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1 Introduction

In recent years, there has been a considerable amount of theoretical work on the chiral
kinetic theory (CKT) in relativistic heavy ion collisions. The CKT aims to incorporate the
chiral anomaly into kinetic theory and provide a consistent formalism to describe various
novel chiral effects, e.g., chiral magnetic effect [1–3], chiral vortical effect [4–7], chiral
separation effect [8, 9] and so on, which are all associated with the chiral anomaly. Recent
progress on chiral effects and chiral kinetic theory in relativistic heavy ion collisions can
be found in the reviews such as [10–14]. The chiral kinetic equation has been derived from
various methods, such as semiclassical approach [15–24], Wigner function formalism [25–
30], effective field theory [31–34] and world-line approach [35–37]. The numerical simulation
based on chiral kinetic equation can be found in refs. [38–45].

Despite all these development, so far most of the literature focuses on the CKT in
Abelian gauge field. Only very restricted work [19, 21, 24, 37] had discussed the CKT in
non-Abelian gauge field. However, as we all know, the dynamics of the produced quark-
gluon plasma in relativistic heavy ion collisions are mainly determined by quantum chro-
modynamics — non-Abelian SU(3) gauge field. Especially, in the small x physics, the
initial state in relativistic nucleus-nucleus collisions can be described as a classical coherent
non-Abelian gauge field configuration called the color glass condensate [46–50]. It still
remains an open question how the decoherence from the classical color field to the quark
gluon plasma takes place. In order to address these problems, we need generalize the CKT
in Abelian gauge field to the one in non-Abelian gauge field.
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In this paper, we will be dedicated to deriving the chiral kinetic equation in SU(N)
gauge field from the quantum transport theory [51–54, 58] based on the Wigner functions
from quantum gauge field theory. In section 2, we review the Wigner function formalism
given in refs. [51–54] and present some results in ref. [58] that would be useful for our present
work. In section 3, we apply the “covariant gradient expansion” given in [52–54, 58] to
expanding the Wigner equations for massless fermions up to the first order and disentangle
the Wigner equations by the method developed in the Abelian case in ref. [29]. We find that
only the timelike component of the Wigner functions is independent and all other spacelike
components can be derivative from timelike component directly. Such result is very similar
to the Abelian case and reduces the Wigner equations greatly. We present the covariant
chiral kinetic equation for this independent Wigner function in 8-dimensional form, i.e.,
4-dimensional momentum space and 4-dimensional coordinate space. In comparison with
the Abelian case, the extra constraint equation appears in non-Abelian case. In section 4,
we decompose the results further in the color space and find that the color singlet phase-
space distribution function and multiplet ones are totally coupled with each other. In
section 5, we discuss the modified Lorentz transformation of the distribution function in
phase space when we define it in different reference frames. With the results in previous
sections, we calculate the vector and axial currents induced by color field and vorticity in
section 6. It turns out that the non-Abelian chiral anomaly can be derived directly from
the 4-dimentional Berry curvature in the vacuum contribution of the color singlet Wigner
function. With specific distribution near global equilibrium, we can obtain the non-Abelian
counterparts of chiral magnetic effect and chiral vortical effect. Finally, we summarize the
paper in section 7.

In this work, we use the convention for the metric gµν = diag(1,−1,−1,−1), Levi-
Civita tensor ε0123 = 1. We choose natural units such that ~ = c = 1 except for the cases
when we want to display ~ dependence to clarify the perturbative expansion.

2 Quantum transport theory

In quantum transport theory, the gauge invariant density matrix for spin-1/2 quarks is
defined as [51–53]

ρ

(
x+ y

2 , x−
y

2

)
= ψ̄

(
x+ y

2

)
U

(
x+ y

2 , x
)
⊗ U

(
x, x− y

2

)
ψ

(
x− y

2

)
. (2.1)

where the direct product is over both spinor and color indices. The element of density
matrix with specific color and spinor indices is given by

ρijαβ

(
x+ y

2 , x−
y

2

)
= ψ̄j

′

β

(
x+ y

2

)
U j

′j
(
x+ y

2 , x
)
U ii

′
(
x, x− y

2

)
ψi

′
α

(
x− y

2

)
. (2.2)

where α, β denote spinor indices, i, i′, j, j′ mean color indices in fundamental representation
and U j′j or U i′i is the Wilson line or gauge link

U ij(x, y) =
[
P exp

(
ig

~

∫ x

y
dzµAµ(z)

)]ij
(2.3)
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which is necessary to keep the operator gauge invariant. In the definition of Wilson line
P denotes path ordering of the operator and the integral in the exponent is taken along
the straight path from x to y. The gauge field potential is defined by Aµ = Aaµt

a, with the
N2 − 1 hermitian generators of SU(N) in the fundamental representation satisfying

Tr ta = 0,
[
ta, tb

]
= ifabctc,

{
ta, tb

}
= 1
N
δab1 + dabctc. (2.4)

For non-Abelian gauge field, the covariant derivative in the fundamental representation is
defined as,

Dµ(x) = ∂µ −
ig

~
Aµ(x), (2.5)

and the field strength tensor follows as

Fµν(x) ≡ F aµνta = − ~
ig

[Dµ, Dν ] = ∂µAν(x)− ∂νAµ(x)− ig

~
[Aµ(x), Aν(x)] . (2.6)

The Wigner operator Ŵ (x, p) is related to the gauge invariant density matrix by Fourier
transformation

Ŵ (x, p) =
∫

d4y

(2π)4 e
−ip·yρ

(
x+ y

2 , x−
y

2

)
, (2.7)

and the Wigner function is defined as ensemble averaging of the Wigner operator

W (x, p) = 〈Ŵ (x, p)〉. (2.8)

