
J
H
E
P
1
1
(
2
0
2
1
)
0
9
6

Published for SISSA by Springer

Received: May 10, 2021
Revised: September 26, 2021
Accepted: October 19, 2021

Published: November 12, 2021

Multipoint correlation functions at phase separation.
Exact results from field theory

Alessio Squarcini
Max-Planck-Institut für Intelligente Systeme,
Heisenbergstr. 3, D-70569 Stuttgart, Germany
IV. Institut für Theoretische Physik, Universität Stuttgart,
Pfaffenwaldring 57, D-70569 Stuttgart, Germany

E-mail: squarcio@is.mpg.de

Abstract: We consider near-critical two-dimensional statistical systems with boundary
conditions inducing phase separation on the strip. By exploiting low-energy properties
of two-dimensional field theories, we compute arbitrary n-point correlation of the order
parameter field. Finite-size corrections and mixed correlations involving the stress tensor
trace are also discussed. As an explicit illustration of the technique, we provide a closed-
form expression for a three-point correlation function and illustrate the explicit form of the
long-ranged interfacial fluctuations as well as their confinement within the interfacial region.

Keywords: Boundary Quantum Field Theory, Field Theories in Lower Dimensions, Non-
perturbative Effects

ArXiv ePrint: 2104.05073

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)096

mailto:squarcio@is.mpg.de
https://arxiv.org/abs/2104.05073
https://doi.org/10.1007/JHEP11(2021)096


J
H
E
P
1
1
(
2
0
2
1
)
0
9
6

Contents

1 Introduction 1

2 Spin correlations: field theoretical derivation 3
2.1 Connected part and cluster functions 9
2.2 Construction of n-body cluster functions 13
2.3 Disconnected parts 18
2.4 Full result and specific cases 21
2.5 The limit R→∞ 23

3 Large-R expansion 24
3.1 Correction at order R−1/2: connected part 25
3.2 Correction at order R−1/2: disconnected parts and full result 26
3.3 Probabilistic interpretation 28
3.4 Triplet correlations 31

4 Corrections at order R−1 34
4.1 Magnetization profile 35
4.2 Two-point correlation function 36
4.3 Stress tensor trace and mixed correlation functions 38

5 Conclusions 39

A Brownian bridges 41

B Triplet correlations 44
B.1 Leading order 44
B.2 Subleading correction 45

1 Introduction

The characterization of the fluctuating interface separating coexisting phases is a longstand-
ing problem in classical statistical mechanics [1]. A conspicuous amount of investigations
in the field of interfacial phenomena has been stimulated by the need of a theoretical un-
derstanding and also because of numerous technological applications triggered by capillary
forces and wetting effects at the nanoscale [2]. The current understanding of interfacial
behavior benefitted from several theoretical approaches based on microscopic descriptions
formulated within lattice models, effective models, renormalization group, and numerical
simulations; we refer to [2–5] for general reviews on the subject.

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
6

The two-dimensional case holds a central role because of the availability of non-
perturbative techniques which lead to exact solvability of the strongly fluctuating regime.
Among exactly solvable planar systems, the Ising model occupies a predominant position
in the above framework due the existence of exact solutions based on the diagonalization of
the transfer matrix for a wide class of boundary conditions, which, in turn, lead to the for-
mation of interfaces in certain planar geometries [6–9]. Results based on the scaling limit of
exact solutions for the planar Ising model [9] motivated the introduction of phenomenolog-
ical approaches relying on the analogy between interfaces and random walks [10]. Such an
analogy has been exploited in order to construct effective coarse-grained descriptions based
on the so-called Solid-On-Solid (SOS) models [11, 12]. In these models, spin interfaces are
identified with fluctuating Onsager-Temperley strings [13]. The equilibrium statistical me-
chanical problem in two dimensions is thus equivalent to a quantum mechanical problem
in one space dimension. Within such an analogy, the construction of the partition function
by summing over interfacial configurations is thus mapped onto the evaluation of path
summations in the quantum-mechanical picture [11, 14, 15].

In recent years, an additional analytical framework allowed for the full exploration of
interfacial phenomena in near-critical systems belonging to a wider range of universality
classes in two dimensions [16], ranging from the Ising model, the q-state Potts model, as
well as the Ashkin-Teller model, and other models which exhibit interfacial wetting and
phase separation through intermediate phases [17]. The versatility of the field-theoretical
formalism then allowed also for the investigation of the interplay between interfacial fluc-
tuations and entropic repulsion due to a flat wall [18], a defect line [19], a wedge-shaped
boundary [20, 21], and its corresponding wetting/filling transition. Some of the above
mentioned exact findings have been successfully tested by means of high-precision Monte
Carlo simulations [22].

In most of the cases, as the ones mentioned above, the knowledge of one-point corre-
lation functions in certain geometries is informative enough and therefore it suffices for an
adequate description. A more refined characterization of the interfacial behavior, however,
demands the knowledge of higher-order correlation functions, with the pair correlation as
the simplest nontrivial representative. The occurrence of long-range correlations within
the interfacial region has been established within the context of theories of inhomogeneous
fluids [23–26], effective models such as the so-called capillary wave theory [27], and full
scale numerical simulations [28, 29]. The fact that the above studies refer either to space
dimension d > 3, or to effective interface models arising from specific assumptions, prevents
the straight application of them to the strongly fluctuating regime which characterizes the
scenario in d = 2.

In order to avoid the introduction of ad-hoc assumptions — which intrinsically charac-
terize any effective model — the exact investigation of the two-dimensional case has to be
inevitably built on a formalism which is based on the truly fundamental degrees of freedom
of the system. This first-principles-based viewpoint is at the basis of the results of [30];
there, it has been showed how field theory can be used in order to extract the exact form
of interfacial correlations in real space. As a result, by examining the structure of the pair
correlation function of the order parameter, it has been possible to exhibit the specific
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form of long-range correlations generated by phase separation. In this paper, we show how
the field-theoretic formalism [30] can be extended to the calculation of n-point correlation
functions for arbitrary n. We will illustrate firstly the case of correlations of the order
parameter field, for which we will single out those contributions which are originated by
interfacial fluctuations from those which are genuinely due to bulk fluctuations. Then, fo-
cusing on instances in which spin fields are widely separated with respect to scales of order
of the bulk correlation length, we will identify the exact analytic form of order parameter
correlations – including an exact systematic treatment of finite size effects – and interpret
them according to a probabilistic picture. Closed form expressions for certain three-point
correlation functions are written as an explicit illustration of the technique, which then
is further specialized to the cases of the Ising and q-state Potts models. The theoretical
analysis of correlation functions is then pushed in order to capture subleading finite-size
corrections. It is then showed how the treatment of such corrections can be systematized
in a power series of the small parameter (ξb/R)1/2, with ξb the bulk correlation length
and R the separation between the interface endpoints. Specific results about corrections
at order R−1/2 and R−1 are discussed in great detail and are related to the probabilistic
picture, the latter amounts to interpret those terms as effects due to interface structure.
The stress tensor trace Θ and its n-point correlations are also considered, as well as mixed
correlators involving both Θ and spin fields.

This paper is organized as follows. In section 2, we laid the basis for the calculation of
n-point correlation functions of the order parameter profile. The calculation is thus broken
into successive steps which are structured into subsections. The connected part of the
correlation function, which is examined in section 2.1, is expressed through n-body cluster
functions, the latter are constructed explicitly in section 2.2. The disconnected parts of
the correlation function are computed in section 2.3. The full result for the correlation
function is thus supplied in section 2.4 in general terms together with explicit applications
to Ising and q-state Potts models. Sections 3 and 4 deal with subleading corrections at
orders R−1/2 and R−1, respectively, and their emergence within the probabilistic picture.
Conclusive remarks and a summary with a description of future perspectives is outlined in
section 5. Two appendices contain additional mathematical details related to the buildout
of the material covered in section 2.

2 Spin correlations: field theoretical derivation

We illustrate the calculation of the n-point correlation function of the spin field on the
finite strip showed in figure 1. The quantities of interest are the correlation functions

Gn(x1, . . . ,xn) = 〈σ1(x1) · · ·σn(xn)〉ab , (2.1)

in which the notation 〈· · · 〉ab stands for the statistical average on the strip with ab boundary
conditions (see figure 1) and σj(xj , yj) ≡ σj is the spin field in the point xj = (xj , yj) ∈
R × (−R/2, R/2) on the Euclidean plane. The following ordering is considered in (2.1):
y1 > y2 > · · · > yn. The subscript j in σj labels the j-th spin field; in the most generic
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σ1(x1, y1)

σ2(x2, y2)

...
σn−1(xn−1, yn−1)

σn(xn, yn)

x

y

(0,−R/2)

(0, R/2)a

a

b

b

Figure 1. The strip geometry with ab boundary conditions. The spin fields which define the
correlation function Gn are illustrated with green circles.

case the spin field carries a color index such as in the field theory associated to the scaling
q-state Potts model (see [31] and section 3.4).

The switching of boundary condition from a to b at x = 0 along the edges y = ±R/2 is
implemented within the field-theoretical language through the boundary state formalism.
The correlation function (2.1) is thus written as follows

Gn(x1, . . . ,xn) = 1
Zab(R)〈Bab(0, iR/2)|σ1(x1) · · ·σn(xn)|Bab(0,−iR/2)〉 , (2.2)

where
Zab(R) = 〈Bab(0, iR/2)|Bab(0,−iR/2)〉 (2.3)

is the partition function and |Bab〉 is the boundary state with the inhomogeneous boundary
condition shown in figure 1. We refer to [32] for translationally invariant boundaries in the
framework of massive integrable quantum field theories (QFTs). In addition, we also refer
to [33] (and references therein) for the calculation of one-point functions and the extension
of the form factor approach to finite-volume problems in QFT with integrable boundaries.

Turning to the case of our interest, the boundary state for the system with ab boundary
conditions is expanded in the basis of bulk excitations compatible with the topological
charge of the boundary, namely

|Bab(x, t)〉 = eixP−itH
[∫ dθ

2πfab(θ)|Kab(θ)〉+
∑
c 6=a,b

∫ dθdθ′

(2π)2 facb|Kac(θ)Kcb(θ′)〉+. . .
]
, (2.4)

where |Kab(θ)〉 is the kink state corresponding to a topological particle with mass m which
interpolates between vacua |Ωa〉 and |Ωb〉, and θ is the rapidity variable. Within the
dictionary of phase separation, the vacuum |Ωa〉 is identified with the homogeneous system
filled by phase a (pure phase). The second and subsequent terms on the right hand side

– 4 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
6

of (2.4) stem from the propagation of multi-kink states. The simplest of them — the
double-kink state |KacKcb〉 — plays the dominant role only when the single-kink state
|Kab〉 is absent in the expansion of the boundary state. For those models and boundary
conditions in which such an instance happens, the double-kink state is responsible for the
formation of a double interface with an intermediate layer of phase c adsorbed on the ab
interface [17]. We refer to [19] for a further characterization of models which exhibits such
a phenomenology.

The amplitudes fab(θ), fabc(θ, θ′) depend on both the bulk and boundary universality
classes and are known for certain integrable field theories [34–36]. For the purposes of this
paper, however, it is sufficient to know only the infrared properties of the amplitude fab(θ),
which is responsible for the emission of a single-kink state from the boundary. To this end,
we only need the Taylor expansion around θ = 0, which reads fab(θ) = fab(0) + O(θ2) for
small rapidities. The absence of the linear term in θ follows by reflection symmetry around
the vertical axis, fab(θ) = fba(−θ), in conjunction with the symmetric role played by a and
b, i.e., fab(θ) = fba(θ).

In the limit mR� 1, which we consider from now on, the partition function (2.3) can
be computed straightforwardly thanks to a saddle-point calculation. The result is

Zab(R) = |fab(0)|2√
2πmR

e−mR + O
(
e−2mR

)
, (2.5)

up to higher order terms due to multi-kink states. From the boundary state formalism
it is possible to identify the surface tension Σab associated to the creation of an interface
separating the coexisting phases a and b. The surface tension is computed as the excess
free energy1 per unit length and is defined through the limit

Σab = − lim
R→∞

1
R

ln Zab(R)
Za(R) , (2.6)

where Za(R) stands for the partition function of the strip with uniform boundary condition
a. The latter can be determined from the boundary state |Ba〉 for a uniform boundary.
These states are known exactly for several models including, among the most relevant
examples for the purposes of this paper, the Ising model with a surface field [32] and the
q-state Potts model [37]. The state with lowest mass entering the expansion of the uniform
boundary is actually the vacuum |Ωa〉; hence,2 Za(R) = 〈Ωa|Ωa〉 ' 1 and the interfacial
tension equals the kink mass, i.e.,

Σab = m. (2.7)

It is useful to recall that the bulk correlation length is defined by the large-distance
decay of the connected spin-spin correlation function (see e.g., [38]), i.e.,

〈σ(x, y)σ(0, 0)〉c ∼ e−r/ξb ; (2.8)

the subscript c stands for the connected correlation function and r =
√
x2 + y2. The

asymptotic result (2.8) contains also an overall decaying power-law proportional to r−a with
1In units of kBT .
2The symbol ' stands for the omission of exponentially suppressed terms as in (2.5).
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a positive exponent a > 0 that it is not essential to specify. The spectral representation of
the correlation function entails

〈σ(x, y)σ(0, 0)〉c =
∑
n

|〈0|σ(0, 0)|n〉|2e−Enr , (2.9)

where 〈0|σ(0, 0)|n〉 is the n-particle form factor of the spin operator and En is the energy
of the n-particle state |n〉. The large-distance decay of the spin-spin correlation function
is completely characterized by the state with the lowest number of particles. Although
it is not necessary, let us take the example of the thermally deformed Ising field theory
(the bulk magnetic field is identically zero). The magnetisation operator couples only to
the states with an odd number of particles for T > Tc, while states with an even number
of particles are those characterizing T < Tc. As a result, for T > Tc the lightest state
contributes with the mass m while for T < Tc the lightest state contains two kinks and
thus it carries the mass 2m. By matching the exponential decay in (2.8) and (2.9) it follows
that ξb = 1/m for supercritical temperatures and ξb = 1/(2m) for subcritical temperatures.
The same conclusion is reached also for other systems including, inter alia, the q-state Potts
model [31], its diluted counterpart [39], and scaling RSOS models [40].

