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1 Introduction and conclusions

Thermal 2-point correlation functions have a much more intricate structure than their
zero temperature counterparts. One way to argue is to recall that a finite temperature
lorentzian CFT in d dimensions is equivalent to the euclidean theory on S1 × Rd−1. The
thermal circle provides both a scale — its length β — and a direction, which allow primary
operators to take a VEV (translational invariance is still a symmetry, so descendants do
not get a VEV). Then, for operators inserted within a ball of size smaller than β (so that
it does not “wind around the thermal circle”), one can use the standard flat space OPE,
where, due to the non-zero VEV’s, all primaries manifest themselves as shown in [1].

Very recently thermal 2-point functions have been studied for holographic CFT’s
in [2, 3].1 In principle, these can be read-off from the solution to the corresponding wave
equation with the usual holographic recipe. As this is a daunting task (specially in order to
explore the whole thermal circle), [2, 3] specialized to 2-point functions of scalar operators
of large conformal dimension (but still much smaller than the central charge of the theory).
In that limit, the Klein-Gordon equation can be solved through the WKB approximation,

1These are related to heavy-heavy-light-light 4-point correlators in flat space through the Eigenstate
Thermalization Hypothesis, see for instance [4–6]. Also [7] has recently considered, albeit from a slightly
different point of view, holographic thermal correlators.
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Figure 1. Expansion in Witten diagrams of the 2-point function. The blue vertex represents the
“trivial vertex” breaking in two the geodesic for the 2-point function. The red vertex corresponds
to the cubic interaction λijk. The yellow vertex corresponds to the higher curvature coupling to
W 2. The shaded region is a cartoon representing presence of the black hole.

which in the end becomes the (exponentiated) geodesic length. Thus the problem becomes
akin to the computation of geodesics in the black brane background. In this paper we will
assume this limit, so that propagators, either bulk-to-bulk or boundary-to-bulk, will be
computed by the exponentiated length of a suitable geodesic.2

The starting point is the KG equation which arises from the leading term in the effective
gravitational action. For instance, in the case of 4d N = 4 SYM at T = 0 dual to IIB string
theory on AdS5×S5, the reduction of the fluctuations of the gravity theory on the S5 gives
rise to an effective action on AdS5 whose first terms, for a particular set of fluctuations,
were computed in [8]. The leading term is the free field action from which the KG follows.
Higher terms represent interactions giving rise to Witten diagrams with corrections. In
addition to these corrections, in principle there can be higher curvature corrections to the
starting SUGRA lagrangian.These result in corrections to the gravitational background (α′

corrections in the AdS5×S5 case) as well as new couplings which gives rise to new Witten
diagrams. In our case, The bulk action is of the form of (2.1). One can write down the
leading contributions to two point functions using the Witten diagrams as in figure 1.

The study of geodesics in black hole backgrounds, in connection with thermal correla-
tion functions, has been thoroughly studied (e.g. [9–12]). In particular, since geodesics can
probe the interior of the black hole, 2-point functions may offer a very interesting window
into black hole physics. This has been revived recently in [13], albeit for 1-point functions.
There it was argued how thermal VEV’s can encode the (appropriately renormalized)
proper time to the singularity of a radially in-falling particle through higher curvature
couplings (in particular, to W 2, the Weyl tensor squared). In [2] it was argued that a ver-
sion of that mechanism would be at play in the 2-point function, which also contains new
information about the black hole interior. Even though it is bottom-up, morally speaking
the set-up underlying [2] is that of charged operators — for instance, CPO’s in N = 4
SYM —, which suggests a particular version of the higher curvature coupling of the form

2Let us stress that this discussion pertains the computation of propagators, which then enter whatever
Witten diagram we may compute (see below). The 2-point function can also we written, formally, as an
interacting Witten diagram by “splitting it into two parts and joining them again”, but in the end it has
to correspond to a regular geodesic.
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|φk|2W 2 (φk stands for the bulk field dual to the boundary scalar operator of interest Ok),
giving rise to a Witten diagram which encodes in a similar manner to [13] the time of travel
to the singularity (as well as exhibiting other interesting features such as the quasinormal
frequencies similarly to [9] — see also [14]).

As discussed above, in principle the free action can be supplemented by corrections
arising from higher terms in the reduction of the SUGRA fluctuations as well as from higher
curvature terms. Motivated by this, in this paper, concentrating on scalar operators, we
consider a toy model which includes both a cubic bulk interaction between the bulk scalar
fields as well as coupling to W 2. Assuming at least one neutral operator, the leading
coupling would be φkW 2. This gives rise to a Witten diagram expansion as in figure 1
below.3 As we will see, the correction in figure 1 has a few interesting consequences. First
of all, the part of the diagram probing the black hole interior is really a straight radial
geodesic which couples to W 2, and realizes the mechanism in [13]. As a consequence, this
correction will have exactly the same sensitivity to the time of travel to the singularity.
Another consequence is that the whole diagram is proportional to a thermal VEV, which
appears in this fashion in the thermal 2-point function. Indeed, if one looks to the leading
term in figure 1 — the vanilla 2-point function — one can explicitly see [2] how it contains
the contributions from the operators Tn — all possible contractions of n energy-momentum
tensors, with spins 0, 2, · · · , 2n— , but there is no trace of other thermal VEVs. This is
a consequence of the supergravity regime,4 and going beyond by including the correction
in figure 1 allows thermal VEV’s to appear in the 2-point function. To be precise, the
subleading term in figure 1 captures the contribution of the operators TnOk to the OPE
(n = 0 being the VEV itself). Finally, as we will discuss, the correction in figure 1 is
actually the leading term for off-diagonal correlators (an issue recently discussed in [15]).
Recall that at T = 0 conformal symmetry sets the 2-point functions for operators of
different conformal dimensions to zero. At T 6= 0 — or else, in S1 × Rd−1 — this is
not true anymore, and 2-point functions for operators with different dimensions may be
non-vanishing. As discussed in [2] and reviewed here, in the supergravity limit where the
gravity dual is captured by free fields in the black hole geometry, off-diagonal correlators
vanish. On the other hand, the second diagram in figure 1 is non-vanishing, and thus
captures these off-diagonal correlators, which are then directly proportional to the thermal
VEV’s (and, therefore, consistently, vanish in the T → 0 limit).

