mode mixing arises because the transverse shear gradient 0,u, is a linear combination of
shear tensor and fluid vorticity, the latter of which couples to spin modes.

The paper is organized as follows: In section 2, we review the definition of energy-
momentum tensor and spin current in quantum field theory of Dirac fermions, together
with the associated Ward-Takahashi identity of local Lorentz symmetry. In section 3, we
derive the constitutive relations of relativistic spin hydrodynamics in a torsionful curved
background, where spin density is treated as an independent dynamical variable. In sec-
tion 4, we develop the linear response theory of our spin hydrodynamics, which gives the
dispersion relation of dynamical modes, as well as the derivation of the Green-Kubo for-
mula for the spin relaxation rate. Section 5 is devoted to summary and discussion. In
appendices A and B, we present a discussion on the angular momentum in global equilib-
rium under rotation and the relation between the currents in the vierbein-spin connection
formalism and the metric-affine connection formalism, respectively.
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Figure 1. A schematic picture of frequency scales as well as sound, shear, and spin density modes.
The spin hydrodynamics discussed in this work extends the regime of validity of hydrodynamics
to w 2 Ty, where I'y is the relaxation rate for spin density. For w <« Iy, the spin is no longer
an independent degree of freedom, and though spin hydrodynamics still applies, we also have pure
hydrodynamics as an alternative and simpler description. The green and red lines show a mode
mixing phenomenon between transverse shear and spin modes at the scale w 2 T's.

2 Spin current in the first-order formalism

In this section, we review the definition of the energy-momentum tensor and the spin
current from the viewpoint of the first-order (or Palatini) formalism for background space-
time [49]. We consider quantum field theory (QFT) in a torsionful (Einstein-Cartan) back-
ground geometry [50] and introduce currents and the Ward-Takahashi identities [51, 52]
associated with diffeomorphism, local Lorentz invariance and flavor symmetry.

2.1 QFT in a torsionful background

When the system enjoys a continuous global symmetry, it brings about a conserved current
thanks to Noether’s theorem [53]. Nevertheless, the naive definition of the Noether current
often contains conceptual problems, an example of which is the gauge non-invariance of the
canonical energy-momentum tensor for gauge theories. Although these problems may be
resolved in an ad hoc way by using, e.g., the Belinfante improvement [54-56], it is not clear
whether the improved one is the best definition of current operators (see, e.g., refs. [57, 58]
and references therein for reviews on the definition of spin currents in gauge theories).

In order to avoid potential problems in the Noether current, one can instead utilize
the definition of the gauge current in the following systematic way: we introduce the
background gauge field that couples to the global symmetry of the system, and by taking the
variation of the gauged action with respect to the background gauge field, one immediately
gets a well-behaved current operator. A famous example is the symmetric and gauge-



invariant energy-momentum tensor in general relativity, which is canonically defined by
the variation of the matter action with respect to the metric.

In the same manner, we can define the spin current operator, although it is not a
conserved current due to its possible exchanges with orbital angular momentum. The key
concept here is the spin connection, which enables us to promote the Lorentz invariance to
a local one. Let us consider QFTs in a background of torsionful curved spacetime, whose
action reads as

Slp; il = /d“weﬁ(% u3 7)), (2.1)

where we introduce a set of dynamical fields ¢ and background fields j, respectively. As an
explicit example, we will consider QCD in this paper, but the whole discussion also applies
to QED or any other theories including Dirac fermions. We consider the following QCD
Lagrangian density

1/, ; 1
Laep = -5 (V“ea“ﬁu ~ Dy 7*)q — aMq - i (6™ CaGrg) . (2:2)

where ¢ = (u,d,---)! denotes the quark fields with ¢ = igf7°, M = diag(my,mg,---)
is their mass matrix, and G, = dua, — Oya, — igla,, a,] is the field strength tensor for
the gluon field a, = afit,, with su(3). generators t,, and the QCD coupling constant g.
The dynamical fields are quarks and gluons: ¢ = {q,a,}, and corresponding to global
symmetries of QCD, a set of background fields is given by j = {eu‘i,wu&b,AH}, where

e/f (e)') and wlﬁi’ = —w,f’d denote the (inverse) vierbein and spin connection with e =
det elf’, respectively, and A, is a flavour gauge field, coupled to, e.g., the U(1) baryon

symmetry (generalization to non-Abelian flavour symmetry is straightforward). We note
that the anti-symmetry of w/ﬁb implies metric compatibility, V,g,,, = 0. We also introduced
the covariant derivative of the quark field as

i 4 i
50)#“ Y. — gAMq,

_ L 1 .5 i
q%u = 0uq +igqa, + iwﬂabqﬂdz’ + gAMq,

Buq = 0uq —igauq —
(2.3)

where 4% are the Dirac gamma matrices, and ¥, = i[va,7;)/4 are the generators of the
Lorentz group in the spinor representation. In this paper, we use Greek (hatted Latin)
letters for coordinate (local Lorentz) indices. The Minkowski metric convention is chosen
to be the mostly plus one: 7,; = diag(—1,+1,+1,+1).

It is worth emphasizing that the fundamental variables describing the background
geometry are the vierbein and the spin connection (or contorsion which will be introduced
shortly). We consider a torsionful background, where the vierbein and the spin connection
are independent background fields. One can then define the space-time metric g, and the
affine (curved space-time) connection I'”,, through

i b ; ; 6 b, b
g =e€,'e,/ny and  Dye,' = 0ue, =17, e, + wu“i)ey =0, (2.4)

where the second equation, or the so-called tetrad postulate, defines the affine connec-
tion from the given vierbein and spin connection. The anti-symmetric part of the tetrad



postulate gives the first Cartan equation, which defines the torsion 7%, = I, — 17,

as follows:

T% = de® + wdgeb & T‘LV = et — &,ef + w#‘ige,jb - wy%eﬂb. (2.5)

The introduction of the torsion is reasonable because it promotes the spin connection
to an independent background field. This becomes manifest by solving the tetrad postulate
for the spin connection as

w#&b _ d’)fb(e) i Kf‘b, (2.6)
where we introduced the torsion-free spin connection Cblﬁi’(e) and the contorsion K /f‘?’ as
follows [50]:

o Gb _ 1 av I;p C C C 2
Wy 256 e’ (=Cpvp + Copp — Cpup), (2.7)
1 s
b — b
LS §ea”e ?(Tuvp — Topu + Tovu), (2.8)

where C,,, is the Ricci rotation coefficient given by
Cuvp = e/f(&,epé — Opeue). (2.9)

Note that the torsion-free part d}lﬁi’(e) is fixed by the vierbein. Thus, introducing the spin
connection as an independent field is equivalent to putting the system into a background
with torsion. One observes that the quark couples to the background torsion through the
spin connection.

It is worthwhile to emphasize that the gluon (or photon in the case of QED) is assumed
to have no coupling to the torsion, in contrast to the quark field. This is a consequence of
imposing SU(3). gauge invariance of the action [50]. Note that we define the gluon field
strength tensor with a simple partial derivative, not with the covariant derivative. At first
glance, this choice does not seem compatible with diffeomorphism invariance, but it indeed
is. To see this, notice that both covariant derivatives with or without torsion are consistent
with diffeomorphism invariance, since their difference is proportional to the torsion tensor.
However, one sees that the use of the covariant derivative with torsion for the field strength
tensor spoils SU(3). gauge invariance due to the last term appearing in

Vyuay — Vya, —iglay, ay] = Opay — dyay, —iglay, ay] — T, a,. (2.10)

Throughout the paper, we use V, as the covariant derivative including only the affine
connection, and D, as the one including both the affine and spin connections. It should
also be pointed out that we have the symmetrized derivative in the fermion kinetic term
in eq. (2.2). This symmetrized form ensures that the Lagrangian is real-valued, and as
a consequence, the resulting spin current is a Hermitian operator as it should be. These
choices are crucial for the proper definition of the spin current, or equivalently, for our
decomposition of the total angular momentum into spin and orbital angular momenta.