As a result, the fact that in the symmetry broken phase the bulk correlation length ξb
is related to the kink mass m via ξb = 1/(2m) implies Σabξb = 1/2. It is worth emphasizing
that such a relationship is compatible with Widom scaling [41] in two dimensions. More
interestingly, thanks to calculations based on the exact solution of the planar Ising model,
the relation Σabξb = 1/2 has been proved to be valid for all subcritical temperatures. This
result follows as an application of duality [9, 42, 43]; see also [44].

Let us move on the correlation function (2.2). The time ordering of spin fields we
discussed above is actually implemented in a more strict sense since consecutive spin fields
in (2.1) are separated by a distance much larger than the bulk correlation length ξb and,
in a similar fashion, spin fields are also taken to be far from the boundaries; hence:√

(xj − xj+1)2 + (yj − yj+1)2 � 1/m , R/2−y1 � 1/m , yn+R/2� 1/m ; (2.10)

in the first inequality, j = 1, . . . , n− 1.
We apply a spectral decomposition which amounts to insert a resolution of the identity

between each pair of spin operators. The identity operator is itself expanded in terms of
kink states, something that we write as follows

I =
∑

c1,...,cn 6=a,b

∑
n

∫ dθ1
2π · · ·

dθn
2π

1
n! |Kac1(θ1) · · ·Kcnb(θn)〉〈Kbcn(θn) · · ·Kc1a(θ1)| , (2.11)

with kink states normalized according to

〈Kba(θ)|Ka′b′(θ)〉 = 2πδaa′δbb′δ(θ − θ′) . (2.12)

By inserting the resolution of the identity between each spin field appearing in (2.2),
and recalling translational invariance for bulk fields

Φ(x, y) = eixP+yHΦ(0, 0)e−ixP−yH , (2.13)
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where H and P are the Hamiltonian and momentum operators in relativistic quantum field
theory, i.e.

H|Kab(θ)〉 = m cosh θ|Kab(θ)〉 ,
P |Kab(θ)〉 = m sinh θ|Kab(θ)〉 ,

(2.14)

we can extract the space-time dependence of matrix elements and write

Gn(x1,...,xn)' 1
Zab(R)

∫
Rn+1

n+1∏
j=1

dθj
2π f

∗
ab(θ1)fab(θn+1)

 n∏
j=1

M
σj

ab (θj |θj+1)

Un(θ1,...,θn+1),

(2.15)
where M

σj

ab (θj |θj+1) is the matrix element of the spin field σj

M
σj

ab (θj |θj+1) ≡ 〈Kba(θj)|σj(0, 0)|Kab(θj+1)〉 . (2.16)

The dependence through the coordinates is encoded in the function

Un(θ1, . . . , θn+1) = e−m(R/2−y1) cosh θ1

n−1∏
j=1

e−m(yj−yj+1) cosh θj+1

 e−m(yn+R/2) cosh θn+1

×
n∏
j=1

eim(sinh θj−sinh θj+1)xj . (2.17)

Let us consider now the effect played by multi-kink states. In order to handle the
simplest situation, we replace the single-kink state with rapidity θj between spin fields
σj−1(xj−1) and σj(xj) with a N -kink state. The intermediate state is parametrized by the
rapidities θj,1, . . . , θj,N ; the subscript j recalls the position in which the multi-kink state
has been inserted. As a result, the factor

e−m(yj−yj−1) cosh θj (2.18)

in (2.17) is replaced by
e−m(yj−yj−1)

∑N

k=1 cosh θj,k . (2.19)

Let us focus on those factors in the function Un which depend on the vertical coordinates
y1, . . . , yn. For large R, the low-rapidity expansion which underlies (2.5) implies that Un

is proportional to e−mR; the latter is obtained when all rapidities vanish. Then, such a
factor is cancelled when the ratio with the partition function (2.5) is performed. For the
multi-kink state the low-rapidity behavior shows that the corresponding Un-function is
proportional to

e−mRe−(N−1)m(yj−yj−1) . (2.20)

Now, the cancellation with the factor e−mR in the partition function occurs only partially.
This means that a residual factor e−(N−1)m(yj−yj−1) multiplies the contribution to the n-
point correlation function. The simplest multi-kink contribution beyond the single-kink
term is obtained when N > 1 is the least possible. Depending on the model, and the
topological charge of the boundary conditions, the simplest multi-kink can be a double-
kink state (N = 2) such as for the q-state Potts model with q > 2, a three-kink state
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(N = 3) such as for the Ising model (q = 2), or a state involving more than three kinks. To
summarize, the single-kink contribution to the correlation function given by (2.15) is exact
up to exponentially small corrections in the vertical separation of adjacent spin fields.

From now on we will focus on the single-kink term which dominates the asymptotic
behavior of correlation functions in the limit of interest specified by the strong inequalities
in (2.10).

Matrix elements of the spin field M
σj

ab are decomposed into a connected part and a
disconnected one. The connected part is expressed in terms of the spin field two-particle
form factor F σj

aba(θj − θj+1 + iπ), thus

M
σj

ab (θj |θj+1) = F
σj

aba(θj − θj+1 + iπ) +


2π〈σj〉a δ(θj − θj+1) , right ,

2π〈σj〉b δ(θj − θj+1) , left .
(2.21)

By adopting a pictorial representation for matrix elements, (2.21) reads

M
σj

ab (θj |θj+1) = σja b

θj

θj+1

= σja b

θj

θj+1

+ σja b

θj

θj+1

. (2.22)

The disconnected part originates a Dirac delta corresponding to particle annihilation.
The vacuum expectation value which multiplies the Dirac delta is 〈σj〉a if the two kinks
are annihilated by passing right aside the spin field, as depicted in (2.22). Conversely,
the overall vacuum expectation value is 〈σj〉b for the passage aside left. The right-left
alternative is ultimately responsible for the presence of the annihilation pole3 [31], whose
behavior at small rapidity differences reads

F
σj

aba(θj − θj+1 + iπ) = i∆〈σj〉
θj − θj+1

+ c
(σj)
ab + O(θj − θj+1) , (2.23)

where
∆〈σj〉 ≡ 〈σj〉a − 〈σj〉b (2.24)

is the jump of vacuum expectation values across the ab interface. The coefficient c(σj)
ab

and the subsequent ones appearing in (2.23) are known for integrable field theories [31,
46]. By plugging the expansion (2.22) into the product

∏n
j=1 M

σj

ab (θj |θj+1), we obtain a
decomposition of the n-point correlation function Gn which comprises a connected part
and a sequence of disconnected parts.

The rest of this section is organized as follows: in section 2.1, we address the calculation
of the connected part. Such a task will require the introduction of a certain class of

3See [45] for a comprehensive treatment of form factors in integrable quantum field theories.
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special functions — which will be termed n-body cluster functions — whose definition
and main properties will be provided in section 2.2; there, we will also provide the result
for the connected part of Gn. The disconnected parts of the correlation function will be
investigated in section 2.3 and the full result for Gn will be supplied section 2.4.

2.1 Connected part and cluster functions

The connected part of the n-point correlation function Gn(x1, . . . ,xn) is obtained from the
product of the two-particle form factors F σj

aba(θj − θj+1 + iπ) in (2.15). Diagrammatically,
this operation corresponds to stack the decomposition (2.22) for j = 1, . . . , n and retain the
diagram in which all spin fields are connected, as illustrated in (2.25). The open necklace
shown in the right hand side of (2.25) is the diagram which we will examine in this section.

n∏
j=1

M
σj

ab (θj |θj+1) =

σ1

σ2

σ3

σn

a b

θ1

θ2

θ3

...

θn

θn+1

=

σ1

σ2

σ3

σn

a b

θ1

θ2

θ3

...

θn

θn+1

+ disconnected . (2.25)

According to (2.23), the leading low-energy behavior of the connected diagram on the
right hand side of (2.25) is captured by the product of kinematical poles, therefore

n∏
j=1

M
σj

ab (θj |θj+1) =
n∏
j=1

i∆〈σj〉
θj − θj+1

+ O({θ}−n+1) , (2.26)

where O({θ}−n+1) stands for terms which are homogeneous functions of order −n + 1 in
the rapidity variables. Subsequent terms in the above expansion lead to subleading finite-
size corrections of the correlation function whose systematic analysis will be carried out in
section 3.
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The computation of the integrals in (2.15) proceeds by expanding the function
Un at small rapidities. To this end it is convenient to rescale rapidities through the
change of variables θj →

√
2/(mR)θj . The function Un becomes Un(θ1, . . . , θn+1) →

e−mRYn(θ1, . . . , θn+1), where

Yn(θ1, . . . , θn+1) =

 n∏
j=0

e−(τj−τj+1)θ2
j+1/2

 n∏
j=1

ei(θj−θj+1)ηj , (2.27)

with τ0 ≡ 1, τn+1 ≡ −1 and

ηj = xj/λ , λ =
√
R/(2m) , τj = 2yj/R . (2.28)

In order to ease the calculations, we introduce a compact notation for the evaluation of
(n+ 1)-fold integrals with respect rapidities; we define

HΨ(θ1, . . . , θn+1)Iη1,τ1;...;ηn,τn ≡ 2
√
π −
∫

Rn+1

n+1∏
j=1

dθj
2π Ψ(θ1, . . . , θn+1)Yn(θ1, . . . , θn+1) ,

(2.29)
where Ψ(θ1, . . . , θn+1) is a function of the rapidities. The symbol −

∫
stands for the principal

value of the integral. The need for the principal value follows from the fact that spin field
matrix elements exhibit a kinematical pole [16]. The result of the integrations in (2.29) is,
in general, a function of the rescaled coordinates {ηj , τj} which are indicated as a subscript.
For the sake of simplicity, we will omit the subscripts when there is no ambiguity and we
shall write HΨI in place of (2.29).

The connected part of the correlation function is computed as follows

GCP
n (x1, . . . ,xn) = H n∏

j=1

i∆〈σj〉
θj − θj+1 I + O(R−1/2) . (2.30)

As it has been illustrated in [16] and [30], a simple route for the calculation of spin field
matrix elements is to take a first derivative with respect to the horizontal coordinate.
Thanks to this procedure it is possible to get rid of the kinematical pole 1/(θj − θj+1) by
taking the first derivative with respect to ηj . Hence, by applying the differential operator
∂x1 · · · ∂xn , we get rid of kinematical poles and we are left with

∂x1 · · · ∂xnG
CP
n (x1, . . . ,xn) = λ−n

[
n∏
j=1

(−∆〈σj〉)
]
H1I . (2.31)

The quantity indicated with H1I amounts to compute a (n + 1)-fold gaussian integral.
Anticipating some results, it is convenient to write the outcome of the integration in the
following way

H1Iη1,τ1;...;ηn,τn = λnPn(x1, y1; . . . ;xn, yn) . (2.32)

We will show in section 4 that Pn is the joint probability density of a Brownian bridge. This
means that Pndx1 · · · dxn is the probability for the interface — regarded as the trajectory of
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a Brownian particle — to pass through all intervals (xj , xj+dxj) at y = yj , for j = 1, . . . , n.
Leaving the details in appendix A, the passage probability reads

Pn(x1, y1; . . . ;xn, yn) = 2n/2

λn
∏n
j=1 κj

Πn(
√

2χ1, . . . ,
√

2χn|R1...n) . (2.33)

Some comments are in order. The dependence through the coordinates is encoded in the
rescaled coordinates χj and τj , which are defined by

χj = xj
κjλ

, κj =
√

1− τ2
j , (2.34)

for j = 1, . . . , n. Then, Πn indicates the multivariate normal distribution with correlation
matrix R1...n. Further details on the multivariate normal distribution are collected in
appendix A. The correlation matrix is a n × n symmetric matrix with 1 along the main
diagonal and with entries

ρij =
√

1− τi
1 + τi

1 + τj
1− τj

, i 6 j (2.35)

in the upper triangle. The joint passage probability is normalized such that∫
Rn

n∏
j=1

dxj Pn(x1, y1; . . . ;xn, yn) = 1 . (2.36)

Marginal passage probabilities are obtained upon integration with respect to a subset
of the n coordinates. For instance,

Pk(x1, y1; . . . ;xk, yk) =
∫

Rn−k

n∏
j=k+1

dxj Pn(x1, y1; . . . ;xn, yn) . (2.37)

Note that Pk(x1, y1; . . . ;xk, yk) is characterized by a k × k correlation matrix obtained by
removing the last n − k rows and columns of R1...n. Analogously, by integrating Pn with
respect to xk, we obtain a joint passage probability in the variables with labels 1, . . . , k −
1, k + 1, . . . , n and whose correlation matrix is obtained by removing the kth row and the
kth column of R1...n.

Coming back to the correlation function, (2.31) reads

∂x1 · · · ∂xnG
CP
n (x1, . . . ,xn) =

[
n∏
j=1

(−∆〈σj〉)
]
Pn(x1, y1; . . . ;xn, yn) . (2.38)

The above equation is actually satisfied also by the “full” correlation function Gn and not
necessarily by its connected part. The reason is that, as we are going to show, the action
of ∂x1 · · · ∂xn on disconnected terms gives zero. Such a property follows from the fact that
disconnected terms depend only on a subset of coordinates x1, . . . , xn.