The main star of our paper is the second diagram in figure 1. As we will see, the VEV
of the “operator which corresponds to the straight line” can be factored out, effectively
leaving behind a computation very similar to that of a 3-point function, which can be
studied in the euclidean signature. It is however a peculiar 3 point function, as one of the
geodesics, instead of running to the boundary, is anchored at the tip of the cigar (where it
would meet the rest of the geodesic exploring the interior of the BH due to the W 2 term).

3We could include as well the |φ|2W 2 term, in particular to account for charged operators: this is
including the contribution of [2].

4This can be made precise in exact String Theory constructions. For instance, in the paradigmatic
example of N = 4/AdS5 × S5, the large N and large ’t Hooft coupling limit where supergravity is valid
suppresses, in the N = 4 side, thermal VEV’s.
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This pulls the cubic coupling (the point in red in figure 1) down such that, it touches the
tip of the cigar before the separation of the operator on the thermal circle reaches β

2 . This
marks a “phase transition” where the correlator is dominated by a configuration of two
radially straight geodesics meeting at the tip of the cigar (and then joining with the part
which explores the interior due to the W 2 coupling). Even though this phase transition
looks sharp in the geodesic approximation, we conjecture that finite ∆ effects will smooth
it out. It would be very interesting to study this aspect in detail.

As mentioned, we will work in euclidean signature. For the leading term, the euclidean
version of the correlation function is given by real geodesics which live in the cigar geom-
etry.5 As shown in [2, 3], these precisely reproduce the expectations from CFT not just
the expected structure in terms of Gegenbauer polynomials but also recovering the correct
numerical values of the central charges. In turn, for the subleading term in figure 1, theW 2

term forces the geodesic to “explore inside the horizon” [13]. This happens in an interesting
way, since, as discussed above, the computation breaks into two pieces: the computation
of the “3-point function”, which can be done completely in the euclidean cigar geometry;
times the computation of a VEV, which just as in [13], is necessarily dominated by the
singularity. Note that, since off-diagonal correlators are captured by second diagram in
figure 1, they “explore inside the horizon”. Thus, it would be very interesting to further
study off-diagonal correlators, specially in connection to [15].

This paper is organized as follows: in section 2 we set up the holographic computation
of 2-point functions in our toy model, whose leading terms are captured by the Witten
diagram expansion in figure 1. In section 3 we review the results for the first diagram in
figure 1 following [2, 3], including a detailed discussion of the vanishing of that diagram for
off-diagonal correlators. In section 4 we discuss the computation of the subleading term in
figure 2. Eq. (4.9) reflects the factorization of the VEV — which is just as in [13] — and the
“3-point function” contribution. We then study the “3-point” part (some relevant aspects
of geodesics are compiled in appendix A). For diagonal correlators in the “hierarchy” when
the “vertical field” is dual to an operator Ok of a much smaller dimension, we can find a
closed formula for the 2-point function where the contributing operators can be matched
to TnOk. We then study the d = 2 case in detail. Even though that case is a bit subtle,6

these subtleties go in the VEV pre-factor. In turn, we will use the d = 2 “3-point” piece
as a toy model for other dimensions, because in d = 2 the equations greatly simplify. This
will allow us to discover the announced “phase transition”. We will then consider the d = 4
case. In the OPE regime we will explicitly see how we recover the expected Gegenbauer
polynomial structure, while for large separation of the operator insertions on the thermal
circle, we will see that the same transition as of d = 2 case.

5In Lorentzian signature things are more complicated: the geodesics can explore inside the horizon
and probe both boundaries of the eternal black hole [12], encoding in a subtle way information about the
singularity [9, 10]. Moreover, they can have “bulk cone” singularities [11] — see also [14, 16, 17].

6In this caseW 2 vanishes. Conversely, since S1×R is conformal to R2, the exact 2-point function can be
computed [18], showing that thermal VEVs, other than those for Tn, are not generated in S1×R. However,
for the theory at finite volume VEV’s can be generated through a bulk cubic coupling with a geodesic going
around the black hole [19].
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2 Holographic thermal correlators for neutral operators, including
corrections

Let us consider the sector of scalar operators {Oi} in a holographic CFT in d dimensions.
For simplicity, let us suppose that they are all are neutral under all would-be global symme-
tries which the CFT may have. In a top-down construction, the bulk action would follow
from reducing the appropriate String Theory on the relevant internal space, leaving behind
an effective theory for the fluctuations in a d+ 1 dimensional asymptotically AdSd+1 space
which may contain a black hole. In the strict limit of large central charge cT and large
coupling λ (large N and large ’t Hooft coupling in the paradigmatic N = 4 SYM example),
the gravity dual is given in terms of supergravity fluctuations in the geometry of the black
brane in AdSd+1. One may imagine to systematically include c−1

T and λ−1 effects, which
would correspond to higher order terms in the effective action for the fluctuations and
higher curvature corrections to the background. Thus, on general grounds we are led to
consider the bulk action

S =
∫

bulk

√
g

(1
2(∂φi)2 + 1

2m
2
iφ

2
i + λijkφiφjφk + α′ αi φiW

2
)
, (2.1)

where the metric is given by the appropriate correction to the usual black brane in AdSd+1
(for instance, such metric was explicitly constructed in [20, 21] for the paradigmatic N = 4
SYM example), and W is its Weyl tensor.7

Let us first ignore the cubic coupling as well as the coupling toW 2. One can holograph-
ically compute the 2-point function for the operators Oi using the free action (kinetic terms
only). As usual, one would solve the equation of motion with the appropriate boundary
conditions, from which the desired 2-point function in the boundary theory can be read-
off. A particularly simple sector is that of operators of large dimension. For ∆i � 1 (but
still, smaller than cT ), mi ∼ ∆i, and thus the bulk equation of motion can be solved in
the semiclassical WKB approximation. One can easily show that the WKB solution is
essentially the exponential of the action of a particle of mass mi travelling through the
bulk from the insertion point of one operator to the insertion point of the other operator.
Which becomes the exponential of the geodesic length between the insertion points of the
operators. Moreover, it turns out that one can regard this geodesic as the combination
of two geodesic arcs which meet at some bulk point xI = (τI , ~xI , zI). And we need to
integrate over the bulk junction point. This allows to regard the 2-point function as an
interacting Witten diagram. Then, including the cubic interaction and the coupling to
W 2 results in more vertices leading to more Witten diagrams contributing to the desired
2-point function. To leading order we would find as in figure 1.