In our present work, we will concentrate on the quark matter under a purely classical
external non-Abelian gauge field, which is very relevant to the earlier stage of relativistic
heavy-ion collisions. When the quark-gluon plasma is produced from the decoherence of the
classical color field, the gluon dynamics will play an important role and the kinetic equation
of the gluons must be included. The gluon’s kinetic equation can be derived from the gluon’s
Wigner function by generalizing the methods to deal with photon’s kinetic description given
in ref. [59] or [60]. We will postpone such generilization in the future. Under background
field approximation, the ordinary matrix multiplication rules in spinor space or color space
suffice and the Wigner equations will not generate the so-called BBGKY-hierarchy [55] and
can be closed by itself[

m−γµ
(
pµ+ 1

2 iDµ(x)
)]
W (x,p) = ig

2 γ
µ∂νp

{∫ 1

0
ds

1+s

2
[
e−

1
2 is∆Fµν(x)

]
W (x,p) (2.9)

+W (x,p)
∫ 1

0
ds

1−s
2

[
e

1
2 is∆Fµν(x)

]}
,

together with the hermitian adjoint equation

W (x,p)
[
m−γµ

(
pµ−

1
2 iD

†
µ(x)

)]
= − ig2 ∂

ν
p

{∫ 1

0
ds

1−s
2

[
e−

1
2 is∆Fµν(x)

]
W (x,p) (2.10)

+W (x,p)
∫ 1

0
ds

1+s

2
[
e

1
2 is∆Fµν(x)

]}
γµ,
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where we have introduced the definition of covariant derivative in the adjoint representation
for a second-rank tensor T (x) in color space by

Dµ(x)T (x) ≡ [Dµ(x), T (x)] = ∂xµT (x)− ig

~
[Aµ(x), T (x)] , (2.11)

and ∆ ≡ ∂p · D(x) with D(x) only acting on Fµν and ∂p always on W after or in front of
it. It should be noted that in the definition of the Wigner function given by eq. (2.8) and
the Wigner equations (2.9) and (2.10) there is no normal ordering in the Wigner matrix
because we did not make any manipulation on the order of the quark field. It has been
demonstrated in [56, 57] that this plays a central role to give rise to the chiral anomaly in
the quantum kinetic theory.

If we take the convention in [58], momentum derivatives standing to the right of the
Wigner function are defined in the sense of partial integration as

W (x, p)∂ν1
p · · · ∂νk

p ≡ (−1)k∂νk
p · · · ∂ν1

p W (x, p), (2.12)

and define generalized non-local momentum and derivative operators Πµ and Gµ as

Πµ = pµ + g

2

∫ 1

0
ds
(
e−

1
2 is∆Fµν(x)

)
is∂νp ,

Gµ = Dµ + g

2

∫ 1

0
ds
(
e−

1
2 is∆Fµν(x)

)
∂νp , (2.13)

the Wigner equations can be cast into a more compact form [58],

2mW (x, p) = γµ ({Πµ,W (x, p)}+ i [Gµ,W (x, p)]) , (2.14)
2mW (x, p) = ({Πµ,W (x, p)} − i [Gµ,W (x, p)]) γµ. (2.15)

Adding or subtracting the two equations above gives

4mW (x, p) = {γµ, {Πµ,W (x, p)}}+ i [γµ, [Gµ,W (x, p)]] , (2.16)
0 = [γµ, {Πµ,W (x, p)}] + i {γµ, [Gµ,W (x, p)]} . (2.17)

In spinor space, we can decompose the Wigner function into

W = 1
4

[
F + iγ5P + γµVµ + γµγ5Aµ + 1

2σ
µνSµν

]
. (2.18)

In this work, we will restrict ourselves to the massless or chiral fermions. In consequence,
if we introduce a chirality basis via

J µ
s = 1

2 (V µ + sA µ) , (2.19)

where s = +1/ − 1 denotes right-handed/left-handed component, the equations for the
chiral Wigner function J µ

s will decouple from all the other components of the Wigner
function and each other as well, which leads to

0 = {Πµ,J
µ
s } , (2.20)

0 = [Gµ,J µ
s ] , (2.21)

0 = {Πµ,J ν
s } − {Πν ,J µ

s }+s~εµναβ [Gα,Jsβ ] , (2.22)
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where we have recovered the ~ dependence before the generalized derivative operators in
the last equation in order to make perturbative expansion in the following section. These
Wigner equations will be the starting point of our present work in the following. For
brevity, we will suppress the subscript s of the left-hand or right-hand Wigner function
J µ

s in the subsequent sections and reinstate it when it is necessary.

3 Disentangling Wigner equations in four-vector space

In the Abelian plasma, the disentanglement theorem of Wigner functions has been demon-
strated in ref. [29], which tell us that up to any order of ~ among four components of
Wigner functions J µ only the timelike component is independent and satisfies only one
independent Wigner equation, the other spatial components can be totally fixed from this
independent Wigner function and the Wigner equations for them are all satisfied automat-
ically. Now let us try to generalize this disentanglement formalism from Abelian gauge
field to non-Abelian gauge field. In order to achieve this goal, we will resort to the “co-
variant gradient expansion” proposed in refs. [53, 54, 58]. In this expansion scheme, when
we have one extra covariant derivative Dµ or Dµ, we will have one extra higher order con-
tribution. The “covariant gradient expansion” preserves gauge invariance order by order
automatically. Actually we can trace such expansion in powers of ~, e.g., in the Wigner
equations (2.22) and the generalized non-local momentum and derivative operators

Πµ =
∞∑
k=0

~kΠ(k)
µ = pµ − ~

ig

2

∞∑
k=0

(
− i~2

)k k + 1
(k + 2)!

[
(∂p ·D)k Fνµ

]
∂νp (3.1)

Gµ =
∞∑
k=0

~kG(k)
µ = Dµ −

g

2

∞∑
k=0

(
− i~2

)k 1
(k + 1)!