In order to make further progresses it is convenient to adopt a systematic notation for
connected correlation functions. We introduce cluster functions of order n by means of the
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following integral representation

Gn(x1, . . . ,xn) = 1
(πi)n

√
π
−
∫

R
dθ1 · · · −

∫
R
dθn+1

Yn(θ1, . . . , θn+1)∏n
j=1(θj − θj+1) ,

= 2n H n∏
j=1

−i
θj − θj+1 I

η1,τ1;...;ηn,τn

,

(2.39)

thanks to which it is possible to write the connected correlation function as follows

GCP
n (x1, . . . ,xn) =

[ n∏
j=1

(−1)〈̂σj〉
]
Gn(x1, . . . ,xn) , (2.40)

with
〈̂σj〉 ≡

〈σj〉a − 〈σj〉b
2 (2.41)

the half jump of vacuum expectation values across the ab interface. The product enclosed
by square brackets in (2.40) contains the jumps of vacuum expectation values, which are
intrinsically model-dependent quantities. Conversely, the cluster function Gn is universal
in the sense that it is shared by all models in which a single interface separates coexisting
phases a and b. We further anticipate that, thanks to the normalization in (2.39), each
cluster function tends to +1 when all the arguments are sent to +∞.

By combining the above equations, (2.31) becomes

∂x1 · · · ∂xnGn(x1, . . . ,xn) = 2nPn(x1, y1; . . . ;xn, yn) . (2.42)

In order to find the cluster function Gn, we integrate back with respect to x1, . . . , xn. This
procedure however must be followed carefully because (2.42) defines cluster functions up to
arbitrary functions of a subset of coordinates. For instance, the cluster function G2 would
be determined up to functions of x1 and x2. In order to fix the cluster function in a unique
fashion, we impose a set of constraints which ensure the clustering property of correlation
functions.

The above discussion can be rephrased under a slightly different angle by using the
identity

eiηθ

θ
= i

∫
dη eiηθ , (2.43)

which allows us to replace each simple pole in (2.39) with an integration with respect to an
auxiliary variable conjugated to a rapidity difference. Such a variable can be identified by
noting that xj , or its rescaled counterpart, ηj , is coupled to the rapidity difference θj−θj+1
in the function Yn. By inserting (2.43) into (2.39) and carrying out the integrations with
respect to the rapidities, we find

Gn(x1, . . . ,xn) = 1
πn+1/2

∫ x1/λ

−∞
dη1 · · ·

∫ xn/λ

−∞
dηn −

∫
R
dθ1 · · · −

∫
R
dθn+1Yn(θ1, . . . ,θn+1)+Rn ,

= 2n
∫ x1/λ

−∞
dη1 · · ·

∫ xn/λ

−∞
dηn H1Iη1,τ1;...;ηn,τn +Rn(x1, . . . ,xn) , (2.44)

= 2n
∫ x1

−∞
dx1 · · ·

∫ xn

−∞
dxnPn(x1,y1; . . . ;xn,yn)+Rn(x1, . . . ,xn) .
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The lower integration extremes in the auxiliary variables ηj are conventionally set to −∞.
The residual term Rn(x1, . . . ,xn), which satisfies ∂x1 · · · ∂xnRn(x1, . . . ,xn) = 0 because of
the property (2.42), will be identified in the following section.

2.2 Construction of n-body cluster functions

By expressing the passage probability Pn in terms of the multivariate normal distribution
Πn, (2.44) becomes

Gn(x1, . . . ,xn) = 2n
∫ √2χ1

−∞
dv1 · · ·

∫ √2χn

−∞
dvn Πn(v1, . . . , vn|R1...n) + Rn(x1, . . . ,xn) .

(2.45)
We introduce the cumulative distribution function (CDF) of the multivariate normal dis-
tribution and denote it as follows

Φn(x1, . . . , xn|R1...n) =
∫ x1

−∞
du1· · ·

∫ xn

−∞
dun Πn(u1, . . . , un|R1...n) . (2.46)

Thanks to (2.46), (2.45) becomes

Gn(x1, . . . ,xn) = 2nΦn(
√

2χ1, . . . ,
√

2χn|R1...n) + Rn(x1, . . . ,xn) . (2.47)

The functions Rn can be fixed by requiring that Gn satisfies the clustering property
of correlation functions when at least one of its arguments is sent to infinity. The correct
clustering is achieved provided that Gn(x1, . . . ,xn)→ Gn−1(x1, . . . , x̂j . . . ,xn) when xj →
+∞, where x̂j denotes the removal of xj . It is important to stress that such an information
emerges from the analysis of the full correlation function Gn, which includes both the
connected part and the disconnected ones. Thus, in order to facilitate the exposition, we
shall use the above input in order to construct the n-body cluster functions and we will
check a posteriori that such a prescription is indeed the correct one. This consistency check
is actually the content of Theorem 2.5, which will be enunciated at the end of section 2.4.

In order to illustrate the approach in a constructive fashion, we consider the simplest
case, n = 1, which will guide our further considerations towards the case of arbitrary n.
The function R1 is inevitably a constant since it has to satisfy ∂x1R1 = 0. The value of
such a constant is determined by imposing G1(x1)→ ±1 for x→ ±∞. Thus, the one-body
cluster function is G1(x1) = G1(

√
2χ1), with

G1(x1) = 2Φ1(x1)− 1 . (2.48)

Equivalently, we can write G1(x1) = erf(x1/
√

2), where erf(z) = (2/
√
π)
∫ z

0 dt e−t2 is the
error function [47], and therefore G1(x1) = erf(χ1). The analysis of the case n = 2 reveals
that G2(x1,x2) = G2(

√
2χ1,

√
2χ2|R12), where

G2(x1, x2|R12) = 4Φ2(x1, x2|R12)− 2Φ1(x1)− 2Φ1(x2) + 1 . (2.49)

The function R2 = −2Φ1(x1)− 2Φ1(x2) + 1 clearly satisfies ∂x1∂x2R2 = 0. The clustering
follows by observing that limx2→−∞Φ2(x1, x2|R12) = 0, and limx2→+∞Φ2(x1, x2|R12) =
Φ1(x1); therefore

lim
x2→±∞

G2(x1, x2|R12) = ±G1(x1) . (2.50)
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Analogously to the case n = 1, the 2-body cluster function G2 can be expressed in closed
form by introducing a suitable set of special functions — Owen’s T function [48, 49]; we
refer to [30] for a detailed account on this aspect.

The results (2.48) and (2.49) already suggest what the mathematical structure of the
n-body cluster function for arbitrary n should be. In order to construct a formal expression
for Gn, we need some preparatory definitions; we begin with the following one

Definition 2.1 (block functions). Let p be an integer such that 0 6 p 6 n. For p > 1 the
(p, n) block function Bp,n is defined by

Bp,n(x1, . . . , xn|R1...n) =
∑

16k1<···<kp6n

Φp(xk1 , . . . , xkp |Rk1...kp) ;

the sum in the above runs over the set of ordered p-tuples with respect to the natural ordering
(<) of integers. For p = 0, B0,n = 1, then, Bn,n = Φn.

It is useful to write some explicit examples. For n = 2: B1,2(x1, x2|R12) =
Φ1(x1) + Φ1(x2), for n = 3: B1,3(x1, x2, x3|R123) = Φ1(x1) + Φ1(x2) + Φ1(x3), and
B2,3(x1, x2, x3|R123) = Φ2(x1, x2|R12) + Φ2(x1, x3|R13) + Φ2(x2, x3|R23). Note that the de-
pendence on the correlation matrix, and so on the correlation coefficients, occurs for p > 2.

The structure of the n-body cluster functions is formalized by the following theorem

Theorem 2.2 (n-body cluster functions). The n-body cluster function is expressed in terms
of block functions by means of

Gn(x1, . . . ,xn) = Gn(
√

2χ1, . . . ,
√

2χn|R1...n) , (2.51)

with

Gn(x1, . . . , xn|R1...n) =
n∑
p=0

(−1)p2n−pBn−p,n(x1, . . . , xn|R1...n) . (2.52)

The functions Rn are identified by means of the next corollary

Corollary 2.2.1. Since the term with p = 0 in (2.52) gives the first term in the right hand
side of (2.47), it follows that Rn is identified as the sum of the terms with p = 1, . . . , n
in (2.52).

We stress that Gn depends on both the horizontal and vertical coordinates, xj and yj .
Such a dependence is codified by the rescaled coordinates χj and by the rescaled vertical
coordinates τj , both introduced in (2.28). In particular, the dependence on τj occurs also
through the correlation coefficients ρij = (R1...n)ij ; see (2.35).

It is useful to introduce a graphical notation. We represent the CDF of the n-variate
normal distribution by means of the following block diagram

Φn(x1, . . . , xn|R1...n) ≡ 1 2 · · · n , (2.53)
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which consists of n circles corresponding to the arguments shown in the left hand side
of (2.53). The block functions introduced in Def. 2.1 are thus depicted as follows

Bp,n(x1, . . . , xn|R1...n) ≡
∑

16i1<···<ip6n
i1 i2 · · · ip . (2.54)

Thanks to the diagrammatic representation provided by (2.53) and (2.54), cluster
functions admit the following graphical rewriting

G1(x1) = 2 1 − 1 ,

G2(x1, x2|R12) = 4 1 2 − 2 1 − 2 2 + 1 ,

G3(x1, x2, x3|R123) = 8 1 2 3 − 4 1 2 − 4 1 3 − 4 2 3

+ 2 1 + 2 2 + 2 3 − 1 .

(2.55)

For mathematical convenience, we can take G0 = G0 ≡ 1 as the seed for the recursive
hierarchy of cluster functions. The explicit form of G3 reads

G3(x1, x2, x3|R123) = 8Φ3(x1, x2, x3|R123)− 4Φ2(x1, x2|R12)− 4Φ2(x1, x3|R13)
− 4Φ2(x2, x3|R23) + 2Φ1(x1) + 2Φ1(x2) + 2Φ1(x3)− 1 .

(2.56)

The correlation matrix R123 is characterized by three independent correlation coefficients:
ρ12, ρ13 and ρ23; the remaining one is obtained by virtue of the Markov property (see
e.g. [50, 51]): ρ13 = ρ12ρ23. The function Φ3 can be expressed in closed-form in terms of
Steck’s S and Owen’s T functions.4 Consequently, even for n = 3 it is possible to write
the cluster function in an analytic form which involves single integrals instead of three-fold
ones [52].

Carrying on the above procedure, we can write the cluster function for the four-point
correlation function, namely

G4(x1,x2,x3,x4|R1234) = 16Φ4(x1,x2,x3,x4|R1234)−8Φ3(x1,x2,x3|R123)
−8Φ3(x1,x2,x4|R124)−8Φ3(x1,x3,x4|R134)−8Φ3(x2,x3,x4|R234)
+4Φ2(x1,x2|R12)+4Φ2(x1,x3|R13)+4Φ2(x1,x4|R14)
+4Φ2(x2,x3|R23)+4Φ2(x2,x4|R24)+4Φ2(x3,x4|R34)−2Φ1(x1)
−2Φ1(x2)−2Φ1(x3)−2Φ1(x4)+1 , (2.57)

4We refer to [49] for a detailed exposition on the functions T and S, as well as for a thorough examination
of integrals arising from Gaussian distributions.
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or equivalently, within the pictorial form, we have

G4(x1, x2, x3, x4|R1234) = 16 1 2 3 4 − 8 1 2 3 − 8 1 2 4

− 8 1 3 4 − 8 2 3 4 + 4 1 2 + 4 1 3

+ 4 1 4 + 4 2 3 + 4 2 4 + 4 3 4

− 2 1 − 2 2 − 2 3 − 2 4 + 1 . (2.58)

We observe that for n = 4 the independent correlation coefficients are ρ12, ρ23 and ρ34.
The other correlation coefficients follow from the Markov property: ρ13 = ρ12ρ23, ρ14 =
ρ12ρ23ρ34, and ρ24 = ρ23ρ34.

The next task we need to carry out is to prove Theorem 2.2. To this end, we need to
recall the asymptotic properties satisfied by block functions.

Lemma 2.3. The block function Bp,n vanishes when at least one of its argument is sent
to −∞, e.g.,

lim
xn→−∞

Bp,n(x1, . . . , xn|R1...n) = 0 .

For xn → +∞, the block function B1,n satisfies the following property

lim
xn→+∞

B1,n(x1, . . . , xn|R1...n) = 1 + B1,n−1(x1, . . . , xn−1|R1...n−1) ,

while for 2 6 p 6 n− 1

lim
xn→+∞

Bp,n(x1,...,xn|R1...n)=Bp,n−1(x1,...,xn−1|R1...n−1)+Bp−1,n−1(x1,...,xn−1|R1...n−1),

and for p = n

lim
xn→+∞

Bn,n(x1, . . . , xn|R1...n) = Bn−1,n−1(x1, . . . , xn−1|R1...n−1) .

The limits in which xj → ±∞ with j 6= n are treated along the same lines by replacing
R1...n−1 with the correlation matrix R1...ĵ...n, where R1...ĵ...n is obtained by removing the j-th
row and the j-th column of R1...n, and ĵ stands for the removed label.

Proof. The derivation of the asymptotic relations listed in Lemma 2.3 follows by using
elementary properties of cumulative distribution functions. Let us consider the first of the
properties listed in Lemma 2.3. The limit in which xn → −∞ is established thanks to

lim
xn→−∞

Φn(x1, . . . , xn|R1...n) = 0 , (2.59)

because the lower integration extrema in the CDFs are −∞. Let us consider the case p = n.
The limit xn → +∞ can be analyzed by using the identity

lim
xn→+∞

Φn(x1, . . . , xn|R1...n) = Φn−1(x1, . . . , xn−1|R1...n−1) , (2.60)

which is a natural consequence of the marginalization property of the probability distribu-
tion Pn; see (2.37). The properties with 1 6 p 6 n− 1 follow straightforwardly. �
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Theorem 2.4 (clustering). The n-body cluster function satisfies the following clustering
properties

lim
xn→−∞

Gn(x1, . . . , xn|R1...n) = −Gn−1(x1, . . . , xn−1|R1...n−1)

lim
xn→+∞

Gn(x1, . . . , xn|R1...n) = Gn−1(x1, . . . , xn−1|R1...n−1) .
(2.61)

The proof of Theorem 2.4 follows as a straightforward application of Lemma 2.3.
As an explicit illustration of the asymptotic properties, we consider the asymptotic

properties of the block functions Bp,3, which constitute the building blocks of the three-
point correlation function. For p = 3, we have

lim
x3→+∞

1 2 3 = 1 2 , (2.62)

which is actually the asymptotic property of the cumulative distribution function Φ3. Then,
for p = 2 one finds

lim
x3→+∞

B2,3 = lim
x3→+∞

(
1 2 + 1 3 + 2 3

)
= 1 2 + 1 + 2

= B2,2 + B1,2

(2.63)

while for p = 1
lim

x3→+∞
B1,3 = lim

x3→+∞

(
1 + 2 + 3

)
= 1 + 1 + 2

= 1 + B1,2 .