Let us denote by G(i)
∂b(x, u) the bulk-to-boundary propagator from a bulk point x to a

boundary point u for the bulk field i — dual to the operator i, and hence with mass mi.
In addition, G(i)

bb(x, y) will be the bulk-to-bulk propagator for the bulk field i from x to y.

7Even though (2.1) could be pragmatically regarded with no reference to a String Theory construction, it
is useful to write the coefficient of the correction including an α′ factor which pertains to the W 2 coefficient
in a top-down construction as a reminder.
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Then, the 2-point function resulting from figure 2 would be

〈Oi(x1)Oj(x2)〉=
∫

bulk
duG

(i)
∂b(x1,u)G(j)

∂b (x2,u) (2.2)

+λijkαkα′
∫

bulk
du

∫
bulk

dvG
(i)
∂b(x1,u)G(j)

∂b (x2,u)G(j)
bb (u,v)W 2(v)+· · · .

In the large dimension limit, as described above, both the bulk-to-boundary and the
bulk-to-bulk propagators are proportional to the exponential of the geodesic length between
the arguments. Thus, in the following we will suppress the subscripts and just write
G(i)(x, y) ∼ e−Si , being Si the action for a mass mi particle whose trajectory joins x and y.
As we are interested in including corrections, G is to be computed with the appropriately
α′ corrected black brane background. Note however that, since the W 2 term in (2.1) is
already proportional to α′, to leading order the second line in (2.2) can be evaluated in the
zeroth-order black-brane background, which reads (in lorentizan signature)

ds2 = R2

z2

(
−f(z)dt2 + dz2

f(z) + d~x2
d−1

)
, f(z) = 1− zd

zd0
, z0 = d

4πβ . (2.3)

We will sometimes use units in which z0 = 1. Restoring factors of temperature is straight-
forward on dimensional grounds.

3 The leading term

Let us consider the leading term in (2.2). Its contribution reads

〈Oi(x1)Oj(x2)〉L =
∫

bulk
duG

(i)
∂b(x1, u)G(j)

∂b (x2, u) . (3.1)

As described above, we would like to evaluate, in the large dimension approximation, the
contribution (3.1) including the first α′ correction. Nevertheless, let us first consider the
“tree level” background, given by the black brane geometry in (2.3). Then, the necessary
ingredients for the computation of this diagram have been very recently developed in [2, 3].
One finds that G(i)(x, y) ∼ e−∆i Sarc(x,y) for some function Sarc(x, y) — actually the length
of a geodesic arc between x and y — which is discussed in those references, and briefly
reviewed in the appendix. Thus (3.1) boils down to

〈Oi(x1)Oj(x2)〉L =
∫

bulk
du e−S S = ∆i Sarc(x1, u) + ∆j Sarc(x2, u) . (3.2)

Since ∆i � 1, we can perform the integral above in the saddle point approximation, which
boils down to evaluating the integrand in the solution to the saddle point equations dS

du = 0
(here u = (τ, ~x, z)). We can read off the contribution of each geodesic segments to these
equations from [3]. These equations boil down to

∆i

√
f(z)− z2µ2

i + f(z) z2 ν2
i ±∆j

√
f(z)− z2µ2

j + f(z) z2 ν2
j = 0 ; (3.3)

∆iµi + ∆jµj = 0 , ∆iνi + ∆jνj = 0 ;

– 6 –
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where µi,j , νi,j are the momenta labelling the geodesics (see [2, 3] and the appendix for de-
tails), and ± refers to the fact that one may wonder whether one should use ingoing/ingoing
or ingoing/returning geodesics (see [3] and the appendix for details). One can check that
if ∆i 6= ∆j , the only solution to these equations is zI = z0 and µi = µj = 0, νi = νj = 0.
This corresponds to “straight” geodesics running radially at fixed τ so that the resulting
configuration of joining two of them would have a “wedge” and hence would result in a
non-smooth curve — unless the insertions are opposite located in the circle, so that the
two “straight geodesics” are aligned. As a result, there is no admissible saddle configura-
tion if ∆i 6= ∆j , which shows that the leading contribution to the off-diagonal correlator
vanishes. Note that, leaving aside the “wedge”, the zI = z0 configuration would lead to
rather bizarre features for the correlator, such as a nonsensical T → 0 limit, or the fact
that, since µi = µj = νi = νj = 0, the correlator would not depend at all on spacetime.

Let us now turn on the first α′ correction. At low temperatures (more precisely, at
small T |x|), and in d = 4, this was considered, using the background in [20, 21], in [3];
where it was argued that the leading correction only changes the coefficients by effectively
shifting T 4 → T 4 (1 + 15

8 ζ(3) (2λ)−
3
2 ). The reason for this is that the first α′ correction to

the geometry (2.3), for small T , results in a background of the same form of (2.3) itself only
that z0 is related in a different way to the temperature. As a consequence, the computation
proceeds just as in the α′ un-corrected case. In particular, the argument above should go
through, and so 〈Oi(x)Oj(0)〉L ∼ δij even including the first α′ correction.8

Thus, all in all, borrowing the results from [2, 3], the contribution from the leading
term to the correlator is

〈Oi(x)Oj(0)〉L = δij
|x|2∆i

eAdT
d |x|dC

(
d−2

2

)
2 (η)+O((T d|x|d)2) , Ad =

2d−2π
2d+1

2 Γ
(
d−2

2
)

ddΓ
(
d+3

2
) (1+δAd) ;

(3.4)
where we have introduced |x| =

√
τ2 + ~x2 and η = τ

|x| , and where C( d−2
2 )

2 (η) is the cor-
responding Gegenbauer polynomial. The correction term δAd is of the order α′3, and for
d = 4 reads δA4 = 15

8 ζ(3)(2λ)−
3
2 .