2.2 The Ward-Takahashi identities

The systems enjoying the Poincaré invariance and some flavour symmetries are equipped
with conserved charges, given by the energy, momentum, total angular momentum, and
flavour charges. Since we would like to discuss the dynamics of spin polarization, we
need to identify the proper definition of the spin current, in order to decompose the total
angular momentum into the orbital and the spin parts. The decomposition of the angular
momentum tensor in quantum gauge theories is still a controversial subject (see, e.g.,
refs. [57, 58] and references therein for a review).* Based on the background vierbein and
spin connection, we here introduce one way to define a gauge-invariant spin current, which
eventually is shown to involve only the fermion sector.

First of all, note that the introduction of background vierbein and spin connection
promotes the Poincaré symmetry to local symmetries — diffeomorphism and local Lorentz
invariance. As a consequence of these local symmetries, one can derive in the usual manner
the covariant (non-)conservation laws as the Ward-Takahashi identities. The spatial com-
ponents of the associated spin current, i.e. %%  turn out to be completely determined by
the axial charge density JY. Also, it gives us a useful prescription to define the spin current
through the variation of the QCD action (2.1)—(2.2) with respect to the spin connection.
One can regard this procedure as a familiar way to define the gauge current. We thus
define the “canonical” energy-momentum tensor ©", and the spin current E s 88 well as
the flavour current J*, by taking the variation with respect to eu and wu ,as well as A,
respectively:

4}4,55QCD =2 98qep Ju(x>::4l4,53QCD
ea) defi(z)| " T e(@) ow, ()| el@) dAu@)],

(2.11)
where subscripts w and e indicate that they are fixed when we compute the functional

@
JE
=
N

derivative.
After a straightforward calculation, we find that the QCD action (2.1) gives us the
following expression for our currents

eF, = %@(’Y”Ba - 5&7“)61 + 2tr (G"*Gap) + Locpe,,

i_ 5
Zl/« b _§qeﬂé{,}/6’ Ed(}}(L (212)

a

Wzéwm%7
where {A,B} = AB + BA is the anti-commutator. One finds that only the local (or
on-site) quark field contributes to the spin current, so that our spin current is manifestly
SU(3). gauge-invariant. Moreover, thanks to the anti-commutator, X" 4 are Hermitian
gauge-invariant operators, as all physical observables should be. In other words, the spin
current would not be a Hermitian operator, if the fermion kinetic term in the Lagrangian

“In our view, any decomposition should be acceptable as long as it respects SU(3). gauge invariance.
The real issue is what component we measure in a given experiment.



was not symmetrized. The absence of gluon contributions to the spin current results from
the absence of the torsion in the gluon field strength tensor due to gauge invariance. In
that sense, our requirement of SU(3). gauge invariance in torsionful geometry fixes our
choice of the decomposition of the angular momentum.

There is another useful expression for the spin current, thanks to a gamma matrix
identity {~#,¥"P} = elPo~, 5 with v5 = —iy 717273 where the normalized totally anti-

symmetric tensor is defined as e#V?? = e#*P? /e with €°123 = +1. This formula tells us that
the spin current is totally anti-symmetric with respect to its three indices. One can then
easily show that it is equal to the Hodge dual of the axial U(1)4 current JE‘? as
= —%a abCJE) with J¢ = igy%ysq. (2.13)
Therefore, the number of independent components of the spin current operator is only four,
which are in one-to-one correspondence to the U(1)4 current J£. This means that some
components of the spin density, e.g. £9% are identically zero, and the other components
such as X% are equivalent to the spatial components of the axial current J. The remaining
component of ¥¥* is completely determined by the axial charge density J2.

Let us now derive the Ward-Takahashi identities that follow from local symmetries.
The vital point is that the QCD action (2.1) remains invariant, i.e. 0ySqcep = 0, under the
following infinitesimal transformations:

a = d,e, a4 el &Y — O‘&geugv
5Xw =& &,w B+ wy% L&Y+ 8#045‘5 —atw ;Ho bwu o

C

0 A, =¢8"0,A, + A0, + 0,0,

. 92.14
Syq =& 0uq + %a“bﬁag,q + 19q, (2.14)
1
6yq = £"0,q — ga“quw - 304,

oyay, = £"0ya, + a, 0,8

We introduced a set of local infinitesimal parameters, x = {£#, a&i), 0}, which generates the
general coordinate and local Lorentz transformations — four-vector £ for diffeomorphism,
anti-symmetric tensor a;; = —ay, for local Lorentz symmetry, and 6 for the U(1) symmetry.
On the other hand, a direct computation of the induced variation of the QCD action leads
to another expression for §,Sqcp with the arbitrary parameters x. For §,Sqcp = 0 to
hold for arbitrary y, their coefficients need to vanish, which gives us the Ward-Takahashi
identities for the currents. Since the computation is a little complicated, we first consider
the identities associated with the local Lorentz and U(1) symmetries, and then move on to
that for diffeomorphism.
The variation of the action under the local Lorentz transformation is given by

5SQCD5 i+ 5SQCD5

daq + 3G e (SCL# aly

e w s
“w dwa, b dq
wb

) ) N )
SaSqop = /d%; ?Qj% a4 05acn; 6 95QCD
o

_ % [ dteeat? [(@ag —0,)+ (D, — G)E (2.15)



where we used the equation of motion for dynamical variables (6Sqcp/dg = dSqcep/6q =
Vw“
from the integration by parts (all surface terms are neglected) in the presence of the tor-

dSqcp/da, = 0). We here introduced a torsional contribution G, = T%,,, which results

sion as
oue = eFl’W = e(I‘”W — T”l,#) = e(Fl’W —Gu). (2.16)

The local Lorentz invariance of the action tells us doSqcp = 0 holds for arbitrary position-
dependent a®. As a result, we obtain the following identity:

(D= Gu)2",

o = _(@&E — 6?)&)‘ (2.17)
Therefore, based on eq. (2.17), the covariant divergence of our spin current is tied to the
anti-symmetric part of our energy-momentum tensor. We regard this Ward-Takahashi
identity as the equation of motion for the spin density. However, we also note that not all
the components of eq. (2.17) give equations of motion for the spin density. This is because
our spin current is totally anti-symmetric, and thus, we only have three spin components as
dynamical variables. As a result, the remaining three equations are shown to be constraints
for a part of the energy-momentum tensor ©",. We will use these constraints when we
derive the constitutive relations with the help of the second law of local thermodynamics.