(2.64)

We conclude this section by adding some considerations about the construction of block
functions. According to Definition 2.1 the (p, n) block function is constructed by summing
cumulative functions Φp in which the p arguments are ordered p-tuples drawn from of the
set An = {1, . . . , n}. This observation allows us to rationalize the construction of block
functions by putting them in touch with Hasse diagrams [53, 54] in discrete mathematics.

In order to proceed along this direction, we recall the definition of power set. The
power set of An, denoted P(An), is the set which contains all subsets of An. Let us write
a few examples. The power set of A2 is P(A2) = {∅, {1}, {2}, {1, 2}} while the power set
of A3 is P(A3) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, with ∅ the empty set.

Subsets of An are naturally ordered by set inclusion (⊆). The partially ordered set
(poset) (P(An),⊆) can be visualized by means of a graph in which the largest element is
placed at the top, the smallest at the bottom, and other elements are allocated in between
according; the notion of large/small has to be interpreted in terms of the cardinality. Two
vertices are connected by an edge if the elements are ordered by set inclusion (⊆) [53].
Coming back to the example quoted one moment ago, the Hasse diagram for the power set
of A2 and A3 are shown in figure 2a and figure 2b, respectively.

Hasse diagrams Hn comprise n+1 levels in which elements share the same cardinality.
Levels with cardinality p are indicated with a dash-dotted notation in figure 2. It then
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{1, 2}

{1} {2}

∅

p = 2

p = 1

p = 0

(a) Diagram H2.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

p = 3

p = 2

p = 1

p = 0

(b) Diagram H3.

Figure 2. Hasse diagram Hn for the poset (P(An),⊆) with n = 2 (a) and n = 3 (b).

follows that a level with cardinality p contains
(n
p

)
elements. Then, the level p contains the

elements which define the block function Bp,n. The asymptotic clustering properties listed
in Lemma 2.3 can be viewed in terms of Hasse diagrams. For instance, the limit x3 →∞
amounts to remove the node with label 3 and those bonds attached to it in the diagram
H3. Hasse diagrams can be used also to classify the disconnected diagrams arising from
disconnected parts of matrix elements, as will be clear in the next section.

2.3 Disconnected parts

We can now illustrate how to compute the contribution of disconnected matrix elements
to the n-point correlation function of the spin field.

The disconnected parts of matrix elements which appear in the right hand side of (2.25)
are constructed by contracting legs according to the procedure outlined for n = 1 in (2.22).
The decomposition of matrix elements given in (2.25) is then written as follows

n∏
j=1

M
σj

ab (θj |θj+1) =
n∑

m=0
D

(m)
ab (θ1, . . . , θn+1) , (2.65)

where the sum runs over the numberm of disconnected spin fields. Thus, D(0)
ab stands for the

fully connected matrix element corresponding to the diagram in the right hand side of (2.25)
and whose contribution yields the connected part of the n-point correlation function. Con-
versely, D(n)

ab is the fully disconnected matrix element. The decomposition (2.65) of matrix
elements induces an analogous expansion of the n-point correlation function, which reads

Gn(x1, . . . ,xn) =
n∑

m=0
(Gn(x1, . . . ,xn))[D(m)

ab
] , (2.66)
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in which the term with superscript [D(m)
ab ] indicates the contribution of D(m)

ab to Gn.

The term D
(m)
ab with m = 1, . . . , n in (2.65) indicates the sum of all disconnected

matrix elements in which m spin fields have been disconnected according to (2.22). In
graphical terms, the diagrams which contribute to D

(m)
ab are those in which m spin fields

in the necklace diagram of (2.25) are replaced by disconnected lines as those shown in the
second term on the right hand side of (2.22). Correspondingly, matrix elements which
contribute to D

(m)
ab contain the product of m Dirac deltas of type δ(θj − θj+1) and the

product of n−m two-particle form factors F σj

aba(θj − θj+1 + iπ).

Let us consider some illustrative examples. The diagrams which appear in the dis-
connected matrix elements D

(1)
ab admit the graphical depiction shown in (2.67). The term

“perm” in (2.67) indicates the sum over permutations of diagrams formed by detaching —
one at the time — the spin field with label j = 1, . . . , n− 1.

D
(1)
ab =

σn

σ1

σnσn−1

a b

θ1

θ2
...

θn−1

θn

θn+1

+

σn

σ1

σnσn−1

a b

θ1

θ2
...

θn−1

θn

θn+1

+ perm. (2.67)

The graphical construction which gives the disconnected matrix elements formed by
detaching two spin fields proceeds in an analogous manner. Thus, D(2)

ab admits the graphical
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decomposition shown in (2.68).

D
(2)
ab =

σn

σ1

σnσn−1

σnσn−2

a b

θ1

θ2
...

θn−2

θn−1

θn+1

+

σn

σ1

σnσn−1

σnσn−2

a b

θ1

θ2
...

θn−2

θn−1

θn+1

+

σn

σ1

σnσn−1

σnσn−2

a b

θ1

θ2
...

θn−2

θn−1

θn+1

+

σn

σ1

σnσn−1

σnσn−2

a b

θ1

θ2
...

θn−2

θn−1

θn+1

+ perm. (2.68)

By applying the above rules it is straightforward to construct diagrams corresponding to
disconnected matrix elements with an arbitrary number of disconnected spin fields.

We can now address the calculation of (Gn(x1, . . . ,xn))[D(m)
ab

]. In order to simplify
the exposition, we show the calculation for a particular type of disconnected diagrams,
denoted D̆

(m)
ab , which are obtained by disconnecting the last m spin fields with labels

j = n−m+ 1, . . . , n. The diagrams which contribute to D̆
(1)
ab are precisely those depicted

in the right hand side of (2.67). Analogously, the diagrams which contribute to D̆
(2)
ab are

those depicted in the right hand side of (2.68). There is actually no loss of generality in
this choice since an arbitrary disconnected diagram can be obtained by a permutation of
the spin and coordinate labels. Therefore, we shall focus on the following matrix element

D̆
(m)
ab (θ1, . . . , θn+1) =

[
n−m∏
j=1

F
σj

aba(θj − θj+1 + iπ)
][

n∏
j=n−m+1

2π〈̃σj〉δ(θj − θj+1)
]
, (2.69)

where
〈̃σj〉 = 〈σj〉a + 〈σj〉b

2 . (2.70)

The anatomy of (2.69) follows by noting that the first product is originated by those
spin fields which form the connected part of the diagram, while the second product stems
by tying together those legs which are detached from the disconnected spin fields. The
occurrence of 〈̃σj〉 follows since the arithmetic average between diagrams obtained within
the left and right annihilations has to be performed [30].
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By keeping the leading-order term in the small rapidity expansion, we can write the
matrix element in the factorized form D̆

(m)
ab = D

(m)
ab D(m), with a rapidity-dependent part

D(m)(θ1, . . . , θn+1) =
[
n−m∏
j=1

−2i
θj − θj+1

][
n∏

j=n−m+1
2πδ(θj − θj+1)

]
, (2.71)

and D(m)
ab an overall factor which depends solely on the vacuum expectation values

D
(m)
ab =

[
n−m∏
j=1

(−∆〈σj〉/2)
][

n∏
j=n−m+1

〈̃σj〉
]
, (2.72)

with ∆〈σj〉 given in (2.24).
The contribution of D̆(m)

ab to the n-point correlation function is thus accounted for by

D
(m)
ab HD(m)Iη1,τ1;...;ηn,τn . (2.73)

The integral with respect to rapidities can be straightforwardly computed and it yields

HD(m)Iη1,τ1;...;ηn,τn = Gn−m(x1, . . . ,xn−m) , (2.74)

hence, the matrix element D̆(m)
ab originates the contribution

(Gn(x1, . . . ,xn))[D̆(m)
ab

] = D
(m)
ab Gn−m(x1, . . . ,xn−m) (2.75)

to the n-point correlation function.
It is interesting to observe how the pictorial representation of matrix elements provides

insights on the structure of Gn. A matrix element represented by a diagram in which
the spin fields σ1 . . . , σn−m are connected yields a cluster function Gn−m(x1, . . . ,xn−m)
which depends on the spatial coordinates carried by those spin fields which constitute the
connected part of the diagram. The spatial coordinates relative to disconnected spin fields
do not report in the resulting cluster function.

It is now evident how to construct all the disconnected diagrams belonging to the
family D

(m)
ab . Firstly, we observe that the number of such diagram is #D

(m)
ab = 2m

(n
m

)
because each spin field can be disconnected either passing left or right aside it, hence the
factor 2m follows. Thus, up to left/right combinatorics, there is one (

(n
0
)
) fully connected

diagram, there are
(n

1
)

= n diagrams with one disconnected spin field, and so on. Note
that, the total number of diagrams is

∑n
m=0

(n
m

)
= 2n. It is thus clear how Hasse diagrams

can be used in order to classify the disconnected diagrams too.

2.4 Full result and specific cases

We are now in the position to construct the full correlation function Gn. An arbitrary
disconnected diagram can be identified by specifying the labels of those spin fields which
are disconnected. Let Vm be the ordered set of vertices which composes the connected part
of the diagram with m disconnected spin fields and let us denote its vertices with the labels
j1, . . . , jn−m. Analogously, let Vm be the set of vertices which compose the disconnected
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part. Clearly, for any m, Vm ∪ Vm = {1, . . . , n}. The contribution stemming from the
diagrams with m disconnected spin fields reads

(Gn(x1, . . . ,xn))[D(m)
ab

] =
∑
Vm

∏
i∈Vm

〈̃σi〉
∏
j∈Vm

(−〈̂σj〉)
[ ∑
j1<···<jn∈Vm

Gn−m(xj1 , . . . ,xjn−m)
]

;

(2.76)
we recall that 〈̂σj〉 is given by (2.41). Thanks to (2.66), the n-point spin correlator Gn is
given by

Gn(x1, . . . ,xn) =
n∑

m=0

∑
Vm

∏
i∈Vm

〈̃σi〉
∏
j∈Vm

(−〈̂σj〉)
[ ∑
j1<···<jn∈Vm

Gn−m(xj1 , . . . ,xjn−m)
]
.

(2.77)
It is instructive to consider some examples. The case n = 1 gives the magnetization

profile
〈σ1(x, y)〉ab = 〈̃σ1〉 − 〈̂σj〉G1(x1) + O(R−1/2)

= 〈̃σ1〉 − 〈̂σj〉erf(χ1) + O(R−1/2) .
(2.78)

The above agrees with the result of [16]. In the last line follows by using the expression of
the one-body cluster function G1 given below (2.48). We also observe that (2.78) retrieves
the known magnetization profile for the Ising model [6] as a particular case. Ising symmetry
requires 〈σ〉+ = −〈σ〉− = −M with M the spontaneous magnetization. Then, 〈̃σ〉 = 0 and
〈̂σ〉 = −M yield the profile 〈σ(x, y)〉−+ = Merf(χ)+O(R−1); the correction at order R−1/2

vanishes (see (4.9)).
Let us consider the case n = 2 corresponding to the pair correlation function of the or-

der parameter. The connected part yields 〈̂σ1〉〈̂σ2〉G2(x1,x2). The disconnected parts with
m = 1 give −〈̃σ1〉〈̂σ2〉G1(x2)− 〈̃σ2〉〈̂σ1〉G1(x1) and the fully disconnected part contributes
with 〈̃σ1〉〈̃σ2〉. Collecting the various pieces, we find

〈σ1(x1)σ2(x2)〉ab = 〈̂σ1〉〈̂σ2〉G2(x1,x2)− 〈̂σ1〉〈̃σ2〉G1(x1)− 〈̂σ2〉〈̃σ1〉G1(x2)

+ 〈̃σ1〉〈̃σ2〉+ O(R−1/2) ,
(2.79)

which perfectly matches with the findings of [30]. As a further example, the three-point
correlation function is given by

〈σ1(x1)σ2(x2)σ3(x3)〉ab = −〈̂σ1〉〈̂σ2〉〈̂σ3〉G3(x1,x2,x3) + 〈̂σ1〉〈̂σ2〉〈̃σ3〉G2(x1,x2)

+ 〈̂σ1〉〈̂σ3〉〈̃σ2〉G2(x1,x3) + 〈̂σ2〉〈̂σ3〉〈̃σ1〉G2(x2,x3)

− 〈̂σ1〉〈̃σ2〉〈̃σ3〉G1(x1)− 〈̂σ2〉〈̃σ1〉〈̃σ3〉G1(x2)

− 〈̂σ3〉〈̃σ1〉〈̃σ2〉G1(x3) + 〈̃σ1〉〈̃σ2〉〈̃σ3〉+ O(R−1/2) .