4 The subleading term

Let us now go to the subleading contribution in (2.2), which is given by

〈Oi(x1)Oj(x2)〉SL = λijk αk α
′
∫

bulk
du

∫
bulk

dv G
(i)
∂b(x1, u)G(j)

∂b (x2, u)G(j)
bb (u, v)W 2(v) .

(4.1)
Since this is already of the order of α′, to leading order we should compute (4.1) in the black
brane background (2.3). Moreover, we will also assume ∆k � 1. Then, once again, in the
large dimension approximation we can approximate both bulk and boundary propagators

8One may wonder whether including higher orders this conclusion could change, and an off-diagonal
correlator can be generated. This is hard to assess, as the general structure of higher order α′ corrections
is poorly understood.
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by G(x, y) ∼ e−∆Sarc(x,y). Moreover, it turns out that when evaluated in the black brane
background

W 2 = d (d− 2) (d− 1)2

R2
zd

zd0
. (4.2)

Thus, we may write

〈Oi(x1)Oj(x2)〉SL = d (d− 2) (d− 1)2

R2 λijk α
′ αk (4.3)

×
∫

bulk
du e−∆i Sarc(x1,u)−∆j Sarc(x2,u)

∫
bulk

dv e
−∆k Sarc(u,v)−d log vz

z0 ,

where we use the notation vz to parametrize the radial coordinate of the bulk point v.
In order to simplify the otherwise undoable v integral, let us approximate it by a saddle

point approximation.9 Denoting by vt and ~vx the time and spatial components of v, the
saddle point equations would read

dSarc(u, v)
dvt

= 0 , dSarc(u, v)
d~vx

= 0 , ∆k
dSarc(u, v)

dvz
+ d

vz
= 0 . (4.4)

As shown in [3] (and reviewed in the appendix), dSarc(u,v)
dvt

= µ and dSarc(u,v)
d~vx

= ν. Since
the first two equations in (4.4) have no compensating term, they set µ = ν = 0 for the
geodesic connecting the u and v points. This implies that such geodesic is vertical — that
is, along the radial direction —, and thus its contribution is very simple

Sarc(u, v) =
∫ vz

uz
dz

1
z
√
f(z)

. (4.5)

We may write this as follows

Sarc(u, v) =
∫ vz

0
dz

1
z
√
f(z)

−
∫ uz

0
dz

1
z
√
f(z)

. (4.6)

The first integral is nothing but the geodesic “vertical” length ` between the boundary and
a point at depth vz. Thus, we may write (4.3) as

〈Oi(x1)Oj(x2)〉SL

=λijk

∫
bulk

due−∆iSarc(x1,u)−∆j Sarc(x2,u)+∆k Svert(0,u)
[
α′αk

∫
bulk

dv e−∆k `W 2
]
, (4.7)

where
Svert(0, u) =

∫ uz

0
dz

1
z
√
f(z)

. (4.8)

The quantity in brackets in (4.9) does not depend on u, and thus can be extracted
out from the integral. In fact, that piece is nothing but the thermal VEV of the Ok
operator [13]. Thus, we can write

〈Oi(x1)Oj(x2)〉SL = 〈Ok〉λijk
∫

bulk
du e−∆i Sarc(x1,u)−∆j Sarc(x2,u)+∆k Svert(0,u) . (4.9)

9One way to justify this would be to consider the limit d ∼ ∆k.
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Figure 2. A sketch of the effective configuration to consider: in Euclidean signature, we have a
junction of 3 geodesic arcs. Two of them are attached to the boundary (we only show the euclidean
time circle) at the insertion points of the operators and meet at a point with a third vertical geodesic
anchored at the tip of the cigar (here marked as the locus to which the arrow in the z axis points).
In Lorentzian signature that would be the horizon and the vertical geodesic would continue all the
way to the singularity.

The integral in (4.9) needs not to vanish for i 6= j. Thus, since the leading term in (3.4)
is proportional to δij , (4.9) actually provides the leading contribution to non-diagonal 2-
point functions. As expected, it is only non-zero due to the fact that in the thermal
background 〈Ok〉 6= 0.

Interestingly, (4.9) factors out the VEV — which corresponds to a vertical geodesic
that goes all the way to the singularity due to the W 2 term as in [13] — times a factor
which is very reminiscent of a 3-point function (see [3]). The vertical segment of this 3-
point function is anchored at the tip of the cigar at z = z0 (morally speaking, from there
on it joins the vertical piece probing the interior) instead of running to the boundary.

In order to proceed further, let us explicitly evaluate Svert. Introducing a boundary
regulator ε, one finds (u = (t, ~x, z))

Svert = 1
d

log
(

1−
√
f(z)

1 +
√
f(z)

)
− log ε

z0 4
1
d

. (4.10)

Note that
dSver
dz

= 1
z
√
f(z)

. (4.11)

Thus, the saddle point equations are

∆i µi + ∆j µj = 0 , ∆i νi + ∆j νj = 0 , (4.12)

∆i

√
f(z)− z2 µ2

i − f(z) z2 ν2
i + ∆j

√
f(z)− z2 µ2

j − f(z) z2 ν2
j −∆k

√
f(z) = 0 . (4.13)

Let us consider the case of diagonal correlators ∆i = ∆j at coincident spatial points,
which corresponds to νi,j = 0. Then the saddle equations become(

1− ∆2
k

4∆2
i

) (
1− zd

zd0

)
= z2 µ2

i ; (4.14)

Then, for µi ∈ [0,∞) one has z ∈ [z0, 0), that is, the bulk integral in (4.9) lives in the
euclidean part of the geometry corresponding to “outside the horizon”, while the one-point
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VEV does probe the interior of the black hole as described in [13]. Note that this is for
∆k < 2∆i. For the extremal case ∆k = 2∆i the saddle goes to the boundary and the
correction splits up into the product of two 2-point functions, just as in [3].