[
(∂p ·D)k Fνµ

]
∂νp . (3.2)

Up to the second order of ~, the non-local operators Πµ and Gµ are given by

Π(0)
µ = pµ, Π(1)

µ = ig

4 Fµν∂
ν
p , Π(2)

µ = g

12 [(∂p ·D)Fµν ] ∂νp , (3.3)

G(0)
µ = Dµ + g

2Fµν∂
ν
p , G(1)

µ = − ig8 [(∂p ·D)Fµν ] ∂νp . (3.4)

We can also expand the Wigner operator as

W (x, p) =
∞∑
k=0

~kW (k)(x, p). (3.5)

However it should be noted that the “covariant gradient expansion” is not completely
identical to an expansion in powers of ~ for non-Abelian gauge field which had been pointed
out in [53, 54, 58] though it is identical for Abelian gauge field. In non-Abelian case, there
is an extra gauge potential Aµ with ig/~ in the covariant derivative Dµ or Dµ in eqs. (3.1)
and (3.2) while there only exist ordinary derivative ∂xµ in the Abelian case.

In order to disentangle the Wigner equations further, it is convenient to introduce
time-like 4-vector nµ with normalization n2 = 1. For simplicity we assume nµ is a constant

– 5 –
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vector. With the auxiliary vector nµ, we can decompose any vector Xµ into the component
parallel to nµ and the other components perpendicular to nµ,

Xµ = Xnn
µ + X̄µ, (3.6)

where Xn = X · n and X̄µ = ∆µνXν with ∆µν = gµν − nµnν . The gauge field tensor Fµν

can be also decomposed into

Fµν = Eµnν − Eνnµ − ε̄µνσBσ (3.7)

with
Eµ = Fµνnν , Bµ = 1

2 ε̄
µρσFρσ, (3.8)

where for notational convenience we have defined ε̄µαβ = εµναβnν .
Now we can decompose the Wigner functions and Wigner equations along the direction

nµ order by order. The leading order or the zeroth order result is very simple

0 = pnJ
(0)
n + p̄µJ̄

(0)µ, (3.9)
0 =

[
G(0)
n ,J (0)

n

]
+
[
Ḡ(0)
µ , J̄ (0)µ

]
, (3.10)

0 = p̄µJ (0)
n − pnJ̄ (0)µ, (3.11)

0 = p̄µJ̄ (0)ν − p̄νJ̄ (0)µ. (3.12)

From eq. (3.11), we can express the space-like component J̄ (0)µ in terms of J
(0)
n

J̄ (0)µ = p̄µ
J

(0)
n

pn
. (3.13)

Substituting this relation into eq. (3.9) gives rise to the on-shell condition

p2 J
(0)
n

pn
= 0, (3.14)

which means J
(0)
n /pn must be proportional to the Dirac delta function δ(p2)

J
(0)
n

pn
= f (0)δ(p2), (3.15)

where f (0) can be regarded as the usual particle distribution function in four-dimensional
momentum space and four-dimensional coordinate space. It must be non-singular function
at p2 = 0. Putting eqs. (3.15) and (3.13) together, we get the full Wigner function of the
zeroth order

J (0)µ = pµf (0)δ(p2). (3.16)

The transport equation satisfied by f (0) can be obtained from eq. (3.10)

0 =
[
G(0)
µ , pµf (0)δ(p2)

]
. (3.17)

It is obvious that eq. (3.12) is automatically satisfied with the expression (3.13).
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The next-to-leading order or the first order equations are given by

0 = 2pnJ (1)
n + 2p̄µJ̄ (1)µ +

{
Π(1)
n ,J (0)

n

}
+
{

Π̄(1)
µ , J̄ (0)µ

}
, (3.18)

0 =
[
G(0)
n ,J (1)

n

]
+
[
Ḡ(0)
µ , J̄ (1)µ

]
+
[
G(1)
n ,J (0)

n

]
+
[
Ḡ(1)
µ , J̄ (0)µ

]
, (3.19)

0 = 2p̄µJ (1)
n − 2pnJ̄ (1)µ +

{
Π̄(1)µ,J (0)

n

}
−
{

Π(1)
n , J̄ (0)µ

}
+sε̄µαβ

[
G(0)
α ,J

(0)
β

]
, (3.20)

0 = 2p̄µJ̄ (1)ν − 2p̄νJ̄ (1)µ +
{

Π̄(1)µ, J̄ (0)ν
}
−
{

Π̄(1)ν , J̄ (0)µ
}

+sε̄µνα
([
G(0)
α ,J (0)

n

]
−
[
G(0)
n ,J (0)

α

])
. (3.21)

From eq. (3.20), we can express J̄ (1)µ in terms of J
(1)
n and J

(0)
n

J̄ (1)µ = p̄µ
J

(1)
n

pn
+ s

2pn
ε̄µαβ

[
G(0)
α , p̄β

J
(0)
n

pn

]

+ 1
2pn

({
Π̄(1)µ, pn

J
(0)
n

pn

}
−
{

Π(1)
n , p̄µ

J
(0)
n

pn

})
. (3.22)

Substituting it into eqs. (3.18) and (3.19) gives rise to the modified on-shell condition and
transport equation for J

(1)
n , respectively,

p2 J
(1)
n

pn
= − s

2pn
ε̄µαβ p̄µ

[
G(0)
α , p̄β

J
(0)
n

pn

]
− 1

2

{
Π(1)
µ , pµ

J
(0)
n

pn

}

− p̄µ
2pn

({
Π̄(1)µ, pn

J
(0)
n

pn

}
−
{

Π(1)
n , p̄µ

J
(0)
n

pn

})
, (3.23)[

G(0)
µ , pµ

J
(1)
n

pn

]
= −s2 ε̄

µαβ

[
Ḡ(0)
µ ,

1
pn

[
G(0)
α , p̄β

J
(0)
n

pn

]]
−
[
G(1)
µ , pµ

J
(0)
n

pn

]

−1
2

[
Ḡ(0)
µ ,

1
pn

({
Π̄(1)µ, pn

J
(0)
n

pn

}
−
{

Π(1)
n , p̄µ

J
(0)
n

pn

})]
. (3.24)

It is easy to verify that the general expression of the constraint equation (3.23) is given by