(2.80)

The explicit expressions (2.78)–(2.80) allow for a direct check of the clustering prop-
erties for n = 1, n = 2, and n = 3. The corresponding statement for arbitrary n is the
content of the following theorem
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Theorem 2.5. Let 1 6 j 6 n. The n-point correlation function of the spin field satisfies
the clustering properties

lim
xj→−∞

〈σ1(x1) · · ·σn(xn)〉ab = 〈σj〉a〈σ1(x1) · · · σ̂j(xj) · · ·σn(xn)〉ab , (2.81)

and
lim

xj→+∞
〈σ1(x1) · · ·σn(xn)〉ab = 〈σj〉b〈σ1(x1) · · · σ̂j(xj) · · ·σn(xn)〉ab , (2.82)

where σ̂j(xj) stands for the omission of σj(xj) in the correlation function.

The proof follows by using the results of the (clustering) Theorem 2.4.

2.5 The limit R→∞

In this case, τj = 2yj/R→ 0, meaning that all correlation coefficients tend to unity, i.e.,

lim
R→∞

ρij = 1 . (2.83)

Correspondingly, the correlation matrix reduces to a n×n matrix whose entries consists of
all 1s; we denote such a matrix with Jn. Analogously, the limit R →∞ projects the vari-
ables χj , which encode the dependence through the coordinates xj and yj , to the origin, i.e,

lim
R→∞

χj = 0 . (2.84)

In both the limits (2.83) and (2.84) the coordinates xj , yj with j = 1, . . . , n are fixed.
The limit (2.84) implies that the cumulative distribution functions which appear in the
block functions are evaluated at the origin. Said differently, the cumulative distribution
functions become the so-called orthant probabilities [55, 56].

The calculation of orthant probabilities is a notoriously difficult problem. The first
few orthant probabilities are:∫ 0

−∞
du1Π1(u1)= 1

2 ,∫ 0

−∞
du1

∫ 0

−∞
du2Π2(u1,u2|R12)= 1

4+ 1
2π sin−1(ρ12), (2.85)∫ 0

−∞
du1

∫ 0

−∞
du2

∫ 0

−∞
du3Π3(u1,u2,u3|R123)= 1

8+ 1
4π
(
sin−1(ρ12)+sin−1(ρ13)+sin−1(ρ23)

)
.

The above result may indicate a general pattern for the orthant of the n-variate normal dis-
tribution. This is actually not the case, as it is revealed by the orthant of the quadrivariate
normal distribution [57].

The limit (2.83) comes in our rescue. Although the orthant of the n-variate normal
distribution is a complicated function of the correlation coefficients ρij , the orthant drasti-
cally simplifies when ρij = 1, and the corresponding result is simply 1/2. This fact follows
from the analytic expression for the orthant probability Pn(ρ) in the equivariate case with
ρij = ρ [58], which reads

Pn(ρ) = 1
2n
√
π

∫
R
du e−u2erfcn

(
−
√

ρ

1− ρu
)
. (2.86)
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The limit of our interest is limρ→1 Pn(ρ) = 1/2. With this in mind, the cumulative function
given in (2.53) reduces to 1/2 and the block function (2.54) reduces to 1/2 times the number
of elements in the level p > 1 of the Hasse diagram Hn, therefore

Bp,n(0, . . . , 0|Jn) =


1
2
(n
p

)
, p > 1

1 , p = 0 .
(2.87)

Thanks to (2.52) and (2.87) the cluster function thus reduces to

lim
R→∞

Gn(x1, . . . ,xn) = Gn(0, . . . , 0|Jn)

=
n∑
p=0

(−1)p2n−pBn−p,n(0, . . . , 0|Jn)

= (−1)n + 2n−1
n−1∑
p=0

(
n

n− p

)(
−1

2

)p
= 1 + (−1)n

2 .

(2.88)

We are now in the position to compute the full correlation function in the limit R→∞. The
case which we are going to examine is the one where spin fields entering the correlation
functions are all identical, i.e., σi ≡ σ. Thanks to the selection rule (2.88), the matrix
elements with m disconnected legs contribute with the term(

n

m

)(
−〈̂σ〉

)n−m
〈̃σ〉

m
[

lim
R→∞

Gn−m(x1, . . . ,xn)
]
, (2.89)

the full correlation function is obtained by summing the above terms with respect to m

from m = 0 (fully connected term) to m = n (fully disconnected term). The result reads

lim
R→∞

Gn(x1, . . . ,xn) =
n∑

m=0

(
n

m

)
〈̂σ〉

n−m
〈̃σ〉

m 1 + (−1)n−m

2

= (〈̃σ〉+ 〈̂σ〉)n + (〈̃σ〉 − 〈̂σ〉)n

2

= 〈σ〉
n
a + 〈σ〉nb

2 .

(2.90)

The interface separating phases a and b is characterized by midpoint fluctuations of or-
der R1/2 along the x-axis. For R → ∞ the unbounded interfacial fluctuations yield the
averaging over the phases a and b given by (2.90). For the Ising model, the averaging
property (2.90) is known from rigorous result [9]. The above derivation shows that the
averaging (2.90) is actually a more general feature.

3 Large-R expansion

In this section, we examine the correlation function Gn including the leading-order correc-
tions in finite size. By extending the approach of [16, 30] the correction at order R−1/2 is
interpreted in terms of a probabilistic picture.
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3.1 Correction at order R−1/2: connected part

To be definite, we begin by examining the connected part of Gn. The treatment of finite-size
corrections for disconnected parts will be facilitated by the treatment of the connected part.

The large-R expansion of Gn can be studied in a systematic fashion by expanding
the numerator of (2.2), as well as the partition function Zab(R), in powers of the small
parameter R−1/2. The large-R expansion of the numerator in (2.2) proceeds by Taylor
expanding the integrand in (2.15) at small rapidities. Retaining the connected part, the
integrand in (2.15) reads

f∗ab(θ1)fab(θn+1)
n∏
j=1

F
σj

aba(θj − θj+1 + iπ) ≡ C(θ1, . . . , θn+1) . (3.1)

The function C(θ1, . . . , θn+1) is expanded at small rapidities and the corresponding result
is organized as follows

C(θ1, . . . , θn+1) =
∞∑

∆=−n
C∆(θ1, . . . , θn+1) , (3.2)

where C∆ is a homogeneous function of order ∆, i.e., C∆(αθ1, . . . , αθn+1) =
α∆C∆(θ1, . . . , θn+1), α > 0. It is simple to check that terms in the aforementioned se-
ries with homogeneity exponent ∆ contributes to the correlation function Gn(x1, . . . ,xn)
at order R−(∆+n)/2. The leading order term in the large-R expansion is thus generated by
the function C−n and its corresponding expression is provided in (2.26). The function C∆
with ∆ = −n+ 1 gives the first subleading correction which occurs at order R−1/2.

Regarding the large-R expansion of the partition function, we denote the leading order
expression (2.5) with Z

(0)
ab (R). Therefore

Zab(R) = Z
(0)
ab (R)

[
1 + O(R−1)

]
. (3.3)

The correction at order O(R−1/2) is absent since the low-energy expansion of fab(θ) does
not exhibit odd powers of θ. As a result, the first subleading correction for the n-point
correlation function is, in general, proportional to O(R−1/2) and is entirely originated
by the matrix element C−n+1. The latter is obtained by multiplying n − 1 kinematical
poles with one of the c(σk)

ab factors appearing in the low-energy expansion (2.23) and then
summing over permutations of labels. We have

C−n+1 = 2n−1
n∑
k=1

Ik,nDk,n(θ1, . . . , θn+1) , (3.4)

with Ik,n an overall factor which depends on the vacuum expectation values,

Ik,n = c
(σk)
ab

n∏
j=1,j 6=k

(−σ̂j) , (3.5)

and Dk,n the following function of the rapidities

Dk,n(θ1, . . . , θn+1) =
n∏

j=1,j 6=k

−i
θj − θj+1

. (3.6)
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Note how Dk,n can be obtained from the connected matrix element

Mn(θ1, . . . , θn+1) =
n∏
j=1

−i
θj − θj+1

(3.7)

simply by removing one annihilation pole. The removal of the pole 1/(θj − θj+1) in the
matrix elementMn can be achieved thanks to a differentiation with respect to the horizontal
coordinate xj conjugated to the rapidity difference θj − θj+1; hence,

HDk,nI = ∂ηk
HMnI ,

= 2−n∂ηk
Gn(x1, . . . ,xn) .

(3.8)

The last equality brings in touch the first subleading correction to connected matrix ele-
ments with the cluster functions introduced in section 2.

We are now in the position to write the correction at order R−1/2. The large-R
expansion of the n-point connected correlation function can be written as follows

GCP
n =

∞∑
`=0

[
GCP
n

]
`
, (3.9)

with
[
GCP
n

]
`

= O(R−`/2). The term with ` = 0 is the one computed in section 2. According
to the above discussion, the term with ` = 1 reads

[
GCP
n

]
1 = 1√

2mR

n∑
k=1

Ik,n∂ηk
Gn(x1, . . . ,xn) . (3.10)

Note that (3.10) is proportional to c(σj)
ab , therefore it vanishes for the Ising model [16].

3.2 Correction at order R−1/2: disconnected parts and full result

Once we have established how the large-R expansion is implemented for the connected part,
the analysis of the disconnected parts follows from the diagrammatic construction of matrix
elements. Let us consider n = 1 as the first example. In this case the disconnected term
coincides with the fully disconnected one, the latter simplifies with the partition function
up to the factor 〈̃σ1〉. The correction is thus entirely due to the connected part. As a
result, the expansion of the magnetization profile reads

G1(x) = 〈̃σ1〉+
[
GCP

1 (x)
]
0 +

[
GCP

1 (x)
]
1 + O(R−1) , (3.11)

with the leading-order (` = 0) connected part given by[
GCP

1 (x)
]
0 = −〈̂σ1〉G1(χ) . (3.12)

According to (3.10), the first subleading correction is given by

[
GCP

1 (x)
]
1 = c

(σ1)
ab

m
P1(x, y) . (3.13)
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The above perfectly matches the results established in [16, 17].
Let us consider the case n = 2. The diagrams with the field σ1 disconnected contribute

to G2 with 〈̃σ1〉
[
GCP

1 (x2)
]

1
and analogously when the labels 1 and 2 are interchanged. The

large-R expansion of the pair correlation function reads

G2(x1,x2) =
[
G2(x1,x2)

]
0 +

[
GCP

2 (x1,x2)
]
1

+ 〈̃σ1〉
[
GCP

1 (x2)
]
1 + 〈̃σ2〉

[
GCP

1 (x1)
]
1 + O(R−1) ,

(3.14)

where
[
G2(x1,x2)

]
0 is the expression given in (2.79). The terms due to disconnected

matrix elements are those multiplied by factors 〈̃σj〉. Subleading corrections for n = 2 are
computed from (3.10) and expressed as follows

[
GCP

2 (x1,x2)
]
1 = 1√

2mR
[
c

(σ1)
ab σ̂2∂η1 + c

(σ2)
ab σ̂1∂η2

]
G2(x1,x2) . (3.15)

This result can be written in a more explicit way by carrying first derivatives with respect
to x1 and x2 of the cluster function G2. It is simple to show that

∂x1G2(x1,x2) = 2P1(x1, y1)erf

χ2 − ρ12χ1√
1− ρ2

12

 ,

∂x2G2(x1,x2) = 2P1(x2, y2)erf

χ1 − ρ12χ2√
1− ρ2

12

 .

(3.16)

Grouping together corrections at order R−1/2 stemming from both connected and discon-
nected parts, we find

[G2(x1,x2)]1 = c
(σ1)
ab

m
P1(x1, y1)

[
〈̃σ2〉 − 〈̂σ2〉erf

χ2 − ρ12χ1√
1− ρ2

12

]+

+ c
(σ2)
ab

m
P1(x2, y2)

[
〈̃σ1〉 − 〈̂σ1〉erf

χ1 − ρ12χ2√
1− ρ2

12

] .
(3.17)

The above expressions coincide with the results given in [30]. We further stress how the
clustering of the two-point correlation function is satisfied at order R−1/2. This can be
easily inspected by considering the following limits

lim
x1→∓∞

[G2(x1,x2)]1 = 〈σ1〉a[b]
c

(σ2)
ab

m
P1(x2, y2) ,

lim
x2→∓∞

[G2(x1,x2)]1 = 〈σ2〉a[b]
c

(σ1)
ab

m
P1(x1, y1) ,

(3.18)

which are in agreement with (3.13).
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By carrying on the above procedure, the three-point correlation function expands as
follows

G3(x1,x2,x3) =
[
G3(x1,x2,x3)

]
0 +

[
GCP

3 (x1,x2,x3)
]
1

+ 〈̃σ1〉
[
GCP

2 (x2,x3)
]
1 + 〈̃σ2〉

[
GCP

2 (x1,x3)
]
1 + 〈̃σ3〉

[
GCP

2 (x1,x2)
]
1

+ 〈̃σ1〉〈̃σ2〉
[
GCP

1 (x3)
]
1 + 〈̃σ1〉〈̃σ3〉

[
GCP

1 (x2)
]
1 + 〈̃σ2〉〈̃σ3〉

[
GCP

1 (x1)
]
1

+ O(R−1) , (3.19)

with the leading-order term
[
G3(x1,x2,x3)

]
0 given by (2.80) and the terms at order R−1/2

given by (3.10). The result for arbitrary n follows along the same lines.

3.3 Probabilistic interpretation

It is possible to reconstruct the n-point correlation function within a probabilistic interpre-
tation in which the interface is regarded as a fluctuating line with fixed extremities. Let

Pn(x1, y1; . . . ;xn, yn)dx1 · · · dxn (3.20)

be the probability that the interface crosses the intervals (xj , xj+dxj) at time yj . Then, let

σj(xj |uj) = 〈̃σj〉 − 〈̂σj〉sign(xj − uj) +A
(σj)
ab δ(xj − uj) + . . . , (3.21)

be the magnetization profile at in the point xj and uj the abscissa in which the interface
crosses the horizontal line y = yj . The first two terms in the right hand side of (3.21)
account for coexisting phases sharply separated by a structureless interface. Endowing
the interface with interface structure amounts to the subsequent terms beyond the sharp
picture, as indicated in (3.21).