4.1 Diagonal correlators in the hierarchy ∆i = ∆j = ∆ � ∆k

It is interesting to consider diagonal correlators ∆i = ∆j = ∆ in the hierarchy of dimensions
∆ � ∆k � 1. In that case the ∆k term in (4.9) does not contribute to the saddle point
equation, and we can write, for all practical purposes

〈Oi(x1)Oi(x2)〉SL = 〈Ok〉λiik 〈Oi(x1)Oi(x2)〉L
(
e∆k Svert(0,u)

∣∣∣
u2

)
; (4.15)

where u2 is the solution to the saddle equation for the 2 point correlator (3.3). Concen-
trating on equal-time correlators by setting ν = 0, we can borrow the result from eq. (3.6)
in [3], so that

〈Oi(τ)Oi(0)〉SL = 〈Ok〉λiik 〈Oi(τ)Oi(0)〉L τ∆k e∆k cd (T τ)d+O
(
(Tτ)2d

)
,

cd = 1
2d

(2π
d

)d 1− d+
(d− 1) d

√
π Γ

(
1 + d

2

)
2 Γ

(
3+d

2

)
 . (4.16)

Let us expand the exponential to leading order, we can write 〈Oi(τ)Oi(0)〉L = τ−2∆. One
finds

〈Oi(τ)Oi(0)〉SL = 〈Ok〉λiik τ∆k−2∆ + ∆k cd 〈Ok〉λiik
βd

τ∆k+d−2∆ + · · · . (4.17)

It is natural to regard this as the |~x| → 0 limit of (this will be justified explicitly in d = 4
in section 4.3.1 below)

〈Oi(τ)Oi(0)〉SL = 〈Ok〉λiikC
( d2−1)
0 (η) |x|∆k−2∆+ ∆k cd 〈Ok〉λiik

βd
C

( d2−1)
2 (η) |x|∆k+d−2∆+· · · ;

(4.18)
where C(ν)

J (η) are the Gegenbauer polynomials of η = τ
|x| , |x| =

√
τ2 + |~x|2 and we assume

d > 2. We recognize here the structure in [1], corresponding each term to the contribu-
tion of the scalar operator 〈Ok〉 of dimension ∆k and of the spin 2 and dimension d+ ∆k

operator T Ok — T being the energy-momentum tensor. More generically, expanding the
exponential and re-writting it in terms of Gegenbauer polynomials suggests that the sub-
leading contribution captures the contributions of TnOk, where Tn stands for all possible
contractions of n energy-momentum tensors with spin 0, 2, · · · , 2n. Note that the coef-
ficient of the n = 0 term, which the contribution of the Ok operator itself, matches the
expectation that the coefficient in the 2-point function must be precisely 〈Ok〉λiik. As for
the second, it constitutes a prediction for the product of the VEV of the TOk operator
— denoted b(TOk) — times the OPE coefficient O-O-(TOk) — denoted by λOO(TOk) — and
all normalized to its 2-point function — denoted c(TOk) —:

λOO(TOk) b(TOk)
c(TOk)

= ∆k bOk λiik
(d−2)

4

(2π
d

)d 1−d+
(d−1) d

√
πΓ

(
1+ d

2

)
2Γ
(

3+d
2

)
 , (4.19)
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where bOk = 〈Ok〉β∆k . It would be very interesting to compute the b(TOk), as through this
expression one would find a precise prediction for the CFT data of the TnO operators.

4.2 Time-dependent correlators in d = 2

Let us restrict to the case of d = 2. Note that in d = 2, W 2 vanishes. In particular,
this implies that off-diagonal correlators vanish in d = 2 [1]. However, for the finite-area
BTZ case it is possible to generate a VEV through the 3-point coupling by a geodesic
“wrapping the horizon” [19]. This will go into the details of 〈O〉, but as far as the rest of
the computation is concerned, we can simply extend our previous formulas to d = 2, where
they simplify a lot. So, we can do an explicit calculation which will also serve as a toy
model for higher dimensions. Moreover, we will restrict to equal x correlators. Then, the
saddle equations set ν1,2 = 0 and

µj = −∆i µi
∆j

. (4.20)

Then
zI = 1√

1 + 4∆2
i∆

2
k

[∆2
k
−(∆i−∆j)2] [(∆i+∆j)2−∆2

k
]µ

2
i

. (4.21)

Note that z ∈ R provided
|∆i −∆j | ≤ ∆k ≤ |∆i + ∆j | . (4.22)

Moreover, evaluating the equations of motion at (4.21) gives the intersection point.
Restricting to the region of small τ , one can solve for µi as

µ−1
i = ∆i

∆i + ∆j −∆k
τ + ∆i (∆2

k + 2∆k (∆i + ∆j)− 3(∆i −∆j)2)
24 (∆i + ∆j −∆k)2 ∆k

τ3 + · · · . (4.23)

Plugging this into (4.26) one finds (we neglect numerical factors, not relevant for our
purposes now)

〈Oi(τ)Oj(0)〉SL ∼ 〈Ok〉λijk
e

4π2 ∆2
k

+2∆k(∆i+∆j)−3(∆i−∆j)2

48∆k
(Tτ)2+···

τ∆i+∆j−∆k
. (4.24)

To cross-check this equation, setting ∆i = ∆j = ∆ gives

〈O(τ)O(0)〉SL ∼ 〈Ok〉λiik
e∆ π2

3 (Tτ)2

τ2∆ τ∆k e∆k
π2
12 (Tτ)2+··· . (4.25)

We recognize the leading 2-point function for Oi (cf. eq. (3.34) in [2]), while the second
part reproduces the d = 2 case of (4.16).

4.2.1 The correlator in the whole range of τ

Let us now investigate the correlator for arbitrary τ ∈ [0, β]. To simplify the analysis, let
us consider the case ∆i = ∆j = ∆k ≡ ∆. Due to the equal ∆ restriction (specifically, due
to ∆i = ∆j) the resulting geodesic arrangement is symmetric, following from the fact that
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in this case the saddle point equations demand µ ≡ µi = −µj . Evaluating the action, one
finds

〈Oi(τ)Oi(0)〉SL = 〈Oi〉λiii

(
− |µ|

3

6
√

3
+ 3 + µ2

12
√

3

√
3 + 4µ2

)∆

. (4.26)

Moreover, evaluating the equations of motion at (4.21) gives the intersection point.
One finds

iτI = iτi+
1
2 log

(−i+µ)
(
iµ− |µ|√

3+4µ2

)
(i+µ)

(
iµ+ |µ|√

3+4µ2

)
 ; iτI = iτj−

1
2 log

(−i+µ)
(
iµ− |µ|√

3+4µ2

)
(i+µ)

(
iµ+ |µ|√

3+4µ2

)
 .