A similar computation leads to the following identity attached to the U(1) symmetry:
(Vi =Gu)J" =0, (2.18)

which gives a conservation law for the flavour current.
Being equipped with the above identities, we further evaluate the variation of the
action induced by the general coordinate transformation as

v 1 bpa
SeSqep = — / dizeg {(v# —G,)0, + 04T, = SSHIRY  —F | (219)

where we again used the equation of motion and performed the integration by parts. Here,
we introduced the field strength tensor Ry attached to the spin connection, and F),, as

a _ a a a,, e _ . a, ¢
R b = Ouw &,wu bW e,y W W (2.20)
F. =0,A, —0,A,.
For 0¢Sqcp = 0 to hold for arbitrary £, we obtain the identity
1 [
(Vﬂ - g#)@”l, = _@upr}U/ + 52“{1 Rai),u,l/ + FVMJM. (221)

Therefore, our energy-momentum tensor has source terms coming from the spacetime tor-
sion, curvature, and external U(1) gauge field.
In summary, we have obtained the following Ward-Takahashi identities:

N 1 i
(D = G,)0' = =0T + 22 Rl + FaJ",
(D# - gu)zﬂag = _(@ag - @E&)’ (2.22)
(Vu—6,)J" =0,

~10 -



which result from diffeomorphism, local Lorentz invariance and U(1) symmetry of the QCD
action (2.1)—(2.2). When we are interested in QCD in the flat spacetime with vanishing U(1)

gauge field, we turn off the background fields e ;* b and Ay, which reduces egs. (2.22) to

‘u, )

9.0", =0, 93" =—(0, - @5&), and  9,J" = 0. (2.23)

These equations give the conservation laws for the canonical-like energy-momentum density,
total angular momentum, and flavour charge (the first two were used in ref. [11]). We note
that the spin current X 5 is totally anti-symmetric with respect to its indices owing to the
gamma matrix structure of eq. (2.12) [recall eq. (2.13)], which is not assumed in ref. [11].
As a result of the anti-symmetric property, the number of independent degrees of freedom
in the spin current is not six but three in the present work.

One remark here is that we defined the energy—momentum tensor ©F, by considering
the variation with the fixed spin connection w# b instead of the fixed contorsion K, ab,
As a consequence, one finds that ©" 5 corresponds to the canonical-like energy—momentum
tensor. If we introduce the energy-momentum tensor 7% with the fixed contorsion K #&B’

we have

T#

L 059D | gy (D, — g,)n, (2.20)
e(z) de,(x) |, 2

where we used the totally anti-symmetric property of the spin current to obtain the right-

most side. We will see that this energy-momentum tensor becomes useful when performing

the linear-mode analysis in section 4.

3 Derivation of spin hydrodynamics

In this section, we provide a derivation of hydrodynamics with spin polariza-
tion [11, 12, 14, 15] (see also [28]). Based on the Ward-Takahashi identities and the second
law of local thermodynamics [44], we specify a first-order constitutive relation of hydro-
dynamics with the totally anti-symmetric spin current. In addition to two (shear and
bulk) viscosities and a flavour charge conductivity, we find one kinetic coefficient, called
rotational viscosity, appearing in the anti-symmetric part of the energy-momentum tensor.

3.1 Setup

Let us first introduce the dynamical variables. We employ the Landau-Lifshitz frame with
respect to the symmetric part of the energy-momentum tensor in defining the fluid four-
velocity u*. Therefore, we introduce u*” and the associated energy density € in the rest
frame by A

u® = —eut  with nagu&ub = guut'u” = —1, (3.1)

where we denote the symmetric part of the energy-momentum tensor as ©* &’(s) = (0", +

©,")/2. Owing to the normalization u,u* = —1, we can parameterize the four-velocity as
u = ~y(v)(1,v)" with y(v) = 1/v1 — v2. We next introduce the spin density o,; = —o;j,
and the flavour charge density n by

o= —UMZ”{IB and n=—u,J". (3:2)
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As given in eq. (2.12), we microscopically know the spin current for QFTs with Dirac
fermions is totally anti-symmetric so that the spin density for such QFTs satisfies aagu& = 0.
This means that we only have three independent components of spin density attached to
the spatial rotation symmetry, while the other three associated with the boost symmetry
are absent. Thus, our dynamical variables are three spin components in addition to four
energy-momentum densities and one flavour charge density. As for the spin density, we
also use the dual variable ¢ defined by

abed

a _ e d s 4, 4 _ - .a
o & 0, = —€.u 0" satisfying  o%ug = 0= o ju. (3.3)

g

N | —

In short, we identify eight dynamical variables as

e, n, u?, o (or o,;) satisfying ndl;u&ub =—1, ocluz=0= U&Bud. (3.4)
We then introduce thermodynamic variables conjugate to the energy, spin, and flavour
charge densities. For that purpose, we introduce a generalized entropy density s(e,n,0,;),
or equivalently s(e,n, %), and introduce the inverse temperature (3, flavour chemical po-
tential p, and spin chemical potential ;1 (or its dual pg) by

s

and (or Bl = _W) . (3.5)

Os

9045

Os Os

9’ B = , B =-2

p= on

In other words, we require the generalized first law of local thermodynamics in the rest
frame including spin density:

1 . R
Tds = de — pdn — §Mabd%g(: de — pdn — pado®). (3.6)

Equation (3.3) forces two spin chemical potentials to be related with each other by
lptl o pfh = ¢ Ugfh j- (3.7)

Note that the spin chemical potential satisfies pau® = 0 = p® uj-
Our purpose is to express ©%,, ¥ o and J* by using the eight dynamical variables
listed in eq. (3.4). We then rewrite these currents by performing the tensor decomposition

as follows:
0", = eutus + pAL + utdq, — dqtug + 6O,

m

2 ab

JH = nut + 6J¥,

=t (0 + doud), (3.8)

abe

where we defined a pressure p with a projection matrix A%:

A

ISR

e +utu, satisfying  Abu® =0 = Alu,. (3.9)
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Note that the Landau-Lifshitz definition of the fluid velocity restricts 60", and dg, to
satisfy 60", u? = 0 = u,00", and dgzu® = 0, and the definition of n leads to u,dJ* = 0.
Equation (3.8) just gives one possible parameterization of ©*,, %" ., and J!, and thus,
60", 8qa, do, and §J# could contain nondissipative terms. We will, however, show that
such a nondissipative term is absent in the constitutive relation for 60", dg; and do in the

first-order spin hydrodynamics.

It is worth emphasizing that the frequency scale of our main interest is in the spin
hydrodynamic regime, at which the spin density shows its intrinsic dynamics as an in-
dependent dynamical variable. As we will show in section 4.1, the spin density shows a
relaxation dynamics with its characteristic relaxation rate I's. Thus, we are now focusing
on the spin hydrodynamic regime w = O(I's), which allows us to find balanced terms in
the resulting equation of motion of the spin density. We also note that we implicitly as-
sume presence of a scale separation between spin and the other non-hydrodynamic modes
characterized by the frequency scale I' as I's < I". This additional assumption is not what
we can show in general setups, but what we expect to be true in a specific case such as the
heavy-fermion mass limit.

3.2 Derivation of constitutive relations

To derive hydrodynamic equations with spin polarization, we need to express 60" a4 0as
do and 6J* using our dynamical variables and background fields. For that purpose, we
require a generalized second law of local thermodynamics, which require the existence of
the entropy current

33“(6,/1,1;“,#&8) satisfying (V, —G,)s" >0 for Vg, p, v, and udi). (3.10)

Let us specify the condition following from the local second law (3.10). By parametrizing
the entropy current as s* = su* + ds*, we can express its divergence as

(Vu—=Gu)s' =u'Vys+s(Vyu' —utG,) + (Vy, — Gu)ost. (3.11)

The vital point here is that we can write the material derivative u#V, of the entropy
density s(e,n,0,;) as

0s 0s 0s
K ;7 = H —_— v e — A7 ~
Wyps =u (86 uet GU&BD“U‘II’ + on

Vﬂn> = put <V#e — %u&bDua&l; — uvun> ,
(3.12)
where we used the definition of the thermodynamic variables 3, i, and ua?’. Noting that the
left-hand side of this equation is a scalar, we put the covariant derivative D0 ,; to make the
right-hand sides to be scalar too. We can rewrite the rightmost side of the equation (3.12)

by using the Ward-Takahashi identities with the assumed constitutive relation (3.8). To
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do so, we take contractions of egs. (2.22) with 5% = pu?, %Budi’ and Su, which results in

BulV e = — Ble + p) (V' — u'Gy) — 604, (DB — T 8) + (V,u — Gu) (B0g")
— 5q& [V&ﬁ + UH(D,uﬂ& - BETB;L&)]

1 é e\pab  ad v
— 55“&86(0 + dou)R #Jﬂ — Bu”F, 00", (3.13)

1 A 1 . 1 .
—iﬁuﬂﬂabDu%é = gﬁﬂab%i)(vuuy —u'G,) + §5ﬂab (00,45 — 004,)
R R 1 ) .
+ 11,50 DB + (Vo — Gu) (Boapt) — §6ou05”&BéDu(Bpab), (3.14)
—BpulVyun = Bun(Vyut —uG,) — 6J4V ,(Bp) + (Vi — Gu) (Bud J*), (3.15)

where we used §O* &ua =0= 5qdu& to obtain the first equation.