The sum over interfacial configurations which define the n-point correlation function
is formulated as follows

Gn(x1, . . . ,xn) =
∫

Rn
du1 . . . dun Pn(u1, y1; . . . ;un, yn)

n∏
j=1

σj(xj |uj) . (3.22)

The fact that Pn occurring in (3.22) is the expression found in field theory can be established
by matching (3.22) with the field-theoretical calculation for arbitrary n. This is what we
will do in the following.

We begin by focusing on the leading order in the large-R expansion which is captured
by the first two terms in (3.21). The development of the product appearing in (3.22)
yields 2n terms whose integral with respect to u1, . . . , un reproduces the cluster functions
introduced in section 2. Proving the above statement is a simple matter. We denote the
n-fold integral with respect to horizontal coordinates {uj}j=1,...,n with the compact notation

Jf(u1, . . . , un)K ≡
∫

Rn
du1 . . . dun f(u1, . . . , un)Pn(u1, y1; . . . ;un, yn) . (3.23)

Then, we employ the following abbreviation for the sign function sj ≡ sign(xj − uj) =
2ϑ(xj −uj)− 1 and ϑj ≡ ϑ(xj −uj), with ϑ(· · · ) Heaviside theta function. Block functions
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are expressed as follows
Jϑ1K = 1

Jϑ1ϑ2K = 1 2

Jϑ1ϑ2ϑ3K = 1 2 3 .

(3.24)

Consequently, cluster functions admit the following representation

Js1K = G1(x1)
Js1s2K = G2(x1,x2)

Js1s2s3K = G3(x1,x2,x3) ;
(3.25)

thus, for an arbitrary 1 6 m 6 n, we have

r m∏
j=1

sj

z
= Gm(x1, . . . ,xm) . (3.26)

For m = 0 the normalization condition gives G0 = J1K = 1, as we also stipulated section 2.
The matching between the field theoretic calculation and the probabilistic interpretation
is thus completely characterized at the leading order in the large-R expansion.

We can now establish the matching at order R−1/2. In order to do this, we focus on the
connected part of the correlation function, [GCP

n (x1, . . . ,xn)]1. The latter can be extracted
from the probabilistic picture (3.22) by removing the offset values 〈̃σj〉 in (3.21), namely

[Gn(x1, . . . ,xn)]1 =
n∑
k=1

A
(σk)
ab

∫
Rn

du1 . . . dun Pn(x1, y1; . . . ;xn, yn)δ(xk − uk)

×
n∏

j=1,j 6=k

(
〈̃σj〉 −

1
2∆〈σj〉sign(xj − uj)

)
.

(3.27)

By applying the multiple derivative ∂x1 · · · ∂xn , one finds

∂x1 · · · ∂xn [Gn(x1, . . . ,xn)]1 =
n∑
k=1

A
(σk)
ab

n∏
j=1,j 6=k

(−∆〈σj〉) ∂xk
Pn(x1, y1; . . . ;xn, yn) . (3.28)

On the other hand, field theory yields

∂x1 · · · ∂xn [Gn(x1, . . . ,xn)]1 = 2n√
2mR

n∑
k=1

Ik,n∂ηk
Pn(x1, y1; . . . ;xn, yn) , (3.29)

= 1
m

n∑
k=1

c
(σk)
ab

n∏
j=1,j 6=k

(−∆〈σ〉j)∂xk
Pn(x1, y1; . . . ;xn, yn) .

By matching (3.28) and (3.29), we readily extract the structure amplitudes

A
(σk)
ab = c

(σk)
ab

m
. (3.30)
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As consistency requires, (3.30) agrees with calculations based on n = 1 and n = 2, respec-
tively in [16] and [30].

It is actually possible to cast the above results within the diagrammatic framework
which we employed in the previous section. We note the following property

HMnI = 2−nGn(x1, . . . ,xn) , (3.31)

which expresses the cluster function in terms of the matrix element generated by the prod-
uct of n kinematical poles. Then, the cluster function Gn admits the following diagrammatic
representation in terms of block diagrams

Gn(x1, . . . ,xn) ≡
n∑
k=0

2k(−1)n−k
 ∑

16i1<···<ik6n
i1 i2 · · · ik

 . (3.32)

In turn, the relationships (3.31) and (3.32) allow us to connect the calculation of the
(n+ 1)-fold integral with respect to rapidities HMnI to a diagrammatic expansion. Such a
relationship turns out to be extendable to the instance in which one of the simple poles of
HMnI is replaced by 1, which is precisely the construction which leads to the matrix element
Dk,n. Note that each circle appearing in the block diagrams is in one-to-one correspondence
with a Heaviside theta function, as we have shown.

The diagrammatic representation of block function is extended by introducing the
modified diagrams in which one of the Heaviside theta is replaced by a Dirac delta and the
latter is represented with an orange diamond; thus

Jδ1K = 1 = ∂x1 1

Jδ1ϑ2K = 1 2 = ∂x1 1 2

Jδ1ϑ2ϑ3K = 1 2 3 = ∂x1 1 2 3 ,

(3.33)

where δj ≡ δ(xj − uj). The second equalities in (3.33) follow by virtue of ∂xjϑj = δj . As
an example, the connected pair correlation function at order R−1/2 reads

[GCP
2 (x1,x2)]1 = −〈̂σ1〉A(σ2)

ab

[
2 1 2 − 2

]
− 〈̂σ2〉A(σ1)

ab

[
2 1 2 − 1

]
.

(3.34)
The diagrams appearing in the above can be easily computed. Focusing on the first two
diagrams, the results are:

1 = P1(x1, y1)

1 2 = 1
2P1(x1, y1) + 1

2P1(x1, y1)erf

χ2 − ρ12χ1√
1− ρ2

12

 ;
(3.35)
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and analogous results are obtained for the other diagrams. It is thus evident that (3.34)
can be written in the following explicit form

[GCP
2 (x1,x2)]1 = −〈̂σ1〉A(σ2)

ab P1(x2, y2)erf

χ1 − ρ12χ2√
1− ρ2

12


− 〈̂σ2〉A(σ1)

ab P1(x1, y1)erf

χ2 − ρ12χ1√
1− ρ2

12

 ,

(3.36)

this result perfectly matches with the connected part of the expression (3.17) obtained from
the field theoretical calculation. Such a connected part can be selected simply by removing
the terms proportional to the offsets 〈̃σ1〉 and 〈̃σ2〉.

3.4 Triplet correlations

As an application of the formal results derived in the previous sections, here we consider
the explicit form of the three-point correlation function

g3(x, y) ≡ 〈σ(0, y)σ(x, 0)σ(0,−y)〉ab . (3.37)

The integrals which define the corresponding cluster functions can be evaluated in closed
form. We leave the technical calculations in appendix B and here we recall the main
notations. Thus, we introduce the rescaled coordinates η = x/λ, τ = 2y/R, the correlation
coefficient

ρ12(τ) =
√

1− τ
1 + τ

, (3.38)

and the parameter r(τ) = ρ12(τ)/
√

1− ρ2
12(τ). The correlation function (3.37) reads

g3(x, y) = −
(〈σ〉a − 〈σ〉b

2

)3
Y(η, τ) + (〈σ〉a − 〈σ〉b)2(〈σ〉a + 〈σ〉b)

8 K(η, τ)

− (〈σ〉a − 〈σ〉b)(〈σ〉a + 〈σ〉b)2

8 erf(η) +
(〈σ〉a + 〈σ〉b

2

)3
+ O(R−1/2) ,

(3.39)

where Y(η, τ) and K(η, τ) are the functions given by

Y(η, τ) = 2√
π

∫ η

0
du e−u2erf2(ru) , (3.40)

and
K(η, τ) = 2

π
sin−1(ρ2

12) + 8T (
√

2η, r(τ)) , (3.41)

where T is Owen’s function [49]

T (
√

2η, r) = 1
2π

∫ r

0
du e−(1+u2)η2

1 + u2 . (3.42)

Let us comment on some general properties. In the limit x → ±∞ the triplet corre-
lation function reduces to the pair correlation function with spin fields placed along the
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interface and symmetrically displaced with respect to the horizontal axis. In that limit,
one finds

lim
x→∓∞

〈σ(0, y)σ(x, 0)σ(0,−y)〉ab = 〈σ〉a[b]〈σ(0, y)σ(0,−y)〉ab ; (3.43)

the quantity in the right hand side is the two-point correlation function with spin fields
along the interface

〈σ(0, y)σ(0,−y)〉ab =
(〈σ〉a + 〈σ〉b

2

)2
+
(〈σ〉a − 〈σ〉b

2

)2
sin−1(ρ2

12) . (3.44)

Interestingly enough, for τ = 1/3 — corresponding to y = R/6, and r = 1 — the special
functions in (3.39) reduce to powers of the error function, in particular

Y(η, 1/3) = 1
3erf

3(η) , T (
√

2η, 1) = 1
8
[
1− erf2(η)

]
. (3.45)

Lastly, the correlation function with the three spins placed along the line which joins the
pinning points reads

g3(0, y) = (〈σ〉a − 〈σ〉b)2(〈σ〉a + 〈σ〉b)
4π

[
2 sin−1(ρ12) + sin−1(ρ2

12)
]

+
(〈σ〉a + 〈σ〉b

2

)3

+ [g3(0, y)]1 + O(R−1) , (3.46)

where [g3(0, y)]1 = O(R−1/2) is the subdominant correction due to interface structure
effects. The result for [g3(0, y)]1 can be obtained by taking y1 = y, y2 = 0 and
y3 = −y in thee expression for the correction at order R−1/2 of the correlation function
〈σc(0, y1)σc(0, y2)σc(0, y3)〉ab, which is calculated in appendix B.2. By taking the above
limiting case in (B.10), we obtain the subdominant correction

[g3(0, y)]1 = A
(σ)
ab

√
2m
πR

[(〈σ〉a + 〈σ〉b
2

)2 (
1 + 2

κ

)
+ (〈σ〉a − 〈σ〉b)2

2πκ tan−1 ρ12

]
, (3.47)

with κ =
√

1− τ2.
The occurrence of long-range interfacial correlations can be verified by expanding the

correlation coefficient ρ12 and κ for small τ . Focusing on the leading-order tern, we find
the asymptotic behavior

g3(0, y) ' (〈σ〉a − 〈σ〉b)2(〈σ〉a + 〈σ〉b)
4π

[3π
2 − (4 + 2

√
2)
√
y

R

]
+
(〈σ〉a + 〈σ〉b

2

)3
, (3.48)

with ξb � y � R. An analogous expansion can be performed for the interface structure
correction given by (3.47).

The term proportional to √y in (3.48) is the signature of long range interfacial cor-
relations. This power-law behavior in the direction parallel to the interface has to be
compared with the exponential decay of correlations which characterizes the transverse
direction. This feature can be neatly appreciated simply by evaluating the derivative of
g3(x, y) with respect to x; a simple calculation gives

∂xg3(x, y) = −〈σ〉a − 〈σ〉b4
√
πλ

e−η2
[
(〈σ〉a − 〈σ〉b)2 erf2(r(τ)η) (3.49)

+ 2
(
〈σ〉2a − 〈σ〉2b

)
erf(r(τ)η) + (〈σ〉a + 〈σ〉b)2

]
+ O(R−1) .
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The exponential factor e−η2 produces the confinement within the interfacial region of the
long-range fluctuations of the order parameter.

Let us consider now the Ising model. Denoting the spontaneous magnetization with
M = 〈σ〉+, the leading-order form of the triplet correlation becomes

g3(x, y) = M3Y(η, r) . (3.50)

The above vanishes for x = 0. However, going away from x = 0 the decay of correla-
tions along the direction parallel to the interface exhibits a long-range character analogous
to (3.48) as well as an additional dependence on x with the anisotropic features (i.e.,
dependence on x and y) discussed above. A detailed asymptotic analysis of (3.50) and
the comparison with results obtained with Monte Carlo simulations is carried out in a
forthcoming publication [52].

Finally, we discuss the case of the q-state Potts model [59]. For ferromagnetic in-
teractions and with q 6 4 the model exhibits a continuous phase transition [60]. In the
low-temperature phase there are q degenerate ground states and, in the scaling limit, phase
separation between them is described by field theory [16]. Thanks to permutational sym-
metry, the vacuum expectation values of the order parameter field satisfy

〈σc〉a = qδac − 1
q − 1 M , (3.51)

with M = 〈σa〉a the spontaneous magnetization. The formalism presented in
this paper allows for a characterization of triplet correlations of the generic form
〈σc(0, y)σd(x, 0)σe(0,−y)〉ab with c, d, e ∈ {1, . . . , q}. Focusing on the simplest case in
which the three spins entering the correlation function have the same component, i.e.,
c = d = e, the three-point correlation function (3.39) takes the form

〈σc(0, y)σc(x, 0)σc(0,−y)〉ab = q3M3

8(q − 1)3 (δac − δbc)3
Y(η, τ)

− q2M3

8(q − 1)3 (δac − δbc)2 [q (δac + δbc)− 2
]
K(η, τ)

+ qM3

8(q − 1)3 (δac − δbc)
[
q (δac + δbc)− 2

]2erf(η)

− M3

8(q − 1)3
[
q (δac + δbc)− 2

]3 + O(R−1/2) .