(4.27)
Equating these, that is, demanding that the two geodesic arms corresponding to Oi,j meet
at (4.21), allows to fix µ as a function of τ = τ1 − τ2 one finds

iτ + log

(−i+ µ)
(
iµ− |µ|√

3+4µ2

)
(i+ µ)

(
iµ+ |µ|√

3+4µ2

)
 = 0 . (4.28)

The argument of the logarithm is really a modulus one complex number. Hence, θ is
defined modulo 2π and so is τ . We thus find the invariance τ → τ +2π. Recovering factors
of temperature, this is the familiar KMS condition τ → τ + β.

The solution to (4.28) is

µ = i
1 + eiτ −

√
eiτ

1− eiτ . (4.29)

This function is

µ =


− 1

sin τ
2

(
cos τ2 −

1
2

)
τ ∈ [0, π] ,

− 1
sin τ

2

(
cos τ2 + 1

2

)
τ ∈ (π, 2π] .

(4.30)

However, one can check — for instance numerically — that, when plugged back in the
original equation this is a solution only in the interval τ ∈ [0, 2π

3 ] ∪ [4π
3 , 2π] (of course,

the dimensions are hidden in a factor z−1
0 not written as we are taking z0 = 1). Thus,

this configuration does not exist in the central interval τ ∈ [2π
3 ,

4π
3 ]. In order to figure

out this central interval, first at the borders τ = 2π
3 ,

4π
3 , eq. (4.30) gives µ = 0, which

corresponds to straight geodesics going all the way to z = 1. Motivated by this, consider
now a straight geodesic going from the boundary all the way to z = 1 at fixed τ . One
could imagine a configuration of two such straight geodesics meeting with the vertical
segment at z = 1 (let’s call this configuration the “straight” configuration as opposed to
the standard “U-shaped” one10). Note that, as discussed for the leading term, the straight
configuration has a “wedge” at the bottom unless τ = β

2 . However, in the case at hand, as
we are evaluating a genuine Witten diagram in the geodesic approximation, the resulting
full configuration needs not to be a smooth geodesic itself. Now, since at τ = 2π

3 ,
4π
3 the

10Which is not really “U-shaped” as we are considering the subleading correction to the 2-point function
coming from a diagram with a cubic vertex.

– 12 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
9

Figure 3. Cartoon of the dominating configurations: as the boundary time separation increases,
the U penetrates more and more into the bulk pulled by the vertical segment (blue configurations
in blue zone). Eventually the tip of the U hits z = 1 and the only configuration is the straight one
(yellow configurations in yellow zone).

U-shaped configuration hits z = 1 with µ = 0, at that point it actually becomes a straight
configuration. Hence, it is natural to conjecture that from there on and in the whole middle
interval, it is the straight configuration what describes the correlator in the central interval
τ ∈ [2π

3 ,
4π
3 ]. Thus

µ =


− 1

sin τ
2

(
cos τ2 −

1
2

)
τ ∈

[
0, 2π

3

]
,

0 τ ∈
[

2π
3 ,

4π
3

]
,

− 1
sin τ

2

(
cos τ2 + 1

2

)
τ ∈

[
4π
3 , 2π

]
.

(4.31)

A cartoon of the resulting configuration is in figure 3 below.
Note that the µ above is continuous at τ = 2π

3 ,
4π
3 , which implies that the resulting

correlator is a continuous function. However, it is not infinitely differentiable at those
points. To see this, note that the correlator in eq. (4.26) depends on τ implicitly through
µ. Hence, using the chain rule, by taking the first derivative with respect to τ will give
something proportional to µ. Then, since that at the borders τ = 2π

3 ,
4π
3 we have µ = 0,

the first derivative vanishes. On the other hand, to the other side where the correlator is
given by the straight configuration, it is obvious that all derivatives, in particular the first,
vanish, giving a continuous first derivative. However, taking the second derivative includes
a term proportional to

√
3 + 4µ2, which at the borders τ = 2π

3 ,
4π
3 where µ = 0, does not

vanish, making the second derivative not continuous. Hence, since the correlator is not
differentiable infinitely many times at the borders τ = 2π

3 ,
4π
3 , in a sense it exhibits a sharp

“phase transition” at those points. However, this phase transition occurs sharply seems
an artefact of the geodesic approximation: solving the full problem — i.e. solving the KG
equation in the black hole background to compute exactly the Witten diagram — would
smooth out the transition, making it of class C∞. The correlator is show in figure 4 below.

If we consider the more general case of generic ∆k, then (4.31) gets modified by chang-
ing the ±1

2 factor into ±∆k
2∆ . As a consequence, the central interval where the straight

configuration dominates is of length

∆τstraight = π − arccos
(∆k

2∆

)
. (4.32)
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0 π 2 π

τ

e-S

Figure 4. Correlator in 2d (we strip off numerical factors). In blue/yellow we depict the region
where the U-shape/straight configuration dominates.

In the limit ∆� ∆k this length goes to 0, so the U-shaped configuration is valid everywhere
— at τ = π it becomes degenerate with the straight one — and we recover the case
previously studied in (4.16).

4.3 Time dependent correlators for ∆i = ∆j in d = 4

Let us now consider d = 4. For simplicity, we will consider diagonal correlators ∆i=∆j =∆.
This again corresponds to a symmetric configuration where µ ≡ µi = −µj , and

zI =

√√√√−2∆2µ2 +
√

(4∆2 −∆2
k)2 + 4∆4µ4

4∆2 −∆2
k

. (4.33)

Inserting this into the solution to the equations of motion one finds that the intersection
point is

τI = τi −
1
4 logR+ i

4 log I ; τI = τj + 1
4 logR− i

4 log I ; (4.34)

where (we quote for simplicity the case ∆k = ∆)

R = (2 + µ(2 + µ))(3− 2µ2 +
√

9 + 4µ2)

2µ4 − µ2(1 +
√

9 + 4µ2) + 2(3 +
√

9 + 4µ2) + 2µ|µ|
√
−2µ2 +

√
9 + 4µ2

; (4.35)

and

I =
(−2 + µ (−2i+ µ))