J
(1)
n

pn
= f (1)δ(p2)+ s

2pn
ε̄µαβpµ

{
g

2Fαβ , f
(0)
}
δ′(p2) +

{
Π(1)
µ , pµf (0)

}
δ′(p2). (3.25)

Just like f (0), the function f (1) is also a non-singular distribution function at p2 = 0 in four-
dimensional momentum space and four-dimensional coordinate space and can be regarded
as the first order correction to f (0). The transport equation for f (1) can be directly obtained
by inserting eq. (3.25) into eq. (3.24) and will not be presented explicitly here to avoid too
lengthy equations. Putting eqs. (3.22) and (3.25) together, we get the full Wigner function
of the first order

J (1)µ = pµ
[
f (1)δ(p2)+ s

2pn
ε̄ναβpν

{
g

2Fαβ , f
(0)
}
δ′(p2) +

{
Π(1)
ν , pνf (0)

}
δ′(p2)

]
+ 1

2pn

({
Π̄(1)µ, pnf

(0)δ(p2)
}
−
{

Π(1)
n , p̄µf (0)δ(p2)

})
+ s

2pn
ε̄µαβ

[
G(0)
α , p̄βf

(0)δ(p2)
]
. (3.26)
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As we note in the zeroth order case, the equation (3.12) is automatically satisfied once
we have the expression (3.13). Now we can check if the first order equation (3.21) also holds
automatically by using the first order expression (3.22) together with eqs. (3.10), (3.14)
and (3.16). In consequence, after direct calculation we find that the first order equa-
tion (3.21) is not satisfied automatically but lead to the constraint equation for J

(0)
µ or f (0)

0 = nα
([
F να,J (0)µ

]
+
[
Fαµ,J (0)ν

]
+
[
Fµν ,J (0)α

])
. (3.27)

Because nα is an arbitrary auxiliary vector with normalization n2 = 1, the constraint equa-
tion should not depend on nα or this equation should hold for any nα. This leads to the
Lorentz covariant constraint equation[

F να,J (0)µ
]

+
[
Fαµ,J (0)ν

]
+
[
Fµν ,J (0)α

]
= 0, (3.28)

which is equivalent to [
F̃αβ ,J (0)

α

]
= 0 with F̃αβ = 1

2ε
αβµνFµν . (3.29)

In ref. [58], similar constraints for F and Sµν in eq. (2.18) had already been obtained.
Such constraints only arise in the quantum transport theory with non-Abelian gauge field.
The disentanglement theorem of Wigner functions in Abelian gauge field given in ref. [29]
show that all these constraint equations in Abelian cases are satisfied automatically and
holds up to any order of ~. We also notice that the first order equation (3.21) gives the
constraint for the zeroth order Wigner function J (0)µ because the first order Wigner func-
tions are totally canceled due to the antisymmetry of the equation. Hence in order to get
the constraint for the first order Wigner function J (1)µ, we need the second order Wigner
functions and equations. The second order expression of eq. (2.22) is given by

0 = 2p̄µJ (2)
n − 2pnJ̄ (2)µ

+
{

Π̄(1)µ,J (1)
n

}
−
{

Π(1)
n , J̄ (1)µ

}
+
{

Π̄(2)µ,J (0)
n

}
−
{

Π(2)
n , J̄ (0)µ

}
+sε̄µαβ

([
G(0)
α ,J

(1)
β

]
+
[
G(1)
α ,J

(0)
β

])
, (3.30)

0 = 2p̄µJ̄ (2)ν − 2p̄νJ̄ (2)µ

+
{

Π̄(1)µ, J̄ (1)ν
}
−
{

Π̄(1)ν , J̄ (1)µ
}

+
{

Π̄(2)µ, J̄ (0)ν
}
−
{

Π̄(2)ν , J̄ (0)µ
}

+sε̄µνα
([
G(0)
α ,J (1)

n

]
−
[
G(0)
n ,J (1)

α

]
+
[
G(1)
α ,J (0)

n

]
−
[
G(1)
n ,J (0)

α

])
. (3.31)

From the first equation above, we can express J̄ (2)µ in terms of J
(2)
n , J

(1)
n and J

(0)
n as

J̄ (2)µ = p̄µ
J

(2)
n

pn
+ s

2pn
ε̄µαβ

([
G(0)
α ,J

(1)
β

]
+
[
G(1)
α ,J

(0)
β

])
+ 1

2pn

({
Π̄(1)µ,J (1)

n

}
−
{

Π(1)
n , J̄ (1)µ

})
+ 1

2pn

({
Π̄(2)µ,J (0)

n

}
−
{

Π(2)
n , J̄ (0)µ

})
. (3.32)
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Similar to the first order, substituting it into eq. (3.31) and using eqs. (3.22), (3.23)
and (3.24) leads to the constraint for J (1)µ[

F̃αβ ,J
(1)α

]
= − 3

32
[[
F̃να∂

p
β − F̃νβ∂

p
α, F

νκ∂pκ

]
,J (0)α

]
. (3.33)

As we just mentioned above, these constraints are unique for non-Abelian gauge field and
absent for Abelian field. Such constraints actually originate from the fact that the “covari-
ant gradient expansion” is not completely identical to an expansion in powers of ~ for non-
Abelian gauge field. One difference between non-Abelian and Abelian is the operator G(0)

µ .
In the non-Abelian case, the derivative in G(0)

µ is covariant derivative Dµ, while in Abelian
case, it is ordinary space-time derivative ∂xµ. When we calculate high order contribution
through iterative process, we will meet the commutator [Dµ, Dν ] = igFµν/~ in non-Abelian
gauge field and this term will contribute to the lower power order, but for the ordinary
derivative such issue will never happen in Abelian gauge field. Actually, during our calcula-
tion of (3.33), we find that if we do not use the constraints for J (0)α in eq. (3.28) or (3.29)
beforehand, we will have the same term as the right side of eq. (3.27) but with minus sign.
This term from the second order equation will eventually cancel the one from the first
order. Although we can not give the general proof, we expect that the third order equation
of (2.22) will cancel the second order result (3.33) and so on. Adding all the contributions
up to any high order, the constraint equation (2.22) should also be satisfied automaticaly.