At this point, dg% seems to enjoy the same status as 60", 60 and 6J*, whose con-
stitutive relation should be determined independently of other parts. However, this is not
the case: the constitutive relation for dg; is determined by that for X o To show this,
recall that the Ward-Takahashi identity for the spin current contains three constraints
rather than six dynamical equations due to the totally anti-symmetric property of our spin
current. This becomes manifest by contracting eq. (2.17) with u; and noticing that the
resulting identity

. 1 ., . 5
5q% = _gg%ub[(pu —G,)o° + doDyjuf], (3.16)

does not contain the time derivative in the right-hand side. As a consequence, we only need
to derive the constitutive relation for 60*,, 6o and §J#, the second of which will determine
that for d¢g; in accordance with the constraint (3.16). It is thus useful to rewrite (3.13) by
substituting the constraint (3.16) as

G o pb
ButV e = = Ble+p) (V! —ukGy) — 60" (DB =T, 8°) + (Vi — Gu) (B0g")
1 b e T . da
+ 58454 (D = Gu)o® + 80 Dyut] [V + u”(Dy 5 = B,17,%)] (3.17)
1 : Sy pab gl
— 56’%36(0C + dou’)R” P — Bu E g,
The result so far is exact without assuming the derivative expansion.

Let us then apply the derivative expansion to derive relativistic spin hydrodynamic
equations, which capture leading dissipative dynamics of charge densities. For that pur-
pose, we first need to specify our power counting scheme for the dynamical variables and
background fields. In this paper, we employ the power counting scheme defined by

0(8°) = {8, w*, p, e} and O") = {u®, 0,5, 0,2}, (3.18)

and derive the constitutive relations up to O(d'). This allows us to keep the restricted
number of terms appearing in the constitutive relations. To demonstrate this, using
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egs. (3.13)—(3.15), we rewrite the divergence of the entropy current as
(Vi —=Gu)s' = [s — Ble+p— pn)[(Vu! —ubGy) + (Vi — Gu) (85" + Bud ")
— 300, (DB = T7 8" = 60F,| (DB = T%, 8" = B (3.19)
— 0JH[Vu(Br) — BYFlw] + AS,

where we defined the symmetric and anti-symmetric parts of the energy-momentum tensor

00"y = 5 (00", +30,) and §0%| = (00", —60,)). (3.20)

N =
N | —

(s)

Here, we also introduced a collection of the higher-order terms AS = O(9?), whose explicit
form is given by

1 R )
AS = iﬁ,u,“ba&i)(vuu“ —u"G,) + Uub%&Dﬂﬁa

o2t (VY8 4+ (D" = BTN (D = G)o® + R, 6)
B %5%#@1}6“6 (D“(ﬁuai)) T R&gmiﬁd + Db [VA5 + u” (D, 5% /%Td;&)])
+ (Vi = Gy) (BOG" + Boop) . (3.21)

We shall explain the reason why these terms are counted as O(9%). First of all, our power
counting scheme (3.18) immediately tells us the terms in the first and second lines are the
third order in derivative. The first term in the first line, if considered, leads to a second-
order correction of the Gibbs-Duhem relation as € +p = T's + un + % M&B%g (see also the
following discussion). From the third line, one finds the form of do compatible with the

second law as

abé

5o = —Tree" . ul (D#(Buai’) n Rdf)u B D [VOB 4wt (DB~ B JT@@)}) , (3.22)

with a positive coefficient ks > 0. Equation (3.22) represents a diffusive transport of
the spin current and its response to the curvature tensor; namely, ks is identified as
a spin conductivity. Besides, this closes the constitutive relation for dg; thanks to the
constraint (3.16). Our power counting scheme tells us do = O(9?) and dq; = O(9?),
which proves that all terms in the last two lines of eq. (3.21) are O(9%). Note that
the last term, if considered, leads to a second-order correction of the entropy current as
dst = —BogH — Bdout = O(0?). As a result, we find 6o = 0 and gz = 0 in the first-order
spin hydrodynamics.

Going back to eq. (3.19), one finds the entropy current s* and the constitutive rela-
tions for 60", and §J* compatible with the generalized second law of local thermodynam-
ics (3.10) in the following way. Firstly, the first line of eq. (3.19) vanishes by identifying

e+p=Ts+un+0(D?*) and &s* = BudJ" + 0(d?), (3.23)

where the first equation is the usual Gibbs-Duhem relation up to O(9). We note that both
equations have second-order derivative corrections present in AS as we discussed above.
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The second line and the first term in the third line of eq. (3.19) will always be positive by
identifying the following constitutive relations:

00|y = =T (D = T0,.5%) = =" ¥ (Do — T, %),
ala) = ~T(ns)". b( Vﬁb Tbuéﬁ B,wa) = (ns)udVB(D,,ub — Tbyéué — ,u,yb)’ (3.24)
5" = Tk, A [V, (Bu) — BPF,,],

o

where one can decompose the viscous tensors n 5 Y and (ns

U

v
b

2 (1(M”A~ +AFAY) — ;AgAg) +CALAY, .
3.25
()", = *ns(N‘”A p — DAL

Here, all four kinetic coefficients n, (, ns, and k, are assumed to take positive values.
They are shear viscosity, bulk viscosity, rotational viscosity, and flavour conductivity. The
positivity of these kinetic coefficients makes the entropy production rate a positive semidef-
inite quadratic form within the second-order derivative to satisfy the second law of local
thermodynamics.

One can also rewrite the constitutive relation by decomposing the spin connection to
the torsion-free and torsion parts as

Dyu® — T&Mi)ub = b#u& - ubKAud, (3.26)
where the circled derivative contains the torsion-free spin connection. From this decomposi-
tion, one sees that the symmetric part of the energy-momentum tensor has no contribution
from the torsion. This is because the contorsion Kgud is anti-symmetric under the ex-

change of (u,a) indices so that it disappears from the constitutive relation. Then, we
obtain another expression for the constitutive relation as follows:

J

il = 5D
. R (3.27)
50", } 775) (D,,u —u’K,, —,uyb).

Equations (3.24) or (3.27) give the constitutive relations for the first-order spin hydrody-
namics. In addition to two viscosities  and (, we have another viscosity known as the
rotational viscosity 7.

In summary, we find the constitutive relations for the first-order spin hydrodynamics
in the torsionful curved background as follows:

®ud = eu“u@ +pAM n 4 b(D u Tbycué) - (TIS>M g (Dl/ub - Tbuéué - Mub)
= eulug + pAL — A bD,,u — (ns)* . E(D,,ub — K, —u?), (3.28)

TH P ¢
ab E&béa’

JH =nut — T’QnAm/ [VV(/BIU’) - ﬂprp],
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where the rank-four viscous tensors are decomposed as eq. (3.25). Thus, the first-order spin
hydrodynamics with one flavour current is equipped with three viscosities 7, ¢, and 7 and
one conductivity x,. Once we know their values (and also the equation of state), the Ward-
Takahashi identities form a closed set of equations for the energy-momentum, spin, and
flavor charge densities. This completes the phenomenological derivation of hydrodynamics
with spin polarization.