(
−3− 2µ2 +

√
9 + 4µ2

)
−2(3 +

√
9 + 4µ2) + µ

(
µ− 2µ3 + µ

√
9 + 4µ2 + 2|µ|

√
−2µ2 +

√
9 + 4µ2

) . (4.36)

Demanding that the geodesic arcs meet leads to (τ = τi − τj)

τ = 1
2 logR− i

2 log I ; (4.37)

One can now check that |I| = 1, so I = eiθ. Since θ is defined modulo 2π, it then follows that
τ is defined modulo π. Restoring the factors of temperature, this implies the equivalence
under τ → τ + β, which is the expected KMS periodicity.
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Let us now explore the small τ region, corresponding to large µ. Solving perturbatively
(the general version of) eq. (4.37), one finds

µ−1 ∼ ∆
2∆−∆k

τ + ∆ (32∆2 + 18∆∆k + 3∆2
k)

160 (2∆−∆k)3 τ5 + · · · . (4.38)

Plugging this into the action, we find

〈Oi(τ)Oi(0)〉SL ∼ 〈Ok〉λiik
e
π4 32∆2+18∆∆k+3∆2

k
640 (2∆−∆k) (Tτ)4+···

τ2∆−∆k
. (4.39)

Let us now discuss the correlator in the full range τ ∈ [0, β]. Choosing first ∆k = ∆,
one can see from eq. (4.37) that µ = 0 is attained for τ = π

3 ,
2π
3 (which translates into β

3 ,
2β
3

by recovering dimensions). Just as in the 2d toy model, in the intermediate regime there is
no U-shaped configuration, and thus τ ∈ [β3 ,

2β
3 ] is described by the straight configuration.

Reducing the ratio ∆k
∆ reduces the size of this interval where the straight configuration

dominates, and in the limit ∆k � ∆ the interval is only the point τ = β
2 — where

the straight and U-shaped configurations become degenerate. Moreover, consistently, one
recovers eq. (4.16) in this limit.

4.3.1 Including the spatial dependence

We now want to consider correlators with the full spacetime dependence. We will again
restrict for simplicity to the case ∆i = ∆j = ∆. The saddle is given by the solution to
eqs. (4.12) now with both µi, νi being non-zero. This means that our geodesic will bend
both in τ and in ~x (which, using SO(3), we can align with say x1). Moreover, since ∆i = ∆j

ensures that the geodesic will be symmetric, we can consider the operator insertions — i.e.
the boundary points from where the geodesic arcs depart — at (−τ1,−x1), (τ1, x1), so that
the intersection point is at τ = 0, x = 0. Through the equations of motion, one can relate,
(µ, ν) = (µ1, ν1) = (−µ2,−ν2) with (τ1, x1).

We will be interested in the regime (τ1, x1) � β, where the correlator is governed by
the OPE. This corresponds to large (µ, ν). Since the regime is (Tτ1, Tx1) � 1 we can
regard τ1, x1 fixed and explore this regime by solving the system perturbatively in T . To
that matter we write

µ =
∑
n=1

an T
n , ν =

∑
n=1

bn T
n , zI =

∑
n

cn T
n . (4.40)

Plugging this ansatz into the eoms. and saddle equation, and upon expansion in T , we
can solve order by order algebraically for the coefficients (an, bn, cn). Note that we have
2 constraints coming from the equations of motion (one for the meeting point in τ and
another for the meeting point in x) and one from saddle equation, which allows to fix the 3
coefficients at each order. Even though the intermediate expressions are very lengthy and
unilluminating (and hence we will refrain from showing them), the procedure is completely
straightforward. Evaluating then the action on the solution one finds

〈Oi(τ, ~x)Oi(0)〉SL ∼ 〈Ok〉λiik
e
π4 32∆2+18∆∆k+3∆2

k
640 (2∆−∆k) (T |x|)4 C

(1)
2 (η)+···

τ2∆−∆k
; (4.41)
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where |x| and η are defined below eq. (3.4). As anticipated above, we recover the C( d2−1)
2

Gegenbauer polynomial, which suggests that the subleading term captures the contribu-
tions of TnOk to the OPE.
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A Quick reminder of geodesics in the black brane background

In this appendix we review the relevant properties of geodesic arcs following [3] with the
slight generalization to consider geodesics not necessarily with one endpoint anchored to
the boundary.

Consider a massive particle in the black brane background (2.3) travelling from point
x1 to point x2. The (euclidean) action is11

S = −i∆
∫
dz

1
z

√
f(z) τ̇2 + ~̇x2 + 1

f(z) , (A.1)

where dot stands for z-derivative, and we have used ∆ = mR for large ∆. To begin with,
with no loss of generality we can consider our geodesic arc to be aligned along the x1
direction (denoted simply by x) in space (when joining various arcs, each will be aligned
along the corresponding direction, but for each arc, we can just choose it to be along x1).
Since the action does not depend on τ nor on ~x, their canonically conserved momenta
(denoted by Pτ = i∆µ and Px = i∆ ν,12) are conserved. This gives two first order
equations

τ̇ = z µ

f(z)
√
f(z)− z2 µ2 − f(z) z2 ν2 , ẋ = z ν√

f(z)− z2 µ2 − f(z) z2 ν2 . (A.2)

These can be integrated with the boundary conditions that the geodesic passes through x1
and x2. It is clear that the point zmax, which is given by

f(zmax)− z2
max µ

2 − f(zmax) z2
max ν

2 = 0 , (A.3)

corresponds to the maximal reach of a geodesic: the turning point of a would-be U shaped
geodesic. This signals that there are actually two types of geodesics [3]: in-going (going
directly from one point to the other) and returning (departing the point closest to the
boundary all the way to zmax and then coming back to the other point). In the case at
hand we expect, nevertheless, that the relevant geodesics are in-going.

11In these conventions, the WKB solution to the lorentzian propagator e−iS , with S the action for a
particle of mass ∆.