(3.52)

We observe that when c equals one of the two boundary colors, e.g. c = b (with c 6= a), the
correlation function (3.52) reduces to a particularly simple expression

〈σc(0, y)σc(x, 0)σc(0,−y)〉ab = M3

8(q − 1)3

[
q3Y(η, τ)− q2(q − 2)K(η, τ) + q(q − 2)2erf(η)

− (q − 2)3
]

+ O(R−1/2) . (3.53)

It has to be observed how the result corresponding to the Ising model given in (3.50) is
retrieved in the limit q → 2.
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For the q-state Potts model with q = 3 and q = 4 it is possible to consider the
correlations between non-boundary colors. By taking c 6= a, b the first three terms in
the right hand side of (3.52) vanish and one finds a term proportional to 1/(q − 1)3 up
to corrections proportional to R−1/2. This feature is actually expected because the non-
boundary color contributes in a nontrivial way to the magnetization profile at order R−1/2,
the same happens for correlation functions. As we are going to show in an explicit fashion,
the term proportional to R−1/2 depends on y. We can compute the correction at order
R−1/2 in (3.52) by adopting the probabilistic interpretation illustrated in section 3.3. For
the sake of simplicity we show the specific form of these corrections for the special case
x = 0. The subleading correction is given by (3.47) with the structure amplitude for the
q-state Potts field theory given by

A
(σc)
ab = 2− q(δca + δcb)

2
BqM

m
, (3.54)

where B3 = 1/(2
√

3) and B4 = 2/(3
√

3) [16]. By inserting (3.54) into (3.47), we find the
subleading correction

[g3(0, y)]1 = − M3
√

2πmR
[q(δca + δcb)− 2]Bq

(q − 1)2

{[
q(δca + δcb)− 2

]2 (1
4 + 1

2κ

)
+ q2 (δca − δcb)2 tan−1 ρ12

πκ

}
.

(3.55)

By performing a small-y expansion it is possible to show that (3.55) exhibits power-law
correlations which are analogous to those obtained at the leading order in (3.48). For
q = 3 and q = 4 the correlations of the non-boundary color are characterized by a non-
vanishing amplitude. For q = 2 the color c must coincide either with a or b and the
amplitude vanishes. In this case, we expect the first correction to occur at order R−1. All
these features are actually shared by the interface structure correction of the magnetization
profile and can be interpreted as the formation of isolated droplets of phase c adsorbed
along the ab interface [16].

4 Corrections at order R−1

We have seen that finite-size corrections proportional to R−1/2 computed within field theory
match with a calculation based on the probabilistic interpretation. We show in this section
that corrections at order R−1 for the magnetization profile can be interpreted within the
probabilistic picture by allowing certain structure amplitudes to be y-dependent. However,
by using such an information gained for n = 1, the case n = 2 does not necessarily lead to
a matching between the two formulations. We will cover these aspects by focusing on the
explicit example of the Ising model.
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4.1 Magnetization profile

The techniques developed in section 2 and section 3 can be straightforwardly applied to
the case in question. We start by considering the low-rapidity expansion

f∗−+(θ1)F σ(θ12 + iπ)f−+(θ2) =
∞∑
n=0

Q2n−1(θ1, θ2) , (4.1)

where Q2n−1(θ1, θ2) are homogeneous functions of degree 2n− 1 in the rapidity variables,
i.e., Q2n−1(αθ1, αθ2) = α2n−1Q2n−1(θ1, θ2) for α > 0. The occurrence of odd powers follows
because f−+(θ) = f−+(−θ) and F σ(θ + iπ) = −F σ(−θ + iπ); in particular, F σ(θ + iπ) =
−iM coth(θ/2) [46], with M = 〈σ〉+ > 0 the spontaneous magnetization. The boundary
amplitude f−+(θ) is known exactly for the Ising model but for the purpose of this paper
it is sufficient to take5 f−+(θ) = 1 + f2θ

2 + O(θ4). The large-R expansion reads

〈σ(x, y)〉−+ = −2iM
HQ−1I + 2

mRHQ1I + O(R−2)
1 + 2f2

mR + O(R−2)

= −2iM
[
HQ−1I + 2

mR
(HQ1I− f2HQ−1I) + O(R−2)

]
,

(4.2)

with
Q−1 = 1

θ12
, Q1 = f2

θ2
1 + θ2

2
θ12

+ 1
12θ12 . (4.3)

We have

H1I = 1√
πκ

e−χ2 (4.4)

Hθ2
1 + θ2

2I = 2√
πκ3

[
1−

(
1 + τ2

)
χ2
]
e−χ2 (4.5)

Hθ12I = 2iχ√
πκ2 e

−χ2
. (4.6)

Then,

H 1
θ12

I = i
∫

dη H1I = i
2erf(χ) , (4.7)

Hθ2
1 + θ2

2
θ12

I = i
∫

dη Hθ2
1 + θ2

2I = i
2erf(χ) + i√

πκ2

(
1 + τ2

)
χe−χ2

. (4.8)

The magnetization profile reads

〈σ(x, y)〉−+ = Merf(χ) + M

mR

[2
3 + 4f2(1 + τ2)

]
χe−χ2 + O(R−2) . (4.9)

It has to be noticed how the expansion of the numerator originates an extended profile
proportional to erf(χ) through the function H(θ2

1 + θ2
2)/θ12I (see Q1) and that such contri-

bution is canceled by the subtraction of f2HQ−1I. As a result, the correction at order R−1

5Without loss of generality, we can take f−+(0) = 1 because f−+(θ) appears both at the numerator and
denominator and the low-rapidity asymptotic is needed.
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is a localized profile proportional to χe−χ2 ∝ ∂xP1(x, y). This remark actually indicates
that the above result can be obtained within the probabilistic description by averaging the
sharp magnetization profile

σ(x|u) = −M + 2Mθ(x− u) +A1(y)∂xδ(x− u) + . . . , (4.10)

and the matching yields the structure amplitude

A1(y) = −M
m2

[1
6 + f2(1 + τ2)

]
, (4.11)

which depends on y = Rτ/2.

4.2 Two-point correlation function

The calculation proceeds as follows

f∗−+(θ1)F σ−+−(θ12 + iπ)F σ−+−(θ23 + iπ)f−+(θ3) =
∞∑
n=0

I2n−2(θ1, θ2, θ3) , (4.12)

with I2n−2 a homogeneous function of order 2n− 2. The expansion yields

I−2(θ1, θ2, θ3) = 1
θ12θ23

,

I0(θ1, θ2, θ3) = 1
θ12θ23

[
f2
(
θ2

1 + θ2
3

)
+ 1

12
(
θ2

12 + θ2
23

)]
.

(4.13)

The spin-spin correlation function expands as follows

G2 = −4M2 HI−2I + 2
mRHI0I + O

(
R−2)

1 + 2f2
mR + O (R−2)

, (4.14)

thus
G2 = −4M2

[
HI−2I + 2

mR
(HI0I− f2HI−2I)

]
+ O(R−2) . (4.15)

In order to simplify the analysis, we restrict ourselves to the parallel correlation func-
tion, G2|‖ ≡ G2(x, y;x,−y). As a further simplification for our considerations, we take the
double derivative ∂x1∂x2 and evaluate it for spin field in the parallel arrangement defined
above. Therefore, we examine

∂2
x1x2G2(x1, y1;x2, y2)

∣∣∣
‖
≡ ∂2

x1x2G2
∣∣∣
‖
, (4.16)

the subscript ‖ means that x1 = x2 ≡ x, y1 = −y2 ≡ y are set afterwards the application
of ∂η1∂η2 . Now, we look more closely to ∂2

η1η2HInI, for n = −2 and n = 0. We have

∂2
η1η2HI−2I = −H1I , (4.17)

with H1I = λ2P2(x1, y1;x2, y2) and

∂2
η1η2HI0I = −f2Hθ2

1 + θ2
3I−

1
12Hθ2

12 + θ2
23I . (4.18)
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The second term can be written as follows

Hθ2
12 + θ2

23I = −
(
∂2
η1 + ∂2

η2

)
H1I . (4.19)

The above admits a simple expression for spin fields in parallel arrangement, i.e., with
x1 = x2 ≡ x, y1 = −y2 ≡ y, in particular

−
(
∂2
η1 + ∂2

η2

)
H1I‖ = B(η, τ)H1I‖ , (4.20)

with
B(η, τ) = 1− τ2 − 2τη2

τ(1− τ)2 . (4.21)

The other term is arranged in a similar way. By writing

Hθ2
1 + θ2

3I‖ = E(η, τ)H1I‖ . (4.22)

with
E(η, τ) = 2− 2τ − 2η2

(1− τ)2 . (4.23)

Summing up all the pieces, we obtain

∂2
x1x2G2

∣∣∣
‖

= 4M2P2(x, y;x,−y) (4.24)

+ M2

mR

{2
3B(η, τ)− 8f2

[
1− E(η, τ)

]}
P2(x, y;x,−y) + O(λ−2(mR)−2) .

The factor λ−2 in the O-symbol is due to the differentiation with respect to x1 = λη1 and
x2 = λη2. The calculation within the probabilistic interpretation follows straightforwardly
and reads

∂2
x1x2G

(prob.)
2 (x1,y1;x2,y2)=4M2P2(x1,y1;x2,y2) (4.25)

+2M
[
A1(τ1)∂2

x1+A1(τ2)∂2
x2

]
P2(x1,y1;x2,y2)+O(λ−2(mR)−2),

the superscript “prob.” stresses that such an expression has been derived within the proba-
bilistic interpretation. The second term can be written in a form which is similar to (4.24)

∂2
x1x2G

(prob.)
2

∣∣∣
‖

= 4M2P2(x,y;x,−y) (4.26)

+ M2

mR

{2
3B(η,τ)+4f2(1+τ2)B(η,τ)

]}
P2(x,y;x,−y)+O(λ−2(mR)−2) .

We see that the field-theoretic calculation (4.24) and the one carried out within the
probabilistic interpretation, (4.26), agree at the leading order but disagree at the order
R−1. The disagreement is actually caused by the term proportional to f2 and is ultimately
originated by the features of the boundary field theory. On the other hand, the term
proportional to the factor 2/3, which emerges from the low-energy properties of the bulk
form factor, does not originate the disagreement.

The above analysis suffices in order to provide an example which exhibits an explicit
breakdown of the matching between probabilistic interpretation and field theory. As we
have already proved, the probabilistic approach has to be limited to corrections at order
R−1/2 in which the low-energy behavior of the boundary features does not report.
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4.3 Stress tensor trace and mixed correlation functions

The calculation method illustrated in the previous sections can be applied to mixed cor-
relation functions involving both the trace of the stress tensor and spin fields. In this
conclusive section, we give an account on this aspect. Denoting the stress tensor trace with
Θ(x), the counterpart of the matrix element decomposition (2.22) reads

MΘ
ab(θj |θj+1) = Θa b

θj

θj+1

= Θa b

θj

θj+1

+ Θa b

θj

θj+1

, (4.27)

or equivalently,

MΘ
ab(θj |θj+1) = FΘ

aba(θj − θj+1 + iπ) + 2π〈Θ〉aδ(θj − θj+1) . (4.28)

Contrary to the spin field, for the stress tensor 〈Θ〉a = 〈Θ〉b ≡ 〈Θ〉; thus, its two-particle
form factor can be expanded as follows

FΘ
aba(θj − θj+1 + iπ) = FΘ

aba(iπ) + O((θj − θj+1)2) . (4.29)

The normalization of Θ actually implies FΘ
aba(iπ) = 2πm2 [61].

Let us consider the n-point correlation function of the stress tensor trace,
〈Θ(x1) · · ·Θ(xn)〉ab. The connected part follows straightforwardly

〈Θ(x1) · · ·Θ(xn)〉CP
ab =

(
FΘ
aba(iπ)

)n
mn

Pn(x1, y1; . . . xn, yn) , (4.30)

up to subdominant large-R corrections. Therefore, the joint n-intervals passage probability
is proportional to the connected part of the n-point correlation function of the stress tensor.

It has to be observed that (4.30) scales as R−n/2. As a first consequence of (4.29),
the leading term in the large-R expansion is the one which counts the maximum number
of disconnected pieces. The fully disconnected term cancels exactly the partition function
at the denominator and yields a spatially-independent offset given by 〈Θ〉n. The next-to-
leading term comes at order R−1/2 and it is due to the contraction of n − 1 disconnected
pieces with one connected matrix element; such terms are captured by the matrix element

MΘ
n (θ1, . . . , θn+1) =

n∑
i=1

FΘ
aba(iπ)

n∏
j 6=i

2π〈Θ〉δ(θj − θj+1) . (4.31)

The corresponding result for the n-point correlations of Θ reads

〈Θ(x1) · · ·Θ(xn)〉ab = 〈Θ〉n + 〈Θ〉n−1F
Θ
aba(iπ)
m

n∑
i=1

P1(xi, yi) + O(R−1) . (4.32)
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We can now consider a mixed correlation function which involves n−m spin fields. The
leading-order term follows by contracting the product of (n −m) kinematical poles with
m Dirac deltas stemming from the stress tensor matrix element (4.28). The corresponding
result reads

〈σ1(x1)···σn−m(xn−m)Θ(xn−m+1)···Θ(xn)〉CP
ab =〈Θ〉m

n−m∏
j=1

(−〈̂σj〉)

Gn−m(x1,...,xn−m)

+O(R−1/2). (4.33)

As a consistency check we consider two limiting cases. For m = 0 the above reduces to the
connected n-point spin correlation function and the corresponding result (2.40) is found as
a limiting case. For m = n we retrieve the connected n-point correlator of Θ given by the
first term in the right hand side of (4.32).

5 Conclusions

In this paper, we considered the scaling limit of a generic two-dimensional ferromagnetic
system at phase coexistence near a second order phase transition point. We showed how
field theory provides exact results for n-point spin and stress tensor trace correlation func-
tions in presence of a fluctuating interface. More specifically, the system we considered
is defined on an infinite strip of width R much larger than the bulk correlation length.
Boundary conditions are used in order to enforce phase separation through an interface
which spans between the two edges and whose endpoints are pinned.

By extending the field-theoretical technique developed for one- and two-point correla-
tion functions, respectively in [16] and [30], we have been able to find the exact analytic
form of order parameter and stress tensor correlation functions in the regime in which the
fields are widely separated with respect to the scale set by the bulk correlation length.
Technically speaking, we showed how the spectral decomposition of correlation functions is
dominated by the single-particle term and that multi-particle terms yield corrections which
are exponentially suppressed provided the vertical separation between adjacent fields is fi-
nite and large compared to the bulk correlation length. Then, the resulting single-particle
term admits an expansion in (integer) powers of R−1/2, and that the generic scaling function
at order R−`/2 with ` = 0, 1, 2, . . . can be computed exactly with the formalism developed
in this paper. The systematic treatment of the leading term (` = 0) and first subleading
one (` = 1) has been provided in full generality for arbitrary n.