A few remarks are in order here. The present analysis uses the same strategy as ref. [11],
but we have some modifications that originate from the total anti-symmetry of the spin
current. This difference eliminates three dynamical spin densities attached to the boost,
and, as a result, one of the transport coefficients, the boost heat conductivity, found in
ref. [11], disappears. Also, the power counting scheme is a little different from that used in
ref. [15], which makes it difficult to give a direct comparison with their constitutive relation
(see the discussion at the end of section 4.1).> We here emphasize that our identification
of the spin hydrodynamic regime allows a consistent truncation for the spin hydrodynamic
equations. To see this, let us consider the Ward-Takahashi identity in the flat spacetime
8020&5 + 8¢20a5 = —(9,; — ©;;)- According to our power counting scheme (3.18), the
first term on the left-hand side is counted as O(wd) while the right-hand side will be
identified as O(I's0) (see section 4.1). These are precisely balanced when we consider the
spin hydrodynamic regime w = O(I'g). Lastly, one could try to use the novel derivative
expansion scheme introduced in ref. [13], treating fluid vorticity and temperature gradients
differently from other dissipative first order gradients such as shear and bulk tensors. This
allows to rigorously extend the entropy-current analysis to second or higher order terms
that involve vorticity and temperature gradients, producing new constraints for second
or higher order transport coefficients [13]. The application of this scheme to the present
analysis may, for example, justify (3.22) more rigorously.

4 Linear response theory for spin hydrodynamics

In this section, we present the linear response theory of hydrodynamics with spin polar-
ization. The purpose of this section is twofold: the first one is to specify the spectrum
(or dispersion relation) of the modes described by spin hydrodynamics [59]. We will find
that the rotational viscosity controls the (gapped) relaxation rate of the spin density. The
second one is to find the field-theoretical expression for the rotational viscosity. Applying
the linear response theory with the background (mechanical) perturbation [46-48, 60], we
provide the Green-Kubo formula for the rotational viscosity. Since the flavour currents
(e.g., the baryon current) do not affect the dynamics of the spin density, we neglect them
in the following discussion.

®In principle, there can be second order derivative corrections in ©,;, which contribute to the right-
hand side of the spin-current conservation equation (2.17). Those would have to be included if derivatives
were our only expansion quantity, see for example [15]. Recall, however, that we here consider the spin
relaxation rate I's, which is counted on the same order as the frequency because we are considering the spin
hydrodynamic regime (recall figure 1).
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4.1 Linear-mode analysis and non-hydrodynamic spin mode

Let us consider a spinful relativistic fluid in flat space-time, where the Ward-Takahashi
identities and the constitutive relations are simplified as

9,0" =0,

auzuég, = —(O45 = 9a); ) ) ) (41)
0", = (e + p)utug + pdy — " " Buu” — (n)". " (Buu” — 1)), '
= 8uai)éaé‘

It is not necessary to distinguish the curved and local Lorentz indices in flat space-time,
so we remove hats over the indices in the following analysis. We perform the linear-mode
analysis of the spin hydrodynamic equations (4.1) around the global equilibrium without
background flow and spin density, that is, we consider small perturbations given by

e(x) = €y + de(x), vz(az) =0+ 5vi(x), U&(CL‘) =0+ 60a(x), (4.2)

and keep only O(d)-terms in the following analysis. In this expansion, the four-velocity
and spin densities are given by u* = (1,5v%)! + O(6?) and 0% = (0,50%)" + O(6?), and
the fluctuations of all other quantities (such as the pressure) are expressed by those in
eq. (4.2). Introducing ém; = ©°% = (€y + po)dv;, one finds that the linearized equations of
motion become

0 = dpde + 9,07,
0 = Bodmi + c20ide — 7 8;076m; — (1 + 7s) (6] V? — 9;09)m; + %Fsaol-jkaj(bk, (4.3)

0 = odo; + Ts00; + 27se0:x 0 67",

where we introduced a set of static/kinetic coefficients as

dp 1 4 n
==, = <§+77>, VL= ;
€ €0 + Po 3 €0+ Po (4.4)
b= 20 o s r, = 2 '
sY1] 8/1-]7 s — 2(€0+p0)’ s — XS .

The x; is the spin susceptibility, and cs is the speed of sound. We work in the Fourier
space with 60(k) = [ d*z %= *250(2), and we choose the momentum direction to be

along the z-direction, k = (0,0, k). Then, the linearized equations of motion become the
block diagonal form as

<A3><3 9]

t
5 Ai“) 0¢=0 with 0G= (0¢ 67 6. 07, 05, 0Ty 0%) (4.5)
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where we introduce the parallel and perpendicular matrices as

—iw i|k| 0
AﬁxB = icgyk’ —iw + ’)/||k2 0 ,
0 0 —iw + Ty
—iw + (yL +7s)k?  3Ts|k| 0 0 (4.6)
A4x4 = —2iy; k| —iw + T 0 0
. 0 0wt (4 wk? ALK
0 0 —2i7,| k| —iw + Iy

Solving the characteristic equations, det Aﬁxg’ = 0 and det A‘iﬂ" = 0, we find the dispersion
relations for the modes in our spin hydrodynamics.

The longitudinal modes, described by Aﬁxg, decompose into the decoupled sound and
spin modes, whose dispersion relations read

{o One pair of sound modes : wgsound (k) = *cslk| — %VHkQ + O(k3), (47)

e One longitudinal spin mode : wgpyip (k) = —ils.

It is clear that we have the relaxational longitudinal spin mode in addition to the gapless
sound mode (see figure 2(a)). In contrast, the transverse momentum (shear) and spin modes
are coupled together, which gives rise to two pairs of the following dispersion relations (see
figure 2(b)):

il (L +vs)R® = iVTZ = 2T(v — 7s)k2 + (7L + 7s) k!

wshear(k) - 2 5
; ; 24 5./T2 2 2)4 (4.8)
il Fi(yL +s)k® +iyT2 = 20(ye — vs) k2 + (7L +75)2k
WSpin,L(k) = - B .

Here, we call each branch as the shear and the transverse spin mode, because of their
low-momentum behaviors

{o Two shear modes : wWgpear (k) = —iv1 k> + O(k?), (4.9)

e Two transverse spin modes : wepin 1 (k) = —ils — ik + O(k?).

From the low-momentum behaviors in (4.7) and (4.9), we identify three non-hydrodynamic
(gapped) spin modes, in addition to the hydrodynamic (gapless) sound and shear modes.
All spin modes show the relaxation behavior with the characteristic time scale of I';1. This
non-hydrodynamic behavior is originated from the fact that the spin angular momentum
is not a conserved quantity. The relaxation of spin modes persists until the source term
in the spin equation of motion vanishes, namely when the spin potential u® coincides
with the fluid vorticity when it reaches the local equilibrium. In this strict hydrodynamic
regime of w <« I'y, we thus find only the gapless sound and shear modes, as expected in
the conventional relativistic hydrodynamics.

On the other hand, in the regime of our spin hydrodynamics (w ~ I's), three compo-
nents of spin density start to behave as independent dynamical modes. In contrast to the
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(a) Longitudinal modes (b) Transverse modes

w(k) w(k)
0.4+ . . .