12The i’s are simply due to the fact that we are including an extra i in the euclidean action (A.1).
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A.1 An equivalent formulation

For completeness, let us briefly review a perhaps more standard treatment of geodesics
in the literature (see e.g. [9–12]). To begin with, let us strip a −i factor, so that the
geodesic contributes with e−S̃ . Moreover, let us describe the trajectory of the particle with
a worldline parameter s, and re-write eq. (A.1) by introducing a worldline metric e as

S̃ = ∆
∫
dz
√
e

(
1
2e
−1 1
z2

(
f(z) τ̇2 + ~̇x2 + ż2

f(z)

)
+ ∆2

2

)
, (A.4)

where the dot stands for s-derivative. Upon integrating out e one recovers eq. (A.1).
Instead, one may now gauge-fix e = 1 and consider the action

S̃ = ∆
∫
dz

(
1
2

1
z2

(
f(z) τ̇2 + ~̇x2 + ż2

f(z)

)
+ ∆2

2

)
, (A.5)

which has to be supplemented with the constraint arising from the e-eom

1
z2

(
f(z) τ̇2 + ~̇x2 + ż2

f(z)

)
−∆2 = 0 . (A.6)

From (A.5) it is clear that the momenta conjugated to τ̇ — Pτ = ∆µ — and ~̇x — ~P = ∆~ν
— are conserved, so

µ = 1
z2 f(z) τ̇ , ~ν = 1

z
~̇x . (A.7)

The constraint becomes

ż2 = ∆2 z2 f(z)
(

1− z2 µ2

f(z) − z
2 ~ν2

)
. (A.8)

Using eq. (A.8), eqs. (A.7) can be casted as equations for z-derivatives. When the dust
settles, one ends up with (A.2). The equation (A.8) shows that the turning points of the
geodesic are precisely at (A.3).

A.2 Ingoing geodesics

Consider an ingoing geodesic departing x1 = (τ1, x1, z1). Formally integrating the equations
of motion gives

τ = τ1+
∫ z

z1
dz

zµ

f(z)
√
f(z)−z2µ2−f(z)z2 ν2 , x=x1+

∫ z

z1
dz

z ν√
f(z)−z2µ2−f(z)z2 ν2 .

(A.9)
That the geodesic makes it to x2 = (τ2, x2, z2) requires

τ2 − τ1 = Iτ , x2 − x1 = Ix ; (A.10)

with

Iτ =
∫ z2

z1
dz

zµ

f(z)
√
f(z)−z2µ2−f(z)z2 ν2 , Ix =

∫ z2

z1
dz

z ν√
f(z)−z2µ2−f(z)z2 ν2 .

(A.11)
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Plugging the formal solution to the eom. in the action one finds

G = e−iS = e−∆Sarc , (A.12)

with
Sarc =

∫ z2

z1
dz

1
z
√
f(z)− z2 µ2 − f(z) z2 ν2 . (A.13)

This defines the geodesic implicitly through (A.10). Note that these equations show
that µ, ν can be thought as functions of τ = τ2 − τ1, x = x2 − x1 and both z1,2. Taking
the differential of the eoms. one finds

∂Iτ
∂µ

∂µ

∂τ
+ ∂Iτ
∂ν

∂ν

∂τ
= 1 ; ∂Ix

∂µ

∂µ

∂τ
+ ∂Ix
∂ν

∂ν

∂τ
= 0 ; (A.14)

∂Iτ
∂µ

∂µ

∂x
+ ∂Iτ
∂ν

∂ν

∂x
= 0 ; ∂Ix

∂µ

∂µ

∂x
+ ∂Ix
∂ν

∂ν

∂x
= 1 ; (A.15)

∂Iτ
∂z1

+ ∂Iτ
∂µ

∂µ

∂z1
+ ∂Iτ
∂ν

∂ν

∂z1
= 0 ; ∂Ix

∂z1
+ ∂Ix
∂µ

∂µ

∂z1
+ ∂Ix
∂ν

∂ν

∂z1
= 0 ; (A.16)

∂Iτ
∂z2

+ ∂Iτ
∂µ

∂µ

∂z2
+ ∂Iτ
∂ν

∂ν

∂z2
= 0 ; ∂Ix

∂z2
+ ∂Ix
∂µ

∂µ

∂z2
+ ∂Ix
∂ν

∂ν

∂z2
= 0 . (A.17)

This allows to evaluate the contribution of a given arc to the saddle point equations.
For the τ, x variation (the derivatives with respect to τ1,2, x1,2 follow in an obvious way)

dSarc
dτ

= ∂Sarc
∂µ

∂µ

∂τ
+ ∂Sarc

∂ν

∂ν

∂τ
; dSarc

dx
= ∂Sarc

∂µ

∂µ

∂x
+ ∂Sarc

∂ν

∂ν

∂x
. (A.18)

When the dust settles, using here the previous formulas yields

dSarc
dτ

= µ ; dSarc
dx

= ν . (A.19)

In turn, a similar, computation for the variation with respect to z1,2 yields

dSarc
dz1,2

= ε
1

f(z) z

√
f(z)− z2 µ2 − f(z) z2 ν2 ; (A.20)

where ε = +1 for z2 and ε = −1 for z1.

A.2.1 Non-space-dependent geodesics

Consider the special case where ν = 0. Through the equation of motion (A.10), this
corresponds to a geodesic at a fixed value of x. In this case (A.3) reads explicitly

1− zdmax
zd0

= z2
max µ

2 , (A.21)

which implies that zmax ≤ z0, that is, the geodesic stays always outside the horizon. In the
limiting case µ = 0 —which corresponds to a purely radial, “straight” geodesic at fixed τ —
the geodesic goes all the way to the horizon (which is the end of the space in the euclidean
signature). Note that one may then imagine a configuration departing the boundary at an

– 18 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
9

arbitrary τ and coming back to the boundary at another arbitrary τ by joining two of these
straight arcs, each departing at the corresponding fixed and arbitrary τ at the boundary.
Of course, this configuration has a “wedge” — simply because the two straight geodesic
arcs would not be aligned in τ — unless the two boundary τ ’s are oppositely located in the
thermal circle. Thus this configuration is not acceptable as a contribution to the leading
part of the 2-point function (unless the τ difference is half of the thermal circle, when it
is degenerated with the honest U-shaped geodesic). However, our subleading contribution
to the correlator comes from evaluating a Witten diagram with geodesic bits and does not
necessarily require the final configuration to be a smooth geodesic.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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