4 Decomposing covariant chiral kinetic equations in color space

Up to now, the Wigner function J µ is still an N ×N matrix in color space. Hence it is
necessary to decompose the Wigner function into color singlet and multiplet components:

Jµ(x, p) = J I
µ (x, p)1 + J a

µ (x, p)ta, (4.1)

with
J I

µ (x, p) = 1
N

trJµ(x, p), J a
µ (x, p) = 2tr taJµ(x, p). (4.2)

It should be noted that we use upper index “I” to denote singlet component. Similarly, we
can decompose the operators into the color singlet and multiplet contributions:

G(0)
µ = Dµ +G(0)a

µ ta, Π(1)
µ = Π(1)a

µ ta, G(1)
µ = G(1)a

µ ta, (4.3)

where
G(0)a
µ = g

2F
a
µν∂

ν
p , Π(1)a

µ = ig

4 F
a
µν∂

ν
p , G(1)a

µ = − ig8
(
Dac
λ F

c
µν

)
∂λp ∂

ν
p , (4.4)

with Dac
λ = δca∂xλ + gf bcaAbλ/~. With such decomposition, the singlet and multiplet com-

ponents of Wigner functions at the zeroth order can be derived from eq. (3.16)

J (0)Iµ = pµf (0)Iδ(p2), J (0)aµ = pµf (0)aδ(p2), (4.5)

which satisfy the coupled transport equations

0 = ∂xµJ
(0)Iµ + 1

N
G(0)a
µ J (0)aµ, (4.6)

0 = Dac
µ J (0)cµ + 2G(0)a

µ J (0)Iµ + dbcaG(0)b
µ J (0)cµ. (4.7)
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Similarly but more complicatedly, the color decomposition of first order Wigner functions
can be derived from eq. (3.26)

J (1)Iµ = pµf (1)Iδ(p2)−s2ε
µναβpν

g

2N F aαβf
(0)aδ′(p2)

+ s

2pn
ε̄µαβpβ

(
∂xαf

(0)I + 1
N
G(0)a
α f (0)a

)
δ(p2), (4.8)

J (1)aµ = pµf (1)aδ(p2)−sεµναβpν
(
g

2F
a
αβf

(0)I + 1
2d

bca g

2F
b
αβf

(0)c
)
δ′(p2)

+ s

2pn
ε̄µαβpβ

(
Dac
α f

(0)c + 2G(0)a
α f (0)I + dbcaG(0)b

α f (0)c
)
δ(p2)

+ 1
2pn

if bca
(

Π̄(1)bµ
[
pnf

(0)cδ(p2)
]
−Π(1)b

n

[
p̄µf (0)cδ(p2)

] )
+if bcapµ

[
Π(1)b
ν

(
pνf (0)c

)]
δ′(p2), (4.9)

which satisfy the corresponding transport equations

0 = ∂xµJ
(1)Iµ + 1

N
G(0)a
µ J (1)aµ, (4.10)

0 = Dac
µ J (1)cµ + 2G(0)a

µ J (1)Iµ + dbcaG(0)b
µ J (1)cµ + if bcaG(1)b

µ J (0)cµ. (4.11)

In order to attain all the results above, we have used the eq. (2.4) repeatedly. We note that
the singlet distribution f (0)I and multiplet distribution f (0)a are totally coupled with each
other even in the zeroth order transport equation, which displays the much complexity for
non-Abelian chiral kinetic equation, in comparison with chiral kinetic equation in Abelian
gauge field.

5 Frame dependence of distribution function

We can regard f(x, p) as the particle distribution function in 8-dimensional phase space
and f (0)(x, p) in eq. (3.15) and f (1)(x, p) in eq. (3.25) are the zeroth order and first order
corrections to f(x, p), respectively. However this distribution function defined in this way
depends on the auxiliary vector nµ we choose. Since we can identify this time-like vector
nµ as the velocity of the observer in a reference frame, the distribution function depends
on the reference frame in which we define it. In general, the distribution function in phase
space can not be Lorentz scalar when we change the reference frame from one to another. In
this section, we will derive how these distribution functions transform in different reference
frames. In order to do that, we rewrite the zeroth and first order results for Wigner
functions with explicit dependence on the frame velocity nµ as the following:

J (0)µ = pµ
n ·J (0)

n · p
, (5.1)

J (1)µ = pµ
n ·J (1)

n · p
+ s

2n · pε
µναβnν

[
G(0)
α ,J

(0)
β

]
+ 1

2n · p
({

Π(1)µ, n ·J (0)
}
−
{
n ·Π(1),J (0)µ

})
. (5.2)
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Of course, we can also define the particle distribution function in another reference frame
with velocity n′,

J (0)µ = pµ
n′ ·J (0)

n′ · p
, (5.3)

J (1)µ = pµ
n′ ·J (1)

n′ · p
+ s

2n′ · pε
µναβn′ν

[
G(0)
α ,J

(0)
β

]
+ 1

2n′ · p
({

Π(1)µ, n′ ·J (0)
}
−
{
n′ ·Π(1),J (0)µ

})
. (5.4)

Since J (0)µ and J (1)µ should not depend on the auxiliary vector, we will get the modified
Lorentz transformation for J

(0)
n /pn and J

(1)
n /pn

δ

(
n ·J (0)

n · p

)
= n′ ·J (0)

n′ · p
− n ·J (0)

n · p
= 0, (5.5)

δ

(
n ·J (1)

n · p

)
= n′ ·J (1)

n′ · p
− n ·J (1)

n · p
(5.6)

= − sεµναβnµn
′
ν

2(n · p)(n′ · p)
[
G(0)
α ,J

(0)
β

]
−

(
nµn

′
ν − nνn′µ

)
2(n · p)(n′ · p)

{
Π(1)µ,J (0)ν

}
.