Analogously to the case of the two-point correlation function, we have showed that, as
long as R is finite, the n-point correlation function is characterized by long-range correla-
tions in the direction parallel to the interface. The spatial extent of the interface midpoint
fluctuations grows as R1/2 and, for R = ∞, these unbounded fluctuations lead to an ex-
ponential decay of bulk correlations averaged over the two coexisting phases separated by
the interface.

More technically, these results follow by exploiting general low-energy properties of two-
dimensional field theory whose excitations — in two dimensions — are topological (kink)
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particles. We found that the leading asymptotic form of correlation functions involving
spin fields is completely codified by the kinematical pole singularity exhibited by matrix
element of the order parameter field.

Among our findings, the dominant asymptotic form of n-point correlation functions
is expressed in terms of n-body cluster functions which are constructed out of cumulative
distribution functions of the n-variate gaussian distribution. The first subleading finite-size
correction, which is proportional to R−1/2 and arises from effects due to interface structure,
depends on the bulk universality class only. Specificities related to the boundaries, which
are incorporated in the low-energy behavior of matrix elements of boundary changing
operators, do not report at order R−1/2, but appear at order R−1. Both the leading term
and the first subleading corrections can be interpreted within a probabilistic picture in
which the interface is regarded as the worldline of a particle which propagates randomly
between the pinning points by undergoing a Brownian bridge. By using the Ising model as
a specific example, we also show that the subleading correction at order R−1 does not nec-
essarily emerge from the probabilistic description. We identify the origin of the mismatch
as a specificity arising from matrix elements of the boundary condition changing operators.

Throughout this manuscript we have introduced a diagrammatic notation (block dia-
grams) for n-body cluster functions which facilitates the handling of expressions at both the
leading and first subleading orders. Such a notation proved to be useful also in establishing
a graphical connection between disconnected matrix elements and their contribution to the
correlation function.

We conclude by discussing some interesting perspectives. The reconstruction of n-point
correlation function through the probabilistic interpretation, which we have shown to be
correct at both the leading order and including corrections at order R−1/2, can be used in
order to find exact results in closed form once the passage probability is known. This is
indeed the case for n = 3 [52] and n = 4 [62] in which numerical simulations confirm the
analytic results. The extension of the techniques developed in this paper has been merged
with the techniques of [18] in a companion paper for the study of correlations in the half-
plane. There, explicit results for the spin-spin correlation function on the half-plane with
boundary conditions enforcing a droplet have been found and successfully tested by means
of high-precision Monte Carlo simulations [63, 64].

Acknowledgments

I am grateful to Gesualdo Delfino for his valuable comments. I also thank Douglas B.
Abraham for many interesting discussions and for collaborations on closely related topics.
It is also a pleasure to acknowledge the Galileo Galilei Institute for Theoretical Physics
(Arcetri, Florence) for hospitality received in the germinal stages of this work during the
event “SFT 2019: Lectures on Statistical Field Theories”.

– 40 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
6

x

(x1, t1)
(x2, t2)

...

(xn, tn)

y

(0,−R/2)

(0, R/2)a

a

b

b

Figure 3. The multi-interval construction of the passage probability Pn with the time tj identified
according to (A.2).

A Brownian bridges

In this appendix we recall how to compute the probability density function of a Brownian
bridge and show how it relates to the (n + 1)-fold integral (2.32). The Brownian bridge
is defined as a Brownian motion which is constrained to come back to the initial position
after a fixed amount of time T . To be definite, let us consider the origin x = 0 as the
initial position of a Brownian motion which moves in one spatial dimension. The diffusion
equation is solved by the transition probability [65]

W (x1, t1|x0, t0) = 1√
4πD(t1 − t0)

exp
[
− (x1 − x0)2

4D(t1 − t0)

]
(A.1)

where D is the diffusion coefficient, (x0, t0) defines the initial state and (x1, t1) the final
one. Since (A.1) is a probability density,

∫
R dx1W (x1, t1|x0, t0) = 1. Let Ij = (xj , xj+dxj)

be a space interval at time tj as shown in figure 3.
The above problem can be brought in touch with the passage probability which appears

in (2.32) by shifting and rescaling the time by means of
tj
T

= yj
R

+ 1
2 = 1 + τj

2 (A.2)

and by setting DT = λ2. The net probability for the Brownian walker to cross all intervals
{Ij}j=1,...,n and come back to x = 0 at time t = T reads Pn(x1, y1; . . . ;xn, yn)dx1 · · · dxn,
with

Pn(x1, y1; . . . ;xn, yn) =
W (0, T |x1, t1)

(∏n−1
j=1 W (xj , tj |xj+1, tj+1)

)
W (xn, tn|0, 0)

W (0, T |0, 0) . (A.3)

We note that for n = 1 the passage probability is

P1(x, y) = 1√
πκλ

e−χ2 (A.4)
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and for n = 2, we have

P2(x1,y1;x2,y2) = 1
πλ2

√
2(1−τ1)(τ1−τ2)(1+τ2)

exp
[
−1

2

(
η2

1
1−τ1

+ (η1−η2)2

τ1−τ2
+ η2

2
1+τ2

)]
.

(A.5)
We can now relate the field-theoretical calculation with the passage probability of

the Brownian bridge computed from the transition probability. The (n + 1)-fold integral
in (2.32) has the structure

H1Iη1,τ1;...;ηn,τn = Nne−Bn , (A.6)

with
Bn = 1

2

n∑
j=0

(ηj − ηj+1)2

τj − τj+1
, (A.7)

the normalization factor

Nn = 2
√
π(2π)−(n+1)/2

n∏
j=0

(τj − τj+1)−1/2 , (A.8)

and (η0, τ0) = (0, 1), (ηn+1, τn+1) = (0,−1). The quantity Bn is a quadratic form of the
coordinates ηj . By defining the column vector η = (η1, . . . ηn)T , one can write

Bn = ηT · B · η (A.9)

where B is the symmetric matrix whose entries in the upper triangle and main diagonal
are given by

(B)ij =


2−1(τi−1 − τi)−1 + 2−1(τi − τi+1)−1 , j = i

−2−1(τi − τj)−1 , j = i+ 1
0 , j > i+ 1 .

(A.10)

The following properties are easily established

(
B−1

)
ij

=

(1− τi)(1 + τj) , j > i

(1− τj)(1 + τi) , j 6 i ,
(A.11)

and
det B = 2−(n−1)

n∏
j=0

(τj − τj+1)−1 . (A.12)

It is convenient to express the passage probability in terms of the rescaled variables χj
defined in the main body of the paper. To this end, we introduce the column vector
χ = (χ1, . . . , χn)T with χj = ηj/κj and κj =

√
1− τ2

j . The change of basis from ηj
variables to χj variables is implemented by the (diagonal) matrix U = diag(κ1, . . . , κn);
hence η = Uχ. The quadratic form Bn becomes

Bn = χT · UBU · χ . (A.13)
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The n-variate normal distribution with zero mean has the density

Πn(u1, . . . , un|R) = 1
(2π)n/2

√
det R

e−
1
2u

T ·R−1·u , (A.14)

with u = (u1, . . . , un)T and R the correlation coefficient.
In order to cast (A.6) in to the form (A.14), we identify the correlation coefficient R

as follows
R = (UBU)−1 . (A.15)

The correlation matrix is evidently symmetric and its matrix elements for i 6 j are (R)ij =
ρij with ρii = 1 and

ρij = (1− τi)(1 + τj)
κiκj

; (A.16)

recalling that κj =
√

1− τ2
j , (A.16) agrees with (2.35). For any i < k < j the Markov

property [50, 51]
ρij = ρikρkj , (A.17)

follows as a direct consequence of (A.16). While the most generic correlation matrix is char-
acterized by n(n−1)/2 entries, thanks to the Markov property the number of independent
correlation coefficients is lowered to n− 1. Thanks to (A.12), we have

det R = 2(n−1)

 n∏
j=1

κ−2
j

 n∏
j=0

(τj − τj+1)

 , (A.18)

from which we can read the normalization factor Nn

Nn = 1
(2π)n/2

√
det R

n∏
j=1

(
√

2κj) . (A.19)

The result (A.6) is thus

H1Iη1,τ1;...;ηn,τn =

 n∏
j=1

√
2κj

 1
(2π)n/2

√
det R

e−χT ·R·χ

= λn

 n∏
j=1

√
2κj
λ

Πn(
√

2χ|R)

= λnPn(x1, y1; . . . , xn, yn) ,

(A.20)

and the passage probability reads

Pn(x1, y1; . . . , xn, yn) =

 n∏
j=1

√
2κj
λ

Πn(
√

2χ|R) ; (A.21)

the above coincides with (2.33) provided in the main body of the paper.
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As a further consistency check, we compute the normalization. Let us consider the left
hand side of (A.20). We can perform the n-fold integral with respect to the coordinates xj
directly in the function H1Iη1,τ1;...;ηn,τn . Since∫

R
dxj eiηj(θj−θj+1) = 2πλδ(θj − θj+1) , (A.22)

we find ∫
Rn

dx1 · · · dxn H1Iη1,τ1;...;ηn,τn = (2πλ)nH n∏
j=1

δ(θj − θj+1)I
= λn

1√
π

∫
R
dθ e−θ2

= λn .

(A.23)

Let us consider the right hand side of (A.20). By applying the rescaling of integration
variables

√
2χj = uj in (A.21), we find the normalization∫

Rn
dx1 · · · dxn Pn(x1, y1; . . . , xn, yn) =

∫
Rn

du1 · · · dun Πn(u|R)

= 1 ,
(A.24)

which completes the check of (A.20).

B Triplet correlations

B.1 Leading order

The results given in section 3.4 are derived in this appendix. The one-body cluster functions
for the correlation function (3.37) are: G1(x1) = G1(x3) = 0, andG1(x2) = erf(η), with η =
x/λ. In order to find the two-body cluster functions, we need to recall the following identity

Φ2(
√

2η, 0|ρ12) =
∫ √2η

−∞
du1

∫ 0

−∞
du2 Π2(u1, u2|ρ12)

= 1
2
√
π

∫ η

−∞
dt e−t2erfc(rt) , r ≡ ρ12√

1− ρ2
12

= 1
4 + 1

4erf(η) + T (
√

2η, r) ;

(B.1)

in the last line, we used the following property of Owen’s T function [48, 49]∫ η

−∞
dt e−t2erf(rt) = −2

√
πT (
√

2η, r) . (B.2)

From the above, we find the following two-body cluster functions

G2(x1,x2) = G2(x2,x3) = 4T (
√

2η, r) . (B.3)

The calculation of G2(x1,x3) proceeds as follows:

G2(x1,x3) = 4Φ2(0, 0|ρ13)− 4Φ1(0) + 1
= 4Φ2(0, 0|ρ13)− 1

(B.4)
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but since
Φ2(0, 0|ρ13) = 1

4 + 1
2π sin−1(ρ13) (B.5)

and ρ13 = ρ2
12, we have

G2(x1,x3) = 2
π

sin−1(ρ2
12) . (B.6)

For the three-body cluster function, we need the following result for the cumulative
distribution function of the trivariate normal distribution with correlation coefficients
ρ12 = ρ23, and ρ13 = ρ2

12,

Φ3(0,
√

2η, 0|ρ12, ρ
2
12, ρ12) =

∫ 0

−∞
du1

∫ √2η

−∞
du2

∫ 0

−∞
du3 Π3(u1, u2, u3|ρ12, ρ

2
12, ρ12)

= 1
4
√
π

∫ η

−∞
dt e−t2erfc2(rt)

= 1
8 + 1

8erf(η) + T (
√

2η, r) + 1
8Y(+∞, r) + 1

8Y(η, r) .

(B.7)

It is then easy to see that
Y(+∞, r) = 2

π
sin−1(ρ2

12) . (B.8)

Finally, the three-body cluster function reads G3(x1,x2,x3) = Y(η, r). Collecting the
above findings, the result (3.39) given in the main text can be easily assembled.

B.2 Subleading correction

We provide the analytic form of the three-point correlation function along the interface
including corrections at order O(R−1/2). The calculation of the leading-order term for
x1 = x2 = x3 = 0 can be computed straightforwardly from the probabilistic interpretation.
By recalling the expressions for the quadrant and orthant probabilities given in (2.85), we
find the first term given below

〈σc(0, y1)σc(0, y2)σc(0, y3)〉ab =
(〈σc〉a + 〈σc〉b

2

)3
+ 1

2π (〈σc〉a − 〈σc〉b)2
(〈σc〉a + 〈σc〉b

2

)
×
[
sin−1(ρ12) + sin−1(ρ13) + sin−1(ρ23)

]
(B.9)

+ [〈σc(0, y1)σc(0, y2)σc(0, y3)〉ab]1 + O(R−1) ,

which coincides with the limit x → 0 of (3.46), as consistency requires. The correction
proportional to R−1/2 is given by

[〈σc(0, y1)σc(0, y2)σc(0, y3)〉ab]1 = A
(σc)
ab√
πλ

(〈σc〉a + 〈σc〉b
2

)2 ( 1
κ1

+ 1
κ2

+ 1
κ3

)

+ A
(σc)
ab√
πλ

(〈σc〉a − 〈σc〉b)2

2π

[tan−1 J1
κ1

+ tan−1 J3
κ3

]
,

(B.10)

with κj =
√

1− τ2
j and

J1 = ρ23

√
1− ρ2

12
1− ρ2

23
, J3 = ρ12

√
1− ρ2

23
1− ρ2

12
. (B.11)

The derivation of (B.10) within the probabilistic picture is immediate.
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