-0.05
0.2

-0.2
-0.4+
Re wsound(k) ——— Im wsound(k) Re Wspear(K)  ——— Im Wynear(k)
————— Re wspin,l\(k) — Im wspin,”(k) ----- Re wspin,J_(k) —— Im wspin,J_(k)

Figure 2. Dispersion relations for (a) longitudinal modes and (b) transverse modes, with the
parameters (cs, V|, VL, s, 7s) = (1/4/3,0.7,0.5,0.1,0.05).

decoupled longitudinal spin mode, the transverse spin modes feature an interesting coupled

dynamics with the transverse shear mode. In fact, in high momentum region, the shear

and transverse spin branches in the dispersion relations behave as

. i’YJ_Fs
YL+ s

It is notable that they interchange their momentum dependence between the low and the

Wshear (k) ~ and  wepin, 1 (k) ~ —i(yL + 'ys)k:Q. (4.10)

high momentum regimes: the shear branch approaches to a constant relaxation rate inde-
pendent of momentum, while the spin branch shows a quadratic dependence on momentum
(see figure 2(b)). At the cross-over momentum scale, we see the level repulsion phenomenon
between the two branches. We should also point out that the eigenvector of each branch is a
linear combination of ém, and do, (or ém, and do,), due to the off-diagonal mixing terms in
the matrix A‘iﬂl in eq. (4.6). This mixing is a result of the fact that the transverse velocity
gradient 0,0v, is a linear combination of shear tensor and vorticity, and the former couples
to momentum fluctuation while the latter couples to the spin density. In particular, the
strict hydrodynamic shear mode in low momentum is described by the energy-momentum
tensor T% defined in eq. (2.24), which is a linear combination of our energy-momentum
tensor ©", and the spin density. In fact, the flat space-time limit of eq. (2.24) gives us

(HN_'OZ =0m; + %EOijkkk(SUj, (4.11)

0

and we find that the transverse fluctuation, e.g., 5T$,

is one of the eigenvectors in low
momentum regime satisfying

0=[—iw+ kYT + O(K>). (4.12)

This shows that Tod describes the gapless hydrodynamic modes in the strict hydrody-
namic regime. However, we emphasize that we need ©", to describe the dynamics of spin
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polarization, because its anti-symmetric part appears in the equation of motion for spin
polarization.

The zero-momentum relaxation rate of the spin modes is controlled by I's = 2n,/xs,
and thus, the rotational viscosity 7, is essentially the spin relaxation rate. Note that the
finite-momentum part of the spin relaxation rate is different between the longitudinal and
transverse components: the former does not depend on momentum, while the latter is
If we consider the next-

given also by the rotational viscosity ns as v.k? = 2(6()77-&S-p0)k
leading-order correction of the spin current, the relaxation rate for the longitudinal spin
density also shows a momentum dependence. While the finite-momentum dependence of
the spin relaxation is an interesting subject, we focus on the zero-momentum behavior in
the remainder of this paper. We also note that the parameter set used in figure 2 (and also
in figure 1) is chosen to have a well-defined spin hydrodynamic regime. This is manifest
in our choice of small I'y, compared to the scale where hydrodynamic gradient expansion
breaks down, i.e., w. ~ c2 /7|- This is a required assumption that ensures the existence
of the spin hydrodynamic regime (or the spin hydro+ regime in figure 1), in which only
spin modes appear as an additional non-hydrodynamic mode in the time scale much larger
than that of other non-hydrodynamic modes. This may be justified when, e.g., there exist
sufficiently heavy fermions in the system.

Let us translate the above results into field-theoretic language. For that purpose, we
introduce the retarded Green’s function for arbitrary operators A and B as

ég,B(w’ k) = /d4:c lwt—ik-a iH(t)([A(t,w),B(O,O)D (4.13)

eq’
where (@)eq denotes the expectation value in homogeneous thermal equilibrium. Then, the
dispersion relation (4.7) and (4.9) implies that the retarded Green’s function for the spin
density G% ' (w,k = 0) has a pole at the location wspin(k = 0) = —il's. Besides, taking
into account that the zero-frequency limit of the retarded Green’s function gives the spin
susceptibility

lim GR7 (w = 0,k) = x50 4.14

lim G717 (w = 0, ) = x0, (4.14)

we identify the low frequency-momentum behavior of the retarded Green’s function for
spin densities as

iXSFS _.I_ . ..
oY 4.1
w+ils+ O(k?) " (4.15)

where the ellipsis stands for higher-order corrections with respect to frequency and mo-

GL 7 (w, k) =

mentum, which is beyond our first-order spin hydrodynamics. As a result, we can directly
extract the value of the spin relaxation rate I'y, if we identify the location of the pole in
the retarded spin-spin correlator. This give one direct way to evaluate the spin relaxation
rate from the correlation function in quantum field theory.

Before closing this section, we comment on our power counting scheme. Noting that
the equation of motion for the spin density is given by eq. (2.17), one might worry whether
our constitutive relation is consistent with (naive) derivative expansion scheme. This is a
natural concern, because the left-hand side of eq. (2.17) is of second order in derivatives,
while the right-hand side is of first order. However, the crucial point is that we need
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to distinguish spatial derivatives from time derivatives in the spin hydrodynamic regime
> T'y, and

~

we are working on, since our frequency scale is implicitly assumed to be w
therefore, time derivative should not be counted equally to spatial derivative. Then, there
is no discrepancy in the number of derivatives between both sides of eq. (2.17): they are
both O(T's0), where O denotes a spatial derivative. This point will also be important when
we check the consistency between the linear-mode analysis and the Green-Kubo formula
in the next section.

4.2 Green-Kubo formula in the first-order formalism

As shown in the previous section, the rotational viscosity 7, gives the relaxation rate of
spin polarization. Our primary question is how to evaluate it from an underlying QFT such
as QCD. We formulate in this section the linear-response theory based on the first-order
formalism, which gives the Green-Kubo formula to evaluate the spin relaxation rate from
the field-theory Green’s functions.

First of all, we note that the spin density is a non-hydrodynamic mode with a charac-
teristic relaxation rate I'y, and therefore, it disappears in the strict hydrodynamic regime
w K I'y in our setup, where the local equilibrium state does not support vorticity. Thus,
when writing the equations of spin hydrodynamics, we implicitly assume that we are work-
ing on the frequency scale given by w 2 I's (recall figure 1). In other words, depending on
the frequency scale of interest to us, the constitutive relation of the spin hydrodynamics is
further reduced to be the usual hydrodynamics as

o —(ns)“&yg(lo)yui’ — uéKéyi’ —1,%) when Ty<w<T,
a

_ (4.16)
(a) 0 when w < T,

where I' represents the relaxation scale of other non-hydrodynamic modes. Here, we spec-
ified the constitutive relation in the true hydrodynamic regime w < I's by equating the
source term of the spin equation of motion with zero. As a result, the small frequency
limit which we will use below is not the strict w — 0 limit, but should be regarded as a
constrained limit I'y « w < I'. This is in sharp contrast to the usual w — 0 limit used in
the Green-Kubo formulae for other transport coefficients for conserved charges.

We then introduce a mechanical perturbation [60], and identify the rotational viscosity
from the linear response of the system to the background perturbation. The basic strategy
is to compute the perturbation of currents in first order of the background torsion, and to
match the result with the constitutive relation in our spin hydrodynamics, (3.24) or (3.27).
From the first equation of (3.27), one sees that the bulk and shear viscosities are captured
by the torsion-free spin connection, which results in the usual Green-Kubo formula for
them. Thus, we focus on the rotational viscosity in the following discussion.