We note that the zeroth order J
(0)
n /pn does not depend on the reference frame and is

Lorentz scalar while the first order J
(1)
n /pn does have non-trivial transformation and is

not Lorentz scalar when we change from reference frame nµ to n′µ. The first term of the
last line in eq. (5.6) is just the so-called side-jump term and the second term is unique
for non-Abelian gauge field and absent for Abelian gauge field. We can decompose the
modified Lorentz transformation into color singlet and multiplet components:

δ

(
n ·J (0)I

n · p

)
= 0, δ

(
n ·J (0)a

n · p

)
= 0, (5.7)

δ

(
n ·J (1)I

n · p

)
= − sεµναβnµn

′
ν

2(n · p)(n′ · p)∂
x
αJ

(0)I
β − sεµναβnµn

′
ν

2(n · p)(n′ · p)NG(0)a
α J

(0)a
β , (5.8)

δ

(
n ·J (1)a

n · p

)
= − sεµναβnµn

′
ν

2(n · p)(n′ · p)
[
Dac
α J

(0)c
β + 2Ga(0)

α J
(0)I
β + dbcaG(0)b

α J
(0)c
β

]
−
nµn

′
ν − nνn′µ

2(n · p)(n′ · p) if
bcaΠ(1)bµJ (0)cν . (5.9)
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Using eqs. (4.5), (4.8) and (4.9), we obtain the transformation of the singlet and multiplet
distribution function of f (0) and f (1) when we define them in different frames, respectively,

δ(p2)δf (0)I = 0,
δ(p2)δf (0)a = 0, (5.10)

δ(p2)δf (1)I = −δ(p2)sε
µναβnµn

′
νpβ

2(n · p)(n′ · p)

[
∂xαf

(0)I + ~2

N
G(0)a
α f (0)a

]
, (5.11)

δ(p2)δf (1)a = −δ(p2)sε
µναβnµn

′
νpβ

2(n · p)(n′ · p)
[
Dac
α f

(0)c + 2G(0)a
α f (0)I + dbcaG(0)b

α f (0)c
]

−
nµn

′
ν − nνn′µ

2(n · p)(n′ · p) if
bcaΠ(1)bµ

(
pνf (0)cδ(p2)

)
. (5.12)

These non-trivial transformation play very important role to choose some specific solutions.
They will be used to derive chiral effects in the next section.

6 Chiral effects in non-Abelian gauge field

As we all know, chiral kinetic theory tries to incorporate chiral anomaly, a novel and
prominent quantum effect, into kinetic approach in a consistent way. It can describe
various chiral effects originating from chiral anomaly, such as chiral magnetic effect and
chiral vortical effect. However, as far as we know, most of work in the literature on chiral
kinetic theory focused on the chiral anomaly or chiral effects induced by Abelian gauge
field. In this section, we will demonstrate how the non-Abelian chiral effects can arise
naturally in the formalism discussed in the preceding sections.

6.1 Non-Abelian chiral anomaly

First of all, let us consider the non-Abelian chiral anomaly. In general, we can write the
zeroth order Wigner function in free Dirac field as the following,

J (0)ij
sµ = δij

4π3

[
θ(p0)nis + θ(−p0)

(
n̄is − 1

)]
pµδ

(
p2
)

(6.1)

where we have recovered the lower chirality index s, the upper scripts i and j indicate
the color index in fundamental representation corresponding to eq. (2.2) and the repeated
indices here do not denote summation. The function nis/n̄is represent the quark/antiquark
number density with color i and chirality s in phase space. They are defined as the ensemble
average of the normal-ordered number density operator and are expected to vanish at
infinity in phase space. The −1 term in antiparticle distribution is vacuum or Dirac sea
contribution and originate from the anticommutator of the antiparticle field in the definition
of Wigner funciton without normal ordering. This term plays a central role to generate
the chiral anomaly as pointed out in [56, 57]. Decomposing it in color space gives rise to

J (0)ij
sµ = δijJ

(0)I
sµ + taijJ

(0)a
sµ (6.2)

where the singlet and multiplet components are given by, respectively,

J (0)I
sµ = pµf

(0)I
s δ(p2), J (0)a

sµ = pµf
(0)a
s δ(p2), (6.3)
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with

f (0)I
s = 1

4π3N

∑
i

[
θ(p0)nis + θ(−p0)n̄is

]
− 1

4π3 θ(−p0), (6.4)

f (0)a
s = 1

2π3

∑
i

taii

[
θ(p0)nis + θ(−p0)n̄is

]
. (6.5)

We note that only the singlet component f (0)I
s includes the vacuum contribution. In or-

der to consider the chiral anomaly, we need the transport equation for the axial Wigner
functions A Iµ and A aµ

A Iµ =
∑
s=±1

sJ Iµ
s , A aµ =

∑
s=±1

sJ aµ
s , (6.6)

from which we can obtain the chiral currents

jIµ5 =
∫
d4pA Iµ, jaµ5 =

∫
d4pA aµ. (6.7)

The zeroth order equations can be derived trivially from eqs. (4.6), (4.7)

∂xµA
(0)Iµ = − 1

N
G(0)a
µ A (0)aµ, (6.8)

Dac
µ A (0)cµ = −2G(0)a

µ A (0)Iµ − dbcaG(0)b
µ A (0)cµ. (6.9)

From the expression (6.3), we note that the vacuum contributions in A (0)Iµ and A (0)aµ

are all cancelled between s = +1 and s = −1. Since the right hand sides of the equations
above are all total derivatives on momentum and only normal particle distributions are
involved, integrating over the 4-momentum leads to the conservation of chiral current at
the zeroth order.

∂xµj
(0)Iµ
5 = 0, Dac

µ j
(0)cµ
5 = 0. (6.10)

The first order equations can be given from eqs. (4.10), (4.11)

0 = ∂xµA
(1)Iµ + 1

N
G(0)a
µ A (1)aµ, (6.11)

0 = Dac
µ A (1)cµ + 2G(0)a

µ A (1)Iµ + dbcaG(0)b
µ A (1)cµ + if bcaG(1)b

µ A (0)cµ. (6.12)

The right hand sides of these first order equations are still all total derivatives, after inte-
grating over momentum, the only possible nonvanishing contribution is from the singular
vacuum term,

∂xµj
(1)Iµ
5 = g2

2N F aµλF̃
a,µν

∫
d4p ∂λp

[
pνf

(0)
v δ′(p2)

]
, (6.13)

Dac
µ j

(1)cµ
5 = g2

2 d
bcaF bµλF̃

c,µν
∫
d4p ∂λp

[
pνf

(0)
v δ′(p2)

]
, (6.14)

where f (0)
v represents the vacuum contribution

f (0)
v = − 1

2π3 θ(−p0). (6.15)
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Using the identity

F aµλF̃
a,µν = 1

4g
ν
λF̃

αβFαβ = gνλE
a ·Ba, (6.16)

dbcaF bµλF̃
c,µν = 1

4g
ν
λd

bcaF̃ b,αβF cαβ = gνλd
bcaEb ·Bc, (6.17)

we have

∂xµj
(1)Iµ
5 = g2

2NEa ·Ba
∫
d4p ∂λp

[
pλf

(0)
v δ′(p2)

]
, (6.18)

Dac
µ j

(1)c,µ
5 = g2

2 d
bcaEb ·Bc

∫
d4p ∂λp

[
pλf

(0)
v δ′(p2)

]
. (6.19)

As in the Abelian case [56, 57], we can finish integrating the momentum

Cv =
∫
d4p ∂λp

[
pλf

(0)
v δ′(p2)

]
(6.20)

in 4 dimensional Euclidean momentum space pµE = (ip0,p) by Wick rotation

Cv = − 1
2π2

∫
d4pE
2π2 ∂µ

(
pµE
p4
E

)
= − 1

2π2 , (6.21)

or 3 dimensional Euclidean momentum space p after integrating over p0

Cv = − 1
2π2

∫
d3p
2π ∂p ·

( p̂
2p2

)
= − 1

2π2 , (6.22)

where pµE/p4
E and p̂/2p2 are just the Berry curvature of a 4-dimensional and 3-dimensional

monopoles in Euclidean momentum space, respectively. It follows that

∂xµj
(1)Iµ
5 = − g2

4π2N
Ea ·Ba, Dac

µ j
(1)cµ
5 = − g2

4π2d
bcaEb ·Bc. (6.23)

It is obvious that the non-Abelian chiral anomaly originates from the Berry curvature of
the vacuum contribution.

6.2 Non-Abelian anomalous currents

As we all know that the vorticity and magnetic field imposed on a chiral system could induce
some novel chiral effects such as chiral magnetic effect, chiral vortical effect and chiral
separate effect. In this section, we will derive the chiral effects induced by non-Abelian
gauge field. For the zeroth order distribution function in eqs. (6.4), (6.5), we assume the
quark and antiquark number density is the global equilibrium Fermi-Dirac distribution

nis = 1
1 + e(u·p−µi

s)/T , n̄is = 1
1 + e(−u·p+µi

s)/T . (6.24)

where µis denotes the chemical potential of the quark with chirality s and color i. The chi-
rality chemical potential µis is related to the vector chemical potential µi and axial chemical
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potential µi5 by µis = µi+sµi5. Now let us impose the covariant-constant field in this chiral
system

F aµν = Fµνξ
a (6.25)

with the color index a only running in the N − 1 commuting Cartan generators and ξa

being (N−1) - dimensional constant color vector. Since the field tensor Fµν is independent
of space and time, the external gauge potential Aaµ can be chosen as

Aaµ = −1
2Fµνx

νξa. (6.26)

It is easy to verify that when the following constraint conditions are satisfied

∂xµ
uν
T

+ ∂xν
uµ
T

= 0, ∂xµ
µis
T

= gξataii
Eµ
T
, (6.27)

the zeroth order Wigner function in (6.4), (6.5) with Fermi-Dirac distribution is indeed the
solution of the zeroth order Wigner equations (4.6), (4.7). Once we have a special zeroth
order solution, most of the terms in the first order solution are totally fixed by eqs. (4.8)
and (4.9) except for the first terms with f

(1)I
s = 0 or f (1)a

s = 0. As shown in ref. [62],
we can not causally set f (1)I

s = 0 and f (1)a
s = 0 because they must be consistent with the

transformations (5.11) and (5.12). Substituting these specific solution (6.4), (6.5), (6.24)
and conditions (6.27) into the transformations of the first order, we can have

δ(p2)δf (1)I
s = −δ(p2)sn

′
νΩ̃νσpσ

2(n′ · p)
df

(0)I
s

dy
+δ(p2)snνΩ̃νσpσ

2(n · p)
df

(0)I
s

dy
, (6.28)

δ(p2)δf (1)a
s = −δ(p2)sn

′
νΩ̃νσpσ

2(n′ · p)
df

(0)a
s

dy
+δ(p2)snνΩ̃νσpσ

2(n · p)
df

(0)a
s

dy
, (6.29)

where we have defined

Ωµν = 1
2

(
∂xµ
uν
T
− ∂xν

uµ
T

)
, Ω̃µν = 1

2εµναβΩαβ , y = u · p/T. (6.30)

This indicates that we can choose the specific solution which is consistent with the trans-
formations (5.11) and (5.12),

f (1)I
s = −snνΩ̃νσpσ

2(n · p)
df

(0)I
s

dy
, f (1)a

s = −snνΩ̃νσpσ
2(n · p)

df
(0)a
s

dy
. (6.31)

Inserting these results into eqs. (4.8) and (4.9) gives rise to

J (1)Iµ
s = −s2Ω̃µνpν

df
(0)I
s

dy
δ(p2)− sg

2N F̃ a,µνpνf
(0)a
s δ′(p2), (6.32)