The vital point for the subsequent discussion is to identify eqgs. (3.24) or (3.27) as a
non-equilibrium expectation value of the quantum operator (5(:)“ ) in a torsionful curved
background. We here use the vierbein and contorsion as independent sources, while it is also
possible to use the vierbein and spin connection, instead. Similarly to the previous section,
we assume that the system is initially in homogeneous thermal equilibrium with 8 = const.,
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u® = (1,0)!, and uf = 0. On the time scale of w > I'y, the spin chemical potential ,u/fl
remains zero even after introducing background perturbations, as we explained in the
previous paragraph. This simplifies the constitutive relation for the anti-symmetric part
of the energy-momentum tensor as

]‘ v 14 ° b b
(@lek = 5 ls(A A, = AAR G, g (e) — K, (4.17)

<5@#& 0

This equation serves as a basis to obtain the Green-Kubo formula for the rotational viscosity
ns. Below, we present two ways to compute the rotational viscosity, whose equivalence will
be shown by the Ward-Takahashi identity.

Firstly, we turn off the background vierbein by putting e/f‘ = 52, while keeping the
non-vanishing contorsion, so that one has only the second term in eq. (4.17). On the other
hand, we can also compute the same (5@“ a)e.rc in a different manner based on QFT. To
describe this in the underlying quantum theory, we start from the initial density operator

at past infinity ¢ = —oo given by the equilibrium Gibbs distribution

1

Peq = me_ﬁﬁ with Z(8) = Tre P, (4.18)

where H denotes the Hamiltonian of, e.g., QCD in the absence of background fields. Then,
noting that eq. (4.17) indicates that the contorsion K Oj’ plays a role of a relevant back-
ground field, we perturb the system by adiabatically turning on the small contorsion and
compute the induced response of the anti-symmetric part of <é)“ ). Since the contorsion
couples to the spin current in the microscopic field theory, one can describe the situation
by considering the time-evolution generated by a time-dependent Hamiltonian

N N N . 1 . .
Htot(t) =H + Hext<t) with HeXt(t) = i/dngOVb(t,CC)EOVB(t, ZU) (419)

We shall then evaluate the first-order perturbation induced by Hey (t). A usual computa-
tion easily gives the energy-momentum tensor <C:)“ a(®)) K as

(O @) = O @l when =5 [ AL~ )0 0] 0y 0N K o)

_ é,u 1 o d /d3 /Géuaka)’EOVg NK byt 4
= (0%(@)@)ea = 5 td°z'Gy (z —2) Ky, (2), (4.20)
—00
where we use the definition of the retarded Green’s function (4.13) in the second line.
The first term with the subscript “eq” on the right-hand side represents the equilibrium
expectation value in the absence of the background contorsion. Thus, after applying the
Markov approximation, which essentially means a small frequency limit, we find the linear
response result for <5@“&(x)](a)> = (@Md(x)\(a))[( — <@”“@(m)](a)>eq as
oM ‘(a)vz()yg «

A 1
" ~ : : é b X 4.21
(00 a(x)|(a)> =5 Fsi<1gl<<1‘ élII%] Gr (w,k)K. » (x) ( )

Note that we use the constrained limit, . i<im<<r, that was discussed previously, since in the
s w

strict w — 0 limit, both sides are expected to vanish due to relaxation dynamics of spin
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density. By comparing this result with eq. (4.17), we find the rotational viscosity given by

. . ~®zA‘(a)7E()zA
ns=— _lim lim G " Y

k). 4.22
Ie<w<T k—0 (w, k) ( )

This gives one Green-Kubo formula for the rotational viscosity.

As we mentioned previously, there is another way to compute the rotational viscosity.
This is because eq. (4.17) also involves the vierbein through the torsion-free spin connection
d’)f’()(e). Thus, considering the linear response induced by the anti-symmetric part of the
vierbein instead of the contorsion, we can also compute the rotational viscosity. However,
we need to be careful at this point because the operator coupled to the vierbein is not 6" a
but T’fl defined in eq. (2.24) when we treat the vierbein and contorsion as independent
sources. This second way to compute the rotational viscosity suggests that we can use the
torsion-free background to compute the rotational viscosity, but the identification of ©*,
will be a little complicated (see also appendix B).

We can, however, derive the same result while avoiding such a direct computation with
the vierbein perturbation. To do so, we simply need to use the Ward-Takahashi identity
for the spin current. In flat space-time, we find the following identity in the Fourier space:

(@) (w, k). (4.23)

Substituting this relation into eq. (4.22), we obtain another Green-Kubo formula for the
rotational viscosity:

1 ~O o e, N
Ns =2 lim lim —ImGR 51(0):9%l(a)

k). 4.24
Fe<w<T k—0 W (w, k) ( )

This looks more familiar because it takes a similar form to the Green-Kubo formula for
the shear and bulk viscosities.

We can show that the constrained limit . lim . is indeed necessary in these Green-
WK

Kubo formulas. To see this, using the Ward-Takahashi identity (4.23), we can replace
©%; in the first Green-Kubo formula (4.22) with the spin density, which leads to another
expression for the rotational viscosity:

]_ ~EOxA OZBA

=— 1 li I v (w, k). 4.2
R WPy v m Gy (w, k) (4.25)

This equation is consistent with the result of the linear-mode analysis given in eq. (4.15)
,VE(A)avA7 Ox

(recall 0% = Eéxg so that CNJURZUZ (w k) =Gy * . Y(w, k)). Indeed, the constrained limit of
eq. (4.15) leads to

ixswl's + O(w2)5ij Iy<w<l ixswl's
w il

WG (w, k= 0) = = 2in,, (4.26)

which agrees with the linear response result (4.25). On the other hand, eq. (4.15) tells us
~Z()x” fJacA

that the strict w — 0 limit of wIm G ¥ Y(w, k) does not give the rotational viscosity,

because it simply vanishes.
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While the above Green-Kubo formula utilizes the constrained limit, the strict w — 0
limit can also provide yet another formula for the rotational viscosity. Taking the imaginary
part of eq. (4.15), it is straightforward to obtain

=lim —ImGr ¥ "(w,k=0). (4.27)

We emphasize that hg%) in this equation is the usual zero-frequency limit. Interestingly,
the rotational viscos(fty 7s appears in the denominator of the equation, in contrast to the
other Green-Kubo formula that we derive in this section. This can be understood from
the requirement w < I'y in this limit, which probes infrared singularities that should be
regularized by a finite I's. The eq. (4.27) may provide another practical way to evaluate

the rotational viscosity in quantum field theory.

5 Summary and outlook

In this paper, we addressed several theoretical issues in relativistic hydrodynamics with
spin polarization. First, we clarified the definition of the energy-momentum tensor and
spin current for quantum field theories with Dirac fermions (such as QED and QCD)
based on the first-order formalism in a background geometry with torsion. The resulting
spin current is totally anti-symmetric with respect to its three indices, and we performed
the consistent entropy current analysis to derive the first-order constitutive relations in the
torsionful background. The total anti-symmetry of the spin current leads to three dynam-
ical degrees of freedom arising from spin polarization, and we find one kinetic coefficient
known as the rotational viscosity, which controls the relaxation rate for the spin density.
Second, we presented a number of ways to evaluate the spin relaxation rate, or equivalently
the rotational viscosity, from the retarded correlation functions of spin-related operators;
the several Green-Kubo formulae for the rotational viscosity are derived with the help of
mechanical perturbations described by the time-dependent Hamiltonian. We also point out
a subtlety of the low-frequency limit in the obtained Green-Kubo formula, which originates
from the non-conservation of spin angular momentum that is inherent in relativistic spin
hydrodynamics.