J (1)a,µ
s = −s2Ω̃µνpν

df
(0)a
s

dy
δ(p2)−sgF̃ b,µνpν

(
δabf (0)I

s + 1
2d

bcaf (0)c
s

)
δ′(p2), (6.33)

where we have dropped all the terms which vanish when color index runs only in the N −1
commuting Cartan generators. It is obvious that the final expressions do not depend on
the auxiliary vector nµ any more and are explicitly Lorentz covariant.
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Now it is straightforward to obtain the right-handed/left-handed currents by integrat-
ing the 4-dimension momentum pµ.

j(1)Iµ
s = −s2ω

µ
∫
d4p y

df
(0)I
s

dy
δ(p2)− sg

2NBaµT

∫
d4p yf (0)a

s δ′(p2), (6.34)

j(1)aµ
s = −s2ω

µ
∫
d4p y

df
(0)a
s

dy
δ(p2)−sgBbµT

∫
d4p y(δabf (0)I

s + dbca

2 f (0)c
s )δ′(p2), (6.35)

where ωµ = T Ω̃µνuν = εµναβuν∂
x
αuβ/2. From eqs. (6.4) and (6.5) together with eq. (6.24),

we can finish the integrals analytically∫
d4p y

df
(0)I
s

dy
δ(p2) = −T

2

6 −
∑
i µ

i 2
s

2π2N
, T

∫
d4p yf (0)I

s δ′(p2) =
∑
i µ

i
s

4π2N
, (6.36)

∫
d4p y

df
(0)a
s

dy
δ(p2) = −

∑
i t
a
iiµ

i 2
s

π2 , T

∫
d4p yf (0)a

s δ′(p2) =
∑
i t
a
iiµ

i
s

2π2 , (6.37)

It follows that
j(1)Iµ
s = ξIsω

µ + ξIaBsB
aµ, j(1)aµ

s = ξasω
µ + ξabBsB

bµ (6.38)

where

ξIs = s

(
T 2

12 + 1
4π2N

∑
i

µi 2s

)
, ξIaBs = − sg

4π2N

∑
i

taiiµ
i
s, (6.39)

ξas = s

2π2

∑
i

taiiµ
i 2
s , ξabBs = − sg

4π2

(
δab

N

∑
i

µis + dbca
∑
i

tciiµ
i
s

)
. (6.40)

The vector current and axial current can be obtained from right-hand and left-hand currents
directly,

j(1)Iµ = j
(1)Iµ
+1 + j

(1)Iµ
−1 = ξIωµ + ξIaB B

aµ, (6.41)

j(1)aµ = j
(1)aµ
+1 + j

(1)aµ
−1 = ξaωµ + ξabB B

bµ, (6.42)

j
(1)Iµ
5 = j

(1)Iµ
+1 − j(1)Iµ

−1 = ξI5ω
µ + ξIaB5B

aµ, (6.43)

j
(1)aµ
5 = j

(1)aµ
+1 − j(1)aµ

−1 = ξa5ω
µ + ξabB5B

bµ, (6.44)

where the anomalous transport coefficients for the vector currents are given by

ξI = 1
π2N

∑
i

µiµi5, ξIaB = − g

2π2N

∑
i

taiiµ
i
5, (6.45)

ξa = 2
π2

∑
i

taiiµ
iµi5, ξabB = − g

2π2

(
δab

N

∑
i

µi5 + dbca
∑
i

tciiµ
i
5

)
(6.46)

and the coefficients for the axial currents are given by

ξI5 = T 2

6 + 1
2π2N

∑
i

(µi 2 + µi 25 ), ξIaB5 = − g

2π2N

∑
i

taiiµ
i, (6.47)

ξa5 = 1
π2

∑
i

taii(µi 2 + µi 25 ), ξabB5 = − g

2π2

(
δab

N

∑
i

µi + dbca
∑
i

tciiµ
i

)
. (6.48)
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These are just the non-Abelian counterparts of the chiral magnetic effect, chiral vortical
effect and chiral separation effect. We note that the coefficients ξI , ξIaB , ξI5 and ξIaB5 for
the singlet current are very similar to the coefficients in the Abelian case. They can be
regarded as the average value of the coefficient in Abelian currents over different colors.
These results will reduce into the usual Abelian chiral effects if we set N = 1, taii = 1 and
g = −1. The coefficients ξa, ξabB , ξa5 and ξabB5 are unique for the non-Abelian currents and
agree with the results obtained in different approachs in refs. [63–65].

7 Summary

In this paper, we generalize the chiral kinetic theory in Abelian gauge field to non-Abelian
gauge field. Starting from the gauge invariant and Lorentz invariant quantum transport
theory set up in [51–54, 58], we decompose the Wigner functions and Wigner equations
completely both in spinor space and in color space. With the help of the “covariant gradient
expansion”, we find that the right-handed and left-handed Wigner function are totally de-
coupled with all the other Wigner functions. Among the four components of right-handed
or left-handed Wigner functions, we can define the time-like component as the independent
Wigner function and regard it as the phase space particle distribution function in some ref-
erence frame with velocity nµ. In consequence, all the space-like components can be totally
determined by this chosen independent distribution function. Such disentangling process
simplifies the Wigner equations greatly. The difference between Abelian and non-Abelian
gauge field is that in Abelian gauge field the disentanglement theorem demonstrated in [29]
show that the transport equation for space-like components are automatically satisfied
while in non-Abelian gauge field these equations are not satisfied automatically order by
order and we obtain extra constraint conditions. We present the chiral kinetic equations
up to the first order in non-Abelian gauge field in 8-dimension phase space. Since the
kinetic equations of the singlet component and multiplet components are totally coupled
with each other, the non-Abelian chiral kinetic equation is much more complicated than
Abelian chiral kinetic equation. We also give the modified Lorentz transformation of the
non-Abelian phase space distribution function when we define them in different frames.
Finally, we utilize it to calculate the non-Abelian chiral anomaly and the vector and axial
currents induced by color field and vorticity and find that it is consistent and successful in
describing the chiral effects in non-Abelian gauge field.
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