Although we presented a rigorous framework for the first-order relativistic spin hydro-
dynamics, we must also point out the underlying assumptions for its validity, which have
not been clearly explained in the previous literature. As was already pointed out in the
old paper by Martin, Parodi, and Pershan [61], we cannot model-independently assume
that the relaxational spin mode is in the near hydrodynamic regime. In other words, we
cannot always find the regime for the spin hydrodynamics we discuss, which is defined
by I's < w < T', while we use this assumption to derive the Green-Kubo formula for the
rotational viscosity. This is in sharp contrast to the strict hydrodynamic modes whose gap-
less property is protected by conservation laws, so that the presence of the hydrodynamic
regime is always guaranteed in the k — 0 limit. There is a certain similarity between
spin hydrodynamics and Miiller-Israel-Stewart theory of second-order relativistic hydrody-
namics [62-65] in that both introduce additional degrees of freedom. Neither of these two
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theories could be a universal effective description unless the additional degrees of freedom
are parametrically slow. However, when an approximate spin symmetry emerges by con-
sidering, e.g., a large mass limit for fermions (e.g., charm quarks in QCD, and protons
and/or electrons in QED), Th®Y for heavy-fermion spin is expected to be parametrically
smaller than I' for other non-hydrodynamic modes, which guarantees the existence of the
spin hydrodynamic regime.

As an outlook let us point out a few research directions along the lines of the present
paper. The most important one is to evaluate the rotational viscosity (or the spin relaxation
rate) for QCD or gauge theories. The Green-Kubo formula for the rotational viscosity
derived in this paper enables us to compute the spin relaxation rate in the underlying
quantum field theory. For that purpose, similarly to the computation of the shear viscosity,
we may rely on thermal perturbation theory for the weakly-coupled regime of QCD [66, 67],
or the AdS/CFT correspondence for the strongly-coupled limit of QCD-like theories [68, 69].
The results would have direct implications for the theoretical study of spin polarization in
the QGP created in relativistic heavy-ion collision experiments.

Our analysis in this paper employs the entropy-current analysis to derive the consti-
tutive relations. Another interesting direction is to explore the non-equilibrium statistical
operator method [70-83]. This will provide a complementary starting point to discuss spin
transport with the help of thermal perturbation theory, which describes the relaxation
process based on density operators (see, e.g., ref. [37] for a recent attempt to derive the
Green-Kubo formula with the statistical operator method). Besides, it will also be interest-
ing to investigate possible anomalous transport phenomena in the spin transport, with the
help of the path-integral formulation of the local thermodynamic functional [84]. In fact,
non-dissipative anomalous currents such as the chiral magnetic and vortical effects [85-91]
are captured by the local thermodynamic functional, or equivalently called the hydrostatic
partition function [92-101]. Guided by the result obtained in ref. [84], an extra amount of
spin density, which corresponds to the deviation of the spin potential from its equilibrium
value of thermal vorticity, would lead to the presence of thermal torsion emerging in the
imaginary-time formalism. We speculate that this geometric description has a promising
potential to provide a solid basis for systematic investigation of possible anomalous trans-
port phenomena associated with the spin current. We leave all these interesting questions
to future work.
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A Global equilibrium under rotation

A global equilibrium state is characterized by a time-like Killing vector S* (see, e.g.,
refs. [102, 103]). In the flat spacetime, it is a solution to the Killing equation

a,u/BV + auﬁu = 07 (Al)

and has the form g* = B.(,2" + V) with a constant anti-symmetric tensor €, =
—€,, a constant time-like vector b#, and an overall constant factor 3., which correspond,
respectively, to angular velocity of rotation, the linear velocity of the center of rotation and
the inverse temperature at the center. For instance, the fluid rigidly rotating around the
z-axis is described by

1 1
—Q . | —Q
BH = put = B, 4 with 3= 6.vV1—-Q2r2 ot = Be 4 , (A.2)
Qx 81 Qx
0 0
where 72 = 22 + y?. It can be checked explicitly that eq. (A.2) is an exact solution of

the ideal relativistic hydrodynamic equations. This is a consequence of the fact that con-
servation of angular momentum implies existence of equilibrium (nondissipative) rotating
solution. Note that thermal equilibrium in the fluid requires that the local temperature
T = 1/f varies in such a way that T/~ is constant, where v = 1/v/1 — Q272 is the rela-
tivistic time dilation factor.

The solution given by eq. (A.2) exists only for the angular velocity 2 smaller than
1/R, where R is the maximum radial size of the rotating system, i.e., 7 < R. This is
obvious directly from eq. (A.2), since § becomes complex otherwise, and physically, since
the velocity Q)R of the outer edge of the system cannot become superluminal lest it violates
causality.

We show in the following that it is physically impossible to spin the fluid fast enough
so that it would violate causality, since no finite amount of angular momentum could make
the fluid rotate rigidly with angular velocity € exceeding 1/R. The reason for that is that
the temperature of the outer edge of the system

1 T,

TR =sm ~ ficom (4.3)

approaches infinity when 2 — 1/R and, as a result, the edge carries an infinite amount of

angular momentum, as we shall now show.

The orbital angular momentum along the z-axis is given by
J* Z/d37" (x Q% — y@ox) :/dgr wu® (zu? — yu®) = Qﬁg/d?’r w2 (22 +y?), (A4)

where w = €+ p is the enthalpy. For simplicity let us consider a rotating cylinder of radius
R and length L and perform the integration in eq. (A.4) in cylindrical coordinates. Since
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the local temperature T'(r) = 1/5(r) is a monotonous function of the radial coordinate
r = /22 + y2, it is convenient to change the integration variables from r to T

o (B 5 o _3 (TR AT 7
J* = 27TLQBC/ drrdwB? = 2w LQ 1o wm. (A5)
0 T, T T2
Since thermodynamic stability requires w to be a non-decreasing function of T, the integral
diverges when the edge temperature T'(R) — oo, i.e., when 2 — 1/R. Therefore, an infinite
amount of angular momentum is needed to reach the causality upper bound for the angular
velocity of rigid rotation Q — 1/R.

B Currents in metric-affine connection formulation

The vierbein-spin connection formulation used in the main text is a useful tool to define
the spin current and the canonical energy-momentum tensor. Since our energy-momentum
tensor has a possible anti-symmetric component, one may be interested in how it appears
in the formulation relying on the metric. We here provide a way to define the currents
used in this paper with a help of the first-order metric-connection formulation (see also,
e.g., appendix G of ref. [95]).

Let us now use the metric g,, and affine connection I'¥, , instead of e, & and w as

vp’ b’
independent backgrounds, which also allows a possible contrlb,iltlon from the non—van;llshmg
torsion. While QCD enjoys diffeomorphism invariance as 6¢Sqcp = 0 even if we use these
backgrounds, its variation with respect to the metric and affine connection leads to a
different set of currents. We then introduce the following currents as an alternative to
eq. (2.11):

2 5SQCD 1 5SQCD

Gy e = et (B.1)

By noting eqs. (2.4), one can find their relations to ©*, and Z#&B in eq. (2.11). In fact,

" (x)

egs. (2.4) allows us to express variations of the metric and affine connection as

Ogu = 1,5 (e, 56 +ea56)

o _ _ a  ps, b b, ps @
orr,, =e; P90, Wea Poeyd +w e de, +e e, 6wu 5

(B.2)

Thus, the variation of the QCD action induced by diffeomorphism is expressed as follows:

0S 0S 0S 0S 0S
_ 4, QCD QCD # QCD QCD ¢ _ QCD

v A a 1 ab
= /d4x\/ -9 |:(tu €va — (D)\ - gA)S %) 5§eua - 5(8'“&8 - S#Bd)éfwuab ) (B'S)
from which we find the relation between the two definitions of currents, (2.11) and (B.1), as
QMY = M — (V) — Gy)sMY,  SHVP = VP _ ghov, (B.4)

This relation allows us to investigate dynamics of ©@* and Y#° using t** and s that
are defined by the variation with respect to the metric and affine connection.
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